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Yexoc/10BanKnii MaTeMaTHYeCKHii xkypua, 1. 14 (89) 1964, Ilpara \

NON-TANGENTIAL LIMITS OF THE LOGARITHMIC POTENTIAL

Joser KRAL, Praha
(Received July 26, 1963)

Necessary and sufficient conditions are established securing the existence of
non-tangential limits of the logarithmic potential of the double distribution
with any continuous density.

Introductory remark. In the present paper we continue the investigation of the

behaviour of the logarithmic potential of the double distribution
Wi(z) = Im f FO) 4
k{—z

with any continuous (real-valued) density F for z approaching the curve K. We have
showed in [5] (cf. also [2]) that for a simple closed curve K a necessary and sufficient
condition securing the uniform continuity of WF(z) on every complementary domain
of K can be formulated in terms of the quantity v*({) defined as follows:

2n
(D) = j WK(Z, o) da,
0

where p({, a) denotes the number of points at which K meets the half-line {z; z =
= { + rexpia, r > 0}. Now we show that v*(() together with an analogous quantity
uX(¢) to be defined below is useful also for investigation of non-tangential limits
of Wi(z).

Suppose that K is a simple oriented rectifiable curve (which need not be closed)
in the plane and fixanne K. Let S = {z; z =5 + rexp if, 0 < r < R} be a “non-
tangential” segment which means that, for sufficiently small 6 > 0,

n + rexpiy¢ K whenever [y — | <6 and 0 <r <R.

We are concerned with the following problem:
What necessary and sufficient restrictions are to be imposed on K to secure the
existence of .

(1) lim Wi(z), z€S

zon

for every continuous function F on K?
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Defining

W) = j ;v"(c, 0 de.

where v({, ¢) denotes the number of points at which K meets the circle {z; |z — (| =
= g}, we obtain the following answer (which was announced without proof in [2]):

In order that the limit (1) exist for every continuous F on K it is necessary and
sufficient that

) () < + o0,

3) supr~tuf(n) < +o0.
r>0

Note that (2), (3) do not depend on S. If (1) exists for at least one non-tangential
segment (and every continuous F) then (2) and (3) hold and, consequently, (1) exists
for every non-tangential segment S. If (2), (3) take place then more can be said about
(1) and its value can be determined. This is done in §2 where also some related
results for a more general class of (non-simple) curves are presented. Proofs depend
on some results concerning v* and u) established in [4] (cf. also [3]) which are
completed in § 1 of the present paper.

It is interesting to observe that (2) and (3) imply

4 supr ' A{¢; LeK, [ —n| <1} < +o0,

r>0
where A stands for the Hausdorff linear measure ( = length) on K. The converse is not
generally true; only the implication

() =0

is easily verified. While (4) holds almost everywhere (1) on K provided K is rectifiable
the length of {; n € K, v®(n) = + o0} may be positive as shown by an example in § 3.

1

Let us first recall some definitions introduced in [4] (cf. also [2]). Let y be a path
(= continuous complex-valued function) on <a,b) = {t; a <t < b}. If z€E,
(= the Euclidean plane, which is identified with the set of finite complex numbers),
0 <r =< o0 and a € E; (= the set of finite real numbers) we denote by pf(a; z) the
number (possibly zero or infinite) of points in {t; te<a, b), 0 < [y(t) — 2| <,
¥(t) — z = |Y(t) — z| exp in}. Since #¥(a; z) is Lebesgue measurable with respect
to o we may define 4

2n
v(z) = J p (s z) dar .
0
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Similarly, let v¥(g; z) stand for the number (0 < v¥(g; z) < + o) of points in
{t; te<a, b, [W(t) — z| = o} .

v¥(o; z) being Lebesgue measurable with respect to ¢ we may put

u¥(z) = Jlrv‘”(g; z)dg.

0

The following result derived in [4] will be useful below:

1-1. Lemma. Let n € Y(<a, b)), R > 0, B € E, and suppose that there existsa § > 0
such that n + rexp iy ¢ Y(<a, b)) whenever |y - ﬁl <d,0 <r <2R.
Then

sup 7 ul(n) < k. (oh(n) + sup oh(n + rexpif),
0<r<2R

0<r<R

sup vh(n + rexpif) < m.(vix(n) + sup r” 'u¥(n))
‘ 0<r<2R

0<r<R
with constants k, m depending on d only.

1-2. Notation. N,(z) will stand for the number (possibly zero or infinite) of points
in Yy~Y(z) = {t; te <a, b), Y(t) = z}. We shall write simply v¥(z) instead of v¥(z).
If f is a (complex- or real-valued) function on the interval J we write var [ f; J] for
the variation of f on J which is defined as the least upper bound of all the sums

3166 ~ fla)

{ay, by), ..., <a,, b,y ranging over all finite systems of non-overlapping compact
intervals contained in J.

Suppose now that ¢ is a continuous complex-valued function # 0 on J and denote
by 9(t) a continuous single-valued argument of ¢(f) on J. If @ < b are the end-points
of J and if there exist finite limits

%(a+) = lim9(f), 9(b—)= lim 8(t)
t—a+ fﬂb—
we put
darg[p; J] = 3(b-) — Y(a+).
(Clearly, 4 arg [¢; J] is independent of the particular choice of 3.)

1°3. Remark. Let  be a path on <{a, b), R > 0, z € E, and denote by & the system
of all components of

{t;te<a, by, 0 < |y(t) — z| <R}.
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Using the Banach theorem on variation of a continuous function one easily proves
that the quantities u}(z), vs(z) defined above have the following meaning:

(%) uf(z) = ZI:var, [w(r) — z|;1], I€8,
(6) vh(z) = ;var [9:1], I€©,

where (1) denotes a continuous single-valued argument of y(t) — z on I (cf. 22 and
2°5 in [4]). Hence it follows easily that, for any R > 0 and z € E,,

(7) uf(z) < var, [|y(t) — z|; <a, bY] < var [y; <a, b)].
We have also
(8) (z) = sule]A,arg [¥(1) = z; <a; bp]]
i=
{ay, by, ..., {a, b,) ranging over all finite systems of non-overlapping compact

subintervals in <a, b) — ¥~ Y(z) = {t; te{a, b, Y(1) % z}. If var[y;<a, b)] <
< 400 and z ¢ Y({a, b)) then

) (z) £ 07 '(2) . var [¥; <a, b)],

where o(z) = inf {|z — Y(t)|; a < t < b} (cf. 1"12 in [5]).
Using the notation introduced in 1-2 we can formulate the following lemma:

14. Lemma. Lety be a path on {a, b), { € E,, z€ E;, — y({a, b)) and suppose
that the segment with end-points z, { meets Y({a, b)) at most at {. Then

