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TOPOLOGIES ON PRODUCTS AND DECOMPOSITIONS
OF TOPOLOGICAL SPACES')

VERA TRNKOVA, Praha
(Received January 3, 1963)

Some results concerning quotient-spaces are given. The connection
between quotient-spaces and topologies, in which the closure of a set is not
closed, is used. In particular, we investigate how complicated is the decom-
position of a space, the quotient-space of which is a topological product
of spaces.

I

It is well known that from various types of convergence we get in a natural way
topologies, where the closure of a set need not to be a closed set. Such topologies,
however, also appear in a natural way in connection with decompositions of topolo-
gical spaces. Some of the properties of such topologies are in fact properties of
quotient-spaces. For example, the notion of F-order (introduced in the present article)
of a space P indicates, roughly said, how complicated may be a decomposition of
a space with given quotient-space P.

A topological space is the couple (P, u), where P is a set and u is a mapping of the
set exp P of all subsets of P into exp P such that u) = 0, and u(M; U M,) =
= uM; v uM, and M; < uM, for M;, M, = P. We call u a topology on the set P
and uM the closure of the set M. The requirement that u(uM) = uM for every
M < P, is called the axiom F in [1]; spaces satisfying this axiom are called F-spaces,
their topologies are called F-topologies.

For topological spaces defined in such a general way we may introduce the usual
notions without any change in their definition. In [1] the theory of such spaces was
examined systematically. In [1] the T; axiom is assumed and for all definitions and
theorems we shall use this axiom is not necessary as it is stated in [1] in examples to
section 4. The knowledge of [1] is not necessary for reading of this paper as all
needed definitions and results will be stated in full. Here we give only the definitions

1) Some results of the present article were presented at the Symposium on General topology
and its relations to modern analysis and algebra in September 1961 in Prague. Some theorems
without proof are contained in [2]. The present article was announced in [2] as reference [17] with
title ‘““Non-F-spaces”’.
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and trivial facts which are needed for our considerations. Let (P, u) be a topological
space. A set M < P is called closed if uM = M; it is called open, if P — M is closed.
The set Int M = P — u(P — M) is called the interior of M (it is possible, of course,
that Int (Int M) =+ Int M). A set U is called a neighbourhood of a set M (or of
a point x respectively) if M < IntU (or x € Int U respectively). Clearly, requiring
the axiom F or not, a point belongs to a closure of a set if and only if every neigh-
bourhood has a non-void intersection with this set. If U is a neighbourhood of x,
then Int U need not be a neighbourhood of x. Evidently, a set is open if and only if
it is a neighbourhood of each of its points, in other words, if it is identical with its
interior. A collection % of neighbourhoods of a point x is called complete, if for every
neighbourhood V of x there exists an U € % such that U < V. (The system of all open
neighbourhoods of x need not be complete.) The most simple topology not satysfying
axiom F, may be set up on a three-point set. Let P = {1, 2, 3} and put u{1} =
= {1,2}, u{2} = {2, 3}, u{3} = {3, 1} and for M < P let uM = { u{x}. Evidently

xeM

the only open sets are P and Q. The set {1, 2} is a neighbourhood of the point 2,
the set {2, 3} is a neighbourbood of the point 3 and so on.

Even if the axiom F is not requived, the topology can be defined by complete
collections of neighbourhoods. In fact the following theorem holds (cf. e.g. [1],
p. 62):

If for every element x of a non-void set P there is given a non-void collection %,
of subsets of P such that

) Ue¥,=xeU,

2) if Uy, U, € %,, then there exists an U € %, with Us = U; n U,, then there
exists exactly one topology on P, for which %, is a complete collection of neigh-
bourhoods of x for every x € P. In any case we can consider the T;-axiom and the
Hausdorff axiom for a space (P, u). A space in which each two different points have
disjoint neighbourboods (not necessarilly open) is called a Hausdorff space. A space
in which every finite set is closed is called a T;-space; a space which is both T;-space
and an F-space is called an T, F-space.

In the following there will frequently occur the situation in which more than one
topology on a set P is considered simultaneously. We then use the notation u-open
for sets open in (P, u) and similarly u-closed set, u-neighbourhood, complete collection
of u-neighbourhoods and so on. If u and v are topologies on a set P, x € P and every
v-neighbourhood of x is its u-neighbourhood, then we write u, < v,. If u, < v, and
vy < u,, then we write u, = v,. If u, = v, is not true, we write u, #+ v,. If u, < v,
u, * v,, then we write u, < v,. If u, < v, for all x € P, then we write u < v, which
is the usual notation of the fact that u is finer than v. If u < v, u + v, we write u < v.
If (P, u)is a space, Q < P, then u/Q denotes the topology on Q for which (u/Q) M =
= Q nuM for every M < Q. Then (Q, u/Q) is called a subspace of (P, u). If f is
a mapping of a set Pintoaset R, Q < P, then f | Q denotes the mapping of Q into R,
for which (f| Q) (x) = f(x) for every x € Q.
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Let (P, u) be a topological space. For M = P we define u'M = uM, "M =
= (U u’M) (« is an ordinal). Denote by ¢(M) the smallest ordinal a for which

B<a

u'M = u**'M. Let ¢ = sup ¢(M). It'is known that u® is an F-topology on P.
McP

In [1] this F-topology is called the F-modification of u, the ordinal number ¢ is
called the order of u. Evidently uM < u*M for M < P; hence if u’M = M, then
uM = M. Conversely, if uM = M, then u*M = M for every ordinal number o.
Consequently, every set M is u-closed (or u-open respectively) if and only if it is
u?-closed (or u®-open rcspcctively). Consequently the collection of all u®-closed sets
is identical with the collection of all u-closed sets. Hence the F-topology u? can also
be defined by means of the collection of all u-closed sets. Clearly, u? is the finest of
all F-topologies coarser than u; the equality u = u® holds if and only if u is an
F-topology.

Let f be a mapping of an F-space (Q, t) onto an F-space (P, v). We shall say that
the mapping fis quotient map if and only if every set M < P is v-closed if and only
if the set f~!(M) is t-closed. In [1] the definition of an exactly continuous mapping
is given: A mapping f of a space (Q, t) onto a space (P, v) is exactly continuous if and
only if for every set M = P, ftf ~'(M) = vM. Evidently, every exactly continuous
mapping of an F-space onto an F-space is a quotient map. The converse is not true
For example, let (Q, ) be the space of all real numbers with its usual topology, let P
be the set of all integers; we consider the following topology v on P: for x € P let
v{x} be the set of all integers not less than x; let vM = |J v{x} for M = P. Let f be

xeM
a mapping of (@, t) onto (P, v), f(x) = [x] ([x] is the greatest integer not greater
than x). Evidently f is a quotient map, but it is not exactly continuous. Thus »{0}
is the set of all non-negative integers, f~'({0}) is the half-open interval 0, 1), hence
Jtf~1({0}) is the two-point set {0, 1}, which is, of course, different from v{0}.

Let 2 be a decomposition of some set Q; let 7 be the mapping-of Q onto 2, which
to every x € Q assings the set x € 2 containing x; = is usually called the projection.
A subset P — Q which contains exactly one point from every x € 2, is usually called
a system of representants of the decomposition 2. If (Q, ¢) is an F-space, 2 is
a decomposition of the set Q, then it is usual to define the F-topology v on £ in such
a manner that the projection = of Q onto 2 is a quotient map of (Q, ) onto (2, v).
The space (9, v) is then called the quotient-space. Now we define another topology u
on 2 (this definition was formulated by prof. M. Katgtov in a conversation): For
M < 2 we put uM = ntn~'(M). This topology we call the fine quotient-topology
and (2, u) the fine quotient-space. Evidently, u < v and in general u is not an F-
topology. Clearly, the projection = is an exactly continuous mapping of the F-space
(Q, 1) onto (2, u). Evidently, a set M = £ is v-closed if and only if it is u-closed;
hence the quotient-topology is the F-modification of the fine quotient-topology.
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Some theorems about fine quotient spaces, analogical to theorems about quotient-
spaces, are satisfied. For example: The fine quotient-space is a T;-space if and only
if the decomposition is closed.

