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Чехословацкий математический журнал т. 15 (90) 1965, Прага 

THE LATTICE OF ALL CONVEX L-SUBGROUPS 
OF A LATTICE-ORDERED GROUP^) 

PAUL CONRAD, New Orleans 

(Received January 7, 1964) 

1. Introduction. In [5] it is shown that a commutative lattice-ordered group G 
("/-group") can be embedded in a Hahn-type group of real valued functions. Moreover, 
whether or not there exists a minimal such embedding depends only on the lattice S£ 
of all J-ideals of G. In [6] it is shown that whether or not G is completely distributive 
depends only on =^. It is well known that i f is a complete distributive lattice, and K. 
LORENZ [12] has shown that if we discard the commutative hypothesis, then the set Г 
of all convex /-subgroups of G is also a complete distributive lattice. Most of the 
known structure and representation theorems for G follow from properties of Г or 
from putting restrictions on Г. For example, C. HOLLAND [10] has shown that each 
/-group G is /-isomorphic to a group of order preserving permutations of a totally 
ordered set. Here the ordered set is built up from ordered sets of right cosets of 
convex /-subgroups of G. These results indicate quite clearly the need for an 
investigation of the structure of Г for an arbitrary /-group G. 

In section 2 we investigate those lattices that, are freely generated by their meet 
irreducible elements. In section 3 it is shown that the lattice Г of all convex /-subgroups 
of an /-group G is generated by its set T^ of meet irreducible elements, and that Г^ is 
a root system. Thus it follows (Theorem 3.4) that there is a natural /-isomorphism of Г 
into the lattice that is freely generated by Г | . Theorem 3.9 asserts that T^ freely 
generates Г if and only if for each element g in G there exists at most a finite number 
of convex /-subgroups M of G that are maximal with respect to g^M. Also Г^ 
freely generates Г if and only if 

5 V ( А Л , ) = л ( Б А Л , ) forall Л „ Б Е Г 1 ( ( т е Г ) . 

The basic concept used in proving these results is that of a prime convex /-subgroup. 
A convex /-subgroup M of G is called prime if whenever a and b belong to G^ but 
not to M, then a A b > 0. Theorem 3.2 gives six equivalent definitions of a prime 

) This research was supported by a grant from the National Science Foundation. 
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convex /-subgroup. In particular, the elements of Г^ are prime, and if M is an /-ideal 
of G, then Gl M is an o-group if and only if M is prime. For each g G G let C{g) be 
the convex /-subgroup of G that is generated by g. Then (Theorem 3.5) the mapping 
of M upon M n C{g) is a one to one mapping of the set of all convex /-subgroups of G 
that are maximal without g onto the set of all maximal convex /-subgroups of C[g). 
If Ml,. . . , M„ are the only convex /-subgroups of G that are maximal without g, 
then (Theorem 3.7) 

C{g) = C{g,) @ C{g2) @ ... @ C{g„) 

where M^ is the only convex /-subgroup of G that is maximal without gj, C[gi) is 
a lexicographical extension of C{gi) n M^ and C{gi)l{C{gi) n M^ is an archimedean 
o-group (ï = 1, ..., n). Thus we have a local structure theorem for G. 

In section 4 we show that if L is a lattice that is freely generated by its set Л of 
meet irreducible elements and if Л is a root system, then Lis (isomorphic to) the lattice 
of all convex /-subgroups of an /-group (Theorem 4.2). In particular, a finite distri­
butive lattice is (isomorphic to) the lattice of all convex /-subgroups of an /-group if 
and only if its set Л of meet irreducible elements form a root system, and if this is 
the case, then the lattice is freely generated by Л. 

The author wishes to thank A. H. CLIFFORD who read a rough draft of this paper 
and made many valuable suggestions, and also to thank L. FUCHS for some con­
structive discussions on these topics. 

Notation. We shall denote the null set by • and the fact that a, be G are not 
comparable by a || Ь or that the subsets A and ß of G are not comparable (with 
respect to inclusion) by A || B. Also A \ В will denote the elements that are in A 
but not in B. We shall denote the lattice operations by л , v , <, ^ and the set 
theoretic operations by n, u, c , ç . A subset D of a po-set P is called a dual ideal 
if whenever d < p for de D and pe P, it follows that pe D, R will always denote 
the naturally ordered additive group of real numbers, and 0 will always denote the 
cardinal sum. If S is a subset of a group G, then [S] will always denote the subgroup 
of G that is generated by S. 

2. Lattices that are generated by their meet irreducible elements. Throughout this 
section let Л be a po-set and let Л' be the set of all dual ideals of Л including the 
null set • . For a' and ß' in A' we define a' ^ ß' if a' ^ ß' as subsets of Л. If follows 
easily that Л' is a complete distributive sublattice of the Boolean algebra 2"^ of all 
subsets of Л, where a' v 8̂' = a' n ß' and a' /\ ß' = a' и ß'. Also A is the least 
element and D is the greatest element in A'. 

Proposition 2.1. A' satisfies the generalised distributive law 

л Aö F à 
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and dually, where for each ô in the set A, A^ is a set, and F is the set of all mappings т 
of A into the join of the A^ such that т{о) e A^for each ô in A. 

This is an immediate consequence of the validity of the generalized distributive 
law in 2"*. Clearly the mapping n of XE A onto the principal dual ideal À' = {ote A : 
: a ^ Я} of Л is one to one and oc ^ ß in A if and only if a' ^ ß' in A\ Thus the 
lattice Л' contains an isomorphic copy of the given po-set A. 

Proposition 2.2. Each element in Л' is the greatest lower bound of a unique dual 
ideal in An. If a' E A', then a' = /\ßn{^ß E a'), and if a' is not principal, then each 
ßn > ос'. 

An element a of a lattice L will be called meet irreducible if a is not the greatest 
element in Land if a < АЬ(Ь G Land b > a). This is more restrictive than the usual 
concept of finite meet irreducible {b, с E L, b > a and с > a imply b A с > a). 

Proposition 2.3. An is the set of all meet irreducible elements in A'. 

Proof. If X' E An, then Я' = {a G Л : a ^ A}. Let J = [a' E A' \ a > Я'}. Then 
ji' = AÖ-'((T' G A ) is the dual ideal {a G Л : a > Я} of Л and hence fi' > X. Thus X 
is meet irreducible, and by Proposition 2.2 the elements in A \ An are meet reducible. 

Let L be a lattice and let S be the set of all meet irreducible elements in L. If each 
element in L is the greatest lower bound of a dual ideal of S (including S and the 
null ideal) and if f\a^ exists for each dual ideal {a^ of 5, then we say the Lis generated 
by its meet irreducible elements. In particular, Lhas a greatest and a least element, 
and in all that follows we shall only consider lattices that have greatest and least 
elements. If in addition, for each pair {a^ and {b^} of dual ideals of S, l\a^ = /\bß 
implies that {aJ = {bß}, then we say that Lis/rее/v generated by -S. Note that A' is 
freely generated by An. 

Theorem 2.1. / / L is a lattice that is generated by its set S of meet irreducible 
elements, then the following are equivalent. 

(a) L is freely generated by S. 
(b) L satisfies the generalized distributive law, 
(c) b V (Afl J = A(b V a„) for all a^, b E S{G E I). 

Proof. Let S' be the lattice of all dual ideals of S. If Lis freely generated by S, 
then there is a natural /-isomorphism between Land S\ and so by Proposition 2.1. 
L satisfies the generalized distributive law. Therefore (a) implies (b) and clearly (b) 
implies (c). Finally suppose that (c) is satisfied and that /\a^ = /\bß, where {a^} 
and {bß} are dual ideals of 5. For ЬЕ {bß} 

А(Ь V a^) = b V (A«a) = b V {Abß) = b , 

Thus since b is meet irreducible in L, there exists an element a E {a^} such that 
b V a = b and hence a S b. But {a^} is a dual ideal of S and hence b E {a^}. There­
fore {bß} ^ {a^} and similarly {a^} Я {bß}. Thus S freely generates L. 
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Corollary. If Lis a lattice that satisfies both chain conditions, then Lis generated 
by its set S of meet irreducible elements. Moreover, S freely generates L if and only 
if Lis distributive, and if S freely generates L, then Lis finite. 

