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YexocnoBankuii MaTemaTuvecknii xkypuana, 1. 14 (89) 1964, Ilpara

ON SOME PROBLEMS CONCERNING MULTIVALUED
CONVERGENCES

Joser NovAk, Praha
(Received May 7, 1963)

M. FrECHET [4] has axiomatically introduced the notion of convergence on a point
set L. Fréchet’s convergence is a (onevalued) map of the system of (not necessarily
all) sequences {x,} of points x, € L onto L fulfilling axioms (#,) and (£,). Some
authors ([2], [3], [6] and others) are interested in multivalued convergences. In this
paper some topological properties of multivalued convergences are investigated.

Each multivalued convergence space is a closure space fulfilling axioms (CO), (Cy)
and (C,). In section 1 a statement on successive closures of a given subset in a closure
space is proved (Theorem 1).

In section 2 the relation between multivalued convergences and multivalued
convergence topologies on the same point set is determined by means of the following
equivalence: two multivalued convergences are equivalent if they induce the same
closure topology (Theorem 5). In each class of equivalent multivalued convergences
there is a largest multivalued convergence (Theorems 2 and 4) which can be topolo-
gically characterized by means of neighbourhoods of points in a multivalued
convergence space (Theorems 3 and 4). In section 3 the operation a*) is defined in
such a way that it is possible to get from a given system of sequences fulfilling
axioms (&) and (%,) the smallest from the largest multivalued convergences contain-
ing the given system (Statement 1).

In section 3 some problems of M. Dolcher concerning certain multivalued conver-
gence spaces are solved (Statements 2, 3 and 4).

1.

A point set P and a map w of the system of all subsets of P into the same system
is called a closure space and denoted by (P, w) provided that the following axioms
are fulfilled:

(Co) wo =10

(C)) A=wA

(C;) w(4 U B) = wA U wB.
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If the axiom

(F) w(wd) = wA
is true, the closure space P is called a topological space.

The map w is called the closure topology and if w has property (F), we say that it is
a topology.') The set wA is a w-closure or simply a closure') of the set 4. If 4 = wA
then the set A4 is called closed and its complement P — A open.

The axiom (C,) shows that the closure topology is an isotone map, thatis 4 =B
implies wA < wB.

Neighbourhoods of points in a closure space are defined in such a way that the
following statement holds true:

A point x belongs to the closure of a set A if and only if every neighbourhood of x
contains at least one point of A.

This postulate leads to the following definition of neighbourhoods in a closure
space:

A set U(x) is a w-neighbourhood or simply a neighbourhood') of a point x € P,
ifxe P — w(P — U(x)).

By means of (C,) one easily verifies that the point x belongs to each neighbourhood
of x. Using the De Morgan formulae and in view of (C,) it is easy to prove that the
intersection of any two w-neighbourhoods of x is a w-neighbourhood of x as well.

A closure space (P, w) is Ty-closure space if the respective condition ( T,)
(i =0, 1,2) s satisfied

(To) If x,ye P and x e wy, y € wx then x = y

(Ty) If xe P then wx = x

(T;) If x,ye P and x + y then x and y can be separated by two disjoint w-

neighbourhoods.
Evidently, each T, ;-closure space is also a T;-closure space (i = 0, 1). The converse
assertion, however, is false as the examples on p. 552 show.

Let w" and w” be two closure topologies on the same point set P. We say that w' is
weaker?) than w” or that w” is stronger than w’, written w' < w” or w” > w',if w4 =
< w"A for each A = P. The binary relation < orders the system of all closure topo-
logies in the point set P.

In a closure space (P, w) it is possible to form the successive closures of a set 4
as follows [7]:

wAdAcwldc...cwdc...

1) The topology will usually be denoted by letters u or ». When no confusion is possible we
may suppress the signs of topologies and convergences.

2) Let u and v be topologies on a set P. It is easy to see that u4 < vA for each 4 < P if and
only if U > B, Ul and B being the systems of all u-closures resp. of all v-closures in P. For this
reason, in the literature the topology « is sometimes said to be a stronger than the topology v.
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where
wlA = A, w4 =wd and w4 = ww'd).
n<g
The map w® fulfills axioms (C,) and (C,). By means of transfinite induction it
can be easily shown that axiom (C,) is also true. Consequently (P, w®) is a closure
space for each ordinal &. )

Theorem 1. Let (P, w) be a closure space. Let w, be the least ordinal of regular
power N,. If A = P and x € wA, let there be a subset B = A of power < W, such
that x € wB. Then w®* is the weakest topology on P among all topologies which are
stronger than w.

