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1. Introduction. In [5] it is shown that a commutative lattice-ordered group G
(“l-group”) can be embedded in a Hahn-type group of real valued functions. Moreover,
whether or not there exists a minimal such embedding depends only on the lattice &
of all I-ideals of G. In [6] it is shown that whether or not G is completely distributive
depends only on &. It is well known that % is a complete distributive lattice, and K.
LORENZ [12] has shown that if we discard the commutative hypothesis, then the set I"
of all convex I-subgroups of G is also a complete distributive lattice. Most of the
known structure and representation theorems for G follow from properties of I' or
from putting restrictions on I'. For example, C. HOLLAND [10] has shown that each
I-group G is l-isomorphic to a group of order preserving permutations of a totally
ordered set. Here the ordered set is built up from ordered sets of right cosets of
convex [-subgroups of G. These results indicate quite clearly the need for an
investigation of the structure of I' for an arbitrary I-group G.

In section 2 we investigate those lattices that are freely generated by their meet
irreducible elements. In section 3 it is shown that the lattice I' of all convex I-subgroups
of an I-group G is generated by its set I'y of meet irreducible elements, and that I'; is
a root system. Thus it follows (Theorem 3.4) that there is a natural l-isomorphism of I'
into the lattice that is freely generated by I';. Theorem 3.9 asserts that I'; freely
generates I if and only if for each element g in G there exists at most a finite number
of convex [-subgroups M of G that are maximal with respect to g¢ M. Also I'y
freely generates I' if and only if

B v (AA4,) = A(BAA,) forall A4, Bel, (ceX).

The basic concept used in proving these results is that of a prime convex I-subgroup.
A convex I-subgroup M of G is called prime if whenever a and b belong to G* but
not to M, then a A b > 0. Theorem 3.2 gives six equivalent definitions of a prime

!y This research was supported by a grant from the National Science Foundation.
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convex [-subgroup. In particular, the elements of I'; are prime, and if M is an l-ideal
of G, then G/M is an o-group if and only if M is prime. For each g € G let C(g) be
the convex [-subgroup of G that is generated by g. Then (Theorem 3.5) the mapping
of M upon M n C(g) is a one to one mapping of the set of all convex I-subgroups of G
that are maximal without g onto the set of all maximal convex l-subgroups of C(g).
If My, ..., M, are the only convex I-subgroups of G that are maximal without g,
then (Theorem 3.7)

Cg)=C(g)@Clg)®...® C(gn)

where M; is the only convex [-subgroup of G that is maximal without g;, C(g;) is
a lexicographical extension of C(g;) N M; and C(g;)/(C(g;) n M,) is an archimedean
o-group (i = 1, ..., n). Thus we have a local structure theorem for G.

In section 4 we show that if Lis a lattice that is freely generated by its set A of
meet irreducible elements and if A is a root system, then Lis (isomorphic to) the lattice
of all convex I-subgroups of an I-group (Theorem 4.2). In particular, a finite distri-
butive lattice is (isomorphic to) the lattice of all convex [-subgroups of an I-group if
and only if its set A4 of meet irreducible elements form a root system, and if this is
the case, then the lattice is freely generated by A.

The author wishes to thank A. H. CLIFFORD who read a rough draft of this paper
and made many valuable suggestions, and also to thank L. Fuchs for some con-
structive discussions on these topics.

Notation. We shall denote the null set by @ and the fact that a, be G are not
comparable by a ]] b or that the subsets 4 and B of G are not comparable (with
respect to inclusion) by A “ B. Also A \ B will denote the elements that are in 4
but not in B. We shall denote the lattice operations by A, v, <, < and the set
theoretic operations by N, U, =, <. A subset D of a po-set P is called a dual ideal
if whenever d < p for de D and p € P, it follows that pe D. R will always denote
the naturally ordered additive group of real numbers, and @ will always denote the
cardinal sum. If S is a subset of a group G, then [S] will always denote the subgroup
of G that is generated by S.

2. Lattices that are generated by their meet irreducible elements. Throughout this
section let A be a po-set and let A" be the set of all dual ideals of A including the
null set (1. For &’ and " in A" we define o’ < B’ if @’ = B’ as subsets of A. If follows
easily that A’ is a complete distributive sublattice of the Boolean algebra 24 of all
subsets of A, where o' v ' =o' n B and o’ A B’ =0 U B'. Also A is the least
element and [ is the greatest element in A’.

Proposition 2.1. A’ satisfies the generalised distributive law

AVu;,.) = V(Aus )
4 As F 4
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and dually, where for each o in the set A, A; is a set, and F is the set of all mappings t
of 4 into the join of the A, such that 1(5) € A4 for each § in A.

This is an immediate consequence of the validity of the generalized distributive
law in 2. Clearly the mapping 7 of 1€ A onto the principal dual ideal 1’ = {x € A4 :
co0 = A} of A is one to one and o < Bin A if and only if «’ < B in A". Thus the
lattice A’ contains an isomorphic copy of the given po-set A.

Proposition 2.2. Each element in A’ is the greatest lower bound of a unique dual
ideal in An. If ' € A, then o' = APn(B € &'), and if &' is not principal, then each
pr > o

An element a of a lattice L will be called meet irreducible if a is not the greatest
element in Land if a < Ab(be Land b > a). This is more restrictive than the usual
concept of finite meet irreducible (b, ce L, b > a and ¢ > a imply b A ¢ > a).

Proposition 2.3. A7 is the set of all meet irreducible elements in A’'.

Proof. If '€ Axm, then ' = {aeA:a = A}. Let 4 = {¢'€ A" : ¢’ > 2'}. Then
i = Ad'(c’ € 4) is the dual ideal {xe A :a > A} of A4 and hence &' > A". Thus A’
is meet irreducible, and by Proposition 2.2 the elements in A" \ An are meet reducible.

Let Lbe a lattice and let S be the set of all meet irreducible elements in L. If each
element in Lis the greatest lower bound of a dual ideal of S (including S and the
null ideal) and if Aa, exists for each dualideal {a,} of S, then we say the Lis generated
by its meet irreducible elements. In particular, Lhas a greatest and a least element,
and in all that follows we shall only consider lattices that have greatest and least
elements. If in addition, for each pair {a,} and {b,} of dual ideals of S, Aa, = Ab,
implies that {a,} = {b,}, then we say that Lis freely generated by S. Note that A’ is
freely generated by An.

Theorem 2.1. If L is a lattice that is generated by its set S of meet irreducible
elements, then the following are equivalent.

(a) Lis freely generated by S.
(b) Lsatisfies the generalized distributive law.
(¢) b v (Aa,) = Ab v a,) for all a,, be S(o € Z).

Proof. Let S’ be the lattice of all dual ideals of S. If Lis freely generated by S,
then there is a natural /-isomorphism between Land S’, and so by Proposition 2.1.
L satisfies the generalized distributive law. Therefor= {a) implies (b) and clearly (b)
implies (c). Finally suppose that (c) is satisfied and that Aa, = Ab,, where {a,}
and {b,} are dual ideals of S. For b € {b,}

ANbva)=bv(Aa)=0bv (Aby)=b.

Thus since b is meet irreducible in L, there exists an element a € {a,} such that
b v a = b and hence a < b. But {a,} is a dual ideal of S and hence b € {a,}. There-
fore {bs} = {a,} and similarly {a,} < {b,}. Thus S freely generates L.
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Corollary. If Lis a lattice that satisfies both chain conditions, then Lis generated
by its set S of meet irreducible elements. Moreover, S freely generates Lif and only
if Lis distributive, and if S freely generates L, then Lis finite.