Proof. It is known ([2] p. 38) that Lis a complete lattice, and in fact, for each 
subset {a„} of L, /\a„ = /\a^. (i = 1,..., n) for some finite subset {a„.} of {a„}. If 
ae L \ S, then a S Л̂ <т(<̂  < a^eL) and we may assume that each a^ is the meet 
of elements in S. Thus each a E Lis the meet of elements in S, and hence S generates L. 
If S freely generates L, then by our theorem Lis distributive. If Lis distributive, then 
b V (Л^<т) = b V {A^a^ ä^d Л(^ V a„) — Д(Ь V a^.) for /' = 1, .,., n. Thus it 
follows that L satisfies condition (c) of our theorem, and hence S freely generates L. 

Suppose that S freely generates L and assume (by way of contradiction) that S 
is infinite. Then there exists an infinite trivially ordered subset a^, «2, ... of S and 
hence a^ > a^ л «2 > a^ A a2 л a^ ..., which is impossible. Therefore S is 
finite and hence Lis finite. 

Let L be a lattice that is generated by its set S of meet irreducible elements, and for 
each a G L let D{a) be the dual ideal of S consisting of all elements that exceed a 
D{a) = {seS :s^ a}. 

Proposition 2.4. For each subset {a^ : ae A} of L 

(1) Да^ = A^{u e U^(<^a)) at^d V^a = ЛЧ^ e П^(^а))-
In particular, Lis a complete lattice and 

(2) Z)(Vfl.) = По(а.) and D(Aa,) 3 Uö(a,) . 

Proof. Since и = U^(^a) is a dual ideal of S, Дм exists and since U 3 D[a^), 
/\u ^ /\(^a,ß = ^a{^a,ß ^ ^(^a)) ^ г all a. If С ̂  a^ for all a, then с ^ a^ = /\(i<x,ß = 
S a^ß for all a^ß e U and hence D[c) ^ U. Thus с = /\q ^ /\u (q e D(c) and 
и e U). Therefore /\u = /\a^ and similarly /\v = V^a- ^^ ^Щ complete lattice 
X ^ V^a if and only if for all a, x ^ â t? aî <i if л: ^ a^ for some a, then x ^ Да^,. 
Therefore (2) is also satisfied. 

Corollary. The following are equivalent. 

(a) S freely generates L. 
(b) D{/\a^ = \JD{a^) for all subsets {a^} of L. 
(c) If xG S and X ^ A^oi^a ^ )̂> ^^^^ -̂  exceeds some a^. 

Proof. Since every element in Lis the intersection of a dual ideal of S, A^a = 
= Д\у (ууеО(Да^)) and by (l), Да^ = Ди (м G U^(<^a))- Thus Дн^ = Дм 
and if S is freely generated by L, then clearly (b) is satisfied, lîxeS and x ^ Да«, 
then by (b) X G D(A^a) = U^(^a) aî^d hence x exceeds some â .̂ Finally if Дх^ = Дy^, 
where {x^} and {уу} are dual ideals of S, then x^ ^ Дуу and hence by (c), x^ ^ y^ for 
some Уу. Thus x^ belongs to the dual ideal {уу}, and it follows that {x^} = {y.,}. 
Therefore S freely generates L. 
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Proposition 2.5. / / D{a A b) = D{a) u D{b) for ail a, b in L, then 

a л {Wbß) = V(ö л bß) for all a,bßE L (ß e A) 

and in particular, Lis a distributive lattice. 

Proof, ybß = Л^ for all t in f)^[bß) = D{\/bß). Thus a л {\/bß) = Д^ for all t 
in D{a) u (По(Ь^)) = n(^(«) u Z)(b j ) = n ^ ( « л bß). But V(Ö Л ^^) = At for 
all r in n ^ ( ^ л Ь̂ )> and so a л (V^/?) = VC*̂  ^ ^ß)-

The following is a summary of the preceding results. 

Theorem 2.2. If L is a lattice that is generated by its set S of meet irreducible 
elements, then Lis a complete lattice and the following are equivalent. 

(1) D{a A b) = D{a) u D{b) for all a, b in L. 

(2) L is finitely freely generated by S in the sense that if two finitely generated 
dual ideals of S have the same greatest lower bound in L, then the dual ideals are 
equal. 

(3) The mapping X\a -^ D{a) is an l-isomorphism of L into the lattice S' of all 
dual ideals of S. Lk is a sublattice of S' which is complete and such that arbitrary 
joins agree with those in S\ but arbitrary meets agree with those in S' if and only 
ifLX = S' (or equivalently if Lis freely generated by S). 

Moreover if{i) holds, then Lis distributive, and in fact 

a A {ybß) = V(^ л bß) for all a, bßG L {ß e A), 

but the dual of this law holds if and only if LÀ = S\ 

In section 3 we show that the lattice Г of all convex /-subgroups of an /-group 
satisfy the hypotheses and property (l) of Theorem 2.2. Moreover, the meet irredu­
cible elements of Г form a root system; that is, a po-set for which each principal dual 
ideal is a chain or equivalently in which each pair of incomparable elements have no 
lower bound. A maximal chain in a root system will be called a root. The next theorem 
completely characterizes those Г in which the generating root system contains only 
a finite number of roots (see Theorem 3.4). 

Theorem 2.3. Let Lbe a distributive lattice that is generated by its set S of meet 
irreducible elements. If S is a root system that contains only a finite number of 
roots, and if for each chain {Cy} of elements in S 

ЧАсу) = Uß(s) ' 
then L is freely generated by S. 

Proof. Suppose that A^^ = Abß, where {a^} and {bß} are dual ideals of S, and 
let n be the number of roots in S. For each j = 1 , . . . , n let {^0%} be the set of all 
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the a^ in the 7-th root of S. Then for each;, { (̂j)«} is a dual ideal of S and hence a{j) = 
= Afl(j)a belongs to Land /\a^ = A^(j) f̂^ ^^^J- For 6 G {Ь^} 

b = bv (Abß) = Ь V (Ла,) = Ь V ( ДаО')) = А{Ь v a(j)). 

Since 6 is meet irreducible we may, without loss of generality, assume that b = b v 
V a{l) = Ь V (Afl(l),) and hence b ^ Л«(1)а. Thus b e D{Aa{l\) = (JD{a{lX) and 
hence b ^ «(1)« for some a. But {a^} is a dual ideal of S and hence Ь G {a^}. Therefore 
{bß} ^ {a^} and similarly {a^} ç {Ь^}, and hence S freely generates L. 

Corollary. //, as in the theorem. Lis generated by a root system S that contains 
only a finite number of roots, and if each root contains a least element, then S 
freely generates L. 

Proof. A chain {cy} in S must belong to one of the roots Yof 5 and hence ДСу ^ a, 
where a is the least element in Y. If A^y = de Y, then since the elements of S are 
irreducible, Cy = d for some y and hence D(A^y) = O^i^y)- Suppose that A^y Ф Y 
and consider x G D(Acy). Then a ^ Дс^ ^ x and XG Y. If x < Cy for all y, then 
^ = Л<̂у G У, a contradiction. Thus x ^ Cy for some у and hence x G UD(cy). There­
fore 1)(Дсу) = UD(cy), and S freely generates L. 

The following example shows that the hypothesis that D[A^y) = f)^{^y) f<̂ r 
chains {Cy} in S cannot be omitted from the last theorem. 

Example 2.1. Let S consist of a point v and a deseeding sequence of points u^, U2, ... 
then we have the following picture of L. (Fig. 1.) 
Lis generated by S but it is not freely generated by S because 

0 0 CX) 

г; л ( Д ŵ ) = Д Wf = 0 
i= 1 / = 1 

and {ui} and {wJ u {t̂ } are distinct dual ideals in S. Also Lis a distributive lattice 
and in fact satisfies 

b A (Va.) = V(b л a,) b, a,eL{aEZ). 

The lattice that is freely generated by S is (Fig. 2) 

3. The lattice of convex /-subgroups of an /-group. Throughout this section let 
G Ф 0 be an /-group. A subgroup С of G is an Isubgroup provided that С is a sub-
lattice of G, and С is a convex subgroup i f O < g < c G C and geG imply that 
g G C. A normal convex /-subgroup is called an l-ideal. The following three proposi­
tions are well known for /-ideals (see [7] for proofs) and the generalization to convex 
/-subgroups is straightforward. 
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Proposition 3.1. For a subgroup С of G the following are equivalent, 

(1) С is a convex l-subgroup of G. 
(2) С is a directed convex subgroup of G. 
(3) С is convex and с v Oe С for each с in C. 
{4)JfcEC,geG and \g\ ^ \c\, then g eG. 

