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1. INTRODUCTION AND SUMMARY

The formal languages here considered form a class € which is contained in the class

of all semi-Thue systems (see M. DAvis [7]; the restriction consists in that substitu-
tions of other texts are possible only for texts of length 1 (i.e. for single symbols)) and
contains the class of type 2 grammars of N. CHOMSKY [4] (context-free grammars).
Especially ALGOL 60 (if considered without the limitations given in the non-formal
parts of [1]) belongs to %.
* Both in definitions and proofs the concept of a (finite) sequence will be frequently
used. If o is a sequence then A« denotes its length and ai denotes its i-th element. By
[ay, ay, ..., a,] we denote a sequence « of length n such that ai = a;fori =1, ..., n.
Since elements of sequences may themselves be sequences, it is necessary to distinguish
between an element a and the sequence [a] of length 1.

To a given language % there will be associated the sets a.#,dZ, a, & of its symbols,
meta-symbols, terminal symbols, respectively, and a relation — between strings in &
i.e. between finite sequences of symbols. (Here symbol means simply an element in the
set a.#. By a symbol we shall never — except in this sentence — mean any of the symbols
which were used for printing this paper.) The set g of all grammatical elements of &
isdefined as the set of all [ A4, f] such that 4 e d.% and 4 — t. If [ 4, f] is a grammatical
element of & we say that ¢ is a text (more explicitely, an A-text); a text is terminal if all
of its symbols are terminal. A grammatical element [4, ] is called terminal if ¢ is
terminal. The relation — is derived from another simpler one, =, in the following
way: t; — t, if t, can be obtained by replacing in ¢, a meta-symbol A by a text g
and if [A] = g; or if t, can be obtained from t; by a finite number of successive
substitutions of that kind. (Our — corresponds to Chomsky’s [4] =.)

The intended application is that there will be a distinguished meta-symbol, say s,
such that s-texts will be called self-contained texts or simply sentences. The remaiﬁing
texts may be regarded as without meaning outside of grammatical elements. (For
example in ALGOL 60, s = {program) and the text ¢ ,,if a then b else ¢’’ may have,
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roughly speaking, two meanings, if considered in the grammatical elements [{expres-
sion), 1], [(statement), t]. Similarly for [(number), 25], [{label), 25].) Suppose F
ascribes some values to sentences, and also to non-self-contained texts if, in this latter
case, the meta-symbol they are derived from is indicated. Then it is natural to forma-
lize F as a transformation defined on g%. The value ascribed to a sentence ¢ is then
F[s, t].

A concept of structure is defined in the following way: [a, 7] is a structure of [4, t]
if either (i) [A] = t and a = [4], t = [{], or if (ii) [4] = « — 1, T is a sequence of
the same length m as « and [oci] Zrifori=1,...,mand

t=11 X112 X ...X 1M,

where x denotes juxtaposition of texts.

The concept of structure and that of structural description (N. CHOoMsSKY and M. P.
SCHUTZENBERGER [6]) are closely related (see Remark 5.8). In particular, every (ter-
minal) grammatical element has exactly one structure (i.e. is structurally unambi-
guous) when and only when every (terminal) grammatical element has exactly one
structural description; in this case we say that the language is (weakly) structurally
unambiguous. The basic properties of structures are studied in Sec. 6. Theorem 6.7
gives what might be called a method of structural induction, frequently used later
in proofs. Theorem 6.9 exhibits further equivalent definitions of the sets of all gram-
matical elements and texts. For a relation with a result of Chomsky and Schiitzen-
berger [6], see Remark 6.10.

Primarily, a semantics S for a language is simply a transformation whose domain dS
contains all sentences. (The range of S may be various in different applications. It may
be the set of texts of another language, the set of all real numbers and so on.) In Sec. 7
we shall introduce a more special concept of semantics. We shall require, first, that
a semantics S be defined on the set g% of all terminal grammatical elements (again,
the value S[s, ] is to be ascribed to every sentence f), and second, that the following
condition hold: The value S[ A, t] depends, for every structure [a, t] of [4, ], only on
A, o and B = [So[al, 7], ..., So[am, tm]], where S, is defined as follows: S,[aj,
7j] = oj if [oj] = 7j and So[aj, 7j] = S[aj, tj] otherwise. Roughly speaking, S[4, {]
is determined by the way in which [ 4, ¢] is assembled from simpler grammatical ele-
ments, and by their semantical values. The rule which specifies this determination is
called semantical. The main result of Sec. 7 is expressed in Theorem 7.5: A language ¥
is weakly structurally unambiguous if and only if every semantical rule induces a
semantics on £. Another theorem of Sec. 7 gives conditions under which structural
unambiguity and weak structural unambiguity are equivalent.

Sec. 8 contains some simple results concerning relations between languages.

The rest of the paper is devoted entirely to the study of conditions under which
a given language is structurally unambiguous. It would be very desirable if there could
be given an algorithm for deciding, for any language, whether or not it is (weakly)
structurally unambiguous. Such an algorithm does not exist even for classes of lan-
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guages much more restricted than 4, see D. G. CANTOR [3], N. CHoMsKY and M. P.
SCHUTZENBERGER [6] and A. GREIBACH [9]. Some sufficient conditions for structural
unambiguity have already been given for less general languages (and not directly
applicable e.g. to ALGOL 60) by H. BoTTENBRUCH [2], F. GENUYS [8] and N. CHoM-
sKY and M. P. SCHUTZENBERGER [ 6], the former two papers containing no proofs.

In Sec. 9 the concept of a reducing transformation is introduced as a transformation
¢ defined on g% and satisfying the conditions given in Definition 9.1. Roughly speak-
ing g transforms a grammatical element g = [4, t] into a [A4, Vg] such that: [4] =
= Vg = t and that every structure of g may be obtained from a structure of [4, Vq]
if[A] # Vg. Then g has the following properties: If g is a grammatical element then g
is structurally unambiguous if either ¢g ¢ 8% or if gg is structurally unambiguous
(Lemma 9.2), and % is structurally unambiguous if and only if each of its o-invariant
grammatical elements is structurally unambiguous (Theorem 9.3). Moreover, % is
structurally unambiguous if and only if there is a reducing transformation g such that
no grammatical element is g-invariant (Theorem 9.5).

It may be difficult to construct a sufficiently powerful reducing transformation for
which gg # g for all g. In such a casz it is at least possible to simplify the original
problem. Indeed Theorem 9.11 shows that, instead of ¥, we may consider another
language .£,, which differs from % in that some meta-symbols occuring in texts
o€ {a; [A] = a, A edP} are replaced by new terminal symbols; roughly speaking
in &, it is not always possible to make substitutions of texts for meta-symbols of .&.
Theorems 9.12 and 9.13 show conditions under which the structural unambiguity of
a subset &, of & is necessary and sufficient for that of Z.

In all these results the existence of a reducing transformation ¢ with some additional
properties plays an important role. Conditions which ensure this existence are studied
in Theorem 9.6, Lemma 9.4 and in the whole Sec. 10. The results are applied in Sec. 11
to show that some meta-symbols may be deleted from a language without affecting
the property of structural unambiguity. For example meta-symbols for which only
texts in parantheses-can be substituted have this property. Applications are also given
in Examples 10.9 and 11.4. Other examples (usually given at the end of a section) are
not intended to exhibit the usefulness of the obtained results but only to facilitate the
reading of the paper.

The results of this paper were applied by Mr. J. GRUSKA to prove that ALGOL 60,
after slight modifications of its syntax, is structurally unambiguous. This result is now
being prepared for publication.

The author regrets that some of conditions investigated and some of the proofs are
not very simple, but in several attempts he has made to simplify the paper he was
unable to reach simplification without an essential decrease of the generality necessary
to the intended practical applications. Moreover it was necessary to include a prepa-
ratory Sec. 4 concerning some operations on finite sequences and some elementary
properties of these operations. Some changes in conventional notation seemed to be
appropriate, too, for avoiding possible ambiguities.
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2. REMARK

\

The importance of finding sufficient conditions for what, after formalizing, is very
near or identical with our structural unambiguity, has been pointed out by H. BOTTEN-
BRUCH [2], N. CHomsky [4], [5], R. GENuys[8], N. CHOMsKY and M. P. SCHUTZEN-
BERGER [6] and is very distinct in connection with automatic programming. For
example many of the ambiguities of the semantics of ALGOL 60 (see Algol Bulletin
from No. 10 on) were or are consequences of its structural ambiguities. It would be
very important to have means for a rigorous definition of semantics for artificial
languages such as ALGOL 60 (in this latter the precision of the description of the
semantics is deeply below the rigour of the definition of syntax) or to have an algo-
rithm for making compilers from such languages (see P. Z. INGERMAN [10]). Every-
where here structural unambiguity of the languages is very important (see also
Theorem 7.5).

For a given language it may be quite obvious, without any formal study, that it is
structurally unambiguous although this may be difficult to prove mathematically.
This could be a good reason against the present study; only it may happen that a
language the structural unambiguity of which is quite obvious is not, in fact, structu-
rally unambiguous. It seems, for example, that the opinion that ALGOL 60 was
structurally unambiguous was generally accepted when the Report [1] was published
and also every time after a change was made to remecve an ambiguity pointed out by
an example.

3. BASIC NOTATIONS

3.1. Remark. In subsequent sections we shall deal with transformations and,
especially, with finite sequences. Here we recall the basic concepts and introduce
notations which will be useful later.

3.2. Sets. {ay, a,, ..., a,} denotes the set consisting of the indicated elements
a; . {x; €(x)} denotes the set of all such x which satisfy condition &(x) . {x; €(x, )}
is an abbreviation for {x; there is a @ such that %(x, ©) holds}. A denotes the empty
set, I, and I denote the set of all non-negative and positive integers, respectively,
I(i,j) = {s; sely, i < s < j}, I(i) = I(1, i) for i, j in I,.

3.3. Pairs. By a pair <{x,,x,) we mean the set {{x,}, {x;, x,}}. We see that
(X1, X530 = {yy, ypyifand only if x; = y;, x, = y,.(We use the concept of the pair
in the definition of transformation, the concept of the transformation in the definition
of the sequence. Hence we cannot say that a pair is a sequence of length two.)

3.4. Transformations. A transformation is a set F (possibly empty) of pairs such
that if (x, ;> € F, {x, y,> € F then y, = y,. The domain dF and the range rF are
defined by the relations

dF = {x;{x, y>e F}, rF{y;<{x,y)eF}.
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The value Fx of F at x in dF is the unique element in rF such that {x, Fx) € F. If
M < dF then the symbol F,, denotes the partial transformation {{x, Fx); x € M}.

If a, b are transformations, ¢ € db, it may be that bc e da. In this case we write
abe in the sense of a(bc). On the other hand we do not delete parantheses in, e. g.,
(ab)c, which is the value of ab at c, if b eda, ab is a transformation and ¢ € dab.
Hence e.g. ab(cd)e means a(b((cd)e)).

If a, b are transformations, da > rb, then a - b is the compound transformation
defined on db by the relation (a o b)x = abx.

4. SEQUENCES, OPERATIONS WITH SEQUENCES AND DECOMPOSITIONS

4.1. Remark. In this section some elementary concepts relating to finite sequences
will be introduced. They will serve later for the study of texts, i.e., finite sequences of
symbols. ’

4.2. Definition. t is a sequence if ¢ is a transformation and d¢ = I(j) for some

j €1,. The index j is the length of ¢ and is denoted by At. We see that if ¢ is a sequence
then ¢ is simply the set {<i, ti); i el (lt)}; it is convenient, however, to denote it also by
[#1, 12, ..., tA]. Hence, conversely [ay, a,, ..., a,] denotes the sequence {<1,a,),
{2, a5, ...,<{n, a,»}. In view of the intended application, the values of a sequence will
be also called symbols. If M is a set of sequences, we define the sets
1) symb, M = {tl; At = 1,te M},

symb, M = {tAt; it £ 1,te M},

symb M = {ti;te M, i edt}
of all first symbols, last symbols, and symbols, respectively, of sequences in M.

If M is a set and n is a non-negative integer then we denote by s,M the set of all
sequences with symbols in M and with length n, i.e.

) s,M = {t; tis a sequence, At = n, symb {t} = M} .
Further we define
(3) sM = U{s,M; n = 0} = {1; tis a sequence, symb {1} = M} .

Finally, if t a sequence, i, j are integers then we denote by #(i.)) the part (the (i, j)-
-part) of ¢ defined by the relation

(4) 10D = {Ch+ 1 —i,thy; i £h £ 5},
We have ‘
(5) 1Ph = 1(i + h — 1) for every hedtii)
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4.3. Definition. The product (also called the concacenation or juxtaposition)
t, X t, of two sequences t; and ¢, is defined by
(1) t, Xty =t U {Ki + Ay, tiy; iedt,}.

For a set M, sM with the operation x is an associative non-commutative semi-group
with both-sided cancellation and with unit element A, i.e. we have for every a, b, ¢
in sM:

(2 (axb)yxc=ax(bxc)
(3) ifaxb=axcorbxa=cxathenb=c,
(4) axb=aorbxa=aifandonlyif b=4.

it

We also write a x b x cfor(a x b) x c.If t € ssM then we write [ [z or [] =i for
i=1

7l X 12 X ... X 11,

4.4. Definition. 7 is a decomposition if 7 € ssM for some set M, i. e. if 7 is a se-
quence of sequences. We say that t is a decomposition of ¢ if [ [t = 1. Next, x is an
index-sequence if it is a sequence, if rx < I, x] = 1 and if x is, as a function, non-
decreasing. x is an index-decomposition of a sequence ¢ if x is an index-sequence and if

(1) XAx = At + 1.

If 7 is a decomposition we define the index-decomposition 1t of []r by 1t = x,
where

(2 Ax=2t+1

and

(3) xj =1+ 2A][«"™" for jedx.
Note that

(4) rx c IA]]e + 1).
On the other hand, if x is an index-decomposition of a sequence ¢ then we denote by
5(t, x) that decomposition t of ¢ for which

(5) tj = (DD for jedr.

A decomposition 7 is said to be primitive if 1t = 1 []r and i = [([]r) i] for every
i e dt. The unique primitive decomposition of a sequence ¢ will be denoted by §,¢.

4.5. Lemma. Let © be a decomposition of t. Then the relations x = «t and © =
= &(t, x) are equivalent mutually and also to

(1) [ = (ixG+ D=0 for ;i iedr.
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Proof. Suppose x = 1. From (4.4.3) we get (1) if i = 1; otherwise, if i > 1,
then e = (1m0 TTg) = ¢1xG+D=1 apnd by left cancellation we get
(1). If i = j then (1) reduces to (4.4.5) since [[t“"= 7j. From (4.4.5) we obtain
(4.4.3) easily. Hence x = vt implies (1), (1) implies © = §(¢, x) and this last equality
implies x = t7.

4.6. Definition. Let t;, 7, be two decompositions, A [[t; = At,. Then we define
a new decomposition 7, ® 7, as the decomposition of [ [, with the index-decompo-
sition
1) Y1y ® 15) = (172) o (174) .
(We remark that the right-hand side of (1) has a meaning because by (4.4.4)
riey < I(A [Jty + 1) = 10z, + 1) = duzy.)

4.7. Lemma. Let t,, 7,, T be decompositions, T = 1, ® 15, X; = Lty. Then

(1) dt = dr,
and
) ti = [[§5= D7D for every iedr.

Proof. According to (4.4.2) and (4.6.1) we have dt = I(Atx — 1) = I(Ax, — 1) =
= dr, and (1) holds. If we denote x, = 17, then by definition of 7; ® 7, we obtain
that ti = ([Jr,) ¥ >**1(* D=1 This equals the right-hand side of (4.5.1) with x,,
[ 172, 720 x40, x4(i + 1) — 1 substituted for x, ¢, 7, i, j. Since these substitutions change
the left-hand side of (4.5.1) to the right-hand side of (2), this last equality is proved.

4.8. Lemma. Let t, be a decomposition of a decomposition 1,. Then ©; ® 1, is
defined and if T = 1, ® 1, then

(1) th = []z;h for every hedr.
Proof. Because [[r; = 1,, we have A [ [t; = At,; 7 is defined and (1) is an imme-

diate consequence of (4.7.2) and (4.4.5).

4.9. Definition. Let 7, 7, be two decompositions. We say that 7, is finer than 7 if
there is a decomposition 7, such that © = t; ® 7,. (We may require that 7, be a de-
composition of 7, since 1 = §(t,, t1,) has this property and t = 7} ® 1,.)

4.10. Lemma. Let 7, 7, be two decompositions, x = tt, X, = 11,. Then 1, is finer
than v if and only if

(1) [T =1l rxcrx,.

Proof. If 7, is finer than 7 then there are 7, x; = tr, such that t = t; ® 7,, which
implies [ [t = []t5, X = x, 0 Xy, rx = rx, and (1) holds.
On the other hand let (1) hold and define x; on dx by the relations x;1 = 1,
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xih = Max {i; iedx,, x,i = xh} for h+ 1. Then x;1 =1, xAx; = xAx =
= Max {i;iedx,, x,i = xx} = Ax, = A1, + L,sincexAx = A[Jt + 1 = A [[r,+
+ 1 = x,Ax,. Moreover, x, is non-decreasing and hence it is an index-decomposition
of 7,. We have x = X, o x,, hence © = §(t,, X;) ® 1, and t, is finer than .

4.11. Lemma. Let t,, 7, be two decompositions of a decomposition £, let A ¢
¢ symb {£} and

(1 1n®{=1,Q<¢.
Then t, = 1,.

Proof. Put y = 1, x; = tr;. From (1) and (4.6.1) we get y o x, = y o x, and, since
y is increasing, x, = x, and 7, = §(&, x,) = 8(¢, x,) = 1,.

4.12. Examples. Let M be a set, a, b,c € M. Then t = [a, b, c] e s;M, >3 =
= [b,c], t x [a] = [a, b, ¢, a] and [[a], [b, c]], T = [[a, b], [c], 4] and [[a],
[b], [c]] are three examples of decompositions of t; the third is the primitive decom-
position §,¢. If x = [1, 3, 4, 4] then x is an index-decomppsition of every sequence of
length 3. We have x = ut, T = §(¢, x) and also 3[t, x] = [[[a, b], []], [4], 4]-

If & = [[1], [2, 3]] then A]]¢ = A[1,2,3] = 3 = At and ¢ ®  is defined. Since
7, ®t=¢ Q@ if iy, =, we may put 7, = 8, [1,2,4]) = [[[a, b]], [[c], 4]]

and by (4.8.1),
(rs ® 1) 1 = []rs1 = [][[a, b]] = [a, ],
(t1 ® 1) 2 = []r,2 = ][[c]. 4] = [¢]

and ¢ ® 1 = [[a, b], [c]]
By Definition 4.9, [[a, b], [c], A] is finer than [[a, b], [c]]. Similarly [[a, b], [¢]]
is finer than [[a, b, c]].

5. LANGUAGE

5.1. Remark. Before giving a formal definition the following remarks may be
convenient. First what we call here a language may be also called a grammar of a
language. Secondly only terminal texts are texts in the proper sense; texts which are
not terminal are only suitable means for expressing the syntactical rules. Thirdly a
primary concept is that of the relation = which is here expressed in terms of a trans-
formation which may be identified with the language itself. Finally we note that it is
not necessary for our study to distinguish between sentences and other (non-self-
contained) texts.

5.2. Definition. % is a language if % is a transformation, if there exists a set A such
that

(1) d2 c A, rZc{M; A+ M c sA}.
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and if
) [A] ¢ 24 for every Aede .

With a language £ we associate the alphabet a.# defined as the smallest set A for
which (1) holds. The elements of a.% will be called symbols of #. The elements of the
sets d, a,.¥ = a¥ —d¥, 6% =sa¥, 6% = sa ¥ are called meta-symbols,
terminal symbols, strings, terminal strings, respectively, of Z.

We shall write % : [A] = b as an abbreviation for A e d?, be LA. We write
&L :a=0b if ecither £ :a=b or a = b. We write ¥ :a — b if there are strings
di1, 45, 43 and a metasymbol A such that a = q; x [A] X g3, b=¢q; X q; X q3,
g, € ZLA. (L e. if b may be obtained by substituting g, for the (Ag; + 1)-th symbol
(which is 4) of a.) & : a = b means that eithera = bor & :a — b.

We say that o is a pseudoderivation (in Z of Ao from al) if o is a sequence, Ad = 1,
& :6i— o(i + 1) for every i e I(dc — 1). A pseudoderivation is said to be a deriva-
tion if its length is greater than 1. We write & : a — b if there is a derivation in & of b
from a and we write ¥ :a=>bifa - b ora = b.

If there is no danger of misunderstanding, the symbol specifying the language will
be deleted in =, — etc.

Now we define the sets
t(Z,4) ={t; [4] > 1},
t(Z,A) =&, A)noc L,
t¥ u{t(<, A); Aedg},
t¥ =t¥noc¥

I

of all A-texts, terminal A-texts, texts, terminal texts, respectively, of #. We have, of
course, t(#, A) = A for 4 not in d.Z.

5.3. Remark. The concept of language just introduced is a generalization of the
concept of a type 2 grammar of N. CHOMSKY [4].

First finiteness of d.¥ U Ur.¥ seems to be irrelevant to this study and, therefore, is
not assumed. Secondly Restriction 2 in [4] excludes [4] = A; in [6] N. Chomsky and
M. P. Schiitzenberger assume additionally that [A] = [ B] for no metasymbols A, B.
Both suppositions are violated by ALGOL 60 and not made here. As stated in [6], the
suppositions do not affect the generative capacity of the language; this capacity,
however, is not the object of our study.

5.4. Convention. In the sequel it will be supposed that a language & is given. Later
we shall, however, consider more than one language. Then the concepts relating to
a language must be specified by indicating the language they refer to.

5.5. Lemma. The relations — and = are multiplicative in the sense that if ©, and
T, are two decompositions such that ©,i = t,i for every i edt, = dt, then [[t; =
= [[ra; if, moreover, t,i — t,i for at least one i then [[t; — []r,.
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Proof. Obvious.

5.6. Definition. The set of all grammatical elements of .% is defined as the set
(1) g7 = {[A,1]; AedZ, tet(Z, A)};
the set of all terminal grammatical elements is defined by
) 8% ={[A,1]; Aed?, tet(ZL, A)}.

A pseudoderivation (derivation) of ¢, from ¢, is called normal if there is no shorter
pseudoderivation (derivation) of ¢, from ,.

The depth & will be defined as a transformation on g% such that §[4, t] is the
length minus one of a normal derivation of ¢ from [A]. Similarly for [4] = t we
denote by o[ 4, ] the length minus one of a normal pseudoderivation of t from [A4].

5.7. Definition. Let t be a decomposition, [t € t#. We say that o is a naming for
tif ae 6% and if

(1) Ja = )t and [«i] = i for every iedx.

We say that 7 is an a-decomposition if « is a naming for 7.
We say that [o, 7] is a structure of a grammatical element [ 4, ] if

2) ‘ 7 is an a-decomposition of ¢ and either
(3a) [A]=a, [A]=1t, [{]="<
or

(3b) [A]=a—t.

5.8. Remark. The concepts of structure and of structural description (Chomsky
and Schiitzenberger [6]) are closely related. We shall show this only informally on the
example from p. 122 in [6]. As in our other examples we shall denote a sequence
[ay, a,, ..., a,] of symbols a; also by ayaj ... a,. Since the symbols here are English
words or abbrevations and are denoted by letter strings they will be separated by
a space.

The relations (5), [6] may be rewritten, in our formulation, as

S= NPVP; NP = they

and so on. Now when we delete, in a structural description, all labelled brackets
except those which are of depth 1 and 2, we obtain essentially what we call a structure.
Thus we get from (6), [6]

(1) [s[vp they] [y are flying planes]]
and [«, ] with
a = NP VP, 1 = [they, are flying planes]

is a structure of the grammatical element [S, they are flying planes].
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Conversely, from a structure [, 7] of a grammatical element [4, {] and from
structures of those [«i, ti] which are grammatical elements, and so on, we obtain a
structural description.

For example the grammatical element
(2 [VP, are flying planes]
has a structure [o, 7] where

« = Verb NP, t = [are flying, planes]
which may be written as
[velver are flying] [yp planes]] .
This substituted for [ p ...] in (1), leads to the structural description (6), [6]-
The grammatical element (2), however, also has another structure
[are NP, [are, flying planes]]
and [NP, flying planes] has the structure
[Adj N, [flying, planes]]
and these structures lead to the structural description (7), [6].

5.9. Examples. Let a, n be two different elements and

£ = {a, {n, an}), <n, {0,1})}.

Then d% = {a,n}, r% = {{n, an}, {0, 1}}, a% = {a,n,0,1}, a,.& = {0, 1}. Now
o, = [a,a], o, =[a,an,ann,an0,al0], o, = [a,an, a0, an0, al0] are three
pseudoderivations, and ¢, and o3 two derivations, both of a10 from a. The n-texts are
0 and 1. The terminal a-texts are non-empty sequences of zeros and ones. If o = an,
© = [an, 0] then « is a naming for ¢ and [o, 7] is a structure of [a, an0]. The unique
structure of [n, 1] is [n, [1]]. (A more precise notation, used outside of examples,
would be [n, [1]] and [[n], [[1]]] in the last sentence.) It can be easily seen that & is
structurally unambiguous.

5.10. Example. Let & = {{a, {0, 1, aa})}. Then this language with a single
meta-symbol a has the same set of terminal texts as the language from the preceding
example, but is structurally ambiguous.

6. EXISTENCE AND PROPERTIES OF STRUCTURES

6.1. Lemma. Let t; be a t;_,-decomposition of t; for i = 1,2. Then 1 = 1, ® 7,
is a ty-decomposition of t,.

Moreover, if {; = 8(1,, \ty), then d{, = dt, = dt, and, for every i e d{,, Cli is
a 1 i-decomposition of Ti.
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Proof. Put x, = tr;. Then © = {; ® 7, and {;i = 1§ *D~1 j5 3 decomposi-
tion of ti because ti = []{,i (see Lemma 4.7). Furthermore t,i = (*&<1(+ D=1
hence Atyi = A{;i and, because by assumption [t,j] = t,j for every j e dt,, we have
[(z4i)j]1 = (¢4i) j for every jed{,i. Hence &,i is a 7 i-decomposition of ti and the
second assertion of the lemma holds. By multiplicativity (see Lemma 5.5) it implies the
first assertion.

6.2. Definition. A t,-decomposition t is called immediate if [#,i] = ti for every
iedty and [t;i] = vi for at most one i e dr,.

6.3. Lemma. Let t; = t,, let ¢ be a normal pseudoderivation of t, from t,. Then
or every t,-decomposition T of t, we have
1 2

Aty

(1) o — 1 £y o[tyi,ti]
i=1

and there is a t,-decomposition t of t, such that

Aty

(2 lo — 1= Z o tyi, Ti] -

Proof. The assertion is trivial if #; = t,. Hence we may assume t; — t,, t; % f,.
First prove the first assertion. Let o; be a shortest pseudoderivation of ti from [#,i]
fori=1,2,..., A1y, so that §,[t,i, ti] = Ac; — 1. Put

Ao

v; = -1—[1 [t(l,i—l) X 6] X Hr(i+l),}.tl)] .
j=

Then v, is a pseudoderivation of !+~ x [T¢(®* from ) x []z*****") and

Aty
oo = [t:] x [Tv& 37
i=1

Aty
is a pseudoderivation of t, = [Jr from t; of length 1+ Y (do; — 1) =1 +
Aty i=1
+ Y o[ t4i, 7i]. By assumption Ao < Ao, which proves (1).
i=1

Now we shall prove (2) for a suitably chosen 7, by the induction on the length lo.
If 26 = 1then t; = t, and (2) holds. Suppose (2) holds if 2o < k,let Ao = k > 1. By
the inductive assumption there is a ¢;-decomposition 7, of u = o(Ae — 1) for which

Aty

(3) Ao =2 =) do[tyi, 14i]
i=1

and an u-decomposition t, of t, for which [uj] = 7,j for all j except one j,, for which
[4jo] = 72jo- By Lemma 6.1, T = 7; ® 7, is a ¢,-decomposition of ¢,. We have (see
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(4.1.2))7i = [Tz, s+ n-0 for every iedt; where x; = tt;. For exactly one i, we
have xyip < jo < x4(ip + 1) Then
Tiy = Hrz(nio,jo’]) X HTZ(J'O.)'O) x Hrz(j0+1,x1(io+1)~1) _
- u(x1i0.j°—1) X TZjO X u(j0+1,x1(io+1)—1)

and

. —r s __ o (xtio,x1(io+1)—1) .
[tiip] = Talo = u - Tig .

Hence 8[t4ip, i] < 8o[t4i0, t1i0] + 1. For i # i, we have 7,i = ti. With (3) this
yields

At1
Y. do[tsi, Ti] £ do = 1;
i=1

since the opposite inequality (1) has already been proved, (2) holds and the proof is
complete.

6.4. Lemma.
(1) If [A] - t, =t, and < is a ty-decomposition of t, then

Aty
(12) 3[4, t,] < 0[A, t;] + Y 6[ti, Ti] .
i=1

(2) If o is a normal derivation of t, from [A] and [A] # t, € symb {c} ,

then there is a t-decomposition t such that

(2a) 5[, 1,] = o[4, 1,] +‘z 8ol 7i] .

Proof. Let o be as in Lemma 6.3. Then [ 4, t,] < 6[4, t,] + Ao — 1 and (la)
follows from (6.3.1).
If (2) holds then ¢; = oi for an i €I(2, 10), ¢*-? is a normal derivation of ¢, from
[A], 6"+** is a normal pseudoderivation of ¢, from t, 6[4, t,] = o — 1, 5[4, t,] =
Aty
=i — 1 and by Lemma 6.3, there is a t,-decomposition 7 of ¢, such that Y d,[t,i,
i=1
Ti] = A6 — i. For such a 7 (2a) holds.

6.5. Theorem. Let g = [A, t] € g%. Then there is a structure [o, ©] of g such that
either

0 [A]= 1, [z = [[4][]

or

) o[d,1] =1+ iza So[ad, 7i] .
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Proof. If A= t then by (5.7.3a) [[A], []] is a structure satisfying (1). In the re-
maining case let ¢ be a normal derivation of ¢ from A. We have l¢ > 2. Put « = 62 so
that (5.7.3b) holds. By Lemma 6.4, there is an a-decomposition 7 of ¢ for which

8[A, 1] = 5[4, «] +); ol ai, 7i]

and (2) holds since [ 4, «] = 1.

6.6. Definition. Let M = g2, let [a, 7] be a structure of a grammatical element
[4, 7]. We say that [a, 7] is weakly M-regular if for every i € dx we have either [ai] =
= tior [«i, ti] € M. We say that [o, 7] is M-regular if it is weakly M-regular and

A
(1) O[A4,t] =1 + Y, So[ai, =i] .
i=1
6.7. Theorem. Let M < g% satisfy the following two conditions:
(1) Mo {[A4,1]; [A]=1}.
(2) If a grammatical element g has an M-regular structure then ge M .
Then M = g<%.

Proof. Let [4, {] e g&. If 6[4, t] = 1 then [A] = t and [4, {] € M according to
(1). Suppose [A4, f]e M whenever 6[A4, ] < k — 1, let 6[A4, t] = k = 2. Then by
Theorem 6.5 there is a structure [«, 7] satisfying (6.5.2). By the inductive assumption,
[, t] is M-regular and by (2), [4, t] € M. This completes the proof by induction of
g% < M.

6.8. Remark. The preceding theorem will often be used in a weaker form with
condition (6.7.2) replaced by
(1) If a grammatical element g has a weakly M-regular structure then ge M .
Clearly (1) implies (6.7.2). Hence conditions (6.7.1) and (1) imply g € M.

The next theorem shows other ways of constructing the sets g% and g,.% than
are those given by the definition. In particular, for constructing g,.% it suffices to use
terminal grammatical elements only.

6.9. Theorem. Let ¥ be a language,
H ={[A,1]; Aed¥, te 6%}, H,= {[A,1]; Aed?, te0 L}

For every subset M of H and every subset N of H, we define the closure Cl M of M
and the terminal closure Cl, N of N thus:

(1) AM=Mu{[4,t]; A= a1 is a decomposition, Ax = iz, t =[],

for every iedu either [ai] = ti or [ai, ti]e M}.
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(2) CI,N=Nvu{[A,1]; A= o, T is a decomposition, lu = I, t = [Tz, for

every ieda either [ai] = tie o, & or [ai,Ti]eN}.

Put
(3) Go = {[4,1]; [A]=1}, Qo= {[4,1]; [A]>teo ¥},
4) G,=ClG,_;, 0;=ClL,Q;_, for iel.
Let G and Q be the smallest subsets of M with the properties
(5) ClIG=G>G,, Cl,g=0>0,.
Then
(6) G =§}06i =g¥%, Q =§1Q,- =g 7.

Proof. Set Q, = U Q;. Applying Lemma. 5.5 we obtain by induction that Q; <
i=1

< Q < g% for every i, and hence Q,, < Q < g.%. Note that Cl, @, = Q. Put
M= Q,u(g¥ — g.%). From (3) we obtain that [4, {]e M if [4]= t. Now if
[4, 1] e g# has an M-regular structure [a, 7], then [A4,]eCl,Q,= Q, and
[4, t] € M. This remains true also if ¢ is not terminal, and an application of Theorem
6.7 yields M = g%. Hence Q,, o g and Q,, = Q = g.%. The first part of (6) may
be proved similarly.

6.10. Remark. For some languages it is possible to determine, to every grammatical
element [ A4, {], an integer n such that for every structure [a, 7] of [4, t] and i e da,
either [ai] = i or [ai, 7i] € G,, where G, is the set from the preceding theorem. (For
example, if 1B = 2 for every [B, ] € g% then it suffices to put n = At — 2.) If, mo-
reover, the sets d.Z and YrZ are finite, it is possible to find, in a finite number of
steps, all the structures of [ 4, {]. In particular it is possible to determine whether or
not [4, t] is structurally ambiguous. This procedure, of course, fails to determine
whether or not the language is structurally ambiguous, at least if the language has, as
it usually does, infinitely many texts. '

A similar result follows from the formal power-series reprezentation of N. Chomsky
and M. P. Schiitzenberger [6].

6.11. Example. Let % be the language defined in Example 5.9. Put ¢, = an,
t, = annn, t, = aOnl, t; = [ann,n], 1, = [a,0,n,1]. Then the conditions of
Lemma 6.1 are satisfied, T = 7, ® 7, = [a0n, 1] is a t,-decomposition of t,, {; =
= §(t,, t1y) = [[a, 0, n], [1]] and {;1 = [a, 0, n] is a 7,1 = ann-decomposition of
1 = aOn.

Using the notation of Theorem 6.9 we obtain Q, = {[n,0] [n, 1]}, 0, = C1,Qy =

= 0,0 ([, 01, [0, 11} @2 = 0, v {[a, 00], [, 01}, [a, 10}, [, 1]} ... U0, =
= Qou {[a,1]; te.ylsi{O, 1}}.
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7. STRUCTURAL UNAMBIGUITY AND SEMANTICS

7.1. Definition. We say that a language % is structurally unambiguous (weakly
structurally unambiguous) if every g € g% (every g € g,%) has at most one structure
(by Theorem 6.5 it has then exactly one structure).

7.2. Remark. The rest of this section serves to clarify the meaning of (weak)
structural unambiguity and the relation of these two concepts. It will be clear that in
a certain sense it is superfluous to require structural unambiguity, and that weak
structural unambiguity is sufficient. In subsequent sections it will be seen that the
intrinsic properties of the former concept are more convenient for study. In the present
section it will be proved than in some cases the two concepts coincide.

7.3. Definition. A semantical rule I' is a transformation defined on the set {[ A4, «];
[A] = «, AedZ}, the values of which are transformations. Denoting I'[A4, o]
by I'y, R=U{rl,,; [4,a]edl} U aZ, we require that for every [4, ] € g%
and each of its structures [, 7] the following two conditions be satisfied:

(1) 6L NLAcdlr,, if [A]=a,
(2) s,,Rcdl,, if [A]=0¢0c 2.

By a semantics S induced by a semantical rule I' we mean any transformation
defined on g, which satisfies the following conditions:
For every [4, t] € g% and every structure [a, t] of [4, 1] we have

(3) S[A,f] = Iyt if [A] =
and
(4) pedl,,, S[A, t] =T,p if [A] =0

where f is the sequence of length Ao determined by

(4a) Bi=ai if [ai] =i
and
(4b) Bi = S[ai, wi] if [ai] = 7i.

7.4. Theorem. Every semantical rule induces at most one semantics.

Proof. Let Sy, S, be two semantics induced by a semantical rule I, let
M={g; geg?, Sig =59} v (gZ — 8%).

Suppose [A4] = t. Then either ¢ is not terminal or by (7.3.3) S|4, 1] = I'y 1.
Hence [A, t] € M. Suppose [4, t] has an M-regular structure [o, ]. If ¢ is not ter-
minal then [4, t] e M. Otherwise Sy[ai, ©i] = S,[ai, ti] if [ai] * 7i, and by (7.3.4)
we obtain that S;[4, ] = S,[4, 1] and thus again [4, t]e M. Application of
Theorem 6.7 yields that M = g% and S; = S,.
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7.5. Theorem. Let &£ be a language. Then for the weak structural unambiguity
of & it is sufficient and necessary that every semantical rule T induce a semantics.

Proof. First let & be weakly structurally unambiguous, let I" be a semantical rule.
Let Q; = {g; g€ 8. %, g = i}. We have U Q; = g.<%.0On Q, we define S[4, 1] =
=T, A]t whlch is possible because of (7 3 1) Suppose that S is already defined on
M,_, = UIQ, in such a way that (7.3.3) and (7.3.4) hold for every [4, ] in this set

(since every [4, {] has only one structure, the grammatical elements [«i, i] in
(7.3.4b) are in M, _, according to Theorem 6.5, and thus S[ai, zi] has a meaning);
and that, furthermore, rSy, , — R where R is as in Definition 7.3. Let [A, t] be
in Q,; we note that this set is disjoint with M, _ ;. Let [«, 7] be the unique structure of
[4, t]. We have [4] = a, [A4] # «, and define B by (7.3.4a) and (7.3.4b). By assumpt-
ion Bes;,R =dI,, (see 7.3.2). Hence (7.3.3) and (7.3.4) are satisfied if we put
S[A, t] = I', ,8. Moreover S[4, t] € R. Hence we may complete the definition of S
on M,, preserving all the properties previously required for M, _,. Defining S in this
way for all [4, {] in g%, we obtain that S is a semantics induced by I.

On the other hand, assume that every semantical rule I" induces a semantics. We
shall define a I" such that for the semantics S induced by I" we shall have

S[A4, t] = [, 7] for every [A4, t] € g% and every structure [a, 7] of [4, {].
This will imply that & is weakly structurally unambiguous.

First let N be the set of all structures of terminal grammatical elements. We shall
suppose that N is disjoint with a.#. (Otherwise N might be replaced by a suitable set N
disjoint with a. and such that there is a one-to-one correspondence between elements
of Nand N ) Further, let @ be an element which is not in a.# U N, let

(1) H=s(aZuUNu{w}), Hy=s(aZuUN).

Define .|// on a,.¥ U N by

(2) ya =[a] for aea?, Y[o,7] =[]t for [a,t]eN.
For a € H, define ¢a as the sequence for which

(3) Apa = Aa, (¢pa)i=yai for ieda.

Now for Aed?, te £A, t terminal we define

4) Fpat = [[4]. [1]];

for Aed?, ae LA, Be H, AB = Az we put

(5) if BeH,, [0, pBleN
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then

(5a) I'a.B = [« ¢f]
else
(5b) Iyp=o.

According to this definition, rI", , = {®} U N for every 4 €dZ, [A] = «. The set R
from Definition 7.3 is {w} U N U a,.%, s5;,R = {f; fe H, AB = Za} and both (7.3.1)
and (7.3.2) are satisfied.

Hence I' is a semantical rule. Let S be induced by I'. We have to prove that

(6) if [4, f]e g and [a, 7] is a structure of [A4, ] then S[4, t] = [« 1].
This property implies
(7 if [4, t]e g then S[A4, 1] eN and ¥ S[4,{] =1t.
Let M be the set of all such [4, t] e g% for which (7) holds. Let [4, t] € g%, let
[a, T] be a structure of [ 4, £].

If [A] = « then by (5.7.3a) © = [] and by (7.3.3) and (4) S[4, 1] = I'y (5t =

= [a, 7] and (6) holds. Hence, in particular, if 4 = t, [4, ] € M. Now let [4] # «
but let
(8) [, 7] be weakly M-regular .

For every i e da either [i] = i and, by (2), yai = i, or [ai] # i and, by (7),
Y S[ai, ti] = 7i. Hence if § is defined as in (7.3.4), then we obtain, according to (3),
that (¢p)i = ti for every iedu, ie. that pf = 7. By (7.3.4) and (5) we obtain
S[A,t] = I'y B = [« 7], and (6) holds for our 4, t, «, . In particular, [4, {]e M
and, by Theorem 6.7, M = g.%. The assumption (8) is satisfied for every structure and
(6) holds for every [ 4, {] and the proof is completed.

7.6. Theorem. Let ¥ be structurally unambiguous. Then o — o for no o€ Yr%.

Proof. Let a e ¥4, AedY, a —» « Then there is an a-decomposition 7 of o and
[A, o] has two structures [[A], [«]] and [«, t] which are distinct since [4] # o by
(5.2.2).

7.7. Theorem. Let ¥ be a language satisfying the following conditions:
(1 t(Z, A) — {4} + A for every AedZ,
(2 a— o forno aeUre.

Then &£ is structurally unambiguous if and only if it is weakly structurally un-
ambiguous.

Proof. Suppose that g = [4, f] e g& — g%, that [y, 7,], [, 7,] are two dif-
ferent structures of g, and that & is weakly structurally unambiguous. For the proof
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it suffices to prove that this assumption leads to a contradiction. For every i € d¢ let us
choose a terminal string u; such that [ti] = u; + A. Let A& = 1t, &i = u, for i edt,
u = []& We see that & is a t-decomposition of u, t — u, [4, u] € g, L.

By Lemma 6.1, t; ® ¢ is an a;-decomposition of u. By (5.7.3a) and (5.7.3b) we have
for both i = 1,2 either

4 [A] = ;= t and [1, ] is a structure of [4, u]
or
) [A] = o, = t > u, [a;, 7; @ &] is a structure of [A4, u].

Suppose (4) holds for both i = 1,2. But then [a;, 7;] = [[4], [¢]] for i =1, 2
which contradicts the assumption that [ay, 7,] # [, 7,]- Suppose (4) holds for
i =1, (5) holds for i = 2. Then [4]=a, >t and by (2) , * t. Hence [1,¢],
[, T, ® &] are distinct structures of [A4, u] which contradicts the assumption.
A similar result can be obtained if (6) holds for i = 2 and (5) holds for i = 1. Thus
we may assume that (5) holds for i = 1,2. Then [oy, 7, ® &] = [0, 7, ® &]. We
conclude immediately that o; = a5, and from Lemma 4.11 that 7, = 7, which is the
desired contradiction.

7.8. Example. Consider the language % from Examples 5.9 and 6.11. Any seman-
tical rule I' for % must be defined on the set M = {[a, a], [a, n], [a, an], [n, n],
[n,0], [n,1]}. Let I,,=T,o=1T,,=4,T,, and I,, be the identical trans-
formations on {0, 1} and let I', ,, be defined on s,I, by the relation I, ,,f = 2 x Bl +
+ B2 where x and + denote the multiplication and addition of numbers respectively.:
Then I is a semantical rule and induces exactly one semantics S. The value S[a, t]
for t e t(%, a) is clearly the number in I, with binary representation .

8. RELATIONS BETWEEN LANGUAGES

8.1. Lemma. Let & be a language, ¥, < &. Then &, is a language and the
relations Lo :=, Lo —,: L, . — are stronger than the relations & :=, ¥ : —,
& : —, respectively, i.e. £, :a = b implies & : a= b and so on.

Proof. Any subset of a transformation is again a transformation; so is &,. It is
easy to verify that conditions (5.2.1) and (5.2.2) hold with A = a.%, and that the rela-
tions =, —», — with respect to %, are stronger than those with respect to £.

8.2. Lemma. Let £ be a language, ¥, < ¥. Then g¥, < g%, and if g€ 8%,
and [a, t] is a structure of g in L, then [«, t] is also a structure of g in L.

Proof. Straightforward from Definition 5.7.

8.3. Lemma. Let £ be a structurally unambiguous language, o < L. Then £,
is structurally unambiguous.

Proof. From Lemma 8.2.
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9. REDUCING PAIRS AND REDUCING TRANSFORMATIONS

9.1. Definition. A reducing pair is a pair (¥, R) of transformations Vand R defined
on g% such that for every g = [4, 1] e g&, every structure [o, 7] of g and for og
defined as [4, Vg] we have:

(1) Rg is a Vg-decomposition of t.

(2) If t + Vg = [A] then a = [4].

(3) If [A] =t then Vge{[4],t}.

(4) There is an a-decomposition ¢ of Vg such that t = ¢ ® Rg.

(5) If g, 8%, 0g; = gi+, for i = 1,2, ... then there is a j such that g; is ¢-in-
variant, i.e. ¢g; = ¢g; .

(6) If o9 = g, ieda, [ai] * ti then o[ai, ti] = [ai, ti].

The transformation ¢ defined on g.% is termed reducing (and induced by <V, R)).
If not all conditions (1)—(6) are required but only conditions (1)—(i) we speak
about an (i)-reducing pair or transformation.

9.2. Remark. The concept of a reducing pair may be motivated as follows. Suppose
[ A, t]is a grammatical element. Sometimes we may recognize a part -9 of the text ¢
as being necessarily derived from a metasymbol B. Then we may define a new text
Vg = 1471 x [B] x tY*1*) and a decomposition Rg = §,(1i* V) x [1")] x
x §,(tU*1*). For every i e dVg the decomposition Rg determines a part (Rg) i of ¢
which may be derived from [(Vg) i]. Under some conditions it can be proved that if
[4, Vg] is a grammatical element then it has the same number of structures as [ 4, ].
These conditions are given in (1) to (4). Conditions (5) and (6) require some further
regularity properties which are used to derive stronger results in Theorems 9.4, 9.5,
9.11 and 9.13. On the other hand the conditions in this definition are not unnecessarily
strong. In fact, if & is structurally unambiguous, and [ Vg, Rg] is the unique structure
of g € g% then it is easily verified that {V, R) is a reducing pair.

9.3. Lemma. Let ¢ be a reducing (or (4)-reducing) transformation, let g e g%,
and either gg ¢ 8% or og be structurally unambiguous. Then g is also structurally
unambiguous.

Proof. Let (¥, R) induce g, let [a;, 7;] (i = 1, 2) be two different structures of a
g € g%, 09 ¢ 8% or gg be structurally unambiguous. Then we have ¢g * g. By 9.1.4)
there are a;-decompositions &; of Vg such that

(1) ;,=¢ ®Ry
and
(2) [A] Zou=2Vg.
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First suppose [A] = Vg. In this case (9.1.2) implies a; = [A]; hence t; = [t],
which contradicts the assumption [, 7,] # [, 7,]. Hence [4] + Vg and by (9.1.3)

©) [A]= oy, [A]=>a,.

Now suppose Vg € ZA. Then g has a structure [[A], [Vg]]. If, for some i, a; +
# