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ESTIMATES AND ITERATION PROCEDURES FOR PROPER VALUES
OF ALMOST DECOMPOSABLE MATRICES

MirostAv FIEDLER and VLASTIMIL PTAK, Praha

(Received October 11, 1963)

Introduction. In the authors’ paper [1] the following problem is considered: to
estimate the spectrum of a matrix of the type

(Al 1> A12>
A21’ A22
where at least one of the matrices A;,, 45, is “small”, in terms of the spectra of 4,,
and A,,. If the dimension of 4, is 1 and the distance between 4,; and the spectrum
of A,, is sufficiently large, an estimate has been obtained which contains as special
cases the results of GERSHGORIN, OSTROWSKI, BRAUER and others.

In the present paper we improve further the estimate of [1] and we describe three
iteration procedures which converge to the proper value near A,,. The estimates for
the initial value in these procedures yield the generalizations mentioned. The results

are formulated in one theorem the proof of which forms the contents of the present
remark.

Definitions and notation. Let Y be a finite-dimensional complex vector space. The
elements of Y wiil be considered as row-vectors x = (xl, cees x,,) so that the column-
vector with the same coordinates will be denoted by x’. The column vectors will be
considered as elements of the adjoint space Y’ so that the scalar product of an x€ Y
and a y' €Y’ is the same as the ordinary matrix product xy’ = ) x;y;. Let g be
a norm on the space Y. The adjoint norm g’ on Y’ is defined in the usual manner as

g'(y) = sup |yy’| for g(y) =
Since we are dealing with a fixed coordinate system in Y, we shall not distinguish
between a matrix and the linear operator defined by it. The operator norm cor-
responding to g is defined by the formula

g(B) = sup g(yB) for g(y)=1.
We shall also need the function ¢ defined by

g(B) = inf g(yB) for g(y)=1.
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Note that g(B) = 0 if B is singular and §(B) = (¢(B™"))™! if B™" exists. We shall
frequently use the inequality

g(A — B) z g(4) — g(B)
the proof of which is obvious.

If A is a matrix and ¢ a complex number, we shall write simply 4 — ¢ for 4 — tE
where E is the unit matrix. In statements about the spectrum of a matrix the following
abbreviation will be useful: if z, is a complex number and ¢ > 0 then K(z,; @) will
be the disk of all complex numbers z such that lz - z0| =< o. The open disk with the
same center and radius is the set of all z such that |z — zo| < ¢ and will be denoted
by K%zo;0). Note that the inclusion K(zy;0,) @ K(z,;0,) is equivalent with
|z1 — z,] € 01 — 02. If |21 — 25| < @y — 02, the disk K(z; @,) is contained in the
interior of K(z,; 0,). ,

Let M be the set of all realvalued lebesgue measurable functions defined on the
domain

Q={&,8&,8;¢620,86,20,¢4 20 and \/E1+\/Ez <\/23}-

If x = (&, &, &) and y = (14, 112, 13) both belong to this domain, we shall write
x X yif & €0y, & < 5, and &3 = ;. Let M be the subset of M consisting of all
f€ M such that x, < x, implies f(x;) < f(x,). The set M~ is defined as —M ™.
To simplify some expressions which will occur in the main text, let us introduce
some abbreviations.
For x = (&, &, &3), let
Sl(x) ==&+ 6+,
Sz(x) =¢ — &+ &,
Si(x) ==& - &+ &,
W(x) = (ff + fg + ég —28¢&, —28¢& - 25253)% ,

_ Si{x) = W(x) i =
Lix) = S{x) + W(x)_’ 123,
a5g
%) = s
RP(x) = W(x) La(x) (Ly(x))* k=0,1,2,...,

1= Ly(x) (L)}
D(x) = W(x —I—‘Z—M
RP(x) = W(x) 1 — Ly(x) (Ly(x))*’

R = 2 5409 (@)
R = 4S:() + W).

594



(1,1) The functions S;, W, L;, Q, R\?, R all belong to M. Moreover, for x € Q we
have W(x) > 0, R(x) > R{(x), L{x) < 1 and lim R{"(x) = 0.
k

Proof. It suffices to prove the statement about W. This, however, follows
immediately from the relation

éi + é% + C% - 26152 - 25153 - 2(5253 = (\/23 - \/zl - \/Ez) .
(W& = V& + VB VE + V& — V& V& + V& + V&) > 0-

1,2) If xe Q, put
N ¢1&s )
¢ = - ’ _““—__’ f - é
(X) <§3 - 62 63 - 62 ’ :

where &, &,, &5 are the coordinates of x. The mapping ® is a mapping of Q into Q
and preserves the order <.

Further, W(&(x)) = W(x), S;(®(x)) = Ss(x), Ly(®(x)) = Ls(x), R(P(x)) =
= RP(x) for k = 1,2, ....

Proof. Denote for a moment by a,, 05, 65 the coordinates of &(x). Since x € Q,
&3 > &, so that g4, g,, 05 exist and are nonnegative. Further,

\/33=\/€3—§2>J TLENIY 1< N PR S
. 53’—62 63_62

since

53—522(\/23—\/Ez)(\/zs+\/Ez)>\/zl(\/gs+\/Ez)=\/?fs+\/5—15—2-

Thus, &(x) € Q. Since

&i& _ &

o, =& + , 03 = >
e —g &y — &

03 =18 — &5,

@ preserves the order <.

Further, it is easily seen that S,(6y, 62, 03) = S3(&y, &3, &3). It follows that

W(O-l’ 03, 0'3) = \/S%(Ul’ 03, Gs) — 40,05 = \/Sg(éu &2 ‘:3) — 48,8, =
= W(fb éz, 63) .

The rest is obvious.

1,3) Let xe @, x = (¢, 52,‘53). Suppose that the numbers X,, X4, ..., X, and

the nonnegative numbers Y,, Yy, ..., Y satisfy the inequalities
(1) Xoz2&, Y=¢,
Y

X;z2X;o1 =Y, V=244

J J

, =02, ..,k
X;-1X;
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Then
X; =z Xx), ¥, £ Y{Ox) for j=0,1,2,...,k,

where

XOx) = (5,(x) + W) Lo Lol L)

1 — Ly(x) (Ll(x))j ’

Ox) = 1 x Ly(x) (1 — Ly(x))* XV =
Yj(x) = 3 (S:(x) + W(x)) 0= L) L) = LOLE) (La(x))

L L9 (L (Y
OO B T S mw) (- L) G

form the (unique) solution of the system (1) with inequalities replaced by equalities.

Proof. Let us show first that the numbers X9 and Y; satisfy the system of equations
(1). Indeed. '

1 - L,L
Xo = 5(S; + W)—l-'—z—l =35, + S,) = &
- 2
and
Ly(1 — Ly)?
YO =4S, +w 2 L = .
0 = (S )(1 —L)(1 — LL,) '
Further
_ j+i
X9 =Xs, + W)l___ﬁil:i___=
1 — L,I}
_ j 7 \2gi-1
=S + W)( Lo b Ll ._IL‘) b >=X§-’_1 - Y,
‘ 1 — LI (1 = L,ETY (1 = LyI)
Ly(1 — L,)? ;
Yo =4S, + W 2L LU J =
g O )(1 — L,I)(1 — LB
_ (ST = W) (S + W) Ly(1 — L)’ ot

Sy + W) 1 = Ll 1 — LI (1 — LI ) (1 = L)
1 — LI 1 - LI,

Y2
= &6, —I°L
2‘3 X(;._l X?

The proof of our lemma will be complete if we show that any solution X, Y; of the
system of inequalities satisfies

X;2X) and Y, Y]

This can be easily done by induction.
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(1,4) The following inclusions hold:

XVeM™, Y)eM* for j=0,1,2,...; Re M~; RPe M* for p=1,2,3 and
j=0,1,2,....

Proof. Let x, y€ Q and x X y. Clearly

Xo(x) =& zns = Xo(y) and YQ(x) = & < my = Y(y).
Suppose the monotonicity of both X9 and Y} has already been proved up to some k.
We have
Xiva(x) = Xi(x) — Yo%) 2 Xi0) - Y() = X4a()

by induction hypothesis.

In order to show Y, 4(x) < Y 1(»), let us prove first the inequality

N3 ¢
@ 2 s
Xi(y) ~ Xi(x)
Indeed,
k-1 k-1
X30) = ns = L Y0) < 15 ~ 3 ¥)(x)
j= i=
and

k-1
XU) = & - 2 10).
i=
Since n; =< &3, we have thus

&5 &

M < N3 _
X° = k—1 = k-1 0 .
k(y) Ny — ZOY.’() (x) 63 _ ZOYJO (x) Xk(x)

Jj= i=

\

Using the inequality (2) together with X7, (x) 2 X7,,(y), & < n, and ¥(x) <
< Y(y) it follows that

5253}’1‘0 (x) Eans Yl:) (x) < '72’1an ()’) - y° (y)
X,?(x) X,?+ 1(x) Xl?()’) XJ?+ 1(x) h Xl(c)()’) X1?+ 1()’) e

lIA

Yk0+ 1 (x) =

which completes the induction.
To show that R € M~ it is sufficient to observe that

R__si-w
0&, 2w
a_R____M<0’
o0&, 2w
R _ S+ W .
0&, 2w

597



Let us show now that R{> € M. Indeed,

R,(c3) = —;; (SSQ) (QZ""l —1)

and both
4¢,¢, 48,8,
S0 = —222 __ and = 5152
LT o MM T T —ay

are evidently members of M+,
To prove the monotonicity of the R{", we observe first that, for k = 0,1, 2, ...

Y(x) = R{(x) — R (%)
This can be easily verified.

Hence R{"(x) =k+J§CIYJ9(x) + RY, (x). Evidently the series ) Y{(x) is absolutely
convergent for x € Q and R{"(x) converges to zero for x € Q. It follows that R{"(x) =
= ikY}’(x). Since Y € M™ we have R{" e M* as well.

iz

The monotonicity of the R{? follows from the relation R{¥(x) = R{"(¥(x)) using
the inclusion R{"> € M* and the fact that @ is order preserving.
The starting point of the further investigations is the following simple observation

which we formulate as a lemma. .
(1,5) Let A be a matrix of the form
A = (a,ll’ a )5
a Aj;

the blocks being of dimensions 1 and n. Suppose that A is not a proper value of A,,.
Then
det(4 — 2) = (ay; — 2 — ay(Az, — A)7" a}) det (4, — 4)

so that A is a proper value of A if and only if
ayy — A= al(Azz - A)—l alz .

Proof. An immediate consequence of the relation

=2 (— (42, —lz)“ i (A i 1)“> i

ayy — 4 = ay(4,; — »~ta;, ay(Az; — H)71 )
0 , E

Now we are able to formulate the main result.
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(2,1) Theorem. Let A be a matrix of the form

a,., a
A = < Ill, ! )a
az, Az

the blocks being of dimensions 1 and n. Suppose that B = A,, — a,, is nonsingular
and that we have three numbers oy, ®,, a3 which satisfy the inequalities
(3) |a;B~'ay| < oy,
g(al) g'(a;)/ﬁ(B) S oy,
4(B) z

Suppose that the condition

(4) Jo + o, <o

is fulfilled. Let us denote by a the vector (ay, 5, a3) so that a € Q. Then the following
statements hold:

1° The open disk U* = K°%ay,; r), r = R(a) contains exactly one proper value
of A; this will be denoted by Xx.

2° The following three iteration procedures are meaningful and convergent to x:

(P1) Xo = Q11 Xgpy = g1 — ay(Ay; — %) "t ay, limx, = x;
a,B™! ' ‘.
(P2) Yo = Q115 Yk+1 = Q11 — ! —— > lim y, = x;
1+ al(Azz - J’k) ' B7'a)
(P3) B, =B, c,= Bg'a;,
Biy1 = By + cxay + a6y, Crer = —alcl’;Bk_+11C;u

limz, = x where z, = a;; — Y. acj.
y=0

Further, we have the following three sequences of inclusions

(5) U* 5 K(xo; r§”) 2 K(xy5 1) o ...,
U* 5 K(yo; 1) 2 K(yi; 1) > ...,
U* 2 K(zy; 1Y) o K(zp; 1) o ...,

) = R(")(a) the point x being the only point of intersection of each of these

where ri? =
sequences.

3° Suppose that we replace the estimates (3) by less favourable ones, which again
satisfy condition (4). More precisely, take another vector a’ € Q, a’ = a. Of course,
all three processes remain unchanged; the estimates (5) will be, however less

Sfavourable: the domain U* shrinks and all the radii rP increase.
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(2,2) Corollary. Let A be a matrix of the form

a a
i)
az, Az

the dimensions of the blocks being 1 and n. Suppose that B = A,, — a; is non-
singular. Let By, B, and y 'be real numbers such that

g(al) < By, g/(a’z) < B, gA(B) 27y>0.

Suppose that y* > 4BB,. Under these conditions the disk

K(au§ %(7 - \/)’2 - 4B1ﬂz))
contains exactly one proper value of A.

Proof. We intend to prove the theorem and the corollary simultaneously. The
proof will be divided into several sections.

1. Let us show first that the corollary is a consequence of statement 2° (P1) of the
theorem. To see that, let us estimate first the product a; B~ 'a}. We have

olar) g'(as) _ Bibs

a,B™1a; <
Bl = i) y

lIA

It follows that we may take

B1B,

oy =0, = —— and a3z =7y
Y

in the theorem and the three required inequalities are satisfied. The condition

Vo1 + 2z < Ja; becomes ZA/-B—;—BZ<\/§

which is, however, only another form of y2 > 48, ,. The assumptions of the theorem
are thus seen to be satisfied. According to 2° (P1) and (5) of the theorem the disk
K(ay,; rf)”) contains exactly one proper value of A. An easy computation yields

re) = %(V = v* = 4Bips) -
.. 2. Put
lalB"la'zl =, g(ay)g'(ar)/g(B) =e,, d(B)=c¢;.

Tt follows that the vector e = (&4, &,, &;) belongs to Q and e < a.

Further, we shall use the following abbreviation: If ¢ is a complex number, we
shall write h(t) for §(B — t). For h(t) > 0 let us introduce the function f(t) =
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= —ay(B — 7)™ a; so that | (0)] = &,. We shall need the following simple relation
for f

(6) f(t) = £(t2) = (t, — ;) ay(B — 1,)"1 (B — t;) ' a}.
To describe the process (P1), put u, = x, — a,, so that it reduces to
uo =0, wq = fluy).

Further, put p, = u;; — u; so that p, = u; = f(u O) = f(O). We have h(u,H,) —
=JB —u, —p) 2 4B — u,) — |p] whence

(7) h(“k+ 1) 2 h(uk) - lPkl .

We intend to show now that the process is meaningful. To see that, we shall prove
by induction the following statement:

h(u;) 2 h(u;-1) — le-xl (1=j=s4h),

Sk lel = le—1| h(ufj—ish(u) (1 <Jj=s k) s
h(w;) = [p;] >0 (0=j=sk).

Clearly h(uo) = h(0) = &5 > &, = |f(0)| = |po|- Assume now S, and let us prove
Sy+1- The inequality (7) shows that

h(uk+ 1) 2 h(uk) - lpk] >0
so that f(u;+,) is defined. We have by (6)
Pr+1 =f(“k+1) “f(“k) = _Pkax(B - uk+1)—1 (B - “k)—l a;.

whence
gla) g'(ar) _ | A
(it 1) h(w) ) e ) W

According to lemma (1,3) with X; = h(u;) and Y; = |p,|, we have
h(uyyq) — lPk+1l 2 Xpi4(e) — Yia(e)

and it is easy to verify that X2, ,(e) — Yis,(e) > 0. Hence Sy is proved. It follows
from (1,3) that

ka+ll = lpkl

1 — A+

®) ) 2 X4 =353+ W) T
0(p) = L0 1 O A3(1 — 29)° 0)*
|Pkl S Y() = 3(s1 + )(1 — 2239 (1 - 12(/1‘2)"“) (A"

where 19 = L{e), s} = S{e), w® = W(e).
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It follows from the second of the relations (8) that the series Z p;j converges
k_

absolutely; put x = a;; + Z p;. Since u, = Y p;, the sequence uk convergcs (its
Jj= Jj=0

limit is x — ay,). For the same reason, B — u, converges to the matrix 4,, — x.