Now we shall show that every topology is a fine quotient-topology, in other words,
it may be obtained by a decomposition of an F-space.

Theorem 1. Let (P, u) be a topological space. Then there exists an F-space and
its decomposition such that the fine quotient-space is homeomorphic with (P, u).
In particular, it is possible to choose an F-space (Q,t) and its decomposition P
such that P is a closed subset of (Q, t), P is a system of representants of the decom-
position 2, t/(Q — P) is discrete, and if © is the projection of Q onto 2, then n | P
is a homeomorphic mapping of (P, u) onto the fine quotient-space. Moreover,
if (P,u) is a Ty-space (or a Hausdorff space) then (Q, t) is also a Ty-space (or
a Hausdorff space, respectively).

Proof. Let a space (P, u) be given. Let ¢ be a one-to-one mapping of the set P
onto some set P’, for which PN P’ = (. Put Q = P U P'. Let £ be the system of
all sets {x} U @({x}), where x runs over P; let n be the projection of Q onto 2. Now
we define an F-topology ¢ on Q: for M = Q define M* = ¢~ '(M n P’) and put
tM = M uder M* (where der M™ denotes the set of all accumulations points
of M™). Evidently, for x € P’, the set {x} is a t-neighbourhood of x; for x € P the
system ({x} U @(U — {x})}, where U runs over all u-neighbourhoods of x, is
a complete collection of z-neighbourhoods of x. Evidently, (Q,t) is an F-space,
P is a closed subst of (Q, t), ¢/(Q — P) is discrete and if (P, u) is a Ty-space (or
a Hausdorff space), then (Q, t) is also a T;-space (or a HausdorfT space, respectively).
Let v be the fine quotient-topology on £. By definition of the fine quotient-topology,
for o < 2 there is v/ = ntn~'o/. Denote = = | P. We are to prove that v/ =
= yuy~'o/. Denote Yy~ 'of = A. Evidently, n7's/ = AU ¢(4), (n”'&)* = 4,
A4 U @(A)) = A U ¢(4) U (der A) = uAd U ¢(4) and {ud U ¢(A4)) = YuA.

Let (P, u) be a space. In [1] the following topology & is defined: for 4 < P let
id= N uX.
XCPuX>A
Now we show that # satisfies all the axioms for an F-topology: evidently @) = 0,

#A o A; clearly @iid = () uX = () uX = @A; for A, B = P clearly

uX>ud uXDA
dAviB=NuXu NuY= N @XovuY)= N uZ=idvB).
uXDJA uYDB uXDA,uYDB uZDAUB

In [1] this F-topology i is called the F-reduction of u. Evidently # < u. For 4 = P
obviously #uAd = uA, consequently every set uA is #i-closed; evidently the system
{uX; X = P}(or {P — uX; X < P} respectively) is a base for ii-closed sets (or #-0pen
sets respectively). Hence if U runs over all u-neighbourhood of x, then Int U form
a complete collection of #-neighbourhoods. Clearly # = u if and only if u is an F-
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topology. Evidently, if (P, u) is a T,-space (or a Hausdorff space respectively), then
(P, @) also such. Evidently, if (P, u) is the three-point space described in part I, then
every subset of P is #i-closed.

Lemma 1. Let (P, u) be a space, let P be a system of representants of a decomposi-
tion 2 of a set Q; let & be the projection of Q onto P; for M <= Q denote ZM =
= n"'nM. Let t be an F-topology on Q such that P is a closed subset of (Q, 1)
and t/(Q — P) is discrete. Then | P is a homeomorphic mapping of (P, u) onto the
fine quotient space if and only if uX = P N tRX for every X < P.

Proof. Let ¢ be an F-topology on Q with described properties; let v be the fine
quotient-topology on £. Setyy = =n | P. Evidently, for M = P there is ¢~ 'nM =
=y~ 'nAM = M, n~'yM = #M. Clearly  is a homeomorphic mapping of (P, u)
onto (2, v) if and only if yuX = vyX for every X < P; by the definition of the
fine quotient-topology, vy X = mtn™ (Y X) = ntZX. But t is discreteon Q — P and
P is t-closed, and therefore t#X = #X U (P n t#X). Consequently ¥~ 'oyX =
=y 'nRX = Yy '2[AX U P) N t2X)] = X U (P N 1#X) = P n t#X. Consequ-
ently uX = Yy~ oYX if and only if uX = P n t%X.

Theorem 2. Let (P, u) be a space, P a system of representants of a decomposition 2
of a set Q; let m be the projection of Q onto 2. Let P be the system of all those
F-topologies on P which can be extended to the whole set Q in such a manner that
Q — P is a diserete subspace, P is closed in this topology and = | P is a homeo-
morphic mapping of (P, u) onto the fine quotient-space.

Then every element of P is finer than the F-reduction @ of u. If v and w are
F-topologies on P, v eP, v < w < il, then we P. Moreover, if every element of the
decomposition P contains at least two points of Q, then every F-topology on P
finer than i belongs to P.

Proof. Let (P, u), il, #, Q, m, P, have the same meaning as in theorem 2, denote
AM = 7'M for M < Q. Let t be an F-topology on Q such that P is t-closed,
t/(Q — P) is discrete and = | P is a homeomorphic mapping of (P, u) onto the fine
quotient space. Denote v = ¢/P. We must prove thatv < #. The system {uX; X < P}
is a base for #-closed sets and therefore it is sufficient to prove that every set uX is
v-closed. Evidently the set t#X is t-closed and therefore uX = P N t#X is v-closed.
Conversely, let ve P and let w be an F-topology on P such that v < w < . Let ¢,
be an F-topology on Q such that t,/P = v, t,/(Q — P) is discrete, P is t,-closed and
uX = P n t,2X for X < P. We define a topology ¢t on Q in the following way:
for M < Q we put tM = w(M n P) U to(M — P). Evidently, tP = P, /P = w,
/(Q — P) = 1,/(Q — P) is discrete and for X ¢ P, uX = PN t,2X = Pn
N 1[(2X A P) U (#X — P)] = vX U[P 0 1(#X — P)] € wX U [P N t(2X —
— P)] = PntRX < iiX U [P N ty(#X — P)] < uX. Hence uX = P n t#X and
consequently, using lemma 1, x| P is a homeomorphic mapping of (P, u) onto the
fine quotient-space of the space (Q, t). Consequently t/P = we P.
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Moreover, let every element of the decomposition 2 contain at least two points
of 0. ForM = Qput M’ = P n %M — P). Evidently for X = P, X’ = 0,(2X) =
= X.Ifweput,for M = Q,tM = M U der M’, then t/P € P (the proof is analogical
to that of Theorem 1). But #/P is discrete, hence every F-topology on P finer than i
belongs to P. '

I

Definition 1. Let (P, v) be an F-space. We call (P, v) a strong F-space (and v a strong
F-topology) if the following condition holds: if » is the F-modification of some
topology u, then u = v.

Note 1. As noted previously, the quotient-topology is the F-modification of the
fine quotient-topology. Hence if the quotient-topology is a strong F-topology, then
it is necessarily identical with the fine quotient-topology. Consequently, the following
proposition holds (the same notation is used as in lemma 1): Let (Q, ) be an F-space,
let 2 be a decomposition of (Q, t) such that the quotient-space is a strong F-space.
Then for every M < Q the set ZtZM is closed. In this section a necessary and suffi-
cient condition for a space to be a strong F-space is given. From it there follows
immediately that, for example, every metric space is a strong F-space, but the cube
with uncountably many dimensions is not a strong F-space.