Proof. Let x € w(w”=A). Then there is a subset B = w”=A of power < N, such that
x € wB. Since w>’A = (J w*A then there is an ordinal § < w, such that B < w’4

E<a, -
N, being regular. Consequently x € w**A. Therefore w4 is a w-closed set and
w?(w?*A) = w**A. Thus axiom (F) is fulfilled.
Now, if a topology u is stronger than w then w*4 = u®A = uA for each £. Hence
we < u.

Corollary 1. Let (P, w) be a closure space. Let N, > m where %, is a regular power
and m the power of P. Then w** is the weakest topology on P among all topologies
which are stronger than w.

According to Corollary 1, to each closure topology w it is possible to assign in
a unique way the topology w”= which is the weakest of all topologies v such that
v > w; it will be denoted by u(w).

Corollary 2. Let (P, w) be a closure space. Let A = P and x € wA imply that there
is a countable subset B = A such that x € wB. Then u(w) = w*'.

Example. Let w; be the least ordinal of power ¥, which fails to be regular. Let P
be the set of all ordinals ¢ < wgzand Q the subset of all & < w,. Then the power of P
is N;. Now put w(é) = (&) U (¢ + 1) for £€ P and for A = P define wA = 4 U

U U w(€) where 4 denotes the closure of A in the usual order topology. Then w is
EeAd

a closure topology on P such that w®)(0) = Q and w®’(Q) = P. Consequently
w??(0) # w*#(w??(0)) and w** fails to be a topology.

This example shows that the assumption in Theorem 1 that ¥, is regular cannot
be omitted.

Now we shall define the notion of continuity of a map and the notion of homeo-
morphism on a closure space. Let ¢ be a map on a closure space (P, w,) into a closure
space (Q, W,). Let x, € P. The map ¢ is continuous [7] at the point x, whenever for
each 4 c P

xo € wiA implies ¢(x) € wyp(A) .
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The map on P to Q is defined to be continuous if it is continuous at each point
x e P.

It is easy to show that ¢ is continuous at the point x, if and only if for each w,-
neighbourhood ¥(¢(x,)) of the point ¢(x,) € Q there is a w,-neighbourhood U(x,)
of x, such that ¢(U(x,)) = V(p(xo))-

A one-to-one continuous map ¢ on a closure space P onto a closure space Q is
a homeomorphism provided that ¢! is also continuous.

2.

Let L be a point set. Let N be the set of all naturals. We say that {x,} is a sequence
of points x, € L if there is a map ¢ on N into L such that ¢(n) = x,. If n, < n, < ...
then {x, } is a subsequence of {x,}. We say that {x,,} is a double sequence of points
X € L if there is a map y on N x N into L such that y(m, n) = X,.- A double
sequence of points may also be denoted by {x""}. A (simple) sequence {x]' }=_, will
be called a cross-sequence of {x)'} if n,, = f(m), where f is a function on N into N.
Each subsequence of a cross-sequence will be called a cross-subsequence and denoted
by {xz,‘li} or simply {x;'}.

Let Lbe a point set. Let € be the set of pairs ({x,}, x) where {x,} is a sequence of
points x, € L and x a point of L. The set £ is called a multivalued convergence on L
(abbreviated: the m-convergence on L), if the following axioms are true:

(#,) If x, = x for each n then ({x,}, x) €
(£Z,) If ({x,}, x)€ L and n; < n, < ... then ({x,,}, x) e &

Instead of ({x,}, x) € € we shall sometimes write symbolically £ — lim x, = x or
simply') lim x, = x and we shall say that the sequence {x,} £-converges') to the
point x; in this case {x,} is called £-convergent and the corresponding point x the
limes of the sequence {x,}. The constant sequence {x,}, where x, = x for each natu-
ral n, will be sometimes denoted by {x}. If a sequence {x,} is L-convergent, let us
denote by Lim x, the set of all x € L such that x = £ — lim x,. If {x, } is a subsequence
of {x,} then, according to axiom (%), the set Lim x,, > Lim x,.

Let £ be an m-convergence on a point set L. The closure 14 of a set 4 = Lis
defined to be the set of all x € L such that ({x,}, x) € £ where U x, = 4.

The condition (&) shows that 4 = 14 for each A < P; from axiom (%,) it
follows that (4 U B) = 14 U AB. Therefore 1 is a closure topology. We say that 1
is induced by the m-covergence £. The closure space L will be called a multivalued
convergence space3) (abbreviated: the m-convergence space) and will be denoted by
(L, & 2) or (L, 1) and sometimes only by L. If condition (T}) is fulfilled we speak of T;
m-convergence space.

3) Multivalued convergence topologies induced by m-convergences £, £* M, N, T wilk
usually be denoted by the Greek letters 4, A*, u, v, 7.
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From the definition of neighbourhoods in closure spaces it follows that a set U(x)
is a A-neighbourhood of a point x in an m-convergence space (L, £, 1) if and only if

({x,}, x)e & implies x,€U(x) for nearly all n.

Examples. Let L, be a set consisting of two distinct points a, b. Let the multi-
valued convergence £, on L, contain elements of two kinds: ({x,}, a) and ({x,}, b)
where x, = a or x,, = b for nearly all n. The induced closure topology will be denoted
by 4.

Let L, contain two distinct points a, b and £, four elements ({a}, a), ({a}, b),
({b}, a), ({b}, b). Then (L,, &, 4,) is an m-convergence space which fails to be a T;-
closure space (i = 0, 1, 2). ;

Let L, contain two distinct points a, b; let &, consist of three elements ({a}, a),
({a}, b), ({b}, b). Then (L,, £,, 2,) is a T, m-convergence space which does not
satisfy either condition (T,) or condition (T,). -

Let L, contain points a, band x,, n = 1, 2, .... Let 5 be a multivalued convergence
on L; consisting of elements ({x}, x), ({x,,}, a) and ({x,,}, b) for each x € Land each
subsequence {x, } of {x,}. Then (L3, &;, 15) is T,- but not T,-multivalued convergence
space.

It is easy to prove that each multivalued convergence £ on a T, m-convergence
space (L, &, 1) has the following property

(Zo) If ({x,}, x) € € and ({x,}, y)€ £, then x = y.

In such a case £ is a onevalued convergence (or simply a convergence) on L in the
sense of M. Fréchet [4]. Consequently

Each T, multivalued convergence space (L, £, ) is a onevalued convergence
space.

Notice that £; is a multivalued convergence on the T, m-convergence space
(L3, 23, A5) and that £, does not satisfy axiom (.%,). On the other hand, there exists
a onevalued convergence on a convergence space, in which any two distinct points
cannot be separated by disjoint neighbourhoods [9]

If (L, &, ) and (L, M, p) are m-convergence spaces and if £ = IM then evidently
A = p. The converse assertion, however, is not true. As a matter of fact, 1, = A,
whereas £, + £;. In order to find the relation between m-convergences and m-
convergence topologies, let us define m-convergences to a point x. Let (L, £, 1) be an
m-convergence space and x, € L. Denote by £(x,) the set of all elements ({x,}, x) € ¢
such that x = x,. The subset ¥(x,) of € will be called the m-convergence to the
point x,. Clearly € = U ¥(x,) and x #+ y implies ¥(x) + £(y).

xoeL

Definition. If (L, £, ) and (L, M, p) are m-convergence spaces, X, a point of Land

xo) = & M(x,) = M, then we define ¥(xo) ~ M(x,) whenever x, € L — (24 + pAd)
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for each A = L. Since for any subsets E, F, G of Lthe symmetrical differences have
the properties

E+E=0,E+F=F<+E and E+Gc(E=+F)u(F +G)
it follows that ~ is an equivalence relation on the system £(x,) = £ of all m-
convergences to the point x,, where § denotes the system of all m-convergences on

the same point set L. In such a way we get a system of classes [ €(x,)] on £(x,) each
of which is partially ordered with respect to the inclusion <.

Theorem 2. Let x, be a point in a multivalued convergence space (L, £, 1). Then
the class [¥(xo)] of m-convergences to x, contains the largest element \J (x,),
P(xo) € [£(x0)]-

Proof. Denote by £* the union of all m-convergences 2t on L such that the induced
m-convergence topology v = A. Then evidently both axioms (%) and (Z,) are
fulfilled and consequently £* is an m-convergence on L. Now we shall prove that
¥¥(xo) € [¥(xo)]. Let 4 = L; then x € A*A4 implies the existence of an element
({x,}, x) e &, Ux, = 4, so that ({x,},x)eN, where N denotes a suitable m-
convergence in the union £*. Since v = 1 it follows that x € A4. On the other hand,
¢ < ¥ implies A4 = 1*4. Hence AA = J*4 and 14 + A*4 = 0. Therefore
U(xo) ~ (xo)-

Now let us prove that *(x,) is the largest element in the class [¥(x,)], i.e.
that P(x,) = €¥(x,) for each P(xo) e [¥xo)]. Choose P(xo)€ [L(xo)] and put
M = P(xo) U (T — Lx,)). Since P(x,) = M it suffices to show that M is an m-
convergence on L and that the induced m-convergence topology u = A. First M is
an m-convergence both axioms (&,) and (&,) being fulfilled. Now, let 4 be
a subset of L and let x € AA. Then ({x,}, x) € £ for a suitable sequence of points
x, €A. If ({x,}, x) € & — £(x,), then x € pd. If ({x,}, x) € ¥x,) then x = x, and
also x € ud, because ¥(xo) ~ P(x,), so that x,€ L — (A4 + pA) and therefore
Xo €A N AA. Thus A < p. On the other hand if ye puAd then ({y,}, y)e M and
Uy, = A for a suitable sequence {y,}. If y + x, then ({y,}, y)€ ¢ and ye 14.
If y = x, then ¥(x,) ~ P(x,) implies y € AA. Therefore u < 1 and so p = A.

Since P(x,) = £(x,) for each P(xo)e[¥xo)] then U  P(xo) = L*(x,).
P(xo)el £(x0)]

On the other hand £¥(x,) € [¥(x,)]. Therefore €(xo) = U P(xo).
P(x0)e&(¥0)]

Now, we are going to characterize topologically the largest m-convergence to
a point.

Theorem 3. Let (L, £, A) be a multivalued convergence space. Let ¥*(x,) be the
largest multivalued convergence to a point xo € L. Then two following statements
are equivalent

(1) ({xa}, xo) € (o)

(2) Each A-neighbourhood of x, contains nearly all x, of {x,}.
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Proof. (1) evidently implies (2). Now, denote by T, the set of all elements ({x,}, xo)
such that the sequences {x,} have property (2) and put T = I, U & Since ¢ = T
the set T satisfies both axioms (£,) and (£,) so that T is a multivalued convergence
on L. Denote by 7 the induced m-convergence topology and prove that t = A.
Because £ = T we have A < 7. Now, if A = L and x € 74, then there exists a sequen-
ce of points x, € A and an element ({x,}, x) in T, or in &; hence x € 14, by (2), so
that 2 > 7. Therefore 1 = v and A4 + t4 = 0; hence Z(x,) ~ {(x,). Since, by
Theorem 2, ¥(x,) = ¥¥(x,) and because T, = F(x,) we have T, = ¥¥(x,). Thus
we have proved that (2) implies (1).

Corollary 3. Let (L, £, 2) be a multivalued convergence space. Let £*(x,) be the
largest multivalued convergence to a point xo € L. Then ({x,}, xo) € ¥(x,) if and
only if each subsequence {x,} of a sequence {x,} contains a subsequence {x,,ik}
L-converging to x,.

Proof. If ({x,}, xo) does not belong to £*(x,) then by Theorem 3 — there is
a A-neighbourhood U(x,) of x, and a subsequence of points x,, € L — U(x,). Conse-
quently no subsequence {x,,ik} of {x,,} L-converges to x,.

If ({x,}, xo) € £%(x,) then x, € A U x,,, for each subsequence {x,,} of {x,}. Therefore
there is a subsequence {x,,ik} of {x, } which %-converges to x,.

It is possible to classify all multivalued convergences on a given point set L by
means of the following equivalence relation:

£~ M whenever A= p.

Because the inclusion < orders the system £ of all m-convergences on L each class [ £]
is an ordered class containing all m-convergences which induce the same closure
topology 1.

Let (L, £, 1) be a multivalued convergence space. In the proof of Theorem 2 we

have shown that the union (J N is a multivalued convergence £* on L such that
Ne[ €]
*(x,) is the largest m-convergence to the point x, in the class [¥(x,)]. Therefore
¥(x0) ~ (x,); consequently x, € L — (A*4 + AA) for each x, € Land each 4 < L.
Hence L= L — (4*A + AA) so that A*4 = 1A and A* = A. Thus £* ~ £
From this result from Theorem 3 and Corollary 3 we have the following #)

Theorem 4. Let (L, &, 1) be a multivalued convergence space. Then in the class [£]

there is a largest multivalued convergence £ = |J 9 and the following three
statements are equivalent: Relfl
(1) &= g~

(2) If xe L and if {x,} is a sequence of points x, € L such that each A-neigh-
bourhood of x contains nearly all x,, then ({x,}, x) € &

4) In the case of onevalued convergences the implication (1) = (23) was proved in [7]. As to
he condition (£;) see [1], [10] and [8].
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(Z3)IfxeLand if {xn} is a sequence of points x, € L such that in each subsequence
{x,.} there is a subsequence $-converging to x, then ({x,}, x) € &.

The statement (%) will be called the Urysohn’s axiom.

According to Theorem 4 each multivalued nonlargest convergence ¢ can be
completed with new elements such that we get the largest multivalued convergence the
induced m-convergence topology of which is 1* = 1.

Theorem 5. Let (L, &, 1) and (L, M, u) be multivalued convergence spaces. Let £*
and M* be the largest multivalued convergences such that J* = A and p* = p.
Then A < p if and only if & < IM*,

Proof. If < p and if ({x,}, x) € ¥* then, in view of Theorem 2, outside of each
A-neighbourhood of x there is at most a finite number of x,. The same holds true
for each p-neighbourhood of x. Hence, by Theorem 2, ({x,}, x) € M* and so £* = M*.
The converse assertion is clear.

From Theorem 5 it follows that the ordered system of all multivalued convergence
topologies on Lis isomorphic to the system of all largest multivalued convergences
ordered by the inclusion <.

The convergence of a sequence of points x, € L to a point x is not a topological
property. As a matter of fact, let (L, £, 1) be a multivalued convergence space such
that ¢* + £ (for instance ¢, and &,) choose ({x,}, x) € ¢* — ; then &* — lim x, = x.
The identical map j on (L, £*, 1) onto (L, £, ) is a homeomorphism because 1* = 1.
The sequence {j(x,)}, however, does not -converge to j(x).

Lemma 1. Let ¢ be a map on a multivalued convergence space (L, £, ) into
a multivalued convergence space (M, M, y). Then ¢ is continuous °) if and only
if the following condition is satisfied for each point x € L:

If lim x,, = x then lim ¢(x,,) = ¢(x) for a suitable subsequence {x, } of {x,}-

Proof. Let &-lim x, = x. Then x € 2 Ux,. If ¢ is continuous then ¢(x) € up(Ux,).
Since ¢(Ux,) = Ue(x,) the condition holds. Now, let 4 = Land x € 24. Then there
is a sequence of points x,€ A £-converging to x. If the condition is fulfilled then
iim ¢(x,,) = ¢(x) for a suitable subsequence {x,,} of {x,} so that ¢(x) € u4.

Some mathematicians are interested in the characterization of the largest conver-
gence by means of certain operations in a given system of sequences of points. M.
FRECHET [ 5] introduced two such operations®) which do not change the (onevalued)

5) For onevalued convergence spaces see footnote on page 85 in [8].

6) Si une suite S converge vers 4, il en est de méme de toute suite obtenue en ajoutant 4 S un
nombre fini d’éléments (distincts ou non).

Si un nombre fini de suites Sy, S5, ..., S, convergent vers 4, il en est de méme de toute suite
obtenue en rangeant en une seule suite les éléments (distincts ou non) de Sy, S, ..., S,
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topology 4. M. DoLCHER [ 3] defined three operations’) and V. K. BALACHANDRAN [2]
considered several operations by means of which it is possible to get new sequences.
However it is not possible to characterize the largest convergence by means of
operations mentioned above. M. Dolcher [3] has raised the following problem®):

Define an operation (necessarily more general then that one fulfilling «, B, y) such
that it is possible to get from a given system B, of sequences (such that {x} € B,) the
smallest system containing B, and satisfying axioms (£ ,), (&,) and (Z;).

Before solving this problem let us define the operation a*) as follows:

Let Lbe a point set. Denote by Ul the system of all sequences of points of L. Let x
be a point of Land 9B, a system of sequences {x,} € Il such that {x} € B, and such
that {x,} € B, implies {x,} € B, for each subsequence {x,} of {x,}. Now define
a subsystem B* < U: {y,} € B¥ whenever the condition a* is true:

a*) there is a non-negative integer ¢ and sequences {x}'};-; € B, m = 1,2, ...,

such that each cross-subsequence {x};2;, contains a subsequence belonging to B,
and such that the double sequence {x]'},7 ,-, can be arranged into the simple sequence

{yq+n};.|°=l‘

Statement 1. Let L be a set and x a point of L. Let B, be a system of sequences
{x,} €W containing the constant sequence {x} and each subssequence of any
sequence belonging to B,. Then the smallest system & < Wl containing B, and
satisfying axioms (£,), (£,) and (£ ;) with respect to the point x is generated by
the operation o*).

Proof. First prove that B fulfills axioms (£,), (£,) and (£5).

Let {x,} € B,. Arrange {x,} in any manner into a double sequence {x;'}= ;.
Since each subsequence of {x,} belongs to B,, from a*) it follows that {x,} € B}.
Consequently B, = B5; especially {x} € B*. Therefore (£,) holds in B}.

In order to prove the validity of axiom (%5) for the system B} let us assume
that {y,} is a sequence of points y, € L such that each subsequence {y,,} of {y,}
contains a subsequence belonging to B¥. Notice that each sequence of B contains
a subsequence belonging to 9B,. Consequently each subsequence {y,} of {y,}
contains a subsequence {y,,l,k} € B,. Now, show that {y,} € BE. For this purpose,

use the method of transfinite induction:

7) (x) Data una {p,,}, ne consideriamo dedotta ogni successione della quale la data ¢ un resto.

(#) Data la {pn}, ne consideriamo dedotta ogni successione {p,n} con lim r, = oo (ossia:
ogni {p,"} tale che per ogni intero s sia r; = s al piu per un numero finito di valori di {); in
particolare dunque, ogni sottosuccessione.

() Date un numero finito di successioni S¢ = {p,’,} (i=1,2,..., k), consideriamo dedotta
dalle S ogni successione S la quale ammetta h(< k) sottosuccessioni '/ = {p,{-‘} rispettiva-
mente uguali ad # delle S e tali che gl’interi r{; (G=1,2,...,h n=1,2,..) siano tutti distinti
ed ogni intero vi compaia.

8) It is presented here in a slightly modified form.
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Suppose we have just chosen the subsequences {z3}:2 | of {y,} for all & < «, such
that

(& n)+(mm), &n<o and zi=y, z5 =y, implies k + I

then — if it is possible — find a subsequence {y,,} of {y,} such that no member y,,
of {y,} occurs in any subsequence {zj};-;, ¢ < a; by our supposition, there is
a subsequence {y, } of {y,} belonging to ®B,. In this case put z; = y, , ke N. If
it is not possible then there remains at most a finite number (0 incl.) of y, which
occur in no subsequence {z5}% ;, & < a; in this case denote by g the greatest index
of these y, or put g = 0 if there are no such y,. Leaving out each y,, 1 < n =< g,
from subsequences {z3}2 ,, £ < a, we get subséquences {z,°}*,, ¢ < a;if g =0
we put z,° = z5. In this case we do not continue to choose further subsequences
of {y,}.

Thus we have proved that there is a (countable) ordinal B, a non-negative integer ¢
and subsequences {z,°}7_, of {y,}, ¢ < B. It is always possible to choose an infinite
number of subsequences {z3}. Let ¢ be a one-to-one map of the set of all ordinals
& < f onto N. Put y" = z/°, where m = @(€). It is easy to see that the double
sequence {y,'}.,-; can be arranged into the simple sequence {y,,,}.-. Since
{yu}sz1 € B, for each m € N and in each subsequence of {y, .} there is a subsequence
belonging to B, from a*) it follows that {y,}2 ; € B*.

Also axiom (%,) is fulfilled in B}. As a matter of fact, it is easy to see that (£5)
and o*) implies (£ ,).

Now, prove that % = &. Let &' be a subsystem of Il containing B, and fulfilling
all three axioms (£,), (£,) and (% ;) with respect to the point x. Let {z,} be a sequen-
ce of V. Since each subsequence of {z,} contains a subsequence of B, = & and

because &' fulfills axiom (Z,), then {z,} € &'. Hence B; = & so that B} = &.

Let us notice that from Statement 1 the solution of the Fréchet’s problem mentioned
above follows:

The smallest system of sequences containing a onevalued convergence 2B on a given
set L and fulfilling axiom (&) is generated by the operation «*) for each x € L,
B, being the system of all sequences B-converging to x.

3.

Let (P, w) be a closure space. Denote by € the set of all elements ({x,}, x) such
that each w-neighbourhood of x contains nearly all points x,. It can be easily proved
that € satisfies all three axioms (&), (£,) and (Z;). Therefore ¥ is the largest
multivalued convergence on P and (P, ¥, 1) is a multivalued convergence space
such that < w. If xe wA, A P, implies ({x,}, x) € T for a suitable sequence of
points x, € 4, then evidently t = w and (P, w) is a multivalued convergence space.

In such a way it is possible to assign to each closure topology w the multivalued
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con'vergence topology t which will be denoted by A(w). It is easy to show that Aw)
is the strongest among all multivalued convergence topologies which are weaker
than w. )

Definition. Let (P, w) be a closure space and let 4 be a subset of P. We say that
a point x € P has order 0 with respect to the set A whenever x € A. Under the asump-
tion that the orders & with respect to A are defined for all isolated ordinals & < a,
where o is an isolated ordinal, we say that a point x € P has order « with respect to 4
if it fails to have order < « — 1 and if there is a sequence of points x, € P of orders
< o — 1 such that each w-neighbourhood of x contains nearly all x,,. In this case the
subset A will be called a convergence basis of the point x. The order of x with respect
to A will be denoted by o(x, A).

If the set A consists of one point z, we speak of the order of a point x € P with
respect to the point z; in this case the convergence basis is the point z.

Using the method of transfinite induction it can easily be proved that o(x, A) = ¢
in (P, w) if and only if x € 2%(w) 4 — 2°~*(w) A. Therefore the set (J A°(w) 4, which

<oy

equals u(4(w)) 4, by Corollary 2, consists of all points having an order with respect to
the set A.

Lemma 2. Let (P, w) be a closure space. Let A be a subset of P and o(x, A) an
order of a point x € P with respect to the set A. Then there is a countable convergence
basis Ay = A such that o(x, A) = o(x, Ao).

Proof. Assume that the assertion is true for all isolated £ < f where f is an isolated
ordinal less than o(x, 4). Let y € *(w) A — 2~*(w) A. Then o{y, A) = B and there
is a sequence of points y, € 2#~*(w) 4 such that o(y,, A) <  — 1, ne N, and such
that each A(w)-neighbourhood of y contains nearly all y,. Denote &, = o(y,, A).
According to our supposition &, = o(y,, 4,) for suitable countable subsets 4, < 4,
neN. From this it follows that y,e2A%(w) A4, = A*(w) 4y = 27 '(w) 4y, nEN,
where A, = JA, is a countable set. Therefore ye A%(w) A, — ¥~ (w) 4, i.e.
O(ya AO) = AB

Now we are going to solve the following problem®) of M. Dolcher [3]:

Let A be a multivalued convergence topology on L, let u(1) be the weakest topology
on L such that 2 < u(2) and let p(u(2)) be the strongest multivalued convergence
topology on L such that u(4) > p(u(4)). What is the necessary and sufficient condition
that p(u(2)) = A?

The solution of this problem is given in the following Lemma 3 and Statement 2:

Lemma 3. Let (L, &, 2) be a multivalued convergence space. Then p(u(1)) = A if
and only if ({x,}, x) € € implies that Lim x, is a closed set.

%) 1l problema di caratterizzare, in termini di struttura di convergenza, le convergenze prive
di unicita del limite lequali sono deducibili da topologie.
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Proof. Suppose Lim x,, is not closed. Then there is a point y € A Lim x, — Lim x,,.
Consequently there is a sequence of points y, € Lim x, such that ({y,}, y) €%
Since ({x,}, ) € £ for each m €N, then every u(4)-neighbourhood of y contains
nearly all x,; the sequence {x,} however, fails to converge to y. Hence p(u(1)) + 1.

Now, assume that p(u(4)) # A. Then there is a set A = L and a point
z€ p(u(A)) A — 2A. Consequently there is a sequence of points z, % z of 4 such that
each u(ﬂ,)-neighbourhood of z contains nearly all z,. The set |Jz, cannot be A-closed;
otherwise L — (Jz, would be a u(4)-neighbourhood of z containing no z,. From this
it follows that there is a point x € L and a subsequence {z,} of {z,} such that
x € Lim z,.. The set Lim z,, cannot be A-closed; otherwise Lim z,, = u(Z) Lim z, ;
z would belong to Lim z,, and consequently to A4. Thus we have proved that
¢ — limz, = x and that Lim z,, fails to be a closed set.

“n;i

Statement 2. Let (L, £, 1) be a multivalued convergence space. Then p(u(2)) = A
if and only if the following condition is fulfilled:

If ({x,), yme & meN, and if ({y,}, y) € & then ({x,}, y) e L.

Proof. It is easy to show that the condition is fulfilled if and only if each Lim x,
is closed in L. Consequently the proof of the statement follows immediately from
Lemma 3.

Now, let us mention two other problems of M. Dolcher [3]: Let (P, u) be a topo-
logical space. What are the necessary and sufficient conditions that u = v(A(u))?
Let (L, L, A) be a multivalued convergence space. What is the necessary and sufficient
condition (expressed in terms of convergence) that u(1) is a T,-topology?

The solutions of these problems are given in the following statements (3 and 4):

Statement 3. Let (P, u) be a topological space. Then u = v(A(u)) if and only if
for each subset A < P and each point x € uA there is a countable convergence
basis A, = A of the point x.