Now, §(B — u) = h(u,) = X(s? + w°) > 0, so that the matrix 4,, — x is non-
singular. Since u, .y = f(u,)andlimu, = x — a,;, wehavex — a,; = f(x — a,;) =
= —ay(Az, — x)™! a} so that x is a proper value of 4 according to lemma (1,5).
The right hand side in the second relation (8) may be written as

0\k O\k+1
©) v (1 - ) = o -

- A 1 - A

where

AO( ).O)k
(1) (1] 1)
o =wl —=—"~-_ =R (e
y - (9 ©)-
Hence we have the estimate

(10) Sl <

Since x; = a;; + u;, we have x — x; = ij, whence by (10) |x, — x| < of"
, A~

Further, it follows from (9) that

ka - xk+1| = (uk - “k+1| = lPkl = Ql(c Q(l+)
so that K(x; 0f”) o K(xx+1; (%) The convergence of the first process is thus
established.
3. Let us show now that the open disk K°(a,y; 3(s3+ w°)) contains exactly one
proper value of 4, namely x. We show first that 4,, — z is nonsingular whenever
|z — ay4] < g(B). Indeed,

9(A22 = 2) = (B — (z — a11)) 2 4(B) — |z — ayy] -

It follows from lemma (1,5) that each proper value z of A in the open disk |z — ay| <

< ¢(B) fulfills z — a,; = f(z — a,,). Suppose now that z is a proper value of 4
in K%ayy;3(s3 + w°). We have |z — ayy| < 3(s + w%) = &5 — 3(s7 — w°) <¢; <
< §(B) so that z — a,; = f(z — ay,). It follows from (6) that

lz‘x|=|(z—au)‘(x—au)|=

=|fz —an) = f(x —ay)| S |z — 'h<z."i‘i?>i'<(f3au>'

We shall show now that
g(ay) g'(a3)

<1.
h(z — ay,) h(x — ay,)
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First of all, X — ay; = lim u, so that h(x — au) = lim h(u,) = 3(s? + w°). Further,
z€K%ayq; 3(s3 + w°)) whence |z — ay,| < 3(s3 + w°) and
h(z — ay;) 2 B(0) — |z — ayy| > h(0) — 3(s3 + w°) = 2(s7 — w°).
It follows that
g(ay) g'(a3) - &, h(0) _ &, &5 1
h(z — ayy) h(x — ayy) 35 + wO) 3(s) — W) 3(s5 + wO) i(s? — w°)

so that |z — x| has to be zero. It follows that x is the only proper value of 4 contained
in K°(ay,; 3(s9 + w°)). Since o = 3(s3 — w°) < 3(s3 + w°), we have

K(x0> (1)) < Ko(all’ 2(s2 +w ))

4. To see that x is a simple proper value of A let us compute the derivative of the
characteristic polynomial P(Z) at the point x. Since §(4,, — 4) = §(B — (A — ay4))=
> §(B) — |4 — ayy|, the matrix 4,, — A is nonsingular for |2 — ay,| < §(B). By
lemma (1,5) we have

P(2) = (f(2 = ay) = (2 = a11)) Q%) ,

where Q(4) = det (4,, — ) is different from zero in the whole domain |4 — a,,| <
< §(B). Since

’ . u - u
f (x - au) = hmf———( kﬂ) f( k) = lim == Pet1
k Upyy — Uk k Dy
we have according to a preceding estimate
[P < 8283 < E2%s =1 <1.

ol ) Bua) = G6T+ WO
1t follows that f '(x — ay 1) — 1 % 0 so that P'(x) =+ 0 and the proper value x is thus
seen to be simple.

5. Replace now the vector e by a. It follows from lemma (1,4) that r = R(a) <
< R(e) = (s + w°) and from (1,1) that R(a) > R$"(a). Hence U* = K%a, ;1) o
> K(ayy; r$P). To prove the inclusions K(x;; ") o K(xi+ 15 7i%y) it suffices to

shiow that

]x - xk+ll =r”-r.

This follows, however, from the fact that

|xk - xk+1| <o —ads = R(l)(e) Rl(¢1+)1(e)
= Y(e) £ Y(a) = R{(a) - R2u(a) = ¥ — r{2,

according to lemma (1,4). The statement 3° concerning the monotonicity of the radii
follows from lemma (1,4) as well.
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6. Let us turn now to the second process. For ¢ such that h(f) = §(B — 1) > o,
let
a,B™'a,
1+a(B—1t)""B'a)

m(t) =

Indeed, if h(f) > o,, we have
< 9(01 g (az)

TR

so that m(f) exists. Let us prove first an estimate for m(t). Clearly

a (B —1t)"' B!
|ay(B — 1)

oy < M _ % h(?) '
_9(a)gar) | . h)-a

(1) h(0) h(1)