In [1] is given?) the following definition 2.

Definition 2. A point x of a space (P, u) is called an F-point if each of its neigh-
bourhoods contains some open neighbourhood of x. Clearly, a space is an F-space if
and only if each point is an F-point (cf. [1], p. 66).

Definition 3. A point x of an F-space (P, v) is called a strong F-point if for every
A < P with xevA — A, there exists a set B such that B <« 4, x€ vB, x ¢ v(vB —

— A4 - {x}).

Theorem 3. A point x of a regular F-space (P, v) is a strong F-point if and only
if for every A = P with x € vA — A there exists a set B such that B < A,vB — B =
= {x}:

Proof. Evidently, if vB — B = {x} for some x€ P and some B = 4 < P, then
x€vB, x ¢ (vB — A — {x}). Consequently, every point which satisfies the condition
from the theorem 3 is a strong F-point. Let x be a strong F-point of a regular F-space
(P,v). Let A = P, xevA — A. Then there exists a set C such that C = 4, x e vC,
x ¢ v(vC — A — {x}). Let U be a closed neighbourhood. of x, disjoint with vC —
— A — {x}. Denote A* = AU {x}. Evidently, U nvC = U n [(vC n 4*) U
U (b€ — A%)] = U n (vC n A*) = A*. Consequently the set B'= U nvC — {x}
satisfies B < 4, vB <« U nvC = B U {x} and x € vB. :

2y In [1] an F-point is called a strong F-point. The notion of strong F-points from definition 3
does not occur in [1]. :

532



Lemma 2. Let x be a strong F-point of an F-space (P, v). If v is an F-modification
of some topology u on P, then x is an F-point of the space (P, u).

Proof. Let u be a topology on a set P, let v be an F-modification of u. Let x be
a strong F-point of (P, v) but not an F-point of (P, u). Then there exists an u-neigh-
bourhood U which contains no u-open (and consequently no v-open) neighbourhood
of x. Consequently U is not v-neighbourhood of x; hence xevd — A for 4 =
= P — U. Let B be a set such that B ¢ 4, xe vB, x ¢ v(vB — A — {x}). Let V be
a v-open neighbourbood of x, disjoint with vB — 4 — {x}. Put G =V — vB.
Evidently G is v-open. It is easy to see that ¥ vB = Vn [vB n (4 U {x})]. By
virtue of U = P — AthereisU n V A vB = {x}. Consequently the u-neighbourhood
U n Vof x is contained in G* = G u {x}. Thus the set G* is a u-neighbourhood of
each of its points and therefore it is u-open. Hence G* is also v-open. But this is
imposible, because x ¢ B, G* n vB = {x}.

Lemma 3. Assume x € P is not a strong F-point of an F-space (P, v). Then there
exists a topology u on P such that v is the F-modification of u and x is not an F-point
of the space (P, u).

Proof. If x € P is not a strong F-point of an F-space (P, v), there existsaset 4 = P
such that x € vA — A and that for every B = A with x € vB, there is x e v(vB — 4 —
— {x}). Now we define a topology u on P with the required properties: for y € P,
y * xletu, = v,; the system of all sets V' — A, where V' runs ever all v-neighbourhoods
of x, is a complete collection of u-neighbourhood of x. Now we prove that u>M =
= vM for every M < P (hence v is the F-modification of u). f M =« P, M n A = 0,
then evidently uM = vM. If M < A, then uM = vM — {x}, u*M < vM; but if
x€vM, then xeuv(vM — 4 — {x}) and therefore u*M = vM. Consequently,
w’M = u} (M — A) v u¥(M 0 A) = o(M — A) U (M " A) = vM for every M < P.
Evidently, x is not an F-point of (P, u) because x € u’4A — uA and its u-neigh-
bourhood P — A contains no u-open neighbourhood of x.

Theorem 4. An F-space (P, v) is a strong F-space if and only if each of its point
is a strong F-point.

The proof follows from lemmas 2 and 3.

Theorem 5. Every subspace of a strong F-space is a strong F-space.

Proof. If (Q, w) is a subspace of an F-space (P, v) and if for some x€ Q and
some A = Q there holds: xe wA — A4 and for every B = A with x € wB there is
xew(wB — A — {x}), then evidently xcvd — A and for every B = A with
x € vB, there is x € v(vB — A — (x)).

Note 2. Every metric space, and more generally every #F-space (cf. definition
in [1]), is a strong F-space; this follows immediatelly from theorems 3 and 4. Every
topological product of uncountably many spaces, each of which contains at least
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two points, is not a strong F-space. It is sufficient to show this for the topological
product of uncountably many two-point spaces only; we shall use the theorem 5.
Let P be the set of all characteristic functions on some uncountable set A, let v be the
product-topology on P. Denote by 0 the function zero. Let A be the set of all functions
x € P such that y(x) = 0 only for a finite number of x € A. Evidently, 0c v4 — A.
Let B = A, 0€ vB; we must prove that 0 v(vB — A — {0}). Let I = A be finite;
it is sufficient to find ¢ € vB — A — {0} such that ¢(x) = 0 for x € I. By virtue of
0 € vB, there exists a ¢, € B such that ¢,(x) = 0 for xe L. Let [, = {x €4; ¢,(x) =
= 0}; I, is finite and therefore we can choose a finite If = A such that [; € If. Then
we can find ¢, € B such that ¢,(x) = 0 for xelf. Let I, = {x€ 4; ¢,(x) = 0}.
Choose a finite set I; = A such that I, ¢ I3 and find @5 € B with @3(x) = 0 for

x€ly and so on. If we denote L= | [, and if ¢ is the characteristic function of

n=1

A — L, then, evidently, ¢ satisfies our requirements.

v

In this section the following question is solved: If (P, v) is an F-space, ® + D < P,
and no x € D is a strong F-point of (P, v), does there exists a topology on P, the
F-modification of which is v and in which no x € D is an F-point. Such as topology
does not always exist, as shown in the following example:

Example 1. In this example a T space (P, v) is construct such that there exists
a set D = P, no point of which is a strong F-point of (P, v), but if u is a topology
on P with F-modification v, then some x € D is an F-point of (P, u). The following
trivial results are used:

a) Let (P, u) be a space, D = P be u-closed. Let v be the F-modification of u,
let v, be the F-modification of u/D. Then v, = v/D.

b) Let 4 be an infinite discrete T; space, let (B4, t) be its Cech-Stone compacti-
fication. Let xo € fA — A. If u is a topology on A U {x,} with u < t/4 U {x,},
then u is discrete.

Now we construct the space (P, v): Let (D, w) be a dense-in-itself strong T, F-space,
D + 0. Let A be an infinite discrete space, 4 n D = 0, let (B4, t) be its Cech-Stone
compactification. We choose a point x,€ fA — A. We put P = D U A and define
the following F-topology v on P: for @ = P let vQ = Q u D if x, € (Q n A), and
vQ = QU w(Q n D) if x, ¢ t(Q N A). Evidently, (P, v) is a T,F-space. All points
from A are isolated in (P, v), hence D is v-closed. If x € D, then x€e vA — A;if B = A4,
xevBn D, then vB=BuD, vB—A—{x} =D — {x}, o(vB— A4 — {x}) =
= w(D — {x}) = D. Consequently, no point from D is a strong F-point of (P, v).
Let u be a topology on P, the F-modification of which is v. We show that some x € D
necessarily must be an F-point of (P, u). D is v-closed, v/D = w is a strong F-topology
and therefore (using a)) u/D = v/D. If some x € D is not na F-point of (P, u), then
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u, < v,; by virtue of b) and of the equality u/D = v/D, we have that x ¢ uA. Conse-
quently, if no point from D is an F-point of (P, u), then u4 = A and therefore v is
not the F-modification of u, because A is not v-closed.