Proof. It is known ([2] p. 38) that Lis a complete lattice, and in fact, for each
subset {a,} of L, Aa, = Aa,, (i =1, ..., n) for some finite subset {a, } of {a,}. If
ae L\ S, then a £ Aa,(a < a,€ L) and we may assume that each a, is the meet
of elements in S. Thus each a € Lis the meet of elements in S, and hence S generates L.
If S freely generates L, then by our theorem Lis distributive. If Lis distributive, then
b v (Aa,) =bv(Aa,) and A(b Vv a,)= A(b Vv a,) for i =1,...,n. Thus it
follows that Lsatisfies condition (c) of our theorem, and hence S freely generates L.

Suppose that S freely generates L and assume (by way of contradiction) that S
is infinite. Then there exists an infinite trivially ordered subset a,, a,, ... of S and
hence a; > a; A a, > a, A a, A as..., which is impossible. Therefore S is
finite and hence Lis finite. ‘

Let Lbe a lattice that is generated by its set S of meet irreducible elements, and for
each ae Llet D(a) be the dual ideal of S consisting of all elements that exceed a
D(a) = {seS:s = a}. :

Proposition 2.4. For each subset {a,: o€ 4} of L
(1) Aa, = Au(u e UD(a,)) and Va, = Av(ve ND(a,)).

In particular, Lis a complete lattice and
(2) D(Va,) = ND(a,) and D(Aa,) 2 UD{a,).

Proof. Since U = UD(a,) is a dual ideal of S, Au exists and since U 2 D(a,),
Au = Aa, 5 = afa, ;€ D(a,)) for all o. If ¢ < a, for all o, then ¢ < a, = Aa,; <
< a,; foralla,;€U and hence D(c) 2 U. Thus ¢ = Aq < Au (g€ D(c) and
u € U). Therefore Au = Adg, and similarly Av = Va,. In any complete lattice
x = Va, if and only if for all «, x = a,, and if x = a, for some a, then x = Aa,.
Therefore (2) is also satisfied.

Corollary. The following are equivalent.

(a) S freely generates L.
(b) D(Aa,) = UD(a,) for all subsets {a,} of L.
(¢) If x€ S and x 2 Aa,a, € L), then x exceeds some a,.

Proof. Since every element in Lis the intersection of a dual ideal of S, Aa, =
= Aw (we D(Aa,)) and by (1), Aa, = Au (v€UD(a,)). Thus Aw = Au
and if S is freely generated by L, then clearly (b) is satisfied. If x€ S and x > Aa,,
then by (b) x € D(Aa,) = UD(a,) and hence x exceeds some a,. Finally if Ax, = Av,,
where {x,} and {y,} are dual ideals of S, then x, = Ay, and hence by (c), x; = y, for
some y,. Thus x, belongs to the dual ideal {y,}, and it follows that {x,} = {y.}.
Therefore S freely generates L.
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Proposition 2.5. If D(a A b) = D(a) U D(b) for all a, b in L, then
a A (Vby) =Vl(a A bg) forall a,byjeL (Be4)
and in particular, Lis a distributive lattice.

Proof. Vb, = At for all t in (\D(by) = D(Vby). Thus a A (Vbg) = At for all ¢
in D(a) u (ND(by)) = N(D(a) v D(bs)) = ND(a A by). But V(a A by) = At for
all tin ND{a A by), and so a A (Vby) = V(a A by).

The following is a summary of the preceding results.

Theorem 2.2. If L is a lattice that is generated by its set S of meet irreducible
elements, then Lis a complete lattice and the following are equivalent.

(1) D(a A b) = D(a) U D(b) for all a, b in L.

(2) L is finitely freely generated by S in the sense that if two finitely generated
dual ideals of S have the same greatest lower bound in L, then the dual ideals are
equal.

(3) The mapping 2 :a — D(a) is an l-isomorphism of Linto the lattice S’ of all
dual ideals of S. L) is a sublattice of S’ which is complete and such that arbitrary
joins agree with those in S’, but arbitrary meets agree with those in S’ if and only
if LA = S’ (or equivalently if Lis freely generated by S).

Moreover if(l) holds, then Lis distributive, and in fact
a A (Vbg) =Vl(a A by) forall a,bgeL (Bed),
but the dual of this law holds if and only if LA = S'.

In section 3 we show that the lattice I' of all convex I-subgroups of an I-group
satisfy the hypotheses and property (1) of Theorem 2.2. Moreover, the meet irredu-
cible elements of I' form a root system; that is, a po-set for which each principal dual
ideal is a chain or equivalently in which each pair of incomparable elements have no
lower bound. A maximal chain in a root system will be called a root. The next theorem
completely characterizes those I in which the generating root system contains only
a finite number of roots (see Theorem 3.4).

Theorem 2.3. Let L be a distributive lattice that is generated by its set S of meet
irreducible elements. If S is a root system that contains only a finite number of
roots, and if for each chain {c,} of elements in S

D(Acv) = UD(CY) 4
then Lis freely generated by S.

Proof. Suppose that Aa, = Ab,, where {a,} and {b,} are dual ideals of S, and
let n be the number of roots in S. For each j = 1,...,n let {a(j)a} be the set of all
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the a, in the j-th root of S. Then for each j, {a(J).} is a dual ideal of S and hence a(j) =
= Aa(j), belongs to Land Aa, = Aa(j) for all j. For b e {b,}

b=bv (Ab)=bv (Aa)=bv (jZ\la(j)) =j;=\1(b v a(j)).

Since b is meet irreducible we may, without loss of generality, assume that b = b v
v a(1)=b v (Aa(1),) and hence b = Aa(1),. Thus b € D(Aa(1),) = UD(a(1),) and
hence b > a(1), for some o But {a,} is a dualideal of S and hence b € {a,}. Therefore
{bs} = {a,} and similarly {a,} = {b,}, and hence S freely generates L.

Corollary. If, as in the theorem, Lis generated by a root system S that contains
only a finite number of roots, and if each root contains a least element, then S
freely generates L.

Proof. A chain {c,} in S must belong to one of the roots Y of S and hence Ac, = a,
where a is the least element in Y. If Ac, = d € Y, then since the elements of S are
irreducible, ¢, = d for some y and hence D(Ac,) = ND(c,). Suppose that Ac, ¢ Y
and consider x € D(Ac,). Then a < Ac, < x and x€ Y. If x < ¢, for all y, then
x = Ac, € Y, a contradiction. Thus x = ¢, for some y and hence x € JD{c,). There-
fore D(Ac,) = UD(c,), and S freely generates L.

The following example shows that the hypothesis that D(Ac,) = ﬂD(c,,) for
chains {c,} in S cannot be omitted from the last theorem.

Example 2.1. Let S consist of a point v and a desceding sequence of points uy, u,, ...
then we have the following picture of L. (Fig. 1.)
Lis generated by S but it is not freely generated by S because

vA(Au)=Au; =6
i=1 i=1
and {u;} and {u;} U {v} are distinct dual ideals in S. Also Lis a distributive lattice
and in fact satisfies
b A(Va,) =V(b A a,) bya,eL(ceX).

The lattice that is freely generated by S is (Fig. 2)

3. The lattice of convex /-subgroups of an /-group. Throughout this section let
G #+ 0 be an I-group. A subgroup C of G is an I-subgroup provided that C is a sub-
lattice of G, and C is a convex subgroup if 0 < g < ce C and ge G imply that
g € C. A normal convex /-subgroup is called an I-ideal. The following three proposi-
tions are well known for I-ideals (see [ 7] for proofs) and the generalization to convex
I-subgroups is straightforward.

106



Proposition 3.1. For a subgroup C of G the following are eduivalent.

(1) C is a convex I-subgroup of G.

(2) C is a directed convex subgroup of G.

(3) C is convex and ¢ v 0€ C for each ¢ in C.
(4) IfceC, geGand |g| £ |c|, then g€ G.

I

I

I

|

' -~
g

Fig. 1. ) Fig. 2.

Proposition 3.2. If {B, : A€ A} is a set of convex l-subgroups of G, then the sub-

group of G that is generated by the B, is also a convex I-subgroup of G. Thus the
convex l-subgroups form a complete sublattice of the lattice of all subgroups of G.