Im(1)] =

An easy computation yields

(ayB™'ay) (ay(B — 1)) (B — t,)”" B™1a})
(1 + ay(B —t;) ' B 'a3)(1 + ay(B — t,)"' B"'a3)

m(ty) — m(ty) = (t, —

whence

(11) |m(t;) — m(tz)| <
<l -l /(1 h(t1)>} {[g(a,)g(azl)/;i(?g/h([z()zl) )] }

_ Itz l o0

(h(ty) — az) (h(t2) — “2)

To describe the process (P2), let us put v, = x{*> — a;, so that the process reduces
to vy = 0, vy = m(v,). Put g = 44y — Uy Since B — 4y = B — v — g4, We
have h(ve+1) = h(v)) — |- Put I, = h(v) — «,. We intend to show now that the
second process is meaningful. To see that, we shall prove by induction the following

statement Sy:

l Z - lqj ll (] = 1: 2’-~-, k)>
’ LI
Siq laj] = lq,--ll (=12..k,
li_4l;
—la;| >0 (J=0,1,....k).
Clearly
o
lo=h(0)—azga3—az>o?1:372 |90]
since

s — oy = (s — ) (o + /) > o
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Assume now that Sy, is fulfilled. We have I, > |g,| = 0 whence h(v,) > a,. It follows
that m(v,) = v, is defined. Since
Leyy = h(”k+1) - %y = h(”k + ‘Ik) -0y = h(vk) - "Ikl -0y =l — “Ik' >0,
m(v;. ) is also defined. We have by (11)
®xy0p

lqk+1l = lvk+2 - Uk+1! = Im(UkH) - m(Uk)l = qul .
Ly y

According to lemma (1,3) we have L4y — |ge+q]| > O so that Si,, is fulfilled. It
follows, again from lemma (1,3) and from lemma (1,2) that

l_liki-l
12 L =i(sy + —-—2——3—~,
(12) k—-2(3 w)l—/lzl’g
_ 2
al <505 +w ), A=
2

(1 = 2,2%) (1 — 2,457
2,25
(1 = 2,25 (1 = 2,257

= w(l — 13)

The second of the inequalities (12) shows that the series )’ g, is absolutely convergent
k=0
so that the sequence v, = g + q; + ... + g4 has a limit v. Since h(v) — a, =
= lim h(v,) — a; = 3(s3 + w) > 0, m(v) exists and fulfills the relation v = m(v).
Hence
o(l1 +a,(B —v)"* B 'ay) = a;B"'a}
so that
v —a;B7'ay = —a,[(B—v)"!' — B ']a;
and
v=—ay(B—-v)""a;.

It follows from lemma (1,5) that v + a, is a proper value of 4. Put

;‘2) —w 12;»,; _
1 — 2,435

so that the right hand side in the second inequality (12) may be written as r{(?) — (2 .
It follows that
K(ayy + 05 717) 2 K(agy + vprrs 1i2y) -

Besides, we know from the study of the process (P1) that
U* o K(ayy;rP) = K(ayy + vg; 1) .

This shows that v = x — a;; and concludes the proof of the statement about the
second process.
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7. Let us take up now the third process, If g, = 0, the process is trivially meaningful
since By = Bfork = 0,1,2,...and ¢; = 0fork = 1,2, 3, ..

.. Assume now a; =* 0.
Let us show by induction that, for k < 1,2, 3

"ot 1 S
(13) gle) € —— 3 g,
e g(al) 2k+1 q

(14) h =

Let us introduce the following abbreviation: w, = a,c;. First, let k = 1. Let us
note that

‘woi <oy, g(co) S —C 0y, 9(0601) Sa,
( 1)
hy = 4(B,) = 4(B) - g(c},a‘) - lwol 2 o3 — &y — 0y = §3.
Thus (14) is true for k = 1.
Since

and

g'(ch) = g'(—woBy ley) < —1%2 534

(13)is true for k = 1 as well.