Now we prove a sufficient condition for the existence of a topology with a given set
of non F-points and with a given F-modification (theorem 6). We shall aply this condi-
tion to the topological product of uncountably many F-spaces (theorems 7 and 8).

Theorem 6. Let D be a subset of an F-space (P, v). For every x € D let there exist
A, < P such that

1y xevA, — A, and if B < A,, x€vB then x € v(vB — A, — {x});
2) the system {A,; x € D} is disjoint.

Then there exists a topology u on P such that no point from D is its F-point, and
that v is its F-modification. Moreover, if D = P and vA, = P for all x, then ii is
discrete.

Proof. We define the topology u on P with the required properties: denote by ¥,
a complete collection of v-neighbourhoods of x. If x ¢ D, then ¥", is also a complete
collection of u-neighbourhoods of x. If x € D, then {V — A,; Ve 7.} is a complete
collection of u-neighbourhoods of x. Evidently x € u?4, — ud, for x € D, hence no
point from D is an F-point of u. Denote by u* the F-modification of u. Evidently
u < v, hence u* < v. Suppose that for some x € P there is u} < v,, and obtain
a contradiction. Clearly x € D. Let U be an u*-open neighbourhood of x, which is
not its v-neighbourhood. Clearly U is a u-neighbourhood of all of its point. By defini-
tion of the topology u, there exists a v-open neighbourhood V of x such that V — 4, =
< U. We put B=V — U. Evidently B < A4,, xevB. But x¢v(vB — 4, — {x}),
because ¥V n (vB — A, — {x}) = 0. Indeed, let ye Vn (vB — A, — {x}). Clearly
yeV — A, =« U.If y ¢ D, then U contains a v-neighbourhood of y, and consequently
y¢vB. If ye D, y + x, then there exists a v-neighbourhood V, of y such that V, —
—A4,c U. Put W, =VnV,; cearly, W, = (W, — A)u(W,nA,), W, — 4, <
cV—-A4,cU, W,nA,<V,— A, < U. Consequently W, = U, hence y ¢vB.
Evidently, if D = P and if vA, = P for every x, then ud, = P — {x}, consequently
{x} is #i-open, hence @ is discrete.

Note 3. May be noted from the preceding proof that:

a) Condition 2 from theorem 6 may be replaced by the weaker condition: If x € D,
yeDn (vA, — A, — {x}) then y ¢ v(4, N A4,).

b) It is easy to show that the order of the topology u, constructed in the preceding
proof is 2.

c) Evidently, if {4,; x € D} and {B,; x € D} are systems satisfying conditions 1}
and 2) from theorem 6, x € v(A, — B,)for some x € D, then the topologies constructed
from these systems are different.
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d) If u denotes the topology constructed on the set P in the proof of theorem 6,
then for every x € D there exists a set M such that x € u?’M — uM (put M = A,).
This property need not be satisfied in general for all not F-points. The following
trivial example is given: Let P = {1,4,4,...,0}. On P we consider the following
topology u: for M < P let 0 € uM if either 0 € M or M is infinite; 1/n € uM if either
1/ne Mor1/(n — 1)e M. Evidently 0 is not an F-point, because the only u-open set
containing 0 is P. But 0 € u?M — uM for no set M = P. A point x for which
x € u>M implies x € uM, was called a weak F-point in [1]. In [1] p. 136 there is also
given an example of a T;-space with a non F weak F-point.

Lemma 4. Let A be an infinite set, let [ A] denote the set of all its finite subsets.
There exists a disjoint system {M, ;; ke [A], L€ [A]} of subsets of [A] such that

1) if [k, []e[A] x [A4], g€ [A4], p €[A] are given, g " p = O, then there exist
me M, such that g =« m, m 0 p = 0; .

2) if [k, 1] # [K',1'] then for every me M, ,, m € M. ;. the set A(m, m’) —
— k U k' is not empty (where by A(m, m") is denoted the symmetric difference of m
and m’).

Proof. Let A be an infinite set, let [ A] be the set of all its finite subsets. Let n;, n,
be the projections of [A] x [A] onto [A], ny(k, [) = k, m,(k, 1) = I. Let I' be the
set of all couples [k, [], k, I € [A] for which k n Il = 0. Let A be a set, card A =
= card 4, let < be a well ordering of 4 such that the power of 4, = {f€ 4; f < a}
is smaller than the power of A for all x€ A. Let  be a one-to-one mapping of A
onto I'. Set Y, = m;y, Y, = m,o. Let ¢ be a mapping of 4 onto [A] x [4] such
that for every [k, [] € [A] x [A], and for every a € A there exists a f € A such that
B = o, ¢(B) = [k, I] (it may be easily proved that such a mapping exists). Set ¢, =
= 1,0, ¢, = n,¢. Now we shall construct a system {P,; « € A} of subsets of [A]
by transfinite induction. If «, is the first element of A4, put P, = {I}, where I €[4],
Vi) = 1, 1 v a(%g) = 0. Let o € A and let there be defined sets P (B € 4, B < )
such that:

1) card P, < card Ap and if y € A, y < B, then there exists an [ € Py with y/,(y) <
c Llny,(y) =
2)if p<a,y <oz me Py, g € P,, then A(m, q) — ¢4(B) U 0,(7) * 0.
Set P,=UI, P= U Pﬁ, F = U ¢,(B). Evidently card (4 — P U F) = card 4

lePg BRa
and therefore for every [3 =< o we can choose an element I;€[A4] such that [; N
N(A—=PUF)*0,y,(B) =l I, 0 Yy(B) = 0. Let P, be the set of all [;(f < «).
Evidently card P, < card 4, and for every 8 < « there exists an m € P,, for which

Yi(B) = m, m Y, (f) = 0 and if p <o, ke Py, then I — kU ¢y(«) U @,(B) + 0
for every I € P,. Now for [k, I] € [A] x [4] weput M, , = U P, Next show

acd, ¢(a)=[k,1]

that the system {M, ;; k, l€[A]} has properties 1) and 2) from the lemma: Let
[k, []e[4] x [4], ge[4], pe[4], be given, g n p = 0. Consequently [¢, p]eT
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and therefore /() = [4, p] for some a € A. Let f€ A, B = «, be such that ¢(B) =
= [k, I]. Consequently P; = M, , and P, contains an m with g = ¥,(2) = m,
m A Yy(a) = 0. Let [k, I] + [k', I'], me My, m’ € M,. .. Let a (or f) be the element
of A for which me P, (or m’ e P, respectively). Evidently o # . If a < f, then
m —mukuk'£0,iff f<a thenm —m' vkuk +0.

Lemma 5. Let A be an infinite set. For every 1€ A let (P, v,l) be a T,F-space
such that 2 < card P, < card A; let (P, v) be the topological product of all spaces
(P;, v3).

Then for every x € P there exists an A, = P such that vA, = P and that the
system {A,; x € P} is disjoint.

Moreover, if A is uncountable and for every A€ A the space (PA, vl) either
satisfies the first axiom of countability or it is regular and sequentionally compact,
then for every x € P is satisfied: x€ vA, — A, and if B < A,, x€vB then x€
ev(vB — 4, — {x}).

Proof. Let A be an infinite set, denote by [A] the set of all its finite subsets. For
A€ Alet (P;, v;) be a Ty F-space such that 2 < card P; < card 4, let (P, v) be their
topological product. For x, y, z € P we denote by x;, y,, z, the A" coordinate of the
points x, y, z respectively.