4 arg [W()) = z; <a, BY]] £ 0*(0) + 2n(Ny(0) + 1).
Proof. If the segment with end-points z, { does not meet y({a, b)) then, by lemma
1'6 in [5],
|4, arg [Y(?) — z; <a, b)]| < |4, arg [Y(t) — {; <a, bY]| + 2z < v¥() + 2=

In case { € Y(<a, b)) our lemma reduces to lemma 18 proved in [5].
On account of 1'4 we shall prove the following result to be applied in § 2:

1'5. Proposition. Let  be a path on {a, b), y({a, b)) = C and let G< E, — C
be an open set with boundary B + 0. Then

(10) sup v¥(z) < 2 sup v¥(n) + 87 sup Ny(n) .
zeG neB neB

Proof is similar to that of theorem 1-11 in [5]. Suppose that

¢, =supv¥(n) < +o0, ¢ =supNy(n) < +o0

neB neB
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and put ¢ = 2¢, + 8nc,. Further fix a z,€G and an arbitrary d withd < v¥(z,). Inorder
to prove (10) it is sufficient to show that d < c. Denote by g(f) a continuous single-
valued argument of y(f) — z, on <a, b) (so that, by 1'3, v‘”(Zo) = var [9; {a, b}]).
There is a subdivision {a = t, <... <t, = b} of {a, b) sych that

a < 3J3(t) = 9(1,-1)

Put s; = sign (%(t;) — 9(¢;-1)) and define

14
h(z) = lejA,arg [W(t) — z; <tj-y,t>], zeE,—C.
=
Thus

hzo) = 3 J9(t) = 8(1,-1)| > d

and h is a harmonic function on E, — C > G with lim h(z) = 0 (cf. 110 in [5]).
2]~

‘We shall prove that, for every n € B,

(11) limsup h(z) < c.
zon
zeG

This will imply, by the well-known property of harmonic functions (cf. 1'9 in [5]),
that b < ¢ on G; in particular, ¢ = h(z,) > d and the proof will be completed.
If ne B — C then h is continuous at 7,

lim h(z) = ho) < 3| arg [0 = 15 <10 1] < %)
z—n ji=

(cf. remark 1'3) and (11) is true.
Suppose now that y€ B n C, denote by J, the set of all je{l,..., p} with
oty Yy (n)=0and put J, = {1,...,p} — Jy,

C = UW((’,'—b ), jeJi (k=12).
J
Further define the function k, on E, — C, = G, by

h(z) = Ysjdarg[y — z; by, 1] jede (k=1,2).
J
Then h, is continuous at n € G, and

(12)  limhy(z) = by(n) < Y |[darg [V — m; <ty Il < v¥(n) S ey

Jjely

Let us associate with any z € G a point {, € B such that the segment with end-points z,
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{, meets B at {, only. Writing y; = Wl(,,_,,.» and using 1'4 we obtain for every
zeGand jeJ,

(13) [darg[¥ — z; <tj_q, 1] < 0H(C) + 20(N, (C) + 1).
We have
(14) ME) = ¥ oML 2 T, Jed,
j=1 J

(cf. the equality (8) in [5]). The number of elements in J, does not exceed 2N,(n)
and, consequently,

Z(N:p,-(cz) +1)= 2N(C,) + 2Ny(n) < 4c, .

jeJa

Hence we conclude on account of (13), (14)

hy(z) S Y |darg [ — z; tj-1 ]| S 0¥(C,) + 8ne, < ¢y + 8me, .
: JjeJz

This together with (12) implies
lim sup h(z) = lim sup (hy(2) + hy(2)) < lim hy(z) + sup hy(z) < 2¢; + 8nc, .
-n zeG

zon z
zeG

We see that (11) holds again.

1'6. Remark. The inequality (10) could be further improved. This will not be
discussed here because the only fact relevant for our purposes is that the boundedness
of the right-hand side in (10) implies the boundedness of v¥ on G (cf. also [3]).

2

We shall assume throughout this paragraph that Y = y; + iy, (¥4, ¥, real-valued)
is a path on <a, b) with

var [{; <a, b>] < +0, ¥(<a, b)) =C.

2'1. Definition. Let z € E, and denote by & the system of all components of {a, b) —
— ¢y ~Yz). With every I €& we associate a continuous single-valued argument
93(#) of Y(t) — z on I. Given a (real-valued) function f on <a, b) we define

wieif) = 3 [ 760200
IS J 1
provided the Lebesgue-Stieltjes integrals on the right-hand side exist and their sum

is meaningful. (Clearly, this definition does not depend upon the particular choice
of 91.) If F is a function on C we put f(f) = F(y(2)), a < t < b and define

W¥(z; F) = w¥(z; f) .
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2-2. Remark. Let z ¢ C and denote by 9,(f) a continuous single-valued argument
of Y(f) — z on <a, b). In order that

Wz f) = j "£(1) ds,()

exist for any continuous function f on <a, b) it is necessary that
¥(z) = var [9,;<a, b)] < +

(cf. remark 1°3). It is known that var [{; <a, b)] < + o provided v¥(z) is finite for
at least 3 z’s which are not situated on a single straight-line (cf. [3]). We see that the
assumption concerning the rectifiability of ¥ made at the beginning of § 2 is quite
natural in connection with the investigation of w¥(z; f)-

2:3. Proposition. Put s,(t) = var [{;<a,t)], a £t < b, and suppose that f is
integrable(s,) on {a, b). Then w¥(z; f) exists for every z = x + iy ¢ C(x, y€ E;),

Wz ¥(t) — i) — -
Wz f) = jf()wl() e wl()+jf<t>|¢() 40

e [
Im 1/1()—z!/l()

and w¥(z; f) is a harmonic function of the variable z on E, — C.

Proof. Fix a z = x + iy ¢ C. Let 3,() be a continuous single-valued argument
of Y(t) — z on {a, b). Then

s+ [ g [ =y
50 = 8.a) + 1 o o) = [ S d) +

‘lll(u) u a t u Sy \u
) o St = 9,(>+LH,()dw<),

where we put
) = =) = )1 + () = D) _ s
() — 2|? ds,
(the derivative dy/ds, is taken in the sense of measure theory — cf. [15], chap. VIII,
§§ 4—5). Clearly, |t,| < 1 almost everywhere (s,) on <a, b} so that H,(u) is almost

everywhere bounded and f(u) H,(u) is integrable (s,,,) on {a, b). Hence (cf. [15],
chap. XI, § 3, exercise 8)

wi(z; f) = j bf (1) d3,(t) = fbf(t) H (1) dsy(t) =

vl0) - vl) - [0
ff()lw() ‘()+Jf(’)|¢() o a0 =1 fw( ;W0
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*£(1) dy (o) .

a l/l(t -z
harmonic on E, — C.