Suppose now that (13) and (14) are satisfied for k. To prove (14) for k + 1, note
first that |o,| < g(a,) g’(cx) whence

hivr 2 hy — g/(cl/c) g(al) - la’kl = h — 29(“1) g’(cllc) =

LT P
= 2k—1 2k = 2k'
Further
, C 1 "o
olein) = 20D < L g0 ey =
k+1 iy
2k 1 2 1 1 1
< — s = §q ——
55 9(ar) ——; g(a )2 3 p2k+2 4 g(ay) 3 ok+2 9

and the induction is complete. The series Z w; is clearly absolutely convergent. For
) j=0

the remainder ' |o;| the following estimate may be obtained from (14)fork =2 1

j=k

@ o

N i-1 k-1 1 _ 83 k-1
2 éjz‘k?ilqz =4 531;‘2].“ o

I

J
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k-1
Let us recall that we have denoted a;; — Y, @; by z,. It remains to prove that
j=0

k-1 w
limz, = lim(ay; — Y, @) = a;; — Y w; = x.
k k Jj=0 j=0

This will be done by means of corollary (2,2) applied to the sequence of matrices A,

defined as follows
A0=A,Ak=( Zky, a, )
— W—1Ck—15 B + 2z,

All these matrices are similar transforms of A: it is easy to see that T, 4, T, ! = A4y,

with
T, = Lo .
¢ E

Let us now apply corollary (2,2) to the matrix 4,. Put ; = g(a,). It follows from
(13) that

1 ig— 2k-1
g(a‘) 2%

which will be denoted by . If y = 53/2*7*, we have by (14) §(B,) = 7. It is easy to
see that y> > 4B, so that corollary (2,2) may be applied. It follows that the disk

Bk = K(Zk§ ; Y — \/}’2 - 451ﬂ2))

contains exactly one proper value of A; and hence exactly one proper value of A.
The radius of D, is easily found to be equal

%s;;(l - J1=).

Let us consider further the disks

g(wk—lcllc—l) = g(‘h) (g,(cl’c—l))z =

Dy = K(z;5 1)

where 1> = (s3/2%) ¢**"' so that D, = D,, the center being the same. Let us show
now that D; < K(a,; R’) for some R’ which is smaller than the radius of U* so
that D; will be contained wholly in the interior of U*. To this end it will suffice to
show that

|a11 — (a1, ~ “’o)l SR -1

for some R’ < r. Let us show that R" = %sz will do. Indeed,

w2 2uy(sy — 20,) + WP
2s3 2s,

w7 a <o+

1
_ 2y, + w?  2uya, _ 5283 _ 2453

’ 3
= R’ — r(l ) .
255 53 2s3 S3
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Let us show further that D; > D, o .... The distance of the centers of D, and Dy+1
being |wy| it suffices to show that

lwk‘ = 2511 qZk_l (2 - qZk—Zk_‘) = rff') - r§c3+)1 .

o)
We are going to prove now that the point a;; — ) a,cj belongs to each D,. This
is an immediate consequence of the estimate j=0

Since D, = D, have the same center and the radii of D, converge to zero the point

o

a;; — Y, w; is the intersection of both sequences D, and D,. Since Ek c D, <
i=o

< D, = U¥*, we have B,‘ < U* for all k. Now U* contains exactly one proper value

of A4, and so does D,. It follows that x belongs to each D, so that x = a,, — S w;.
i=0

The proof is complete.
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Pe3omMme

OLIEHKU U UTEPAITMOHHBIE IMPOLECCHI JJII COBCTBEHHBIX
3HAUYEHUN IMOYTU PA3JIOXKUMBIX MATPULL

Mupocnas ®umiep 1 Bnactumun Ilrak (Miroslav Fiedler a Vlastimil Ptak), ITpara

HYCTI: JaHa KJICTOYHAsA MaTpuna

A= <axu a )
i’
ay, Az

¢ pasmepHocTsaMU KieTok 1 u n. Eciu XoTst GBI O{MH M3 BEKTOPOB d,, dj ,,Mai*,
MOXHO OXHJIATb, YTO MaTpuna A OymeT o0siaJaTh COOCTBEHHBIM 3HAYEHHEM, OJIM3-
KHM K d,,. [IpMBOAUTCS KPYT C UEHTPOM d,;, B KOTOPOM JIEXHT B TOYHOCTH OJHO
coGcTBeHHOE 3HaYeHHe MaTpuisl A. Paguyc xpyra 3aBHCHT OT OLEHOK /11 HOPM
BEKTODOB d; ¥ d’5 U MEPBI HEBBIPOKIEHHOCTH MATPHIH A,, — a,,. Tounas popmyu-
POBKa pe3yibTaTa COOEPXKUTCA B TEOPEME (2,1).
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