^ Л Ц 

в СУ 

Fig. L Fig. 2. 

Proposition 3.2. / / {В^ : Я G Л} is а set of convex Usubgroups of G, then the sub­
group of G that is generated by the B^ is also a convex l-subgroup of G. Thus the 
convex l-subgroups form a complete sublattice of the lattice of all subgroups of G. 

Let С be a convex /-subgroup of G and let R{C) be the set of all right cosets of С 
in G. For x and у in G define 

С + X -^ С + y if с + X S У for some с in С . 

Proposition 3.3. R[C) is a distributive lattice, and 

C + xvC-\-y = C + xvy and dually . 

Moreover, if A and В are convex l-subgroups of G and A<^B, then the mapping^ 
A + x-^B-hxisan l-homomorphism of R{A) onto R{B), and for each gG G, 
the mapping A + x-^A + x + gisan l-automorphism of R{A). 
Let G^ denote the positive cone of G. If S is a subsemigroup of G"̂  that contains 0 
and a e G"̂ , then let <5, a> be the subsemigroup of G that is generated by S and a. 
Thus <iS, a} consists of all elements of the form 

Ui + a -{- U2 + a + ... Л- M„-i + a + w„ (w,G S) . 
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Proposition 3.4. (Clifford) If M is a convex l-subgroup of G and if ae G^ \ M, 
then 

C{M, a) = {xeG :\x\ S P for some p e <M^, a}} 

is the smallest convex Isubgroup of G that contains M and a. If a, b G G^ \ M, 
then C{M, a) n C(M, b) = C(M, a л b). In particular, when M = 0 

C{a) == {x E G : \x\ ^ na for some positive integer n} . 

Proof. If X, ye C{M, a), then |x| g p and |з;| ^ (̂f, where p, qe {M^, a}. 
Thus |x — j | ^ |x| + |.v| + |x| ^ p + g + jPG <M"^, fl> and hence x — y belongs 
to C{M, a). Thus C{M, a) is a group, and clearly if |g| ^ |c| for g e G and с G C{M, a), 
then g G С{М, a). Therefore by Proposition 3.1, C{M, a) is a convex /-subgroup of G 
that contains M and a, and it is the smallest such sub- group. 

Now consider 0 < x e C{M, a) n C{M, b). 

X ^ mi + a -\- m2 + ... + W/,_i + a + m^ [mi G M ^ ) , 
and 

X ^ «1 + Ь + «2 + . . . + Wfc-i + b -\- n^ (ni G M"*") . 

Thus 
X ^ (mi + Ö + ... + m;,) л (^1 + Ь + . . . + /ifc) . 

But for Uy V, w E G'^, и л (t; + w) ^ (w л v) + (и л w), and hence it follows that x 
is less than or equal to a sum of positive elements of the form mi A b, a A /t„ 
mi A nj and a A b. But each such element belongs to C(M, a A b) and so C{M, a) n 
n C{M, b) ^ C{M, a A b). The other inclusion is trivial. 

Corollary. Let К be the intersection of all the non-zero convex l-subgroups of G. 
If К Ф 0, then G is an o-group and К is the convex subgroup of G that covers zero. 

Proof. If G is not an o-group, then there exists strictly positive elements a and b 
in G such that a л Ь = 0. Thus К ç C{a) n C{b) = C{a л Ь) = C(0) = О, 
a contradiction. 

A convex /-subgroup M of G is called regular if there exists an element g in G such 
that M is maximal with respect to not containing g, and in this case M is said to be 
a value of g. 

Proposition 3.5. Each convex l-subgroup of G is the intersection of regular 
convex I'Subgroups of G. Each 0 Ф g ш G has at least one value. 

Proof. Let С be a convex /-subgroup of G and consider gE G \ С By Zorn's 
lemma there exists a convex /-subgroup M of G that is maximal with respect to 
gфM ^ С In particular, M is regular and a value of g, and it follows that С is the 
intersection о f all such M. 
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Theorem 3.1. For a convex Isubgroup M of G the following are equivalent. 

(1) M is regular. 
(2) There exists a convex l-subgroup M* of G that properly contains M and is 

contained in every convex l-subgroup of G that properly contains M. 
(3) M is meet irreducible in the lattice of all convex hsubgroups of G. 
If M is normal, then each of the above is equivalent to 
(4) Gl M is an o-group with a convex subgroup that covers zero. 

Proof. Suppose that M is regular and let M be a value of g G G. Let M* be the 
intersection of all convex /-subgroups of G that properly contain M. Then ge M '^ \ 
\ M, and so (1) implies (2), and clearly (2) imphes (3). By Proposition 3.5, M is the 

intersection of regular convex /-subgroups of G. Thus if M is meet irreducible, it 
must be regular. 

Now suppose that M is normal. Then clearly (4) implies (2). Conversely if M 
satisfies (2), then by the Corollary to Proposition 3.4 it follows that G/M is an o-group 
and M'^jM is the convex subgroup of GjM that covers zero. 

Corollary. If M is a regular convex /-subgroup of G and a, b G G^ \ M, then 
a A beG^ \ M. 

Proof, Let M* be as in (2), then 

C{M, a A b) = C{M, a) n C{M, b) ^ W . 

Thus if a л b e M, then M = С(М, a A b) ^ M*, a contradiction. 
The next theorem was first proven for abelian /-groups. The author wishes to 

thank A. H. CLIFFORD for his help in translating it to the non-abehan case and in the 
process shortening the proof. Also, С HOLLAND [10] has shown that (4) and (6) 
are equivalent and that (6) implies (5). 

Theorem 3.2. For a convex l-subgroup M of G the following are equivalent 
(i) If M ^ Ä n B, where A and В are convex l-subgroups of G, then M ^ A or 

M ^ B. 
(2) If A ID M and В ID M, where A and В are convex l-subgroups of G, then 

Ar\B zD M. 
(3) If a, be G^ \ M, then a A beG^ \ M. 
(4) If a, be G^ \ M, then a A b > 0. 
(5) The lattice R[M) of right cosets of M is totally ordered. 
(6) The convex l-subgroups of G that contain M form a chain. 
(7) M is the intersection of a chain of regular convex l-subgroups. 
If M is normal, then each of the above is equivalent to 
(8) G/M is an o-group. 
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Proof. Clearly (1) implies (2). If a, be G^ \ M, then by (2) and Proposition 3.4, 
C{M, a A b) = C{M, a) n C{M, b) з M. Thus a л Ь ^ M and hence (2) implies (3). 
Clearly (3) implies (4). Consider M + a and M + b ши\ a, b in G \ M, Then 
a = a' + a A b and b = b' + a A b where a' A b' = 0. By (4) either a' EM or 
b' еМ. But if a' e M, then M + a = M + aAbuM+b, and if b' e M, then 
М+Ь = М + аАЬ^М-\-а. Therefore (4) implies (5). Next assume that (5) is 
true and suppose (by way of contradiction) that there exist convex /-subgroups Ä 
and В of G such that Л з M, Б ID M and Л || Б. Pick 0 < a G ^ \ B a n d O < b E 
E В \ A. Then a = aAb + a\b=^aAb + b\a'Ab' = Q and without loss of 
generality M + a' ^ M + b'. Thus M = M + a' A b' = M + b' and hence 
b' e M cz A. But since a л b e A,it follows that ЬеА,а contradiction. Therefore (5) 
implies (6). An immediate consequence of Proposition 3.5 is that (6) implies (7). 

Assume that (7) is satisfied and that there exist convex /-subgroups A and В of G 
such that M ^ A n B, M ^ A and M ф Б. Pick 0 < ae A \ M шй 0 < be В \ 
\ M. By (7) M = O^cr (ö" e Z), where {M„ : crel} is a chain of regular convex 
/-subgroups of G. Thus there exists a e I such that a, b G M„ and hence by the 
Corollary to Theorem 3.1, a A b ф M^. But a л be A n В ^ M ^ M^, a contra­
diction. Therefore (7) implies (l). Finally if M is normal, then clearly (5) and (8) are 
equivalent. 