Let C be a convex l-subgroup of G and let R(C) be the set of all right cosets of C
in G. For x and y in G define

C+x=C+y if c+x=<y forsomecinC.
Proposition 3.3. R(C) is a distributive lattice, and
C+xvC+y=C+xvyanddually.

Moreover, if A and B are convex l-subgroups of G and A < B, then the mapping,
A+ x > B + x is an l-homomorphism of R(A) onto R(B), and for each g€ G,
the mapping A + x > A + x + g is an l-automorphism of R(A).

Let G* denote the positive cone of G. If S is a subsemigroup of G* that contains 0
and ae G*, then let ¢S, a) be the subsemigroup of G that is generated by S and a.
Thus <S8, a) consists of all elements of the form

uy+ta+u,+a+ ... +u_y;+a+u, (ue89).
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Proposition 3.4. (CHﬁ"ord) If M is a convex l-subgroup of G and if ac G* \ M,
then

C(M,a)={xeG:|x| < p forsome pel{M*, a)}

is the smallest convex l-subgroup of G that contains M and a. Ifa,be G* \ M,
then C(M, a) n C(M, b) = C(M, a A b). In particular, when M = 0

C(a) = {xe G :|x| < na for some positive integer n} .

Proof. If x,yeC(M, a), then |x| < p and |y| < g, where p,qe{(M™*,a).
Thus |x — y| < |x| + |y| + |x| £ p+ g + pe (M™, a) and hence x — y belongs
to C(M, a). Thus C(M, a)is a group, and clearly if |g| < |c| for g€ Gandc € C(M, a),
then g € C(M, a). Therefore by Proposition 3.1, C(M, a) is a convex I-subgroup of G
that contains M and a, and it is the smallest such sub- group.

Now consider 0 < x € C(M, a) n C(M, b).

xEmy+a+m+ ...+ m_y+a+m (meM"),
and

x<n, +b+n, +..4nm_; +b+n (neM").
Thus
x=(my+a+...+m)A(ng+b+...+n).

But for u, v, we G*, u A (v + w) < (u A v) + (u A w), and hence it follows that x
is less than or equal to a sum of positive elements of the form m; A b, a A n,,
m; A njand a A b. But each such element belongs to C(M, a A b)andso C(M, a) n
N C(M, b) = C(M, a A b). The other inclusion is trivial.

Corollary. Let K be the intersection of all the non-zero convex l-subgroups of G.
IfK % 0, then G is an o-group and K is the convex subgroup of G that covers zero.

Proof. If G is not an o-group, then there exists strictly positive elements a and b
in G such that a A b=0. Thus K < C(a) n C(b) = C(a A b) = C(0) =0,
a contradiction.

A convex I-subgroup M of G is called regular if there exists an element g in G such
that M is maximal with respect to not containing g, and in this case M is said to be
a value of g.

Proposition 3.5. Each convex l-subgroup of G is the intersection of regular
convex l-subgroups of G. Each O % g in G has at least one value.

Proof. Let C be a convex I-subgroup of G and consider ge G \ C. By Zorn’s
lemma there exists a convex l-subgroup M of G that is maximal with respect to
g¢ M 2 C. In particular, M is regular and a value of g, and it follows that C is the
intersection o f all such M.
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Theorem 3.1. For a convex I-subgroup M of G the following are equivalent.

(1) Misregular.
(2) There exists a convex l-subgroup M* of G that properly contains M and is
contained in every convex l-subgroup of G that properly contains M.

(3) M is meet irreducible in the lattice of all convex I-subgroups of G.
If M is normal, then each of the above is equivalent to

(4) G/M is an o-group with a convex subgroup that covers zero.

Proof. Suppose that M is regular and let M be a value of ge G. Let M* be the
intersection of all convex I-subgroups of G that properly contain M. Then ge M * \
\ M, and so (1) implies (2), and clearly (2) implies (3). By Proposition 3.5, M is the
intersection of regular convex I-subgroups of G. Thus if M is meet irreducible, it
must be regular.

Now suppose that M is normal. Then clearly (4) implies (2). Conversely if M
satisfies (2), then by the Corollary to Proposition 3.4 it follows that G/M is an o-group
and M*/M is the convex subgroup of G/M that covers zero.

Corollary. If M is a regular convex I-subgroup of G and a,be G* \ M, then
anbeGt \ M.

Proof. Let M* be as in (2), then

C(M,a A b) = C(M, a)n C(M, b) 2 M*.

Thusif a A be M, then M = C(M, a A b) 2 M¥*, a contradiction.

The next theorem was first proven for abelian I-groups. The author wishes to
thank A. H. CLIFFORD for his help in translating it to the non-abelian case and in the
process shortening the proof. Also, C. HoLLAND [10] has shown that (4) and (6)
are equivalent and that (6) implies (5).

Theorem 3.2. For a convex l-subgroup M of G the following are equivalent

(1) If M 2 A ~ B, where A and B are convex l-subgroups of G, then M 2 A or
M 2 B.

(2) If A> M and B > M, where A and B are convex l-subgroups of G, then
ANnB> M.

(3) Ifa,beG* \ M, thena A be G* ~ M.

(4)Ifa,beG* \ M, thena A b > 0.

(5) The lattice R(M) of right cosets of M is totally ordered.

(6) The convex l-subgroups of G that contain M form a chain.
(7) M is the intersection of a chain of regular convex I-subgroups.
If M is normal, then each of the above is equivalent to

(8) G/M is an o-group.
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Proof. Clearly (1) implies (2). If a, be G* \ M, then by (2) and Proposition 3.4,
C(M, a A b)=C(M, a)n C(M.b) > M.Thusa A b¢ M and hence (2) implies (3).
Clearly (3) implies (4). Consider M + a and M + b with a, b in G \ M. Then
a=a + anbandb=0>b + a b wherea A b =0.By (4) either a’e M or
bbeM. Butifa eM,then M +a=M+aAnb<M+b, and if b’ € M, then
M+ b=M+anab=M+ a Therefore (4) implies (5). Next assume that (5) is
true and suppose (by way of contradiction) that there exist convex I-subgroups A4
and B of G such that A > M, B> M and A || B.Pick 0 <ae A\ Band0 < be
€eB\N A Thena=aAb+a,b=aAb+b',a A b =0 and without loss of
generality M + a2 M +b'. Thus M =M+ a" A b =M+ b and hence
b’e M = A.Butsincea A be A, it follows that b € A4, a contradiction. Therefore (5)
implies (6). An immediate consequence of Proposition 3.5 is that (6) implies (7).

Assume that (7) is satisfied and that there exist convex l-subgroups A and B of G
suchthat M 2 AnB,M 2 Aand M » B.Pick0 <aeA N Mand 0 < beB \
N\ M. By (7) M = NM, (o €Z), where {M, : € X} is a chain of regular convex
I-subgroups of G. Thus there exists o € 2 such that a, b€ M, and hence by the
Corollary to Theorem 3.1, a A b¢ M,. But a A be AnB< M < M, a contra-
diction. Therefore (7) implies (1). Finally if M is normal, then clearly (5) and (8) are
equivalent.

We shall call a convex I-subgroup of G prime if it satisfies one of the equivalent
conditions (1) through (7) in the last theorem. Note that each regular convex
I-subgroup is prime, and that the prime convex I-subgroups are the finite meet irredu-
cible convex [-subgroups. By (3) a prime convex Il-subgroup is a prime x-ideal in
the sense of K. AUBERT [1] and conversely. Also the prime convex l-subgroups can be
used to represent G as a group of o-permutations of a totally ordered set as in [10].

Let T be the set of all convex l-subgroups of G and let I’y be the set of all regular
convex l-subgroups of G. It follows from Proposition 3.2 that I' is a complete
sublattice of the lattice of all subgroups of G.

Theorem 3.3. I, is the of meet irreducible elements of I', I’ is a root system and I
generates I'. Moreover the following are equivalent.