Proof. Let u = v(A(u)) and let x € uA. Then x € v(A(u)) A. Since v(A(u)) A =
= U 2%u) A4, by Corollary 2, then either x € 4 or there is an ordinal « > 0 such that

E<wy

x € 2(u) A — 2*~*(u) A. Therefore the point x has an order with respect to set A.
In view of Lemma 2 there is a countable convergence basis 4, = 4 of x.

Conversely, suppose that we are given a set B < P and a point y € uB which has
an order B with respect to a countable subset B, = B. Then y € A*(u) B so that
ye U 2%u) B, B being an isolated countable ordinal. Hence uB < v(A(u)) B. On

<y .

the other hand, evidently A(u) B = uB so that v(4(u)) B = uB. Therefore u = v(A(u)).

Statement 4. Let (L, £, 1) be a multivalued convergence space. Then the two
following statements are equivalent

(1) u(2) is a Ty-topology
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(2) if x and y are points of L each of them having an order with respect to the
other then x = y.

Proof. Since the u(2)-closure of any point z € L consists of all points z’ € L which
have an order with respect to the point z, the proof instantly follows from the fact
that A(2) = 1 and consequently u(2)z = U 4’z = U A%4)z.

¢<wy E<wy
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Pe3rome

O HEKOTOPLIX MTPOBJIEMAX MHOI'O3HAYHOU CXOAMMOCTHU

VIOCE® HOBAK (Josef Novék), IIpara
(TToctymaio B pegaxumio 7/V 1963 r.)

M. ®PEIIE BBe aKCHOMaTHYECKUM 00pa30M MOHATHE (om{omatmoﬁ) CXOQUMOC-
TH HA MHOXeCTBe LXaK OJJHO3HAYHOE 0TOGpaXeHne CHCTeMbI (He 0653 TEIIBHO BCeX)
nocieoBaTebHOCTeH {X,} ToYek X, € L Ha L, yooBIeTBOpSIOLIEe aKCHOMaM (,,? 1)
u (&£,). B aT0l cTaThe H3y4aeTCs MHOrO3HAYHASL CXOMUMOCTb (BKpATIle m-CXOIH-
MOCTB), yIoBJIeTBOpsifomast akcuomaM (&) i (&£,) 1 OTIMYAIOWIASCS OT O/IHO3HAY-
HO# CXOJMMOCTH T€M, 4TO OJHA M Ta XX€ ITOCIIEOBATEIHHOCTh TOYEK MOXKET CXO-
JUTBCS K pasju4HbIM ToukaM. Ecim ompenmenuTh 3aMblkaHue AA IOJMHOXECTBA
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A < L o6byEBIM 00pa3oM Kak MHOXECTBO Bcex lim x,, roe Ux, = 4, To A — Tomo-
JoTHs 3aMbiKaHust, BhmonHsomas akcuomsl (Cy), (C;) 1 (C,). Takum o6pasom Mbi
MOJIyYaeM TOTIOJIOTHYECKOE MMPOCTPAHCTBO € M-CXOJAUMOCTBIO.

B cucTeMe Bcex m-CXOQMMOCTEH Ha JAHHOM MHOXECTBE L onpenessieTcsi S5KBUBaA-
JIETHOCTh M JOKa3bIBAETCS, YTO B KaXIOM KJAacce CyIECTBYET Haubonplias m-
CXOIMMOCTb, COMIEPXKAIAs KaXIyI0 IKBUBAJICHTHYIO mM-CXOAUMOCTh KaK m-IMOACXO-
JUMOCTB. DTy HanOOJIBIIYI0 M-CXOOUMOCTh MOXHO OXapakTepy30BaTh Kak C IIO-
MOIIBIO OKPECTHOCTEH TOYEK, TaK ¥ ¢ TOMOIIBIO aKCHOMBI (Z3).

B pabote pemensl HekoTopble mpoGiaemsr M. JTOJIBXEPA [3]. Oama u3 Hux
3aKJIIOYAETCS B XapaKTepU3aluu HAUOONbLIEH m-CXOOUMOCTH NP NMOMOLIM HEKO-
TOpBIX OIEpalif B mM-CXOXMMOCTH, yIOBIETBOpsoUmX akcuomaM (&) u (£,).
Brina Haligena omepanus o, peuiarouiasi 3Ty mpobieMy. B ciydae ommo3HayHOR
CXOMMOCTH 3TO IIPEACTABJIAET Takxke pemenue mpobnems: M. @pee [5].
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