For x, y € P let x be equivalent to y if and only if x, # y, for at most a finite
number of elements of A. This equivalence defines a decomposition of P. Let S < P
be a system of representants of this decomposition. For y € S denote by C, the set
of all x € P equivalent to y. For x € C, denote by k(x) the set of all 1€ A for which
x; #* ;. Evidently k(x) € [A]. For y€ S, l € [A] let B, ; be the set of all x € C, for
which k(x) = I. Evidently {B,;; y€S, le€[A]} is the decomposition of P and
card B, ; < card [4]. Now we choose a mapping ¢ from P into [4] such that ¢ is
one-to-one on every set B, ;. Next for every 1 € A we choose a one-to-one mapping ¥,
from P, into P, such that ¥,(c) # ¢ for every ce P,. Let /4 = {M,,; ke[A],
1 e[A]} be a disjoint system of subsets of A with properties 1) and 2) from lemma 4.
For x € P consider the set M), ,(x)- For x € P let A, be the set of all z € P for which
there exist ] € My, ox) and p€[A4], p 01 = 0 such that z, = y,(x;) for e A —
—1lup, z;=x, for Ael and z; + x; for 1€ p. Now we show, that the system
o = {A,; x € P} has the required properties:

1. Prove that the system . is disjoint: a) Let x, x' € P be not equivalent. Conse-
quently for some infinite I' = A there is x; # x; forevery AeI'. Let z€ A4,, 2’ € 4,..
We have to prove that z = z’. By definition of the sets A4,, 4,. there exist sets I, I’ [4]
such that z, = y,(x;) for A ¢1, zj = y(x}) for A¢I'. All the mappings ¥, are one-
to-one, consequently z, =+ z;foriel' — Ul

b) Let x # x', but x€ C,, x’ € C, for some y € S. We choose z € 4,, z' € A, and
show that z # z’. Take I € [A], I’ e [A] such that z; = x, if and only if A€ ], 23 = X2
if and only if A€ l’. By definition of the sets 4, and A4,. there is I € Myx),o(x» I'e
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€ Moy px)- But then (from property 2, lemma 4) there is m = A(1, I') — k(x) u
U k(x") # 0. Prove that z, + z, for pe m. Let u€ m, let, for example, pel — I' U
U k(x) U k(x"). Then x, = y, for 1 ¢ k(x), x; = y, for A ¢ k(x') z; # x} for A ¢ 1’
and z; = x, for A€ l. Consequently z, = x, = y, = x,, * z,.

II. Now we prove that vA, = P: Let te P, me [A] be given, we have to find
z€ A, such that z, = ¢, for Aem. Let ¢ = {Aem; t, = x,}, p = m — q. Clearly
q 0 p = 0, hence there exists a set le M, ., such that g = [, I n p = 0. Take
ze P such that z, = x, for A€, z; = t; for A€ p, z; = Y,(x,) for Ae 4 — 1 U p.
Then z€e A,.

III. Now suppose that the set A is uncountable and that for every A € A and every
¢ € P, the following condition holds:

If V, is a v;-neighbourhood of ¢, then there exists a sequence {V2; n = 1,2, ...}
of v;-neighbourhoods of ¢ such that y,(c) ¢ V" for every n, and that every sequence
{d,} of points of P, where d, € V" contains a subsequence converging to some point
of V, different from y,(c). (*)

The condition (*) is clearly satisfied if ¢ has countable character or if (P;, v;) is
regular and sequentionally compact.

For x € Pevidently x e vA, — A,.Let B = A, x € vB. Prove that x € u(vB - A, -
— {x}). Let pe [4], for A€ p let a v;-neighbourhood V; of x, be given. Set Q, = P,
for AeA — p, Q, =V, for Aep and let U be the cartezian product of all sets
Q,(A€ A). We have to find a point ze U n (vB — A4, — {x}). For every Ae A let
{V:.} be the sequence of v;-neighbourhoods of x; with the properties from condi-
tion (*) Q, written instead of V,. By virtue of x € vB there exists a z! € B such that
zyeVy for Aep. Let py = {Ae 4; z; + ¥ (x;)}. p, is finite because B < A,.
Choose pf €[4], pf 2 py. Find z? € B such that z} e V2, for 1€ pf. Set p, =
= {Ae A; z2 * Y,(x,)} and choose p3 € [4], p3 2 p, and so on. In this manner

one defines an infinite countable set L= {J p, and a sequence {z"; n = 1, 2,...} of

n=1
points of B. For every A€ L the sequence {z}; n = 1,2, ...} contains subsequence
converging to a point of Q,. If we use the well-known ‘““diagonal method”, we obtain
an increasing sequence {k,; n = 1,2, ...} of positive integers such that lim z}* exist

for every Ae L. If we take ze P with z; = Y,(x;) for Aie A — Land z, = lim z&"

for A€ L, then it is possible to show that ze U n (vB — A, — {x}). Indeed 4 —
— L+ 0, y,(x;) + x, consequently z = x. z ¢ A, because z, + ¥;(x,) for infinitely
many A. Evidently, the sequence {z**; n = 1,2, ...} converges to z, consequently
z € vB. By virtue of (*), z is an element of U.

Note 4. The system S of representants in the proof of lemma 5 may be chosen
in 22°"** ways. If S and S’ are different system of representants, x€ S, x ¢ §', it is
possible to show that the set 4, constructed using S, and the set A’ constructed
using S’, are disjoint. Consequently x € v(4, — A4}).
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Theorem 7. Let (P, v) be a topological product of T,F-spaces (P,,v,), 1€ A,
let 2 < card P, < card A > N,. Let each space (P, v;) either satisfy the first
axiom of countability or be regular and sequentionally compact. Then there
exists at least 2°*¢ P different topologies u on P such that i is discrete, the order of
u is 2 and the F-modification of u is v.

Proof. Follows immediately from theorem 6, lemma 5, note 3. b) and note 4.

Theorem 8. Let N be an arbitrary uncountable cardinal number, let (P, v) be
a topological product of N-many T,F-spaces of cardinality = 2. Then there exist

N L. . . . .
at least 2%~ different topologies u on P such that the F-modification of u is v, the
order of u is 2 and every x € P is an element of u*A — uA for some A  P.

Proof. Let (P, v) be a topological product of T,F-spaces (P, v;), A€ A, 2 <
< card P,, card 4 = N > N,. Let ¢, be a closed decomposition of the space
(P, v;) such that 2 < card G, < N for every G, € %, and that the space (G,, v/G,)
either satisfies the first axiom of countability or is regular and sequentially compact
(for example G, ﬁnite), Let 4 be a closed decomposition (P, v) such that Ge ¢ if
and only if G is the product of G; € 4,, 1 € A. For every G € 4 construct the system
{A,; x € G} of subsets of G with the properties described in lemma 5 and then apply

theorem 6, using the system U {4,; x € G}.
Ge9

v

Now we generalize the methods of section 3 in the following direction: the order
of all topologies, constructed in sections 2 and 3 was < 2. Now we shall study topo-
logies with a given F-modification but with an order as great as possible. We define
the F-order of an F-space and show that among generalized Cantor’s discontinua
there exist spaces with an arbitrarily great F-order.

Definition 4. Let (P, v) be an F-space. We call the F-order of (P, v) (and denote it
by F-ord (P, v)) the supremun of the orders of all topologies on P whose F-modi-
fication is v.

This definition generalizes the definition of a strong F-space. An F-space (P, v) is
a strong F-space if and only if the F-order of (P, v) is 1.

We have proved that every subspace of a strong F-space is a strong F-space. But
if F-ord (P, v) = a > 1, then it is in general not true that every subspace has F-order
< a. We give a trivial example:

Example 2. The following trivial result is used: Let v be the F-modification of
both topologies u; and u, on P. If u; < u,, then the order of u, is greater than or
equal to the order of u,.