(1) Iy freely generatesT.

(2) T satisfies the generalized distributive law.

(3) B v (A4,) = A(B v 4,) for all A,,BET (6 €X).

Proof. It follows from part (3) of Theorem 3.1 that I'; is the set of all meet irreducible
elements of I', and it follows from part (6) of Theorem 3.2 that I'y is a root system.
By Proposition 3.5, I'y generates I'. The equivalence of (1), (2) and (3) is an immediate

consequence of Theorem 2.1.
As in the last section for each 4 in I’ let

D(A) = {Xel,: X2 4}.
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Then from (1) in Theorem 3.2 we have

D(4 n B) = D(A) L D(B) forall 4, BinT .

Proposition 3.6. If {M, : 6 € X} is a chain in Iy, then D(N\M,) = UD(M,).

Proof. Clearly D(N\M,) 2 UD(M,). If Ae D(N\M,), then A 2 NM,,and 4 eT,.
Thus by (6) and (7) of Theorem 3.2 applied to M = (\M,, 4 is comparable with each
of the M,. If A = M, for all 6, then 4 = M, but this contradicts the fact that 4
is meet irreducible. Thus 4 2 M,. for some o', and hence 4 € D(M,.) < UD(M,).
Thus by Theorems 2.2 and 2.3 we have

Theorem 3.4. I' is finitely freely generated by I'y and the mapping A — D(A)
is an l-isomorphism of I' into the lattice I'y of all dual ideals of I'y. Thus I is
isomorphic to a sublattice of I'y which is complete, and such that arbitrary joins
agree with those in I'}, but arbitrary meets agree with those in I'y if and only if I’
is freely generated by I'y. Moreover I' is distributive and

B A (A4,) = A(B A A,) forall A,,BeT (ceX)

but the dual of this law holds if and only if I'y freely generates I. Finally, if I',
contains only a finite number of roots, then I'y freely generatesT.

Thus to within an l-embedding I'y = I' = I'{, I' is a distributive sublattice of I'},
I' is a complete sublattice of I'} if and only if I' = I'}, and if I'; has only a finite
number of roots, then I' = I'|. The following is an example of an abelian I-group for
which I'y does not freely generate I'.

Example 3.1. For each positive integer n let I, be the group of integers and let
I1(X) be the large (small) cardinal sum of the I,. For each n let IT, be the set of all
vectors in IT with n-th coordinate zero. Then X and the IT, are Il-ideals of IT and

Iv(AL)=2v{0}=X+IT=AZvI,).

Let K, be the subgroup of G that is generated by {x € G : x ]| 0} and let M, be the
convex hull of K,,. A. LAvis [11] proves that if G is a po-group, then M, is a normal
convex subgroup of G and G is a lexico-extension of M. Thatis, G/M, is an o-group
and each positive element in G \ M, exceeds every element in M. Lavis also shows
that the normal convex subgroups of G that contain M, form a chain and G = lex M
for a normal convex subgroup M of G if and only if M = M. Finally, if M is a normal
convex subgroup of G and G/M is an o-group, but G is not a lexico-extension of M,
then M < M,. Now once again assume that G is an I-group. Then there is an alternate
way of defining M,. An element 0 < u€ G is a non-unit if u A v = 0 for some
0 < v e G. Let N be the subgroup of G that is generated by all the non-units. Then N
is an l-ideal of G, G = lex N and N is not a proper lexico-extension of an I-ideal
([4] Theorem 9.1). Since G/N is an o-group it follows from Theorem 3.2 that N is
a prime convex I-subgroup of G.
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Proposition 3.7. M, = N and hence M, is an l-ideal of G and also a prime convex
I-subgroup. A convex l-subgroup M =+ 0 of G contains M, if and only if 0 < g€
€ G \ M implies g > M. All other convex I-subgroups of G are contained in M,,.

Proof. If x |0, then x = x* 4+ x7, where 0 <x" =x v 0 and 0> x~ =
= x A 0. Thus since x* A — x~ =0, x* and x~ belong to N and hence M, = N.
If M, is an l-ideal of G, then N = lex M, and hence N = M. Thus to prove that
M, = N it suffices to show that y* € M,, for all y € M,,. For z, we G define z & w
if there exist t,, ..., f, € G such that z || ¢, || ¢, || ... | & | w. Lavis has shown that
M, ={zeG:z ~ 0}. Consider a | 0. If a £ — a*, then a < 0 and if — a* < a

at>—-a—-atz—-av0=—a sa=a"+a =0.

Thus — a* || a || 0 and hence a* € M,. If x €K, then x = x; + ... + X, where
x; | 0fori=1,... k and hence

0SxvO=(x;+...4+x)vOS(x, v O)+..+(xVv0eM,.

Thus since M, is the convex hull of K,, x v 0e M,. Now consider y € M,. There
exist a and b in K, such that a £ y < b, and hence a v 0y v 0 < b v 0.
Thus since a v 0and b v 0 belong to M, and M, is convex, y v 0 € M,,.

If M is a convex I-subgroup of G and M & M, then there exists 0 < ge M \ M,
and since g > M, it follows that M = M,. Thus each convex /subgroup of G is
comparable with M,. Let M be a convex l-subgroup of G that contains M, and
consider 0 < ge G \ M and m € M. Then M/M, is a convex subgroup of the o-group
G/M, and hence g + M, > m + M,. Thus by Lemma 9.1 in [4] g — m + M,
consists of positive elements of G. Therefore g > m and hence g > M. Conversely
suppose that M is a convex [-subgroup of Gsuchthat0 < ge G \ M impliesg > M
and consider strictly positive elements @ and b in G such that a A b = 0. If a ¢ M,
then either be M and hencea > bor b ¢ M and hencea A b > M. Thus M contains
all the non-units of G and hence M = M,,. :

Proposition 3.8. If M < M, is a convex l-subgroup of G, then there exists N € I'y
such that M || N.

Proof. By Proposition 3.7 there exists 0 < g€ M, \ M such that g 3> M. Pick
O<meMsuchthatg|m. Theng=gAam+g,m=gam+m,g am =
=0, g’ ¢ M and m’ € M. By Proposition 3.4, C(g’) n C(m’) = 0. Pick N €I’y such
that m’ ¢ N. Then g’ € N \ M by the Corollary to Theorem 3.1, and m’e M \ N,
and hence M || N.

Therefore M, is the smallest element in I' that is comparable with every other
element in I';, and :

{Mel,:M2My} ={Mel';:M <N or M=2N forall Nel;}.

Thus we can think of M, as the ‘“base of the trunk” of the root system I;..
We recall that M eI’y is a value of ge G if M is maximal with respect to not
containing g. By Proposition 3.5 each 0 & g€ G has at least one value. Let S be
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a convex l-subgroup of G. Then since — |g| < g < [g], it follows that g € S if and
only Ig] € S. In particular, M is a value of g if and only if M is a value of |g| Clearly
an element g in G \ M, has exactly one value M in I";, and M is the maximal con-
vex l-subgroup of C(g). We next establish a one to one correspondence between the
values of an arbitrary g € G and the maximal convex l-subgroups of C(g).

Theorem 3.5. Consider 0 & g€ G and let M €', be a value of g. Then M 5 M
N C(g) is a one to one mapping of the set of all values of g onto the set of all maximal
convex l-subgroups of C(g). Moreover, if N is a maximal convex I-subgroup of C(g),
then No~!' = {xe G :|x| A |g|e N}.

Proof. Clearly C(g) = C(|g|), and since the values of g and |g| coincide we may
assume that g > 0. Let 4 and B be distinct values of g and pick 0 < ae 4 \ B.
Then a A ge A 0 C(g) and by (3) of Theorem 3.2, a A g¢ B2 B n C(g). Thus it
follows that (4 n C(g)) | (B n C(g)) and in particular, ¢ is one to one.