We shall call a convex /-subgroup of G prime if it satisfies one of the equivalent 
conditions (1) through (7) in the last theorem. Note that each regular convex 
/-subgroup is prime, and that the prime convex /-subgroups are the finite meet irredu­
cible convex /-subgroups. By (3) a prime convex /-subgroup is a prime x-ideal in 
the sense of K. AUBERT [1] and conversely. Also the prime convex /-subgroups can be 
used to represent G as a group of o-permutations of a totally ordered set as in [10]. 

Let Г be the set of all convex l-subgroups of G and let Г^ be the set of all regular 
convex l-subgroups of G. It follows from Proposition 3.2 that Г is a complete 
sublattice of the lattice of all subgroups of G. 

Theorem 3.3. Г^ is the of meet irreducible elements off, Г^ is a root system andF^ 
generates Г. Moreover the following are equivalent. 

(1) Fl freely generates Г. 
(2) Г satisfies the generalized distributive law. 
(3) В V (Л^, ) = Л ( ^ V A,) for all Л„ ВеГ,{ае l). 

Proof. It follows from part (3) of Theorem3.1 that Г^ is the set of all meet irreducible 
elements of Г, and it follows from part (6) of Theorem 3.2 that Г^ is a root system. 
By Proposition 3.5, Г^ generates Г. The equivalence of (l), (2) and (3) is an immediate 
consequence of Theorem 2.1. 

As in the last section for each Л in Г let 

D(A) = {ХеГ^'.Х ^ A} . 
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Then from (l) in Theorem 3.2 we have 

D{Ä пВ)= D{Ä) u D{B) for all Ä, В in Г . 

Proposition 3.6. If{M^ :aei:} isa chain in Г^, then D{OM^) = U ^ ( ^ a ) . 

Proof. Clearly D(f)M^) ^ U^(M^). If ^ e D{OM^), then A ^ OM^, and A GT^. 
Thus by (6) and (7) of Theorem 3.2 applied to M = O^a^ ^ is comparable with each 
of the M^. If A cz M^ for all a, then A = OM„, but this contradicts the fact that A 
is meet irreducible. Thus A ^ M^̂  for some a\ and hence Ae D{M^^) Я [JD{M„). 
Thus by Theorems 2.2 and 2.3 we have 

Theorem 3.4. Г is finitely freely generated by Г^ and the mapping A -> D[A) 
is an l-isomorphism of Г into the lattice Г[ of all dual ideals of Гх- Thus Г is 
isomorphic to a sublattice of Г[ which is complete, and such that arbitrary joins 
agree with those in Г[, but arbitrary meets agree with those in Г[ if and only if Г 
is freely generated by Г^- Moreover Г is distributive and 

В A (ЛЛ,) = Л(Б л A,) for all A,,BGr {aG I) 

but the dual of this law holds if and only if Г^ freely generates Г. Finally, if Г^ 
contains only a finite number of roots, then Г^ freely generates Г. 

Thus to within an /-embedding Г^ ^ Г Ç Г^, Г is a distributive sublattice of Г^, 
Г is a complete sublattice of Г^ if and only if Г = Г\, and if Г^ has only a finite 
number of roots, then Г = Г[. The following is an example of an abelian /-group for 
which Fl does not freely generate Г. 

Example 3.1. For each positive integer n let I„ be the group of integers and let 
n[l) be the large (small) cardinal sum of the J„. For each n let Я„ be the set of all 
vectors in Я with n-th coordinate zero. Then I and the Я„ are /-ideals of Я and 

I V (ЛЯ„) = Z V {0} = Z + Я = Л(^ V Я„) . 

Let KQ be the subgroup of G that is generated by {JC G G : x || 0} and let Mo be the 
convex hull of KQ. A. LAVIS [11] proves that if G is a po-group, then MQ is a normal 
convex subgroup of G and G is a lexico-extension of MQ. That is, GJMQ is an o-group 
and each positive element in G \ MQ exceeds every element in MQ. Lavis also shows 
that the normal convex subgroups of G that contain MQ form a chain and G = lex M 
for a normal convex subgroup M of G if and only if M ^ MQ. Finally, if M is a normal 
convex subgroup of G and GjM is an o-group, but G is not a lexico-extension of M, 
then M Cl MQ. NOW once again assume that G is an /-group. Then there is an alternate 
way of defining MQ. An element 0 < w G G is a non-unit if м л v = 0 for some 
0 < t; G G. Let N be the subgroup of G that is generated by all the non-units. Then N 
is an /-ideal of G, G = lex N and N is not a proper lexico-extension of an /-ideal 
([4] Theorem 9.1). Since GjN is an o-group it follows from Theorem 3.2 that N is 
a prime convex /-subgroup of G. 
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Proposition 3.7. MQ = N and hence MQ is an l-ideal of G and also a prime convex 
Isubgroup. Л convex l-subgroup M Ф 0 of G contains MQ if and only ifO< ge 
GG \ M implies g > M. All other convex l-subgroups of G are contained in MQ. 

Proof. If X II 0, then X = x"̂  + x~, where 0 < x"*" = x v 0 and 0 > x~ = 
= X л 0. Thus since x"** л —x~ = 0 , x^ and x^ belong to N and hence MQ Ç N. 
If MQ is an /-ideal of G, then N = lex Mo and hence N — MQ. Thus to prove that 
Mo = N it suffices to show that y'^ G MQ for all y G MQ. For Z,WGG define z « w 
if there exist t^, ....t^G G such that z || t^ || 2̂ || ••• || h \\ ^- Lavis has shown that 
Mo = {z G G : z ^ 0}. Consider a || 0. If a ^ — a"̂ , then a S 0 and if — a"̂  < a 

a^>— a^a^'^— avO=— a~-^a = a'^-ha~^0. 

Thus — a"*" II a II 0 and hence a'^ G MQ. If XGKO, then x = x^ + ... + X/̂ , where 
Xj II 0 for i = 1,..., /c and hence 

0 ^ X V 0 = (xi + ... + X;t) V 0 ^ (xi V 0) + ... + (xfc V 0) G Mo . 

Thus since MQ is the convex hull of Ko, x v OG MO- NOW consider y G MQ. There 
exist a and b in KQ such that a ^ y -^ b, and hence a v O ^ j ^ v O ^ f o v O . 
Thus since a v 0 and Ь v 0 belong to Mo and Mo is convex, у v 0 G MQ. 

If M is a convex /-subgroup of G and M ф Mo, then there exists 0 < g G M \ Mo 
and since g > Mo it follows that M 3 Mo- Thus each convex /-subgroup of G is 
comparable with Mo- Let M be a convex /-subgroup of G that contains Mo and 
consider 0 < gG G \ M and mGM. Then MJMQ is a convex subgroup of the o-group 
G/Mo and hence g 4- Mo > m + MQ. Thus by Lemma 9.1 in [4] g — m + Mo 
consists of positive elements of G. Therefore g > m and hence g > M. Conversely 
suppose that M is a convex /-subgroup of G such that 0 < gG G \ M imphes g > M 
and consider strictly positive elements a and Ь in G such that a л Ь = 0. If a ^ M, 
then either bG M and hence a > b or b ф M and hence a A b > M. Thus M contains 
all the non-units of G and hence M 3 Mo-

Proposition 3.8. If M a MQ is a convex l-subgroupof G, then there exists N GF^ 
such that M || N. 

Proof. By Proposition 3.7 there exists 0 < g G Mo \ M such that g > M. Pick 
0 < m G M such that g || m. Then g=gAm + g,m = gAm-{'m\g'Am' = 
= 0, g' фМ and m' G M. By Proposition 3.4, C{g') n C{m') = 0. Pick NGT^ such 
that m' фN. Then g' GN \ M by the Corollary to Theorem 3.1, and m' G M \ N, 
and hence M || iV. 

Therefore Mo is the smallest element in Г that is comparable with every other 
element in Г^, and 

{MGr^: M ^ MQ} = { M G Г1 : M Ç N or M ^ AT for all iV G r j . 

Thus we can think of MQ as the *'base of the trunk" of the root system Г^. 
We recall that M G Г^ is a value of g G G if M is maximal with respect to not 

containing g. By Proposition 3.5 each 0 ф g G G has at least one value. Let S be 
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a convex /-subgroup of G. Then since — |g| ^ g ^ |g|, it follows that g e S if and 
only |g| G S. In particular, M is a value of g if and only if M is a value of |g|. Clearly 
an element g in G \ Mo has exactly one value M in Г^, and M is the maximal con­
vex /-subgroup of C{g). We next establish a one to one correspondence between the 
values of an arbitrary ge G and the maximal convex /-subgroups of C{g). 

Theorem 3.5. Consider 0 Ф g e G and let M еГ^ be a value of g. Then M -^ M n 
n C(g) is a one to one mapping of the set of all values of g onto the set of all maximal 
convex I'Subgroups ofC(g). Moreover, ifN is a maximal convex l-subgroup ofC{g), 
thenNa-^ = {x e G : |x| л |g |eiV}. 

Proof. Clearly C{g) = C(|g|), and since the values of g and |g| coincide we may 
assume that g > 0. Let A and В be distinct values of g and pick 0 < as A \ B. 
Then a A geAn C{g) and by (3) of Theorem 3.2, a A g^B^ В n C{g). Thus it 
follows that [A n C(g)) || {B n C{g)) and in particular, a is one to one. 

Suppose that Л is a value of g and let iV = Л n C{g). Then N is a proper convex 
/-subgroup of C{g). Suppose (by way of contradiction) that N a Q a C{g) for some 
convex /-subgroup Q of C[g), Then Q is also a convex /-subgroup of G and hence 
by Zorn's lemma there exists a value В of g with В 3 g. Clearly A ^ В and hence 
{A n C{g)) II {B n C{g)), but В n C{g) ^ QzD N = An C{g), a contradiction. 
Therefore N is a maximal convex /-subgroup of C{g). 

Let N* = {x G G : |x| л |g| e N}, where Л'" is a maximal convex /-subgroup of C{g). 
Then clearly gфN'^ ^ N and it follows by a straightforward argument that iV* is 
a convex /-subgroup of G. Suppose that Q is a convex /-subgroup of G that properly 
contains iV* and pick 0 < x G ß \ iV*. Then 0 < a = x A g G C{g) \ N and 
aeQ. Thus C{a) Ç ß , and C{g) = C(N, a) Ç ß , but this means that ge Q. There­
fore A''* is a value of g and since АГ*(т = AT* n C(g) 2 iV, it follows that iV*cr = Л .̂ 

A regular convex /-subgroup M of G is called special if there exists an element g 
in G such that M is the unique value of g. In this case g is also called special. 

Theorem 3.6. For 0 ф g G G the following are equivalent. 
(a) C{g) is a lexico-extension of a proper l-ideaL 
(b) g is special in C{g). 
(c) g is special in G. 

If this is the case and ifM(N) the unique value of g in G (C(g)), then N = M n C{g), 
C(g) = lex N, C{g)/N is an Archimedean o-group (notation C(g)lN < R) and 
M = N ® C\g), where C'{g) is the subgroup of G that is generated by {XG G'^ : 
: X л C{gy = 0}. Thus C{g) is the polar of C{g), 

Proof. By Theorem 3.5, (b) and (c) are equivalent and since the values of g and jgj 
coincide we may assume that g > 0. If C{g) = lex / , where / is a proper /-ideal, then 
since C{g)ll is an o-group, it contains a unique maximal convex subgrojp Ж without 
I + g. But then J^ = N/I, where N is the unique maxial convex /-subgroup of C(g) 
without g. Therefore (a) implies (b). 
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Conversely if iV is the unique value of g in C(g\ then by the first part of Proposition 
3.7, to show that C{g) = lex N it suffices to show that if a, be C{g), a > 0, b > 0 
and a A b = 0, then a e N, But the subgroup S of C(g) that is generated by 
{xeC{gY : X л Ь = 0} is a proper convex /-subgroup of C{g) that contains a, 
but not b, and by Theorem 3.5, N is the greatest convex /-subgroup of C{g). Therefore 
aeS^N. 

Now suppose that M[N) is the unique value of g in G {C(g)). Then by Theorem 3.5, 
N = M n C{g) and as we have shown C{g) = lex N. Since N is the greatest convex 
/-subgroup of C{g), C{g)/N < R. By lemma 6.1 in [4] D = C{g) @ C{g) is the group 
generated by C[g) and C{g) and 

D'^ = { X G G ' ^ : X does not exceed every element in C[g)] . 

Thus clearly M ^ D. If 0 < x e C{g), then x A g = 0 and hence by (4) of Theorem 
3.2, xeM. Therefore N @ C{g) ^ M ^ D. If 0 < XEM \ {N ® C{g)), then 
X = a -\- b, where 0 < ae C(g) \ iV and 0 ^ b E C{g). But then since C{g)/N < R, 
0 < g < na S nx e M for some n > 0 and so ge M. Therefore M = N @ C{g). 

We next wish to investigate those elements in G that have only a finite number of 
values. In order to do this it will be useful to know just howT^ determines the lattice 
operations in G. We shall call a subset A of Г^ plenary if each 0 ф g G G has at least 
one value in zl, and if g ^ M G ^, then there exists a value iV of g in 1̂ such N ^ M. 
It is clear that A ^ Г^ is plenary if and only if J is a dual ideal of Г^ and f)M = 0 
(M G A), For each 0 Ф g G G let J^ be the set of all values of g in J . Then A g is a tri­
vially ordered set. If g > 0 and MeAg_, then g "̂  л — g~ = 0 and by (4) of 
Theorem 3.2, g"̂  еМ. Hence M+g = M+g~<M and Me Ag, Thus for an 
element 0 Ф g G G the following are equivalent. 

(a) g > 0. 
(b) M + g > M for all M G Ад. 

Proposition 3.9. If А is a plenary subset of Fi and g, h G G, then h = g v О if 
and only if the following conditions are satisfied. 

(1) A, ^ Ag. 
(2) If M + g < M for Me Ад, then h e N for all M ^ N e A. 
(3) If M + g > M for Me Ад, then h - geN for all M ^ N e A. 
Proof. First suppose that g and h satisfy (l), (2) and (3). If Me A^ and M -h 

+ g < M, then by (1) and (2), he M, which is impossible. Thus if M e Af,, then 
M + h = M + g>M and N + g = N + h for all M ^ N e A. In particular 
M + /i > M for all M G 2dft and so /i ^ 0. Next consider N e A^^g. If N e A^, then 
h — geN. Thus either heN or there exists M e Aj, ^ Ag such that M 1э iV, but in 
the latter case h — geN, SL contradiction. If heN, then Ne Ag and N + g < N. 
Thus iV + /ï — g = iV — g > i V for all iVG A^^g and hence h ^ g. 

Now consider ce G such that с ^ g, с ^ 0 and с + h, and Ne A^ h- If ^ ^ ^ A » 
then N + h = N + g and hence N + N-^h-c = N + g-c<N. Thus N + 
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•}- с — h > N.lf N ф A}^, then either heN or there exists M G Af^ such that N с M, 
If /i G N, then N + h-c = N-c<N2ind hence N + с ~ h > N, lî N a M e 
G Aff^ Ag, then h ~ geN. Since /i — c = / i ~ g + g ~ c , we have N + h — с = 
= N + g ~ с < N and hence N + с — h > N. Therefore с ^ /i and hence h = 
= g V 0. 

Conversely suppose that /i = g v 0. Let N e Af^, If geiV, then /г = g v OEJV. 
Thus if iV ̂  J^, then there exists M e Ag such that JV c= M. If M + g > M, then 

M<M + g = M + gvM = M-\-h^M. 

If M + g < M, then by Proposition 3.3, N + g < N and hence iV = JV + g v i V = 
= N + h which is impossible. Therefore N e Ag and hence J;, ^ J^. 

Now consider M e Ag and M ^ iV e zl. If M + g < M, then by Proposition 3.3 
and the fact that R{M) is totally ordered, N + g < N and hence 

iV = iV + g v i V = iV + g v O = N + /ï. 

If M -f g > M, then as above N + g > N and hence 

iV + g = iV + g v i V = iV + g v O = iV + / i . 

Therefore (l) , (2) and (3) are satisfied. 

Proposition 3.10. / / A is a plenary subset of Г^ and a,beG^, then a л b = 0 if, 
and only if A^ n Ajj = • and A^ u J^ is trivially ordered. If a A b = 0, then 
A^Kj Аъ = A^^b= ^a~b'Thusfor any geG 

^\G\ = ^g = ^9- ^ ^9- and Ag. n ^^- = П . 

Proof. Suppose that a л Ь = 0. if M ^ AT, where M eA^ and N e Aj^, then 
M + a and M + b exceed M in the totally ordered set R{M). Thus 

Therefore A^ r\ Aj, = \ZÏ and A^u Aj, is trivially ordered. Now consider M G ^Д+^. 
If a, Ь 6 G \ M, then by Theorem 3.2, a A b > 0 which is a contradiction. Thus 
a G M or Ь G M and hence M E Аь or M e A^. If N e A^, then by Theorem 3.2 be N 
and hence N G zla+f,. Therefore А^+ь = A^KJ A^ and similarly .d^_ ,̂ = zl̂  u J^. 

Conversely suppose that J^ n J ,̂ = П and zĴ  u J ,̂ is trivially ordered, and let 
с = a A b and consider N e A. If N ^ M e A^, then bGiV. For otherwise there 
exists a value of Ь in zl that exceeds N and hence by (6) of Theorem 3.2 is comparable 
with M. Thus N-{-c=N + aAN + b = N-{-aAN = N. Jf N is not contained 
in any element of A^u Af,, then both a and b must belong to N and hence ce N. 
Therefore с e f]N = 0 (N e A). The remainder of the proposition follows from the 
fact that the values of g and |g| coincide in Г^ and that g"̂  л — g~ = 0. 

Proposition 3.11. / / A is a plenary subset of Г^, and if g e G has only a finite 
number of values A^,..., A„ in A, then these are the only values of g in Fi, 
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Proof. Since the values of g and \g\ coincide we may assume that g ^ 0. If n = 0, 
then g = 0 and hence g has no values in A or in Г^. Suppose that the proposition is 
true for all m < n, where n ^ 1, and suppose (by way of contradiction) that there 
exists a value AQ of g in Г^ such that AQ Ф Affor i = 1, ..., n.lfO < xe C{g) and A 
and В are values of x in Г^, then A n C(g) and В n C{g) are distinct values of x 
in ri(C(g)) (see the proof of Theorem 3.5). It follows that {M n C{g) :МеГ^ 
and M is a value of some 0 < xe C(g)} is a plenary subset of ri(C(g)). Hence, without 
loss of generahty, we may assume that G = C{g), In particular, AQ, ..., A„ are 
maximal convex /-subgroups of G and if Ae A, then A Я: Ai for some i = 1,..., n. 

For each Ï =i 0,..., n there exists a non-unit aie G \ Л .̂ For otherwise Ai 3 MQ 
and G — lex MQ, where MQ is the convex /-subgroup of G that is generated by the 
non-units (see Proposition 3.7). Thus AJMQ is the maximal convex subgroup of the 
o-group G/MQ, hence At is normal in G and G = lex Ai, But then by Theorem 3.5, 
Ai is the unique value of g in Г^ which is impossible. For each i = 0, ..., n pick 
a non-unit aie G \ Ai in such a way that for each j = 0,..., n the elements in 
Aj + ao, Лу + a^, ...,Aj + a„ that are different from Aj are distinct. Since if 
üi^Ap Aj -\- üi < AJ + lui and 2а̂  is a non-unit, this is always possible. Next 
pick a subset b^, ..., bĵ  of the ai such that Ь = Ь̂  v ... v Ъ^^ф Aj fox j = ^, ,..,n 
and such that for each i — 1, ..., /c there exists a j such that b̂  v ... v b^^i v 
V bi^i V ... V b^eAj, If/c = 1, then there exist strictly positive elements x and у 
in G such that x л j ; = 0 and хф Ai for i = 0,..., n, but then by part (4) of Theorem 
3.2, yeAi for i = 0,..., n. In particular, A^,.-, ^л ^re the only values of x — у 
in A, and Ai -{- x — у > Ai for / = 1,..., n. Thus x > y, which is a contradiction. 
Therefore /c > 1, and by a permutation of the subscripts we may assume that AQ -h 
+ bj^ < AQ + bi for some i = 1,..., /c — 1. 

Let с = {bi V ... V bfc_i) •- bfc. If сбЛу, then Л^ + b̂  = ^ i + ^i v ... v 
V b,t-i = ^j + ^t for some 1 ^ Г ^ /c — 1. If Ь̂t ^ ^ j , then this is impossible by 
our choice of the â , and if bĵ  e Aj, then it follows that b e Aj which is also impossible. 
Thus ce G \ Aj for j = 0,..., и and hence Л^, ..., Л,, are the only values of с 
in J. bi V ... V bfc_i e Aj for some j = 1,..., n and so Л^ -f с < Лу and Ло -h 
H- с > AQ. Thus by proposition 3.9 or 3.10, с v 0 has less than n values in A, and 
hence by induction these are the only values of с v 0 in Г^, but AQ is also a value 
of с V 0 in Г^, a contradiction. 

For each element g in G with only a finite number of values we have the following 
'local structure" theorem for G. 

Theorem 3.7. Suppose that A is a plenary subset of Г^ and that ge G has only 
a finite number of values M^,..., M„ in A. Then these are the only values of g in Г^ 
and g has a unique representation g = gi + •.. + g„ = gi v ... v g„, where Mi 
is the only value of gi in Г^ for i = 1,. •., n. Moreover 

c(g) = c(gO©<^fe)e...ec(g„), 
C(gi) = lex (Mi о C{g^) and С(вд1{М, n C{g^)) <R (i = 1,..., n) . 
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Proof. By Proposition 3.11, M j , ..., M„ are the only values of g in Г^ and by 
Proposition 3.10 we may assume that g > 0. For each / = 1, . . . , n let Ni = М^гл 
n C{g) and let Ni = ONj (all./ ф i). Let N --= f)Ni (all i). By Theorem 3.5 the N,-
are the distinct maximal convex /-subgroups of C{g). 

(I) Ni Ф Ni for i = 1, . . . , n. 
For if we pick an element 0 < r̂  6 M̂ - \ M^ for each i = 2, ..., n, then by (3) of 
Theorem 3.2, r = /\ri e Mi \ M^. Thus r л g G M ^ n C(g) = ÎVi and since r and g 
do not belong to M^, r A g^ M^ ^ M^ n C(g) = N^. 

(II) iVf is an /-ideal of C{g\ C{g)IN = Ni/N ® Ni/N and C{g)lNi ^ R {i = 
= 1, ..., n). Any /-automorphism of C(g) must permute the Ni and hence map N 
onto itself. Thus N is an /-ideal of C{g), and since Л̂^ ф Ni and iV̂  is maximal, C{g) 
is generated by AT,- and Ni, and hence C(g)/iV = Ni/N + Ni/N. If AT < XeNi/N 
and AT < Уе iV /̂iV, then X A Y = {N + X) A {N + y) = N -{• X A y = N, There­
fore, C(g) = Ni/N © iVf/iV. In particular, Ni/N is normal in C{g)/N and so A/̂^ is an 
/-ideal of C(g), Finally, since Ni is a maximal convex /-subgroup of C{g), it is regular. 
Thus C{g)/Ni is an o-group with no convex subgroups, and hence C{g)/Ni -< R, 

(III) For each f = 1, . . . , w there exists an element 0 < ĝ  e iV̂  whose only 

value in C{g) is Ni, and A/̂ . -f g. = AT̂  + g . 

Since C{g)/Ni < R and Я^ $ A/̂ ,̂ it is clear that there exists 0 < hi e Ni such that 
Ni + hi > Ni + g. For each / Ф 1 pick such an hi and let /i = /z2 v ... v /г„. 
Then heNi because all the /î  do, and Ni + g — h is negative for all i Ф 1. Hence 
g — h^Ni for all /, and thus the values oï g — h in C{g) are ATj,..., iV„. Thus by 
Proposition 3.10 the values of g' = {g — h)^ = (g — h) v 0 in C{g) are some of 
the Ni. But since for i ф 1, N. + g' = AT,- + g - /i v AT̂  = Ni, it follows that N^ 
is the only value of g' in C(g), and Ni + g' = Ni + g — hvNi=Ni-hgv 
V Ni == Ni + g. 

(IV) Mf is the only value of ĝ  in Г^ and Mj + gi = M^ + g (i = 1 , . . . , n). 
C(gi) £ C(g) £ G. By Theorem 3.5 there is a 1 — 1 correspondence between the 
values of ĝ  in C{g) and the maximal convex /-subgroups of C(g^ and also a 1 — 1 
correspondence between the maximal convex /-subgroups of C{g^) and the values 
of gi in Г I. Thus since Ni is the only value of g,- in C{g), Mi is the only value of ĝ -
in Fl. Also Ni ^ Mi and A/j + ĝ  = A/̂  + g, and hence M^ + gi = Mj + g. 

As an immediate consequence of Theorem 3.6 we have 

(V) C{g,) = lex (M, n C(g,)) and C(g,)/(M, n C(g,)) < Я (i = 1, . . . , /i). 

By Proposition 3.10, gf л gj = 0 for i Ф 7, and hence by Proposition 3.4, C{g^ n 
n C{gj) = 0. Thus it follows that C{g) ^ I ® C{g,); see for example [4] Theorem 2.1. 

2(gi + ... + g„) + M, = 2g, + Mi > gi + Mi (i = 1, ..., n) . 

It is easy to verify that the M^ are the only values of 2(gi + ... + g„) — g. Thus 
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0 < g < 2(gi + ... + g„)el @ ^{Si) which is convex, and hence g belongs to 
1 e C{g^. Therefore C{g) = I ® C{g^) and in particular, g = gi + ... + ^„, 
where C(g,) = C{gi) for i = 1, ..., n. 

Corollary. If gG G has only a finite number of values, then each of these values is 
special. 

In order to prove the converse of this result we need the following lemma. 

Lemma 3.1. For convex l-subgroups M^, ..., M^ of G let G(Mi, ..., М,̂ ) = 
= {gG G : each value of g is a subgroup of one of the M j u {0}, 

^(Mi,...,M;t) = {iVeTi : iV$ Mi /or i = 1, . . .Д} . 

Then G[M^,..., Mf,) is a convex l-subgroup of G that contains each of the G(Mi) 
and G{M^,..., M J,) = C\N {N G Ô{M^, ..., М^)). Moreover, MGT^ is special if and 
only ifG{M) $ M. 

Proof. Let X = G{Mi, ..., Mj,) and У = ô{M^, ..., М )̂ and consider gGX and 
N GY,I{ gфN, then there exists a value Ô of g such that Q^ N and hence Q ф M^ 
for all /, which contradicts the fact that gGX. Conversely consider g G f)N (NGY) 
and let ß be a value of g. If б Ф Mi for all i, then Q G Fand hence gG Q,a, contradic­
tion. Therefore X = ON {N G Y). 

If M G ГI is special and g is an element in G whose only value is M, then g G G(M) \ 
\ M, and conversely if g G G{M) \ M, then M is the only value of g, and hence M 
is special. 

Theorem 3.8. For 0 ф ge G the following are equivalent. 
(a) g has only a finite number of values in Г^. 
(b) Each value of g is special. 
Proof. Since the values of g coincide with the values of |g| we may assume that 

g > 0. We have already shown that (a) impHes (b). Suppose (by way of contradiction) 
that (b) is satisfied but not (a). Let A = {M^ : CTGI} Ы the infinite set of values of g 
each of which is special. Let G* be the subgroup of G that is generated by all the G(M^). 
If g G G*, then g = gl + ... + g„, where all the values of ĝ  are contained in M„. 
(i = 1,..., n). Henôe by Lemma 3.1 if Q is a value of g, then Q e м„^ for some i = 
= 1,..., n, but this means that the set of values of g is finite, a contradiction. There­
fore g Ф G*. Now by Xemma 3.1 the G{M^) are convex /-subgroups of G and hence 
by Proposition 3.2, G* is a convex Z-subgroup of G. Thus there exists a maximal 
convex /-sugroup M of G such that gф M ^ G*. Clearly M G A and hence M is 
special. Now let h be an element in G whose only value is M. Then h G G(M) e G* ^ 
Я M, which is impossible. Therefore (b) implies (a). 

Corollary. / / Fl contains only a finite number of roots, then each M in Г^ is 
special. 
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Proof. In this case each trivially ordered subset of Г^ is necessarily finite. Thus 
each element of G has at most a finite number of values. 

Theorem 3.9. For an l-group G the following are equivalent. 
(1) Fl freely generates F. 
(2) F satisfies the generalized distributive law. 
(3) ß V (Л^ , ) = A{B V A,) for all A„ ВеГ,{аЕ l). 
(4) Each element in F^ is special. 
(5) Each element in G has at most a finite number of values in F^. 
(6) Each element in G has a unique representation as the sum of a finite number 

of pairwise disjoint special elements. 

Proof. (1), (2) and (3) are equivalent by Theorem 3.3, and (4) and (5) are equivalent 
by Theorem 3.8. The equivalence of (5) and (6) is an immediate consequence of 
Theorem 3.7 and Proposition 3.10. Suppose that M eF^ is not special, and consider 
g e f)N {N E Ô{M)). If Ô is a value of g, then by Lemma 3.1, ß ç M, If ß = M, 
then M is the only value of g and hence M is special, a contradiction. Thus g с M 
and geM. Let A^ = Ô{M) and A2 = ô{M) u {M}. Then J^ Ф A2 and both are 
dual ideals of Г^. Moreover 

NeAi NGAI 

and hence (l) is false. Therefore (l) implies (4). 
Conversely suppose that each element in F^ is special and assume (by way of 

contradiction) that (l) is false. Thus without loss of generality C\N„ ^ M, where 
^1 = {NfT : CTG Z} is a dual ideal of Г1 and M eF^ \ A^.ln particular, if iV^e A^, 
then N^ ^ M. Let A2 = à{M). Then A^ ^ A2, ^2 is a dual ideal of Г^ and by 
Lemma 3.1 

Ci N = G{M) ^ 0 N ^ M . 
Ned 2 NeAI 

Now pick an element ae G whose only value is M. Then a e G(M) \ M, a contra­
diction. Thus (4) impHes (l) and the theorem is proven. 

Note that if F^ contains only a finite number of roots, then (5) is clearly satisfied. 
Thus the last part of Theorem 3.4 is a corollary of Theorem 3.9. 

4. The lattice of all /-ideals of an abelian Z-group. Let G be an abelian /-group. 
If Fl = Fi(G) contains a minimal plenary subset, then that subset is unique ([5] 
Theorem 5.2). By combining Theorem 5.4 in [5] and the Theorem in [6] we have 
that Fl contains a minimal plenary subset if and only if G is completely distributive. 
Thus whether or not G is completely distributive depends only on F^. Clearly any 
plenary subset of Г^ must contain the special elements of Г^. Thus if the set S of 
special elements of Г^ is plenary, then S is the unique minimal plenary subset of T j . 

Let Л be a root system and for each Я in Л let Я^ = ^- Let V = V(Ä, Яд) be the 
following subset of the large direct sum Я of the R^. An element v = (..., v ,̂ ...) of Я 
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belongs to V if and only if S»; = {A в Л : УЯ Ф 0} contains no infinite ascending 
sequences. For each v in F let 

Л*̂  = {Я G Л : 1̂я Ф 0 and t;„ = 0 for all a > Я} . 

The 1̂я with Xe A"" are the maximal components of v. We define v in F to be positive 
if each maximal component ŷ  of v is positive in R;^, It is shown in [5] (Theorems 2.1 
and 2.2) that Fis an abelian /-group, and the main embedding theorem in [5] asserts 
that every abelian /-group can be embedded in an /-group of the form F. 

We shall denote the small direct sum of the Яд by Z = l{A, Rx). As usual, let us 
define !"'• = InV^, then Г is a subgroup and a sublattice of F. For each Я in Л let 

V;, = {VEV:V^ = 0 for all a ^ Я} . 

Clearly each F^ is an /-ideal of F, and it is shown in [5] that {F^ : Я e Л} is the minimal 
plenary subset of r i ( F ) and that each F^ is special (Theorem 6.1). 

Lemma 4.1. If I ^ G ^ V, where G is a subgroup and a sublattice of F, then 
A — [G n V^: Xe A) is the minimal plenary subset of Г^ = rJ^G), every element 
of which is special in Г^ For each ge G there is a one to one correspondence between 
the maximal components of g and its values in A. Moreover, if g has only a finite 
number of maximal components, the the corresponding values in A are the only 
values of g. 