Let P ={1,2,3,4,5}; on P the following F-topology v is given: v{l} =
={1,2,3,4,5}, v{2} = {2,3,4}, v{3} = {3,4}, v{4} = {4}, v{5} = {4, 5}, for
A < Pisvd = | v{x}.

xed
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Evidently if u is some topology on P with F-modification v, then necessarily u{4} =
= {4}, u{3} = {3, 4}, u{5} = {4,5}. Moreover if we put u{2} = {2,3}, u{l} =
= {1, 2,5} then evidently u is the finest topology on P with F-modification v.
Consequently F-ord (P, v) = 2. But if we consider Q = {1, 2, 3, 4} it may be easily
shown that F-ord (Q,v/Q) = 3. A regular T,F-space with an analogous property
can be constructed (of course this is more complicated).

Lemma 6. Let Q be an open subset of a space (P, u), let M = Q. Then for every
ordinal o there is Q N u"M = (u/Q)* M.

Proof. If o = 1, then the equality holds. Let it is true for every B < a. Then
(w/QF M = u/Q(U (u/Q) M) = Q nu(U(Q nu’M)) = Q nu(Q n U u’M). But,
B<a B<a

B<a
Q being open, Q N u{Q N U u’M) = Q nu(U u’M) = Q n u*M.
B<a p<a
Lemma 7. Let Q be the intersection of an open subset and a closed subset of
a space (P, u). Then the order of u is not less than the order of u/Q. If the F-modi-
fications of u/Q and u are denoted by w or v respectively then w = v/Q.

Proof. Let u, n be the orders of u or u/Q respectively. The inequality v < u can
be easily proved using lemma 6. The proposition concerning the F-modifications of u
and u/Q is proved in [1] (p. 75, theorem 4.6.17).

Lemma 8. Let (P, v) be an F-space, Q < P be the intersection of a v-closed and
a v-open set. Every topology on Q with F-modification v/Q can be extended to the
whole P so that the F-modification of this extension is v.

Proof. Let (P, v) be an F-space, Q <= P, let ¢ be a topology on Q with F-modifica-
tion v/Q. We construct a topology u on P such that u/Q = t and the F-modification
of u is v in the following cases:

a) Q is v-closed. For 4 = P put ud = (4 — Q) U (4 A Q). Evidently u is
a topology on P,u/Q = t, u £ v. Consequently it is sufficient to prove that, if
ud = A for some A < P, then vA = A. Let A =v(A — Q) U {4 n Q). Then
AN Q) = A~ Q, hence A N Q is t-closed and therefore it is (v/Q)-closed. Conse-
quently Q nv(AnQ)=AnQ. But Q is v-closed so that Q nv(dn Q) =
= v(4 n Q). Consequently A o v(4 — Q) U v(4 N Q).

b) Qis v-open. For A = Pputud = (vA — Q) U t(A n Q). Evidently u is a topo-
logy on P,u/Q =t, u < v. Let A = P be u-closed, and prove that it is v-closed:
A=A - Q)uUit{An Q).An Qist-closed, consequently A n Q = Q nv(4 N Q).
But Q is v-open, so that Q N v(4A N Q) = Q nvA . Consequently A > (vA — Q) U
U (Q N vA). A

¢) Now, if Q = G n H, G is v-open and H is v-closed, then we extend ¢ from Q
to G by a) and then from G to P by b).
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Theorem 9. Let Q be the intersection of a closed set and an open set of an F-space
(P, v). Then F-ord (Q, v/Q) < F-ord (P, v).

Proof. This follows immediately from lemmas 8 and 7.

Theorem 10. Let (P, v) be a topological product of T F-spaces (P, v,) (€ A).
Then F-ord (P, v) = sup F-ord (P;, v;).
Aed

Proof. This follows immediately from theorem 9.

Note 5. The F-order of the topological product of T;F-spaces may exceed the
supremum of the F-orders of these spaces. This follows trivially from theorem 8 or 7.
But even the topological product of two strong FT;-spaces is not necessarily a strong
F-space. An example of such spaces is given.

Example 3. Let (P, v) be the countable bicompact Ty-space with only one non-
isolated point a. Let (P,, v,) be an uncountable, non-bicompact, Lindeloff T,-space
with only one non-isolated point b. Clearly (P, v,) and (P,, v,) are strong F-spaces,
but the F-order of their topological product (P, v) is 2. For, the F-modification of the
following topology u is the product-topology and the order of u is 2: if xe P,
x # [a, b], then u, = v,; the system of all sets [(a) x V,] U [V; x (b)], where V;
is a vy-neighbourhood of a, V, is v,-neighbourhood of b, forms a complete collection
of u-neighbourhood of [a, b].

Problems. 1. Does there exist two strong F-spaces, satisfying axiom T, such
that the F-order of their product is > 2?

2. Let (P, v) be a topological product of T;F-spaces (P, v;), A€ A. Does there
exist some upper bound for the F-order of (P, v) by means of the F-orders of (P,, v;)
and card A?

Convention. Let p be the order of a space (P, u) We shall say that the order of
(P, u) is p, if there exists a set A = P such that u”4 =+ u**'A4 for all & < p; we shall
say that the order of (P, u) is p1_ if such a set does not exist.

Lemma 9. Let (P, u) be a space, let v be the F-modification of u, M = P, « an
ordinal. Then

oM — U u'M < o(u*M — U u'’M), vM — M co(uM — M).

y<a y<a

Proof. Set C, = u’M. By definition, u"M = uC,. Let xevM — C,, x¢
y<a
¢ v(uC, — C,), we obtain a contradiction. Let ¥ be v-open neighbourhood of x,

which has an empty intersection with uC, — C,. Then x ¢ uC,, consequently there
exists an u-neighbourhood U, of x such that Uy = ¥, U; n C, = 0. Thus Uy N
N uC, = 0 and therefore for every y € U, there exists an u-neighbourhood V.V,,1 of y
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such that W) < ¥, W, n C, = 0.Set U, = Ll)] W, . Evidently U, =« V,U, n C, = 0,
YeU

consequently U, n uC, = 0. For every y € U, one can find an u-neighbourhood Wy2

of y such that Wy2 <V, Wy2 NnC,=0.Set Wy =U Wyz. The subsequent construction

yeUz

is evident. If we put U = | U,, then evidently x € U, U is u-open and consequenﬂy
n=1

v-open, U n C, = 0 and therefore x ¢ vC,. But vM < vC, and thus x ¢ vM, which
is a contradiction.

Theorem 11. Let (P, v) be an F-space, p an ordinal. Then there exists a topology
on P with F-modification v and order ju, if and only if for every ordinal o < u
there exists an A, < P such that

1) the system o = {A,;o < u}isdisjoint, A, + 0 for o < pand if pisanisolated
ordinal, then A, * 0; ‘

2) vAdp =U o, U A, < v4,;
B>a
3) a < B = pu, Bc U Ay= Az vB c o4, nvB).
y<a

Proof. Let u be a topology on P with F-modification v and order u,. We shall
obtain system o/ with the properties 1) 2) 3) from the theorem. Let M be a subset of P
such that u*M #+ u**'M for all & < pu. Set A4g = M, A; = uM — M and for 1 <
<o < plet’d, = u*M — \J u’M. The system {A,; « < pu} satisfies 1) trivially.

y<a

2) can be easily proved using lemma 9. Now we prove 3): set C, = U A,; clearly

y<a

uCy = C, U A,. Let « < p < pu, B = C,. Set B* = C, n vB. Evidently B « B* c
< vB, consequently vB* = vB. B* is a subset of C,, hence uB* < uC, = C, U 4,
and therefore uB* = (uB* n C,) U (uB* N A,). But uB* n C, < vB* n C, = vBn
n C, = B* and therefore uB* — B* < uB* n 4, < vB* n 4,. Let x€ Ay n vB,
x ¢ v(4, N vB). Let ¥ be a v-open neighbourhood of x, which has an empty inter-
section with A4, N vB = A, N vB*. Then »(uB* — B¥) < P — V and therefore,
using lemma 9 there is vB¥ — B* < P — V. Consequently x ¢ vB* = vB, which is
a contradiction.

Now let u be an ordinal, let & = {4,; « < u} be a system of subsets of an F-space
(P, v) satisfying conditions 1) 2) 3) from the theorem. We shall construct a topology u
on P with F-modification v and order u,. Consider the following topology u: for
xeP —UAletu, =uv,; for xe 4, (0 < p < p) all sets V. — U 4,, where a < §,

y<a

V is a v-neighbourhood of x, form a complete collection of u-neighbourhoods of x
(consequently u, = v, for x € Ay U A4;). Clearly u*A, = U 4, for o < p, hence the

ySa

order of u is u,. We shall prove that v is the F-modification of u. Denote by u* the
F-modification of u. Clearly u* < v and for xe 4, U 4; U (P — U &) there is
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u* =v_.Letl < p < pand for all yel A4, let u;" = v,. Let x € Ay, we are to prove
y<B
that then also u} = v,. Suppose that u* < v,; let U be an u*-open neighbourhood
of x, but not an v-neighbourhood of x. Then there exist a v-open neighbourhood V
of x and a < B such that V— U A, c U. Set B=V —U. Then Bc U 4, x€
y<a y<a
€ Ay 0 vB, consequently x € u(A, n vB). But now we can show that V.n 4, n vB = §:
let ye Vn A,, hence ye U because yeV, y¢ U 4,. U, being u*-open, is its u*
r<a

neighbourhood, consequently, using u;" = v,, its v-neighbourhood also. Clearly

U n B = 0, consequently y ¢ vB.

y

Convention. We will say that the cardinality of a set is N, if the set is finite.
If o is a finite positive ordinal we denote X, = N,_;. If « is an infinite ordinal, we
put N, = N,.

Theorem 12. Let (P, u) be a topological product of §” of two-point T;F-spaces.
Then F-ord (P, v) = p.

Proof. If p < 1 theorem 12 is trivial. Let u > 1. We shall find a system &/ =
= {A,; a < p} of subsets of P with properties 1) 2) 3) from theorem 11. Consider
the set P as the set of all characteristic functions on some set A, card 4 = '§”. For
o < p we define A4, as the set of all points y € P such that y, = 0 precisely on a set
of cardinality ,. Clearly v4, = P for every « < . Evidently the system {4, o < u}
has properties 1) and 2) from theorem 11. We prove that 3) is also satisfied: let
a<pBp=p BcUA, xcA;nuvB; we proceed to prove that x e v(4, N vB).

y<a

Let p = A be finite, take z € 4, N vB such that z; = x, for A€ p. Let 4, be the subset
of A such that x, = 0 it and only if A € A,; clearly card 4, = Qﬁ. Choose A; = 4,
card A; = N,. Forevery finite | = A, there exists an 'y’ € B such that 'y} = x, for
A€l u p. Denote by {A,) the set of all these 'y'. Let A, be the set of all 4 € A such
that for some 'y' € (A;) thereis 'y} = 0; then card 4, = N, because card {(4;> <
< N,and B c | 4,. For every finite I = A4, let 2y’ be a point of B such that 2y} = x,

y<a
for el u p, lét {A,) be the set of all these 2y'. Denote by A4 the set of all e A
such that for some 2y’ € {A,) thereis >y} = 0, let A; = A3 U A,. Now the construc-
tion of A} is clear, A, = A} U Ayandsoon. PutI' = 4,, 'y = Ay, n I'. Evidently
n=1

card I' = card I'y = N,. Let z be the point of P such that z, = 0if and only if A€ I',,.
Evidently z € 4,, z, = x, for A€ p; we shall prove that z € vB. Let a finite m < A
be given; we may take y € B such that y, = z, for Aem. Set k = m nI'. Then
there exists a positive integer n with k < A4,. The point "y* e {A4,> has the required
properties. Evidently "y* € B. For A€ A — I' thereis"y% = 1 = z,, for lem n T, =
= k n Ag there is "y = x, = 0 = z; and for Aem n (I — I'p) = k — I’y there is
i=x=1=1z, ’
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VI

Now we show that if, in the definition of a strong F-space (definition 1), we replace
the notion of F-modification by the notion of F-reduction, the situation is quite
different.

First only T;-spaces with be considered. We recall that a T;-topology v on P is
called maximal if v4 = P for every infinite 4 = P.

Theorem 13. Let (P, v) be a TyF-space. Then there exists no Ty-topology u on P
such that u # v, i = v if and only if v is maximal.

Proaf. Let a Ty F-space (P, v) be given. If v is maximal and u is a T;-topology on P
for which # = v, then v < u and hence v = u. Suppose that v is not maximal. We
have to find a T,-topology u on P such that u % v, # = v. First we construct such
a topology in four special cases:

a) Let there exist an infinite v-closed set T < P such that P — T # 0 and o/T is
maximal: We choose a € P — T and infinite sets M, N with M "N =0, M UN =
= T. Consider the following topology u: for xe P, x % a let u, = v,, a complete
collection of u-neighbourhoods of a is the system of all sets U U (M — K), where U
is a v-neighbourhood of a and K is finite. Evidently u = v, &# = v.

b) Let there exist an infinite v-closed discrete set C = P: We choose a T;-topology
u, on C such that u, # #,, #, is discrete. Consider the following topology u on P:
for x ¢ C let u, = v,, for x € C a complete collection of u-neighbourhoods is the
. system of all sets ¥V U U, where V is a v-neighbourhood of x and U is an u,-neigh-
bourhood of x.

c) Let there exist an infinite discrete set D = P such that if x€ vD — D, then
every v-neighbourhood of x contains D, except for a finite number of points. A T;-
topology u, for which u =+ v, i = v, may be constructed in the same way as in b)
(replacing always C by D).

d) Let there exist an infinite discrete set E = P such that the set vE — E is infinite.
Choose a € E. Consider the following topology u on P: for x € P, x + a let a complete
system of u-neighbourhoods consists of all sets VU (vE — E — K), where V is
a v-neighbourhood of @ and K is finite. Clearly u + v, & = v.

Now we show that for every non-maximal T;F-topology one of the four cases
considered obtains. v is not maximal, hence there exists an infinite v-closed set T}
such that P — T; % 0. Choose a, € P — T;. If v/T, is maximal then we have case a).
If v/T; is not maximal, then there is an infinite v-closed set T, < T; such that T} —
— T, % 0. Choose a, € T, — T,. If v/T, is maximal we have case a) again. If v/T,
is not maximal, then there exists an infinite v-closed set T3 = T,, T, — T3 + 0
and so on. It this process does not terminate after a finite number of steps, we obtain
an infinite discrete set 4 = {a;, a,,...}. If vA — A = 0, then we have case b)‘.
If vA — A is infinite, then we have case d). If vA — A is finite, then either there exists
an infinite C = A4 such that vC — C = 0 and then b) holds or there is an infinite
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D < A such that if xevD — D, then every v-neighbourhood of x contains D,
except for a finite set of points. Thus c) holds.

Note. If we do not suppose axiom T; the situation is more complicated. For
brevity we shall say that an F-topology v on P has the F-reduction property if the
following holds: if u is a topology on P, # = v then u = v. The following proposition
may be proved, using the proof of theorem 13 without any changes:

Proposition. Let a topology v on P have the F-reduction property. Then vA = P
for every infinite A < P.

Conversely it may be easily shown using the space shown in the part I that every
space with at least three closed points, fails to have the F-reduction property.
Consequently only very special topologies have the F-reduction property. In any
case, the following proposition holds:

Proposition. One very infinite set there exist infinitely many non-homeomorphic
topologies with the F-reduction property.

Proof. Let P be an infinite set, let n be a positive integer. We choose different

pointsay, a,, ..., a,€ P.Set A = {ay, ..., a,}, @ = P — A, and consider the following
1

topology v on P: for xe€ Q let v{x} = P, for 1 <[ < n let v{a;} = U {a,}, and for

M < P let oM = U v{x}. We prove that v has the F-reduction property. Let there

xeM
exist a topology u on P such that u + v, # = v. We are to obtain a contradiction.

If u, > v, for some x, then, since the complement of every v-neighbourhood of x is
finite, there exists an y € P such that x € u{y} — v{y}. Clearly y € 4. Let j be the
first integer such that 1 < j < n and that there exists an x € P with x € u{a;} —
— v{a;}. If xe Q, then g, u{a;} — v{a;} for every I < n, I > j. For,if a, ¢ u{a;},
then x ¢ Int U for some u-neighbourhood U of a,. Int U is a #-neighbourhood of a,;
but every #-neighbourhood of a; necessarily contains x. If x = a, for some [ > j,
then it may be proved in the same manner that a, €u{a;} for all m = j, m < L.
Consequently we may suppose that xe Q if j = n, and x = a;,,; if j < n. Let V' be
the smallest v-neighbourhood of x, let U be a u-neighbourhood of x such that

ji—1

Int U = V. Clearly a; ¢ V, a; € U. Hence a; € u(P — U) = u( U {a,}). Consequently
k=1

for some i < j thereis a; € u{a;} — v{a;}, which is the contradiction.

On an infinite countable set there may be constructed N, non—homeomorphlc
topologies with the F-reduction property and such that the closure of no point is
the whole space.
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Pe3rome

TOIIOJIOI'MU HA TMPOU3BEAEHUAX U PA3JIOXEHUAX
TOINIOJIOTUYECKHUX IMPOCTPAHCTB

BEPA TPHKOBA (Véra Trnkovd), I1para

ITycte & — pa3yioXeHHE TOMOJIOIMYECKOro NMpoCTpaHcTBa P, a m — mpoekuus P
Ha 2. Ha & Mbl omnpeJeiisieM OIEpaluIo u 3aMbIKAHUS CICAYIOIUM 00pa3oM:

s A = P umeet MecTo ul = n(n “ta ) (rp;e A 03HaYaeT 3aMBIKAaHME MHOXKECTBA A
B IIPOCTPAHCTBE P). OTta omnepanus yIOBJIECTBOPSET CICAYIOMIUM akcuoMam: uf) = 0,
o= udl, u( MO M) = udly U ud,. Booblie roBops, He 00I3aTENBHO TOKHA
OBITH BBHINOJIHEHA aKCHOMA u(u/{) = u.

B craTbe uccaeayroTCsl CBOMCTBA ONEpAIMU 3aMBIKaHMS, BBITOJIHSIOLEH 3TH TPU
akcoMbl (Takas oOIepalusi 3aMblKaHWs Ha3blBAECTCSL TOIOJIOTHEH; OrMepauus Xe,
BBITOJIHSIOIIAS] BCE YeThIPE aKCMOMBI, Ha3bIBaeTCs F-TOMOJIOrueif; 3TOMy COOTBET-
CTBYIOT U TOHSTHUS TOMOJIOTHYECKOE MIPOCTPAHCTBO U TOMOJIOTHYeCKoe F-mpocTpaH-
CTBO).

Pasnoxenne 2, cHabxeHHOE TOIOJIOTHEH #, HA3BAHO MAOMIHBLIM KE0YUEHM-RpO-
CMpaHcmeoMm B OTIIMIHNE OT KBOIIMEHT-IPOCTPAHCTBA, OTIPEAEIIEHHOTO 0ObIYHBIM 00pa-
30M.

Ecmu u — tomomorus Ha MHOXecTBe P, To MBI ompenenum mist M < P u*M =
= u( U u’M) (o, B o3navarorT mopsiakoBsle uncina). Ecimu ¢ — MOpSKOBOE 4HCIO

B<a
Takoe, yto u’M = u®*'M pna Bcex M, To F-Tonosoruto u® Mbl Ha3biBaeM F-mMopu-
¢ukanueit Tormosoruu u. HauMeHsbliee MOPSIKOBOE YUCIO (@ TaKOe, 4TO u? sBiseTcs
F-mMomubukanyeil u, Mbl Ha3bIBaeM HOPSAAKOM u. OUeBUIHO, KBOLUEHT-TOMOJIOTH
sBsieTcss F-momudukanyeil MIOTHOM KBOIMEHT-TOMOJIOTHH.

Teopema 1. Kaosicdoe monosoeuueckoe npocmpaHcmeo A6AAemcA NAOMHBLIM KE0-
yuenm-npocmpancmeom F-npocmpancmea.

Onpenenenne 1. F-mpocTpaHCTBO (P, v) MBI Ha30BEM CWJIbHBIM F-IIPOCTPAaHCTBOM,
‘eCJIM CIPaBeJIMBO YTBEPXJEHHE: ecu v sBisgeTcss F-mommbukamueit kakoi-mubo
TOTIOJIOTHH U, TO U = U.

Jaercss HEOGXOMMMOE U JTOCTATOYHOE YCIOBHE IUIL TOro (Teopema 4), 4To6bI
F-mpocTpaHCcTBO GBUIO CHUILHBIM F-IPOCTPAaHCTBOM. DTO YCIOBHE MMEET MPOCTOM
BUI UL peryispHbix F-mpocrpacts: Perymsipoe F-mpocrpanctso (P, v) Oymet
CUJIBHBIM F-IIpPOCTPaHCTBOM, €CJIM U TOJIBKO €ciIM I Kaxaoro A < P, x e vA — A
cymectByeT B < A Tak, uro vB = B U {x}.

B HaHbHCI/IIHCM TIOHATHUE Tl-l'IpOCTpaHCTBO O3HA4Ya€T TOIIOJIOrM4YECKOC MPOCTPaH-
CTBO, B KOTOPOM KOHE€YHBIC MHOXECTBA 3aMKHYTBL.
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Teopema 8. ITycms (P, v) — monoozuueckoe npou3eedeHue HecuemHo20 KoAu-
uecmgea xoms 6wl 0syxmoueunvix Ty- u F-npocmpancms. Toz0a cywecmeyem 2%
pasauunblx monoo2uii u Ha P nopadka 2, F-moouguxayueii komopwix aéasemcs v,
u 044 kaxncdozo x € P cywecmeyem H < P max, umo x € u>H — uH.

Hasosem o6o6wennvim duckonmunyymom Kanmopa xaxnoe ToNoIOrHYECKoe npo-
U3BENCHUE XOTs Obl Ny nBYXTOYeuHBIX T';-NPOCTPAHCTB.

Teopema 12. [Jua kancdozo nopadkosozo uucaa 1 cywecmeyem 0606ujennblil
Ouckonmunyym Kanmopa (P, v) max, umo v aéisemcs F-mooupurxayueii monoaozuu
nopaoxa .

B cratbe UCCICQYy TCsi HEKOTOPBIE JAJIbHEHMIIUME COOTHOILUEHUS. U TOHITUSA

(F-pemyxius, F-TIOpSIIOK), CBS3aHHBIE C ONMpEEICHHBIMU TAKHM OGLIIM obpazom
TOTOJIOTHSIMH.
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