Suppose that A is a value of g and let N = 4 n C(g). Then N is a proper convex
I-subgroup of C(g). Suppose (by way of contradiction) that N = Q = C(g) for some
convex /-subgroup Q of C(g). Then Q is also a convex [-subgroup of G and hence
by Zorn’s lemma there exists a value B of g with B 2 Q. Clearly A4 + B and hence
(AnC(g) || (BN C(g), but BAC(g)2 Q>N =A4nC(g), a contradiction.
Therefore N is a maximal convex I-subgroup of C(g).

Let N* = {x€ G :|x| A |g| € N}, where N is a maximal convex [-subgroup of C(g).
Then clearly g ¢ N* 2 N and it follows by a straightforward argument that N* is
a convex [-subgroup of G. Suppose that Q is a convex I-subgroup of G that properly
contains N* and pick 0 < xe Q@ \ N*. Then 0 <a=x A geC(g) \ N and
a€ Q. Thus C(a) = Q, and C(g) = C(N, a) < Q, but this means that g € Q. There-
fore N* is a value of g and since N*¢ = N* n C(g) 2 N, it follows that N*¢ = N.

A regular convex I-subgroup M of G is called special if there exists an element g
in G such that M is the unique value of g. In this case g is also called special.

Theorem 3.6. For 0 & g e G the following are equivalent.
(a) C(g) is a lexico-extension of a proper l-ideal.

(b) g is special in C(g).

(c) g is special in G.

If this is the case and if M(N) the unique value of g in G (C(g)), then N = M n C(g),
C(g) = lex N, C(g)/N is an Archimedean o-group (notation C(g)/N < R) and
M = N @ C'(g), where C'(g) is the subgroup of G that is generated by {xc G* :
:x A C(g)* = 0}. Thus C'(g) is the polar of C(g).

Proof. By Theorem 3.5, (b) and (c) are equivalent and since the values of g and |g|
coincide we may assume that g > 0. If C(g) = lex I, where I is a proper I-ideal, then
since C(g)/I is an o-group, it contains a unique maximal convex subgrojp .4~ without
I + g. But then A" = N/I, where N is the unique maxial convex I-subgroup of C(g)
without g. Therefore (a) implies (b). .
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Conversely if N is the unique value of g in C(g), then by the first part of Proposition
3.7, to show that C(g) = lex N it suffices to show that if a,be C(g), a > 0, b > 0
and a A b = 0, then a e N. But the subgroup S of C(g) that is generated by
{xeC(g)* :x A b =0} is a proper convex l-subgroup of C(g) that contains a,
but not b, and by Theorem 3.5, N is the greatest convex l-subgroup of C(g). Therefore
acS < N.

Now suppose that M(N) is the unique value of g in G (C(g)). Then by Theorem 3.5,
N = M n C(g) and as we have shown C(g) = lex N. Since N is the greatest convex
I-subgroup of C(g), C(g)/N < R. By lemma 6.1in [4] D = C(g) ® C'(g) is the group
generated by C(g) and C'(g) and

D* = {xe G* : x does not exceed every element in C(g)} .

Thus clearly M = D.If 0 < x € C'(g), then x A g = 0 and hence by (4) of Theorem
3.2, x€ M. Therefore N® C'(gJs M < D. If 0<xeM \ (N® C(g)), then
x =a + b,where0 < aeC(g) \ Nand 0 < be C(g). But then since C(g)/N < R,
0 < g <na £ nxeM for some n > 0 and so g€ M. Therefore M = N & C(g).

We next wish to investigate those elements in G that have only a finite number of
values. In order to do this it will be useful to know just how I'; determines the lattice
operations in G. We shall call a subset 4 of I'y plenary if each 0 + g€ G has at least
one value in 4, and if g ¢ M € 4, then there exists a value N of g in 4 such N 2 M.
It is clear that 4 = I'y is plenary if and only if 4 is a dual ideal of I'y and \M = 0
(M € 4). For each 0 + g€ G let 4, be the set of all values of g in 4. Then 4, is a tri-
vially ordered set. If g 3 0 and Me4,_, then g* A — g~ =0 and by (4) of
Theorem 3.2, g* € M. Hence M + g =M + g~ < M and M e 4,. Thus for an
element 0 # g € G the following are equivalent.

(a) g > 0.
(b) M + g> Mforall M e 4,.

Proposition 3.9. If 4 is a plenary subset of I'y and g, h € G, then h = g v 0 if
and only if the following conditions are satisfied.

(1) 4, < 4,

(2 If M + g < M for M€ 4,, then heN for all M 2 N € A.

(3) IfM + g > M for M€ A,, thenh — g€ N for all M 2 N € A.

Proof. First suppose that g and h satisfy (1), (2) and (3). If Me 4, and M +
+ g < M, then by (1) and (2), h € M, which is impossible. Thus if M € 4,, then
M+h=M+g>M and N+ g=N + h for all M =2 NeA. In particular
M + h > M for all M e 4, and so h = 0. Next consider N € 4,_,. If N € 4, then
h — ge N. Thus either h € N or there exists M € 4, < 4, such that M > N, but in
the latter case h — ge N, a contradiction. If he N, then Ned,and N + g <N.
ThusN + h—g=N—g>Nforal Ned,_,and hence h = g.

Now consider ce G such that c = g, c = 0and ¢ + h, and Ne 4, ,. f Ne 4,
then N+ h=N+ gand hence N+ N+ h—c=N+ g— ¢ <N. Thus N +
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+ ¢ — h > N.If N ¢ 4,, then either h € N or there exists M € 4, such that N = M.
If heN,then N+ h—c=N—-c<Nand hence N+c—h>N.IfNc Me
€d,< 4, thenh — geN. Sinceh—c=h—-g+g—c,wehave N+ h —c=
=N+ g—c <N and hence N + ¢ — h > N. Therefore ¢ = h and hence h =
=gvO0.

Conversely suppose that h = g v 0. Let Ne 4,. If ge N, then h = g v 0eN.
Thus if N ¢ A,, then there exists M € 4, such that N <« M. If M + g > M, then

M<M+g=M+gvM=M+h=M.

If M + g < M, then by Proposition 3.3, N + g < Nand hence N=N + gv N =
= N + h which is impossible. Therefore N € 4, and hence 4, < 4,. '

Now consider Me 4, and M 2 Ne 4. If M 4+ g < M, then by Proposition 3.3
and the fact that R(M) is totally ordered, N + g < N and hence

N=N+gvN=N+gv0=N+h.
If M + g > M, then as above N + g > N and hence
N+g=N+ng=N+gv0=N+h.
Therefore (1), (2) and (3) are satisfied.
Proposition 3.10. If A is a plenary subset of 'y and a,be G*, thena A b = 0 if ,

and only if A, 4, = [0 and 4, v 4, is trivially ordered. If a A b = 0, then
4,94, =4,,, = A4,_,. Thus for any ge G

Ay =4, =4, 0 4,- and A0 0 d,- =0

Proof. Suppose that a A b=0. if M = N, where M € 4, and N € 4,, then
M + aand M + b exceed M in the totally ordered set R(M). Thus

M<M+anM+b=M+anb=M+0=M.

Therefore 4, n 4, = [J and 4, U 4, is trivially ordered. Now consider M € 4, ,.
If a, be G \ M, then by Theorem 3.2, a A b > 0 which is a contradiction. Thus
ae M or be M and hence M€ 4, or M€ 4,. If N € 4,, then by Theorem 3.2 be N
and hence N € 4, ,. Therefore 4,,, = 4, U 4, and similarly 4,_, = 4, U 4,.

Conversely suppose that 4, 0 4, = [J and 4, U 4, is trivially ordered, and let
¢=a A b and consider Ned. If N = M€ 4,, then beN. For otherwise there
exists a value of b in 4 that exceeds N and hence by (6) of Theorem 3.2 is comparable
with M. Thus N + ¢ =N +a AN + b =N + a A N = N.If N is not contained
in any element of 4, U 4,, then both a and b must belong to N and hence c€ N.
Therefore c € N = 0 (N € 4). The remainder of the proposition follows from the
fact that the values of g and | g| coincide in I'; and that g* A — g~ = 0.