Since is an analytic function of the variable z on E, — C, w¥(z; f) is

2'4. Theorem. Let n€ C, R > 0, B E, and put
S={z;z=n+rexpif, 0 <r <R}.

Suppose that there exists a & > 0 such that

(15) n+rexpiy¢ C whenever |y—p| <3,0<r <R.
If
(16) lim sup |[w¥(z; f)| < +o0

z—

zeS
(in particular, if the limit
lim w¥(z; f) + + o0
Zes
exists) for every continuous function f on {a, b) then
(7) () < +eo,

(18) sup r 1 u¥(n) < +o0.

r>0

Proof. Denote by #({a, b)) the Banach space of all continuous functions f on
<a, by with the norm | f| = max |f(t)|, a £ t < b. For every z€ S, w¥(z, f) may
t

be considered as a linear functional on %(<a, b)); its norm is equal to v¥(z) (= var
[8.; <a, b)>], where 3,(t) is a continuous single-valued argument of Y(f) — z on
{a, b)). Suppose that (16) holds for every f € é(<a, b)). Let {z,} be an arbitrary
sequence of points in S tending to 1 as n — co. Since sup |w¥(z,; f)| < + oo for

every f € %({a, b)) we conclude on account of the well-known Banach-Steinhaus
theorem in Functional Analysis (cf. [13], n°s 55 and 31) that

(19) sup 1¥(z,) < +o0.

(19) being valid for any sequence of points z, € S tending to 7 we obtain that, for
sufficiently small R, > 0,

(20) +00 > sup v¥(n + rexpif), 0 <r =2R,.

Since v*(z) is lower semicontinuous on E, (cf. 1.12 in [5]), (20) implies (17). Applying
lemma 1'1 we derive from (20)

(21) ' +o0 >supr tul(n), 0 <r <R,.
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On the other hand, for r = R, the following inequalities are true (cf. (7)):

Yu¥(n) < Rg' ul(n) < Ry ' var [y; <a, b)] .
This together with (21) concludes the proof.

2'5. Remark. In preceding theorem, it is not necessary to require that (16) should
be valid for every f € (<a, b)). Let Q be a finite subset in {a, b) and let Z(Q) stand
for the subspace of all f € %({a, b)) vanishing on Q. It is easily seen that (17) and (18)
still remain in force if (16) is assumed to hold for every f € Z(Q) only (cf. lemma 25
in [5]).

Taking Q = {a, b} we obtain easily the following

2-6. Corollary. Let us keep the notation and the assumption (15) introduced in 2°4.
Further suppose that the path  is simple on {a, by (which means that y(u) + y(v)
whenevera Su <v<b,v—u <b~a).1f

lim sup |[W¥(z; F)| < + o

zon
zeS

(in particular, if the limit
lim W¥(z; F) + £ o

z=n
zeS

exists) for every continuous function F on C then (17) and (18) hold.

Proof follows at once from the preceding remark and the fact that any f € Z(Q),
where Q = {a, b}, can be expressed in the form

£y = F()), a<tsb,

where F is a continuous function on C.

The converse of the above corollary (as well as of theorem 24 in case that y ~'(n)
is finite) is also true (cf. remark 213 below). The proof depends on several simple
lemmas.

2+7. Lemma. Suppose that there exists the limit
i} (a) = Y1) = y(a) _
oo WD) — ¥@)]

(x€E,). Leta < ay < a, <o + 2m, R > 0 and suppose that the set

exp io

= {Y(a) + rexpiy; & Sy <, 0 r < R}

is disjoint with Y((a, b)). Then there exists a continuous single-valued argument
3(t, z) of Y(t) — z on (a, by x P (te(a, by, z € P) and, for every r€ (0, R) and
YE <d1, (12>,

(22) lim §(t, Y(a) + rexpiy) — lim §t, Y(a)) =y — « — m.
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Further we have for any a, €(a, b)
(23) = lim var, [)(t, z) — (¢, ¥(a)); <ay, b)],
z-y(a)

Proof. Fixa é > 0 small enough to secure that
H = {—rexpia; r = 0}
be disjoint with
{sexpi(x + ®) —rexpiy; s >0, r=0,|0| <8, yeloy, a)}.

Let A({) be a continuous single-valued argument of { on E, — H, « — 1 < A({) <
< a + nforevery { € E, — H. We have a t, € (a, b) such that

€(a '/’(t) ‘l’()eex'ia ; < 0}.
A T R

Clearly,
t,z) = A(Y(t) — z) (a <t =<ty z€P)

is a continuous single-valued argument of Y(f) — z on (a, t,» x P. The reader will
easily verify that (¢, z) can be extended to a continuous single-valued argument
of Y(t) — z on (a, by x P (which will be denoted by 9(t, z) again). We have for
re(0, R), ye{ay, a,) and t€(a, to)

¥(t) — (W(a) + r e){p iy) = — rexp iy( l//(t) !/f(a))

—T exp iy
=rexpi(y — n) (1 + f(2)),
where f(f) - 0 as t - a+. Hence we obtain
3(t, ¥(a) + rexpiy) = A(rexp i(y — m) (1 + f(?))) -
—»> A(rexpi(y —m)) =y —m=m, t—>a+

(note that @ — @ <y — n < « + m). Finally,

hm .9(1 ¥(a)) = llm A(l[l(t) —¥(a)) = hm (M) = A(exp io)= o

and (22) is established. (23) is merely a consequence of proposition 112 proved in [5].
(Let us notice that only for the proof of (23) the assumption var [; {a, b)] < + o0
is needed.)

464



2'8. Lemma. Let I' be a non-void set, R > 0 and suppose that for every yeI' and
r €(0, R) there is given a function 9! on (a, b). Let 3 be a function on (a, by and le;

lim 92(b) = 9(b),
r-0+

(24) limvar [9] — 9; <ay, b)] =0

r-0+
uniformly iny eI for every a, € (a, b). Further suppose that

lim sup sup var [9]; (a, b)] < +o0,
r-0+ yel

lim 9)(f) = c(y) for every re(0,R) and yer.
t—=a+

Then var [9; (a, bY] < + 00 and, for every continuous function f on {a, b),

(25) lim f(2)d9i(r) = F(£)d9(t) + f(a) (8(a+) — <(y))

120t J(a.b> (a.b)
uniformly inyeT.

Proof. (25) is easily checked if f reduces to a constant on {a, b). We may therefore
assume that f(a) = 0. Given ¢ > 0 we have an a, €(a, b) such that

ast=sa =|f)) <e.