Proof. Consider 0 Ф g G G and let g„ be a maximal component of g. Let h be the 
element in G with h^ = |g^| and h;^ = 0 for all other Я in Л. Since G is a sublattice 
of Fit follows that 

G n F^ = {jc G G : x / = 0 for all a ^ a} 

is an /-ideal of G. Let M be an /-ideal of G that properly contains G n F^, and consider 
0 < xE M \ (G n F J . Then x must have a maximal component Xp > 0, where 
ß ^ (T, and hence there exists a positive integer n such that 0 < h < nxE M. 
Therefore hE M and since g — h or g + h belongs to G n V„ ^ M, gE M. In 
particular, G n F^ is a value of g. If ICE G \ {G n V^), then к has a maximal com­
ponent k^ with (X ^ a, and hence G n F^ is a value of k. Thus J is a plenary subset 
of Ti and since G n F^ is the only value of h in A, A is the minimal plenary subset 
of F j . If G n F^ is a value of g G G, then clearly g^ Ф 0, and if g^ Ф 0 for some ß > oc, 
then there exists a maximal component gy of g with y ^ ß > a. Thus G n F̂  is 
a value of g and G n Vy properly contains G о F^ which is impossible. Therefore 
if G n Fa is a value of g, then ĝ  is a maximal component of g, and we have a 1 — 1 
correspondence between the maximal components of g and its values in A. The last 
statement in the lemma follows at once from Proposition 3.11, and also we have that 
every element in zl is special in Tj . 
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Theorem 4.1. If I ^ G ^ V. where G is a subgroup and a sublattice of V, then 
the following are equivalent. 

( l) Each g in G has at most a finite number of maximal components. 
{2)r,{G)={GnV,:X€A}. 

(3) ri{G) freely generates r{G). 
(4) Each g in G has a unique representation as a finite sum of pairwise disjoint 

elements each of which has exactly one maximal component. 

Proof. Let A = {G nV^ :XeÄ}, Г^ = r^{G) and Г = r{G). By Lemma 4.1 
and (l), ГI ^ A, hence (1) implies (2). If Г^ = A, then by Lemma 4.1, each element 
in Fl is special and hence by Theorem 3.9, Г^ freely generates Г. Suppose that Г^ 
freely generates Г. Then by Theorem 3.9 each element in Г^ is special and hence Г^ 
contains no proper plenary subsets. Therefore Г^ = A. Also by Theorem 3.9 each 
0 Ф g e G has at most a finite number of values in Г^ = A, and hence by Lemma 4.1, 
each ge G has at most a finite number of maximal components. Therefore (l), (2) 
and (3) are equivalent. The equivalence of (1) and (4) follows at once from Theorem 
3.9 and Lemma 4,1. 

Corollary I. r^{l) = [I nV;,:XeÄ} and Г^{1) freely generates Г{1). Thus 
there exists a lattice isomorphism between Г{1) and the lattice A' of the dual ideals 
of A, where the l-idealofl corresponding to К e A! is 

{vel :v^ = 0 for all аеЯ '} . 

Moreover СеГ{1) is regular (prime) [minimal prime^ if and only if the correspond­
ing dual ideal is principal (a chain) [a root]. 

An element g in an /-group G is called basic if g > 0 and C{g) is an o-group. 
A subset 5 of G is called a basis if S is a maximal set of disjoint elements and each s 
in S is basic. 

Corollary IL For V = V[A, R;) the following are equivalent. 
(a) A contains only a finite number of roots. 
(b) F^{V) freely generates F{V). 
{O)F,{V)={V,:XGA}. 
(d) V has a finite basis. 
Proof. The equivalence of (a), (b) and (c) follows at once from Theorem 4.1 and 

the fact that a root system that contains an infinite number of roots must contain an 
infinite trivially ordered subset. By Theorem 5.11 in [5], V has a finite basis if and 
only if r i ( F ) contains only a finite number of roots. Thus it follows that (d) and (a) 
are equivalent. 

Theorem 4.2. Let L be a lattice that is freely generated by its set A. of meet 
irreducible elements. If A is a root system, then Lis l-isomorphic to the lattice F[l) 
of all I'ideals of the abelian l-group I = l{A, R^ and under this isomorphism A 
corresponds to Fi{l). 

121 



Proof. By Corollary I of Theorem 4.1, r^{i:) = {I пУ^^'ЛеЛ} and Г^{1) 
freely generates Г(Г). But clearly {In V^ : ke A] and A are o-isomorphic. Thus 
since ri{l) freely generates Г{1) and A freely generates L, there exists an /-isomor­
phism of L onto r{l). 

Corollary. Suppose that Lis a lattice that is generated by its set S of meet ir­
reducible elements, and suppose that S is a root system that contains only a finite 
number of roots. Then L is (l-isomorphic to) a lattice of all convex l-subgroups of 
an l-group if and only if S freely generates L. If in addition, each root of S contains 
a least element, then Lis a lattice of convex l-subgroups of an l-group if and only 
if Lis distributive. 

Proof. If S freely generates L, then by Theorem 4.2, Lis /-isomorphic to r{G), 
where G is an abehan /-group. Conversely suppose that n is an /-isomorphism of L 
onto r{H) for some /-group H. Then ГДЯ) contains only a finite number of roots 
and hence by Theorem 3.4, ri{H) freely generates Г(Н) and hence S freely generates L. 
If Lis distributive and each root in S contains a least element, then by the Corollary 
to Theorem 2.3, S freely generates Land hence, as above Lis /-isomorphic to r(G) 
for some abehan /-group G. 

Note that the lattice in Example 2.1 is not /-isomorphic to the lattice of all convex 
/-subgroups of an /-group. 

Theorem 4.3. A finite distributive lattice L is l-isomorphic to the lattice of all 
convex l-subgroups of an l-group if and only if the set A of proper meet irreducible 
elements of L is a root system. If this is the case, then Lis freely generated by A. 

Proof. By the corollary to Theorem 2.1, Lis freely generated by A. If Л is a root 
system, then by Theorem 4.2, L is /-isomorphic to the lattice of all /-ideals of some 
abehan /-group. Conversely if L is /-isomorphic to the lattice Г{Н) of all convex 
/-subgroups of some /-group H, then A is /-isomorphic to the set of meet irreducible 
elements of Г(Я) which by Theorem 3.3 is a root system. 
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Р е з ю м е 

С Т Р У К Т У Р А , С О С Т О Я Щ А Я И З ВСЕХ В Ы П У К Л Ы Х / - П О Д Г Р У П П 
С Т Р У К Т У Р Н О У П О Р Я Д О Ч Е Н Н О Й Г Р У П П Ы 

ПОЛЬ КОНРАД (Paul Conrad), Нью Орлеане 

Большая часть известной теории строения и представлений для структурно 
упорядоченной группы („/-группы") G зависит от строения структуры Г всех 
выпуклых /-подгрупп из G. В настоящей работе исследуется строение Г. Пока­
зано, что Г порождается ее множеством Г^ неприводимых по пересечению 
элементов и что Г^ является корневой системой. Таким образом, имеется 
естественный изоморфизм между Г и структурой свободно порождаемой 
множеством Г^. Мы показываем, что Гу свободно порождает Г (и поэтому Г 
однозначно определяется Г^) тогда и только тогда, если каждый элемент g 
из G имеет не более, чем конечное число выпуклых /-подгрупп М, являющихся 
максимальными по отношению к „не содержанию" д. Кроме того, Г^ свободно 
но порождает Г тогда и только тогда, если Г^ удовлетворяет распределитель­
ному закону 

В V (АЛ,) ^A{Bv А^),А,,ВеГ, и (т е Г. 

Если Fl свободно порождает Г, то мы получаем достаточно точную теорему 
о локальном строении G. 

Каждая структура, свободно порождаемая ее множеством Л неприводимых 
по пересечению элементов, является структурой всех выпуклых /-подгрупп 
некоторой /-группы тогда и только тогда, если Л есть корневая система. В част­
ности, конечная дистрибутивная структура является структурой всех выпуклых 
/-подгрупп некоторой /-группы тогда и только тогда, если ее множество Л не­
приводимых по пересечению элементов является корневой системой. Таким 
образом ясно, что подмножество Г^ из Г весьма важно, и поэтому мы даем 
восемь эквивалентных характеризаций элементов из Г^. 
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