Proposition 3.11. If 4 is a plenary subset of I'y, and if g€ G has only a finite
number of values Ay, ..., A, in A, then these are the only values of g inI',.
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Proof. Since the values of g and |g| coincide we may assume that g = 0. If n = 0,
then g = 0 and hence g has no values in 4 or in I';. Suppose that the proposition is
true for all m < n, where n 2 1, and suppose (by way of contradiction) that there
exists a value 4, of ginI'y such that 4, & A4;fori =1,...,n.If0 < xe C(g) and 4
and B are values of x in I'y, then A n C(g) and B n C(g) are distinct values of x
in I'y(C(g)) (see the proof of Theorem 3.5). It follows that {M n C(g): M €T,
and M is a value of some 0 < x € C(g)} is a plenary subset of I';(C(g)). Hence, without
loss of generality, we may assume that G = C(g). In particular, A4, ..., 4, are
maximal convex l-subgroups of G and if A€ 4, then A = A; forsome i =1, ..., n.

Foreachi = 0, ..., n there exists a non-unit a;€ G \ A4;. For otherwise 4; 2 M,
and G = lex M,,, where M, is the convex I-subgroup of G that is generated by the
non-units (see Proposition 3.7). Thus A;/M, is the maximal convex subgroup of the
o-group G/M,, hence A4; is normal in G and G = lex 4;. But then by Theorem 3.5,
A; is the unique value of g in I'; which is impossible. For each i = 0, ..., n pick
a non-unit a;€ G \ A; in such a way that for each j = 0, ..., n the elements in
A; + a5, A; + ay, ..., Aj + a, that are different from A; are distinct. Since if
a;¢A;, A; + a; < A; + 2a; and 2q; is a non-unit, this is always possible. Next
pick a subset by, ..., b, of the a; such that b=b, v ... v by¢ A;forj=0,...,n
and such that for each i = 1, ..., k there exists a j such that b, v ... v b;_; Vv
V biyq vV ... v bye A;. If k = 1, then there exist strictly positive elements x and y
inGsuchthatx A y = Oand x ¢ 4;fori = 0, ..., n, but then by part (4) of Theorem
32, yeA; for i =0,...,n. In particular, 4,,..., 4, are the only values of x — y
in 4,and 4; + x — y > A;for i =1, ..., n. Thus x > y, which is a contradiction.
Therefore k > 1, and by a permutation of the subscripts we may assume that 4, +
+ b, < Ao + b;forsomei=1,....k — 1.

Let ¢ =(by v ...V by )= b If ced;, then 4; + b, =A;+b, v ..V
vV b,_y = A; + b, for some 1 <t < k — 1. If b, ¢ A;, then this is impossible by
our choice of the a;, and if b, € 4, then it follows that b € 4; which is also impossible.
Thus ce G \ 4; for j =0,...,n and hence 4,, ..., 4, are the only values of ¢
inAd. by v..vb_,€A;forsomej=1,..,nand so 4; + ¢ < 4; and 4, +
+ ¢ > A,. Thus by proposition 3.9 or 3.10, ¢ v 0 has less than n values in 4, and
hence by induction these are the only values of ¢ v 0in I';, but 4, is also a value
of ¢ v 0in I';, a contradiction.

For each element g in G with only a finite number of values we have the following
“local structure” theorem for G. ‘

Theorem 3.7. Suppose that A is a plenary subset of I'y and that g€ G has only
a finite number of values My, ..., M,, in A. Then these are the only values of g inT'y
and g has a unique representation g = g, + ... + g, =g, V ... vV g,, where M;
is the only value of g; in Iy for i = 1, ..., n. Moreover

C(g) = C(g,) @ Clg2) ® ... ® C(g,) »
C(g) = lex (M; n C(gy)) and C(g)(M; A Clg))<R (i=1,...n).
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Proof. By Proposition 3.11, M, ..., M, are the only values of g in I'; and by
Proposition 3.10 we may assume that g > 0. Foreach i = 1,...,nlet N; = M; n
N C(g) and let N; = NN (all j # i). Let N = (N, (all i). By Theorem 3.5 the N,
are the distinct maximal convex l-subgroups of C(g).

(I) NyE N, fori=1,...n.

For if we pick an element 0 < r,e M; N\ M, for each i = 2, ..., n, then by (3) of
Theorem 3.2,r = Ar;e My \ M. Thusr A ge M, N C(g) = N, and since rand g
do not belong to My, r A g¢ M; 2 M, n C(g) = N;.

(II) N; is an l-ideal of C(g), C(g)/N = NJ/N ® N,/N and C(g)/N; < R (i =
= 1,...,n). Any l-automorphism of C(g) must permute the N; and hence map N
onto itself. Thus N is an l-ideal of C(g), and since N; & N; and N, is maximal, C(g)
is generated by N; and N;, and hence C(g)/N = N,/N + N,/N. If N < Xe N,/N
and N < YeN,/N, then X A Y=(N+x) A (N +y) =N + x A y = N. There-
fore, C(g) = N;/N @ N,/N. In particular, N;/N is normal in C(g)/N and so N, is an
l-ideal of C(g). Finally, since N, is a maximal convex I-subgroup of C(g), it is regular.
Thus C(g)/N; is an o-group with no convex subgroups, and hence C(g)/N; < R.

(III) For each i = 1, ..., n there exists an element 0 < g; € ﬁi whose only

value in C(g)is N;, and N; + g, = N; + g.

Since C(g)/N; < R and N; & N, it is clear that there exists 0 < h; € N; such that
N;+ h; > N; + g. For each i + 1 pick such an h; and let h = h, v ... v h,.
Then h € N, because all the h;-do, and N; + g — h is negative for all i & 1. Hence
g — h¢ N, for all i, and thus the values of g — h in C(g) are Ny, ..., N,. Thus by
Proposition 3.10 the values of g' = (g — h)* = (g — h) v 0 in C(g) are some of
the N;. But since fori = 1, N; + g¢'=N; + g — h v N; = N,, it follows that N,
is the only value of g’ in C(g), and N, + ¢ =N, +g—hv N, =N, + g v
v Ny, =N; + g :

(IV) M, is the only value of g, in I'; and M; + g; =M; + g (i=1,...,n).
C(g;) = C(g) = G. By Theorem 3.5 there is a 1 — 1 correspondence between the
values of g; in C(g) and the maximal convex I-subgroups of C(g;) and also a 1 — 1
correspondence between the maximal convex [-subgroups of C(g;) and the values
of g; in I'y. Thus since N; is the only value of g; in C(g), M; is the only value of g;
inl';. Also N M;and N; + g, = N; + g,and hence M; + g, = M, + g.

As an immediate consequence of Theorem 3.6 we have

(V) C(g)) = lex(M; n C(g;)) and C(g))[(M;nC(g)) < R(i =1,...,n).

By Proposition 3.10, g; A g; = 0 for i + j, and hence by Proposition 3.4, C(g;) 0
N C(g;) = 0. Thus it follows that C(g) = £ @ C(g;); see for example [4] Theorem 2.1.

gy + ...+ g)+M=2g,+M,>g,+M; (i=1,..,n).
It is easy to verify that the M; are the only values of 2(g; + ... + g,) — g. Thus
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0<g< 2(g1 + ...+ g,,)e}." ® C(gi) which is convex, and hence g belongs to
X ® C(g;). Therefore C(g)=Z® C(gi) and in particular, g =gy + ... + &
where C(g;) = C(g;) for i = 1, ..., n.

Corollary. If g € G has only a finite number of values, then each of these values is
special.
In order to prove the converse of this result we need the following lemma.

Lemma 3.1. For convex l-subgroups My, ..., M, of G let G(M,..., M,) =
= {ge G : each value of g is a subgroup of one of the M;} L {0},

My, ...M)={Nel'l:N& M, for i=1,..,k}.