Put k = lim sup sup var [9}; (a, b>]. By (24) also

r-0+ yel
var [9; (a, b)] = lim var [$;<d, b)] < k.
d—a+
Hence we obtain

fas;

(a,a1)

lim sup sup < ¢k,

r=0+ yel

fds

(a,a1)

<¢k.

Further we have

f fdyr — f fd9| < max |f(r)| var [9] — 9; <ay, Y] >0
< < 4 ]

aj,by ay,b)

uniformly in y e I' as r — 0+. We conclude that

"

fdasr—| fd9
J (a,b) (a,b)

lim sup sup < 2¢k

r—»0+ yell

which completes the proof, because ¢ was an arbitrary positive number.
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Now we are able to prove the following

2'9. Theorem. Let ne C, Y~ '(n) = {a}, v¥(n) < +oo. Then there exists the limit

7, (a) = lim YO —n _ exp ia .

Y ivat (1) — 1
If, further,
(26) supr~tu¥(n) < + oo

- r>0
then, for every continuous function f on {a, b),
(27) lim w¥(n + rexpiy; f) = w¥(n; f) + f(a).(m + & — )
r-0+

uniformly in y € oy, ¢,» whenever o < a; <'a; < o + 27.

Proof. Let 9(f) be a continuous single-valued argument of ¥(f) — n on (a, b).
Since +o0 > v¥(n) = var [9; (a, b)] (cf. remark 1'3), there exists the limit
lim 8(¢) = a. Clearly, lim (y(t) — n)/|¢(f) — n| = expia. Let & <a; <a + 7 <
t>a+ t—a+
< o, < a + 27 It is easily seen that there is an R > 0 such that

P={11+rexpiy;0§r§2R, o £y =y}

is disjoint with ¥((a, b)). By lemma 27, we have a continuous single-valued argument
9(t, z) of Y(t) — z on (a, by x P. We may clearly suppose that 9(t, ) = 9(t) so
that lim (¢, n) = o. Writing 91(¢) for 9(t, n + r exp iy) we have by 27

t—a+

(28) lim9Y(t) =y —n forevery ye{a;,a,» =TI and Ire(O, 2R,
t—a+

(29) lim sup var [9] — 9; <{ay, bY] =0 for every a; €(a, b) .

r>0+ yel
We may assume that R is small enough to secure that, for k = 1, 2,
O0<r=<2R=>n+rexpin¢C
(observe that +exp ioy * t, (a)); clearly, also
(0O<rs2R |y—o) <d)=ntrexpiy¢C

for sufficiently small § > 0. Using lemma 1°1 and (26) we obtain that v} is bounded on

Sc={z;z=n+rexpin, 0Sr <R} (k=12).
Let us fix a t, € (a, b) such that

teda, tyy = |y(f) — n| <3R

466



and put @ = ll/l<,,,,l>, w = l[/|<tl,,,). It is easily seen that, for k = 1, 2,

0= r<iR=v%n+ rexpin) < vk(n + rexpix,),

so that v* must be bounded on

§k={z;z=n+rexpiak,OgrglR}.
Put

M = {n+ jRexpiy; &y Sy = o}

Since +oo > var [¥; {a, bY] = var [¢; <a, ;)] and M has a positive distance

from C o ¢(<a, t;)), v° is bounded on M (cf. remark 1-3). Noting that §, v §2 uM
is the boundary of

G={n+rexpiy; 0 <r <3R, a; <y <a,}

we conclude on account of 1°5 that v® must be bounded on G = {z; z€ P, |z — y| £
< 1R}. Because G has a positive distance from w({ty, b)), v* is also bounded on G.
Consequently, v¥ < v* + v® is bounded on G. We have for 0 < r < %R, o, Sy Sa,
the equality v*(n + r exp iy) = var [97; (a, b)] (cf. remark 1-3) so that

(30) lim sup sup var [97; (a, b)] < + 0.

r-+0+ vel
Taking into account that (¢, z) is continuous on (a, b) x P we obtain

(31) lim sup |9(b) — 9¥(b)| = 0.

r-+0+ vyel
By (28)—(31) we are justified to use 2'8 whence, for every continuous f on <a, b,

W+ rexpinf) = | £(6)d9i) "’j () dS(r) +

(a,b) (a,b)
+f(a). (@ — v+ m) =w(nf) +fa).(e =y +n) (r—>0+)
unformly in y € I'. Thus (27) is proved.

An analogous theorem concerning lim w¥(z; f) is also true.

z=Y(b)
2.10. Theorem. Let ne C, y () = {b}. I
(32) W(n) < +o

then there exists the limit

7, (b) = lim M=ex io .
+(0) = lim In — w(1)| i
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If, further, (26) holds then, for every continuous function f on <a, b),
w'(n + rexpiy; f) > w¥(n; f) + f(b) . (y — « — m)
as r = 0+ uniformly in y e {ay, a,> whenever

o <oy Sa, <o+ 2n.

Proof is easily derived from 2'9 where y is changed for the path y on {(—b, —a)
defined by
Wty =y(-1), —b=t= —a;

then w¥(z; f) = —w¥(z; f) provided f(1) = f(—1) (te {~b, —aD) and 2'10 follows
at once. .

Combining 2'9 and 2°10 one obtains

2:11. Theorem. Let ne C, Y~ '(n) = {to}, a < t, < b. If (32) takes place then
there exist the limits

‘J:J,r (to) = lim _‘/’Lt_)__‘j

t>t0+ ‘lp(t) - 11] oXp i

- . l//(t) -n .
o) =1 LA W A .

Ty (t ) . 1:1_ ‘n (t)l exp 1

We may clearly suppose that o, < a_ <o, +2n. Put A=n— (a_ — ay). If
also (26) holds then, for every continuous function f on {a, b},

(33) rlirgl+ww(n + rexp iy; f) = w(n; f) + f(to) . (v + 4)
uniformly in y € E for every compact E < (ay, a_),

(34) rlﬂig':w"’(r, + rexpiy; f) = w(n f) — f(to) . (n — 4)
uniformly in y € F for every compact F < (a_, o0, + 27).

Proof. Put ¢ = 11/|<a,,0>, = ‘l’lm,b)- Let us first consider the case a_ <7y <
<a, + 27 By 2°10

(35) liglw"(r, + rexpiy; f) = w(n; f) + f(to) . (y — 2= — )

uniformly in ye F for every compact F < (a—, oy + 2m) < (a—, a_ + 27). In
a similar way 29 yields

(36) 1ir;1+ww(n + rexpiy; f) = w(n; f) + f(to) . (m + @y — 7)

uniformly in y € F for every compact F < («_, a4 + 2m). On account of (35), (36)
we obtain (34) (note that w?(...; f) + w(...; f) = w¥(...; f)).
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Let now a, <y <a_. Then o <y 4+ 271 < a_ + 2% and we derive from 2°10
(37) lim wo(n + rexp iy; f) = lim we(y + rexp i(y + 2n); f) =
r-0+ r-0+
= wo(n; f) + f(t)) . (v + 21 — a- — m) = wo(n; f) + f(to) . (y + 7 — )
uniformly in y € E for every compact E < (a,, a_) (- — 2m, «_). 2'9 implies
(38) lim w(n + rexp iy; f) = w(n; f) + f(to) - (n + &y — 9)
r-0+

uniformly in y € E for every compact E < (a,, a_). (37) plus (38) gives (33) and the
proof is complete.

As a corollary of 2°9—2°11 one obtains

2-12. Theorem. Let n€ C, ¥~ '(n) = {t; <... <t,}. If (32) takes place then there
exist the limits

1, (1) = lim () —n forevery t, <b,

t i+ ll[l(t) - I
SN WD) =7
7, (1) —!11‘1:1_ i — 0 for every t, > a.

Let us agree to write 7, (t;) = 1,(a) in case t, = a, 1,(t,) = t;(b) in case t, = b
and put T = U {r;(tk) 1, (t,)}. If, further, (26) holds then, for every continuous

function f on (a bY, w¥(n + r(; f) tends to a limit as r - 0 + uniformly in CeK

for every compact K = {(;{ € E,, (| = 1} = T. If y~ () < (a, b) or ¥(a) = ¥(b)

then lim w¥(n + r{; f) is constant on every component of {(; || =1} — T.
r-0+

Proof may be left to the reader.

2:13. Remark. The value of lim w¥( + r{; f) in preceding theorem can be calculated

r-0+
by means of theorems 2.9—2.11. Since W¥(z; F) is merely a particular case of w¥(z; f)
(cf. definition 2 1) theorems 29 —2-12 include analogous results concerning non-
tangential limits of the logarithmic potential W¥(z; F); their formulation may be
oinitted here. In particular, we see that the converse of 2°6 is true. (By 2°12, also the
converse of 2'4 is true provided the set y ~ () is finite.)

3

3'1. Remark. In present paragraph we investigate the quantities v"’(n) and u¥(n)
which proved to be useful in § 2. The reader will easily construct examples showing
that for a simple rectifiable path ¢ on {a, b) and an nqu(<a b)) every of the
relations

wln) <+, o) =+
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may hold simultaneously with any of the relations

supr~tuf(n) < +o0, supr luf(y) = +o.
r>0 r>0

3-2. Notation. If M is a subset in E, or in E; we denote by AM its length (= Haus-
dorff linear measure) as defined in [14], chap. II, § 8. If M < E, then AM equals the
outer Lebesgue measure of M. If ¢ is a (real- or complex-valued) function on an
interval J, L < J and { € ¢(J) we denote by N,({; L) the number (possibly zero or
infinite) of points in ¢ ~*({) n L. Given G < J open in J we put

var [¢; G] = ;var [o;1],

I ranging over all components of G. Further we define for any H = J

var [@; H] = inf var [¢; G], G openin J, G> H.
G

The following known theorem will be employed below:

3-3. Lemma. Let ¢ be a continous (real- or complex-valued) function on an arbitrary
interval J and let G < J be a set open in J. Then N ({; G), considered as a function
of the variable { on ¢(J), is measurable (2) and

(39) J N,(¢; G) dA(l) = var [@; G] .
o)

If var [@; J] < + o0 then

(40) fN%MWFme
e

for every Gs-set H < J.
Proof. For a compact interval {a, b) < J the formula

J'Mmmmm=mm@m
o(J)

was established by S. BANACH provided ¢ is real-valued (cf. [8], chap. VIII, § 5) and
generalized to the case that ¢ maps J into an Euclidean or a metrical space by several
authors (cf. [6] for the bibliography on the subject). Since any interval I = J can be
expressed as a union of a non-decreasing sequence {I,} of compact intervals and
N,((;1,) 72 Ny(¢;1) as n > oo we obtain

I N,(; 1) dA(C) = var [o;I].
()]
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Given a set G = J open in J we have
| mimoyun =3[ N =3 vero:1] = var [o: 6],
o) I Jowy 1

I ranging over all components of G. Finally, let

+ o > var [@; J] ( =j N, (5 J)dAQ) ,

o(J)

so that +o00 > N,((; J) almost everywhere (1) on J) and let H = J be a G,. Then
var [@; H] = lim var [¢; G,], where G, is a non-increasing sequence of open

n—> o

subsets in J, () G, = H. It is easily seen that

(Cep()), N((;T) < +0) = N((;G,) v N({;H) as n— o0,

whence

lim L(J)N,,,(c; G,) dA(Y) = f N(¢; H)dA(Q)

n= o o(J)

and (40) follows at once.

As a direct corollary we obtain

3'4. Lemma. Let ¢ have the same meaning as in 3'3 and suppose that var[¢; J] <
< +00. Then, for M < J, the following equivalence is true:

Ao(M) =0<>var[p; M] =0.

Proof. If var [@; M] = 0 then there is a Gyset H > M (H < {a, b)) such that
var [@; H] = 0. By 33 (note that N,({; H) = 1 provided { € o(H)), var [@; H] =
= (o NG H) dA(L) = 4 o(H) = A (M), whence A (M) = 0.

Conversely, let 1 @(M) = 0. Then there is a G,set L> ¢(M) with AL = 0. Put
H = ¢~ Y(L); clearly, His a G, and H > M. Since N,({; H) = 0 for { ¢ L we obtain

0= J N,((; H) dA(L) = var [@; H] 2 var [@; M]
o)
so that var [@; M] = 0.

3'5. Notation. As in § 2, we shall assume throughout that ¥ = Yy + iy, (1, ¥,
real-valued) is a path on {a, b, '

var [{; <a, bY] < 4+, Y(Ka, b)) =C.

On account of 3'4 we obtain the following lemma which could also be derived
from a more general theorem due to T. E. ITepesanos [11].
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3'6. Lemma. For M < {a, b) the equivalence

Ayy(M) + A y,(M) = 0<var [Y; M] = 0
is true.

Proof.

var [Y; M] = 0 <> var [{;; M] + var [Y,; M] = 0<> 4 yy(M) + A y,(M) = 0.
‘We shall also need the following ’

37. Lemma. Let f be a finite Borel measurable function on {a, b) and let ¢ be
a completely finite measure defined on Borel subsets in {a, b). Then

My; yeE,, limsupr'af 'Ky =1,y + 1)) = +0} = 0.
r=-0+

Proof. Fix an ¢ > 0. With every ye L= {y; y€ Ey, limsupr~'af "'({y — 1,
¥ + 1)) = + 00} we associate the set #(y) of all r > 0 fulﬁllri_l.l‘;y+
rilef Ky —ry+r)>et
or, which is the same,
r<ef 'Ky—ry+r)).