Then G(M,, ..., M}) is a convex l-subgroup of G that contains each of the G(M))
and G(My, ..., M,) = NN (N € §(My, ..., My)). Moreover, M €T, is special if and
only if G(M) ¢ M. :

Proof. Let X = G(M,, ..., M,) and Y = §(M,, ..., M) and consider ge X and
N e Y. If g ¢ N, then there exists a value Q of g such that Q 2 N and hence Q ¢ M;
for all i, which contradicts the fact that g € X. Conversely consider ge N (N € Y)
and let Q be a value of g. If 0 & M for all i, then Q € Yand hence g € Q, a contradic-
tion. Therefore X = (N (N€e Y).

If M eIy is special and g is an element in G whose only value is M, then g € G(M) \
\ M, and conversely if g € G(M) \ M, then M is the only value of g, and hence M
is special. '

Theorem 3.8. For 0 & g€ G the following are equivalent.

(a) g has only a finite number of values in I'y.
(b) Each value of g is special.

Proof. Since the values of g coincide with the values of | gl we may assume that
g > 0. We have already shown that (a) implies (b). Suppose (by way of contradiction)
that (b) is satisfied but not (a): Let 4 = {M, : g € Z} be the infinite set of values of g
each of which is special. Let G* be the subgroup of G that is generated by all the G(M,).
If ge G*, then g = g, + ... + g,, where all the values of g; are contained in M,,
(i = 1,..., n). Hen¢e by Lemma 3.1 if Q is a value of g, then Q = M, for some i =
= 1, ..., n, but this means that the set of values of g is finite, a contradiction. There-
fore g ¢ G*. Now by Lemma 3.1 the G(M,) are convex l-subgroups of G and hence
by Proposition 3.2, G* is a convex I-subgroup of G. Thus there exists a maximal
convex [-sugroup M of G such that g¢ M 2 G*. Clearly M € 4 and hence M is
special. Now let h be an element in G whose only value is M. Then h € G(M) = G* =
< M, which is impossible. Therefore (b) implies (a).

Corollary. If I'; contains only a finite number of roots, then each M in I'y is
special.
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Proof. In this case each trivially ordered subset of I'; is necessarily finite. Thus
each element of G has at most a finite number of values.

Theorem 3.9. For an l-group G the following are equivalent.

(1) Iy freely generates I'.

(2) I satisfies the generalized distributive law.

(3) Bv (A4,) = A(B v A4,) for all A,,BET; (c€Z).

(4) Each element in Iy is special.

(5) Each element in G has at most a finite number of values in I'y.

(6) Each element in G has a unique representation as the sum of a finite number
of pairwise disjoint special elements.

Proof.(1),(2) and (3) are equivalent by Theorem 3.3, and (4) and (5) are equivalent
by Theorem 3.8. The equivalence of (5) and (6) is an immediate consequence of
Theorem 3.7 and Proposition 3.10. Suppose that M € I'; is not special, and consider
g€ NN (N e d(M)). If Q is a value of g, then by Lemma 3.1, Q = M, If Q = M,
then M is the only value of g and hence M is special, a contradiction. Thus Q =« M
and ge M. Let 4, = §(M) and 4, = 5(M) U {M}. Then 4, + 4, and both are
dual ideals of I'y. Moreover

NN=NN

Ned, Ned>

and hence (1) is false. Therefore (1) implies (4).

Conversely suppose that each element in I'; is special and assume (by way of
contradiction) that (1) is false. Thus without loss of generality (\N, = M, where
4, = {N,:0€ZX}is a dual ideal of I'; and M eI'; \ 4. In particular, if N, € 4,,
then N, &€ M. Let 4, = 5(M) Then 4, < 4,, 4, is a dual ideal of I'; and by
Lemma 3.1

NN=GM)s NNc M.
Ned Ned,
Now pick an element a € G whose only value is M. Then a € G(M) \ M, a contra-
diction. Thus (4) implies (1) and the theorem is proven.

Note that if I'; contains only a finite number of roots, then (5) is clearly satisfied.

Thus the last part of Theorem 3.4.is a corollary of Theorem 3.9.

4. The lattice of all /-ideals of an abelian /-group. Let G be an abelian Il-group.
If I’y = I'y(G) contains a minimal plenary subset, then that subset is unique ([5]
Theorem 5.2). By combining Theorem 5.4 in [5] and the Theorem in [6] we have
that I’, contains a minimal plenary subset if and only if G is completely distributive.
Thus whether or not G is completely distributive depends only on I'y. Clearly any
plenary subset of I'; must contain the special elements of I'y. Thus if the set S of
special elements of I'; is plenary, then S is the unique minimal plenary subset of I',.

Let A be a root system and for each 4 in 4 let R; = R. Let V = V(4, Rl) be the
following subset of the large direct sum IT of the R;. An element v = (..., v;, ...) of IT
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belongs to V if and only if S, = {A€ 4 :v; % 0} contains no infinite ascending
sequences. For each v in Vlet

A" ={AeA:v, %+ 0and v, =0 forall & > 1}.

The v; with 1€ A” are the maximal components of v. We define v in V to be positive
if each maximal component v; of v is positive in R;. It is shown in [5] (Theorems 2.1
and 2.2) that Vis an abelian I-group, and the main embedding theorem in [5] asserts
that every abelian /-group can be embedded in an I-group of the form V.

We shall denote the small direct sum of the R, by T = (4, R,l). As usual, let us
define * = XnV'*, then X is a subgroup and a sublattice of V. For each 1 in A let

V,={veV:iv, =0 forall « 2 1}.

Clearly each V, is an l-ideal of ¥, and it is shown in [5] that {V; : 1 € A} is the minimal
plenary subset of I'y (V') and that each V; is special (Theorem 6.1).

Lemma 4.1. If 2 < G < V, where G is a subgroup and a sublattice of V, then
4 = {G NV, : A€ A} is the minimal plenary subset of I'y = I'{(G), every element
of which is special inI"y For each g € G there is a one to one correspondence between
the maximal components of g and its values in A. Moreover, if g has only a finite
number of maximal components, the the corresponding values in A are the only
values of g.

Proof. Consider 0 & ge G and let g, be a maximal component of g. Let h be the
element in G with h, = |g,| and h; = 0 for all other 4 in A. Since G is a sublattice
of Vit follows that

GnV,={xeG:x,=0 forall « = o}

is an l-ideal of G. Let M be an l-ideal of G that properly contains G n V,, and consider
0<xeM \ (GnYV,). Then x must have a maximal component x; > 0, where
B = o, and hence there exists a positive integer n such that 0 < h < nxe M.
Therefore he M and since g — h or g + h belongs to GNnV, = M, geM. In
particular, G N V, is a value of g. If ke G \ (G n V,), then k has a maximal com-
ponent k, with « = o, and hence G N V, is a value of k. Thus 4 is a plenary subset
of I'y and since G n V, is the only value of h in 4, 4 is the minimal plenary subset
of I',. If G n V,is a value of g € G, then clearly g, + 0, and if g5 + 0 for some f > a,
then there exists a maximal component g, of g with y = f# > a. Thus G NV, is
a value of g and G n V, properly contains G n V, which is impossible. Therefore
if G n V, is a value of g, then g, is a maximal component of g, and we havea 1 — 1
correspondence between the maximal components of g and its values in 4. The last
statement in the lemma follows at once from Proposition 3.11, and also we have that
every element in 4 is special in I';.
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Theorem 4.1. If X = G = V. where G is a subgroup and a sublattice of V, then
the following are equivalent.

(l) Each g in G has at most a finite number of maximal components.

(2 r(G)={GnV,:ie A}

(3) I'y(G) freely generates I'(G).

(4) Each g in G has a unique representation as a finite sum of pairwise disjoint
elements each of which has exactly one maximal component.

Proof. Let 4 = {GnV,:1€4}, I' = I',(G) and I' = I'(G). By Lemma 4.1
and (1), Iy < 4, hence (1) implies (2). If I'; = 4, then by Lemma 4.1, each element
in I'y is special and hence by Theorem 3.9, I'y freely generates I'. Suppose that I';
freely generates I'. Then by Theorem 3.9 each element in I'; is special and hence I',
contains no proper plenary subsets. Therefore I'; = 4. Also by Theorem 3.9 each
0 % ge G has at most a finite number of values in I'; = 4, and hence by Lemma 4.1,
each g€ G has at most a finite number of maximal components. Therefore (1), (2)

and (3) are equivalent. The equivalence of (1) and (4) follows at once from Theorem
3.9 and Lemma 4.1.

Corollary L I'((X) = {EnV;: A€ A} and TI'y(X) freely generates I'(X). Thus
there exists a lattice isomorphism between I'(Z) and the lattice A’ of the dual ideals
of A, where the l-ideal of X corresponding to X' € A’ is

{(veZ:v,=0 forall aci’}.

Moreover CeI'(Z) is regular (prime) [minimal prime] if and only if the correspond-
ing dual ideal is principal (a chain) [a root].
An element g in an l-group G is called basic if g > 0 and C(g) is an o-group.

A subset S of G is called a basis if S is a maximal set of disjoint elements and each s
in S is basic.

Corollary II. For V = V(A, R;) the following are equivalent.
(a) A contains only a finite number of roots.

(b) I'y(V) freely generates I'(V).

(¢) Ty(V) = {Vy:1e4}.

(d) V has a finite basis.

Proof. The equivalence of (a), (b) and (c) follows at once from Theorem 4.1 and
the fact that a root system that contains an infinite number of roots must contain an

infinite trivially ordered subset. By Theorem 5.11 in [5], V has a finite basis if and

only if I'(V') contains only a finite number of roots. Thus it follows that (d) and (a)
are equivalent.

Theorem 4.2. Let L be a lattice that is freely generated by its set A of meet
irreducible elements. If A is a root system, then Lis l-isomorphic to the lattice I'(X)

of all l-ideals of the abelian l-group 3 = X(A, R;) and under this isomorphism A
corresponds to I'y(X).
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Proof. By Corollary 1 of Theorem 4.1, I'y(2) = {Zn V;:Ae A} and TI,(Z)
freely generates I'(X). But clearly {X n ¥, : A€ A} and A are o-isomorphic. Thus
since I'y(X) freely generates I'(X) and A freely generates L, there exists an [-isomor-
phism of Lonto I'(%).

Corollary. Suppose that L is a lattice that is generated by its set S of meet ir-
reducible elements, and suppose that S is a root system that contains only a finite
number of roots. Then L is (I-isomorphic to) a lattice of all convex l-subgroups of
an l-group if and only if S freely generates L. If in addition, each root of S contains
a least element, then Lis a lattice of convex l-subgroups of an l-group if and only
if Lis distributive.

Proof. If S freely generates L, then by Theorem 4.2, Lis l-isomorphic to I'(G),
where G is an abelian [-group. Conversely suppose that 7 is an l-isomorphism of L
onto I'(H) for some I-group H. Then I'(H) contains only a finite number of roots
and hence by Theorem 3.4, I';(H) freely generates I'(H) and hence S freely generates L.
If Lis distributive and each root in S contains a least element, then by the Corollary
to Theorem 2.3, S freely generates L and hence, as above Lis [-isomorphic to I'(G)
for some abelian I-group G.

Note that the lattice in Example 2.1 is not l-isomorphic to the lattice of all convex
l-subgroups of an I-group.

Theorem 4.3. A finite distributive lattice L is l-isomorphic to the lattice of all
convex l-subgroups of an I-group if and only if the set A of proper meet irreducible
elements of L is a root system. If this is the case, then Lis freely generated by A.

Proof. By the corollary to Theorem 2.1, Lis freely generated by A. If 4 is a root
system, then by Theorem 4.2, Lis l-isomorphic to the lattice of all I-ideals of some
abelian I-group. Conversely if L is l-isomorphic to the lattice I'(H) of all convex
I-subgroups of some I-group H, then A is I-isomorphic to the set of meet irreducible
elements of I'(H) which by Theorem 3.3 is a root system.
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Pe3srome

CTPYKTVYPA, COCTOSASA 13 BCEX BBIIIYKIJIbIX [-IIOATPVIII
CTPYVKTYPHO VIIOPSAJOYEHHOW TI'PYIIIIbI

TIOJIb KOHPA/T (Paul Conrad), Hero Opiteanc

Bonbas yacte U3BECTHOW TEOPUM CTPOESHUS M MPEJICTABJICHUM IS CTPYKTYPHO
yopsKoYeHHOl rpymsl (,,/-rpynnel) G 3aBUCHT OT CTPOeHHUst CTPYKTYphL I' Beex
BBINYKJIBIX /-moxrpynn u3 G. B Hacrosueir pabore uccuenyercst crpoenue I'. IToka-
3aHO, YyTo I’ MOpOXAAeTCs €€ MHOXECTBOM ['; HENPUBOAUMBIX IO HNEPECCYECHUIO
3JIEMEHTOB ¥ 4To I’y sBiseTcsst KOpHeBoHl cuctemoi. Takum oOpa3om, uMeercs
€CTECTBEHHBI H3oMOphu3M Mexay I UM CTPYKTypoil CcBOOOJHO TOPOXAAEMOM
MHOXecTBoM I';. MBI mokassiBaem, uto I'; cBoGoxno mopoxaaer I' (1 moatomy I'
ONTHO3HAYHO onpezensieTcsi I'y) TOrJa M TONBKO TOTAa, €CIU Kak/blil dJEMEHT g
u3 G nMmeeT He 6oJice, YeM KOHEYHOE YMCIIO BBIMYKJIBIX /-OArPYNI M, SBISIOLIUXCS
MaKCHMAaJIbHBIMHE IO OTHOIIEHWIO K ,,He comepxaHuio® g. Kpome Toro, I'y cBoboaHo
HO mopoxaaeT I” Toraa ¥ TOJIBKO TOrAa, eciu I'; yIOBIETBOPSET pacHpeeNIuTelIb-
HOMY 3aKOHY ‘

Bv (AA,) =ANBV 4,),A,,Bel'i ucgeX.

Ecmu I’y cBobGoguo mopoxnaaet I, TO MBI 10JIy4aeM JOCTATOYHO TOYHYIO T€OPEMY
0 N0KaJibHOM cTpoeHuu G.

Kaxngast CTpyKTypa, cBOGOJHO MOPOXKJaeMasi €€ MHOXECTBOM / HEMPUBOITUMBIX
fl0 TIEPECEYEHHUIO 3JIEMEHTOB, SBJACTCS CTPYKTYPOH BCEX BBIIYKIBIX [-TOATpyMI
HEKOTOPOH [-rpymimsl TOr/Aa 1 TOJIbKO TOTAA, eciu A ecTh KOpHeBas cucteMa. B yacr-
HOCTH, KOHEYHasl QUCTPUOYTUBHAS CTPYKTypa SIBJISCTCS CTPYKTYPO# BCEX BBITYKIIBIX
/-moArpynn HEKOTOPOWH /-rpymmbl TOrAa M TOJIBKO TOT/IA, €CIM €6 MHOXECTBO A He-
MPUBOJIMMBIX IO TIEPECEYEHUIO BJIEMEHTOB SIBJISICTCSL KOPHEBOW cucteMoi. Takum
06pa3om scHO, YTO mOoAMHOXKeCTBO I'; w3 I' BechbMa BaXKHO, M IO3TOMY MBI JaeM
BOCEMb JKBUBAJICHTHBIX XapakTepu3aluil asemMentos u3 I'y.

123



		webmaster@dml.cz
	2020-07-02T19:57:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