The system S of all {(y — r, y + r)> (y € L, r € %(y)) covers L in the sense of Vitali
(cf. [15], chap. X, §2). Consequently, there exists a sequence {y; — ry, y; + r;),
{ys — Iy, ¥ + 1,), ... of mutually disjoint intervals belonging to & such that

l(L— U<yn — Ty Y+ rn>) =0.
We have thus
ALS2Yr, <2y 0f MYy — T Yu + 1)) < 2e0<a, b) .
Since ¢ was an arbitrary positive number we conclude that AL = 0.

Remark. The above lemma could also be derived from the known fact that every
non-decreasing function is almost everywhere differentiable (cf. [8], chap. VIII,
§2; [15], chap. X, § 5).

Now we are able to prove the following

3-8. Proposition. Given { € C and r > 0 put

G: = {t;tela, b, |Y(t) — ¢| <r}.
Then

M{leCosupr~tvar [§; Gi] = +0} =0.
r>0
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Proof. It is well-known that the set-function var [y; M] = oM, considered on
the system of all Borel sets M < {a, b), is a (completely finite) measure. Given
te{a;by and r >0 put U; = {u; uea, b, |Y(u) — y(t)| <r} (= G¥“) and
denote by Q the set of all t € {a, b) with + 00 = lim sup r~* var [y; U;]. If t€ Q and

r-0+

y = (1) then Ul = Y7 '({y — r, y + rP) so that

TN =y + 1) 2 U, = var [ U],

limsup r™loy 'Ky =1,y + 1)) = +0.

r-0+

We conclude on account of 3-7 that 2,(Q) = 0. In exactly the same way Ay,(Q) = 0
whence, by 34 and 36, A Y(Q) = 0. We have for every { € C — ¥(Q)

lim sup r~! var [y; G}] < + o
r-0 +

which means that, for sufficiently small r, > 0,

0 <r <ry=rtvar[y;G] < const < +o0;
on the other hand,

r2ro=r"'var[y; Gi] < ro " var [y; <a, b)]

so that sup r~* var [{; G:] < + 0. We see that

r>0

{;teC supr~tvar [y; Gi] = + o0} < ¥(Q)
r>0
and the proof is complete.

39. Theorem. Let G: have the same meaning as in 38. Then, for every { € Cand
r>0,

u¥(0) < var [¢; GE] < ro¥(0) + u¥(0).

Proof. Fix a { € C, r > 0 and denote by & the system of all components of
{t; te G;, Y(t) + {}. We have by remark 13

A0 = S [0 - 1], 1<
W) = Svar, [0 1], 1e s,
where 9(t) stands for a continuous single-valued argument of Y/(f) — { on I. Clearly,
var, [|y(1) — ¢ I] S var [y 1], (I€9Q)
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whence
u¥(0) < ;Zvar [¥; I < var [¥; G¥].
We have by 34 C
’ var [y; ¥~ 1(0)] = 0.
Taking into account that, for every I € &,
Y(t) =+ [W(t) — expidt), tel,
we conclude that
var [Y; I] < var, [|y(t) — {|;I] + rvar, [exp i 9;(2); I] <
< var, [[W(0) — Cf: 1] + r var, [94(: 1]
(cf. also proof of 1'5 in [4]) so that A
var [; GE] < var [y; ™1 ()] + Yvar [y; I] < u¥(0) + ro¥(0)
and the proof is complete.
As a direct corrolary of 3-8 and 3-9 we obtain

3:10. Theorem.

M teCosuprtulf(l) = + o0} = 0.
r>0

3:11. Remark. We have just proved that the condition (26) is fulfilled almost every-
where (1) provided ¥ is rectifiable. On the other hand, (32) need not be satisfied
almost everywhere on C. We shall construct an example of a continuous function f
of bounded variation on (0, 1) such that, for the path defined by

-

yO)=t+if(r), 0st=1,
the equality v¥(y(t)) = + oo holds almost everywhere on <0, 1).

Let us agree to adopt the following

3:12. Notation. If h is a function on {a, b), x, y € E, and if I is an interval contained
in <{a, b) we put

n'[x + iy; I] = var, [arctg—h—(—t);x; In(x, b):| +
t

+ var, [arctg h() —y ; In<a, x)] .
t
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313. Remark. If & is continuous on {a, b) and

y()=t+ih(t), ast=h,
then
7'[x + i h(x); <a, b)] = v*(Y(x)), a Sx<b.

Indeed, §(f) = arctg {[h(r) — h(x)]/[t — x]} is a continuous single-valued argument
of Y(1) — ¥(x) on (x, b) and = + 9(t) is a continuous single-valued argument of
¥(f) ~ ¥(x) on <a, x) so that, by remark 13,

v(Y(x)) = var [9; <a, x)] + var [$; (x, bY] = n"[x + i h(x); <{a, bD].

Before going into the construction of the promised example we shall prove the
following

3'14. Lemma. Let h be a continuous function on {a, b), 0 < q < 1 and suppose
that

(41) h(a+2j_1(b—a))=2—q G=1.um),
2n n
42) h<a+ﬁ(b—a)>=o (=0,..n).
2n
Then
n'[x + iy; <a, b)] gq———b—a 3 s71

1 + (b - a)z SZ:Z
provided a < x < b, 0 < y < 2¢g/n.

Proof. Put, for the sake of simplicity, a(s) = a + s(b — a)(2n)”" and suppose
that x € <a(2k), a(2k + 2)). Fixa j # k,0 < j < n. Let us agree to write j = j + 1
if a(2j) = x, j = j otherwise. Then n"[x + iy; <a(2j), a(2j + 2)>] =

arctg ha(j+ 1) ~y _ arctg h__(a(Zj )~y =
a(2j +1) — x a(2j) — x
_1 _
= arctg 2qn y y

—° 4 arctg ——— .
la(2j + 1) — x| |a(2j) - x|
Noting that

max ([a(2) + 1) = =], [a2) = ) < (= K + D6 — ) n~",

1 1

max (y,2gn~' — y) 2 qn™',
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we conclude that =" [x + iy; <a(2j), a(2j + 2)> =
- q q b—-a |
b—a)(i=K+1D " " 1+@B-a}|j—k+1

v

= arctg

Writing ) *for the sum extended over j = 0,....n — 1, j + k, we have
J
n'[x + iy; <a, )] 2 Y* n'[x + iy; <a(2)), a(2j + 2)p] 2
J

b—a " 1 b—a -1
q ; 29—
1+ (b—-al7 |i—k+1=%14+(b-a?%

2

3-15. Example. We shall denote by ¢ the well-known Cantor’s function on <0, 1)
(cf. [15], chap. X, §5, exerc. 1; [8], chap. VIIL, § 2, example on pp. 215—217);
¢ is continuous and non-decreasing on <0, 1) and remains constant of every compo-
nent of <0, 1> — %, where % stands for the Cantor ternary set. Given a positive
integer n, g €(0,1) and a bounded interval J with end-points a < b we denote
by ¢y, the function defined on J = {a, b} as follows:

2 2 —_ j
(p,{q(a+x)=—q(p<—'1—(x-—2jb a forzi(b—a)gxg
n b—a 2n 2n

§2]+l(b_a)’
2n

2n 2J_l_z(b—a)—x for2j—+~1(b—a)_$_
b—a\ 2n 2n

2
(p:q(a+x)=—n£<p<

éx_g_w(b_a)’
2n

j=0,...,n — 1. It is easily seen that (pﬂq is continuous on J and has the following
properties (A), (B):

(4) max ¢y, = 2qn”",
(B) var [@y; J] = 4q .

Now we proceed as follows. We put J = 0, 1) and fixa ¢ > 0 with
(Cy) 4q <271,

Further we find a positive integer n such that

1 d _1
D J—— sTt>1.
(Dy) ql+ls;2
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This having been done we put h; = q),{q. We denote by &, the system of allcomponents
of the interior of {x; h}(x) = 0} and put &, = {(0, 1)}. Suppose now that, fora given
positive integer k, functions hy, ..., h, on <0, 1> and systems &, ..., &, consisting
each of mutually disjoint open intervals have already been constructed such that

(E) h, remains constant on every I € &,
{F) every I € &, is contained in a J € &, _,,

(G) ifIe S andI < J e &,_, then h, does not assume the value sup hy(J) on I.

(This is really the case for k = 1.) Next we define hy4 in the following manner.
We denote by M, the union of &, and put hy.4(x) = 0 for x € <0, 1) — M,. Given
I€ &, h(I) = {c}, we take J € &,_, with J > I and fixa g > 0 such that

(Cis1) ¢ +2q <suphfJ), 4g <27®*V aI.

Further we fix n large enough to secure

A YsTi>k+1

D _ M
(i) T &

and define hy . 4(x) = @p(x) for x € I. Thus hy 4 is defined on <0, 1) and we denote
by S, , the system of all components of the interior of {x; k. (x) = 0}. Repeating
this procedure infinitely many times we obtain the sequences {I}i%, {S;}i%o-
Every hy is continuous and non-negative. We have AM, =1, M,_; > My(k = 1,2,...)
so that also M = (M, has measure 1. We have for every k

k

sup hy(€0, 13) < var [y <0, 15] < 2% . YuI, €@,

(compare (A), (B) and (Cy)). Consequently, the function

is continuous on <0, 1) and var [f; <0, 1>] £ }’27% < 1. Let us fix a point xe M
k=1

and denote by J(x) the interval of &, containing x. Let k be an arbitrary positive
integer. We have for any s 2 0 (compare (Cy+4+1) and (A))

hk+s(x) + sup Myyes I(Jk+s(x)) < Sup hk+s(']k+s‘1(x))

whence
)
sgohk +o(X) + sup By ps (e (%) < sup hy(Jx- 1(%)) .
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Making p - o we obtain

sihkﬂ(x) < sup h(Ji-4(x))

or, which is the same,
k—1
(43) f (x) - Zl h,(x) < sup hy(Jx- 1(%)) -

k=1

Let J,_,(x) = (a, b). Every h, with 1 < r < ks constant on (a, b), so that }_ h(t) =
r=1

= afor every t € (a, b). Further we have for suitable n, ¢

hk(t) = (p’(:l,b)(t) , L€ (a, b) .
Consequently,

(44) sup hy(Ji-4(x)) = 2qn~*,

h,,<a+2%(b—a)>=0 0=j=sn,

hk(a+212+ 1(b—-a))=2qn'1 0=j=n-1).
n

Since M, does not contain any of the points

a+_2.]~(b—-a) (i=0,..n), a+2]+l(b—a)(j_——o’_,_,n_l),
2n 2n
we have
© . o 2i
Y hp<a+2—](b—a)>=0= y hp<a+1+1(b—a)>.
p=k+1 2n p=k+1 2n

We see that the function f — a = Y h, = h satisfies the assumptions (41), (42)
p=k

of lemma 3°14. Further, h is continous and 0 £ h < 2gn~" on {a, b) (cf. (43), (44)).
By lemma 314 we conclude that

n
b—a -1

h . . T .5
n'[x + 1 h(x); <a,b>] =2 ¢ 1+ (b - a)? s;Z

Noting that g, n correspond to h, we obtain on account of (Dk)
n'[x + i h(x); <a, bY] > k.
Since f = h + o on {a, b) we have also
x + if(x); €0, 1] = n'[x + if(x); <a, bY] = n'[x + i h(x); <a, bY] > k.
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Let us recall that k was an arbitrary positive integer and x was an arbitrary point in M.
Consequently,

[x + i f(x); €0, 1] = +
for every x € M.

3:16. Remark. As preceding example shows there are simple rectifiable paths y for
which such a set N = C(= ¥(<a, b))) can be assigned that the following conditions
(@), (B) take place:

() AN >0.
(B) For every n € N there is a continuous function F on C such that

+ 00 = lim sup |W¥(z, F)|, zeS(n),
z=n

whatever be non-tangential segment S(7) = {# + rexp if; 0 <r < R}.

Since

W"’(z,F)=Imf &df, zeE, - C
y(—z

(F is assumed to be real-valued), a similar remark applies also to the integral

itself. For references on Cauchy’s type integrals the reader is referred to the work of
H. U. Mycxenumsunu [7], 1. U. llpusanos [12] (red. A. U. Mapkymesuy),
I'. 1. Tymapxun and C. 5. XaBuncon [16].

Non-tangential limits of the logarithmic potential of the double distribution with
a summable density on a curve fulfilling the Ljapunoff condition were studied by
W. NikLiBorRC and W. Stozex in [9], [10].

In connection with investigations concerning potentials of the double distribution
in the Euclidean 3-space Ej, a quantity vp analogous to our v¥(P) was introduced
by 0. 1. Byparo,B.I.Masssand B. . Canoxuukosain [1];in particular, they
announced a theorem showing that the boundedness of v$ on the whole of E; is
sufficient for the existence of limits of the potential with any continuous density
(cf. also remarks 2:11—2"13 in [2]).
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VI'JIOBBIE IIPEJEJIBHBIE 3HAYEHUS JIOTAPUOMUYECKOI'O
IIOTEHIAJIA

MOCE® KPAJI (Josef Kral), ITpara

Ipeanosoxum, 4To Yy, Y, — HeOpepBIBHBIE (PYHKI MM C OrPAHUYEHHBIM H3MEHE
HueM Ha oTpeske {(a, b) u momoxuMm ¥ = Y, + iy, C = Y({a, b)). Enugosy
IUIOCKOCTh E, OTOXAECTBHM C MHOXECTBOM KOMIUIEKCHBIX 4ucell. Ilycts f — He-
npepeiBHAs aeiicTBuTebHAsS Gynkuus Ha {a, b). Eciu z € E,, To 0603HaunM vepe3 S
cHCcTeMy BCEX KOMIIOHEHT MHOXecTBa {a, b) — Y~ 1(z), s kaxmoro I € & 3akpenum

OJHO3HAUHYIO HETpephIBHYIO BeTBb 91(f) aprymenta () — z Ha I M MOJNOXUM TIO
OTpeIeIEHHIO

wWeh) = X f JIOLE0

B TIPEINONONEHNH, YTO HMEET CMBICI CyMMa MHTerpasioB JleGera-CTIIbTheca
B MpaBoif YacTu pasencTBa. [lng z ¢ C, ouemno, wY(z; f) = Im [} f(2)/(y(t) — z) .
. dy(¢) Beceraa cymecrsyer.
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Mycts ne C. Ona ae {0, 2n) o6o3naunM Yepe3 1 (o; ) wacmo (0 =< p¥(a; ) <
=< +0o0) Beex t€<a, by, w1 KoTOpHIX Y(f) HAXOMUTCS HA TOJIYNPAMOH ¢ =
=1 + rexpia, r > 0}; bynxuus u¥(«; ) usmepuma 1o JleGery OTHOCHTENMBHO o
YTO ONpaB/BIBAET HAC MOJIATATh

0 = [

0

AHAJIOTHYHO MBI OIpEEAeM
r
uy(n) = f v(o;n) de >
0
rae v(o; 1) pasusercss uucay Beex te€ (a, b), AT KOTOPBIX (f) maxomurcs Ha
oxpyxzoctu {(; |{ — 1| = o}.

Teopema 1. ITycms S = {z; z = n + rexp if, 0 < r <R} u npednosoxcum, umo
umeemcs 6 > 0 makoe, umo

(=Bl <6, 0<r<R)y=nxrexpiy¢C.
Ecau 041 xancooil nenpepwighoii ghynxyuu f na {a, b) umeem mecmo coomnowenue

+00 > lim sup |w"’(z;f)] , z€S

z—n
(6 uacmnocmu, ecau cywecmeyem KoHeuHblii npeoes

lim w¥(z; f), z€8),

z-n
mo Heobxo00umo
1) W(n) < 400,
(2) sup r'u¥(n) < 400
r>0

Teopema 2. IIpednonoscum, umo muoscecmso Y~ '(n) = {t; < ... < t,} xoneuno.
Ecau umeem mecmo (1), mo cywecmeyrom npedevl

() = tim YO =T o000 <b,

=t [Y() = n|
_ .Y =7 -
t) =1 X7 oaat,>a;
s (4) ot fn =y T

nosoxcum ewé v, (t;) = t;(a) 6 cayuae t, = a, ty(t,) = 7, (b) 6 cayuae t, = b,

n
T=U {T,,J,' (), ty (t)}. Ecau, kpome mozo, umeem mecmo (2), mo — 04s Kaxncooi
k=1
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nenpepuishoii gynxyuu f na {a, by — w'(q + r{; f) cmpemumes npu r - 0 + K onpe-
OeNeHHOMY npedeny pABHOMEPHO OMHOCUMENbHO (€ K 048 xaxcdozo xomnaKmHoe‘o
muoxcecmea K = {{; L€ E,, |{| =1} — T. Beayuae n = 1, t, = a, 1, (a) = €Xp 1*
umeem mecmo opmyia

(3) lim w¥(n + rexpiy; f) = w(n; f) + f(a) - (n +a —y), a <y <a +27,

r—-0+

6 cayuae n = 1, t; = b, 1, (b) = exp i umeem mecmo gopmyaa

4 limw'(n +rexpiy;f) = w(n;f) +f(b). 0 —a—7), a<y<a+?2n,

r—-0+
gcayuaen=1,a< t; <b, 1;,'(t1) = expin,, 1, () = expia_ (ty S o <04 +
+ 27) cnpasedauger gpopmyavi

(5)  lim w¥(n + rexpiy; f) = w(ns f) +f(t) - (r +4), ay <y <a_,

r=0+

(6) lim w¥(n + rexpiy; f) = w(n; f) = f(t,) - (n — 4), a_ <y < ay + 27,

r-0+

20e A =7 — (a- — a,). Ha ocnose (3)—(6) sezko evruucaums lim w¥(n + rl; f)
r-0+

u 6 obwem cayuae n > 1.

O6Go3Hauast yepe3 A JjuHeiiHyro Mepy Xaycaopda ma C, mmeem A{(; { € C,
sup r "' u¥({) = +o0} = 0.IlocTpoen npumMep dyHKIMU Y, (HEPEPBIBHO H C OTpa-
r>0
HUYeHHbIM M3MeHeHneM) Ha <0, 1) Takoif, uro wist Y(t) = ¢t + i Y(f) cupaBeuBo
?(Y(1)) = +o00 mrst mourn Beex ¢ € <0, 1).

Eciu F — uenpepsiHast GyskuusHa C, TO COOTBETCBYIOUIMH JIOraprHMUYECKUI
MOTEHIMA ABOHHOTO CJIOs

F
W¢ (z) = Im f FE). d¢
vE—2
cBoauTcs K w¥(z; ...) paBeHCTBOM

Wi(z) = w'(z;f), rtnme f(t)=F(1)), a<t=<b,

¥ IIpe/IILECTBYIOLIUE TEOPEMbL COAEPXKAT B Ce0: AHAJIOrMYHBIE YTBEPKICHHUS O IO~
Beienun WY(z). B wactHocTH, ecnu myTb Y oxassiBaercst mpocthiM, To (1) 1 (2)
SBJLTIOTCS. HEOOXOAMMBIMU U JJOCTATOYHBIMH YCIOBUSIMH JUISL CYIIECTBOBAHMSL YIJIO-
BBIX IpeC/IbHBIX 3HAYCHUIA W}” (z) B TOYKE # IS KaXAOW HempepbIBHON QyHKumMu F
Ha C.
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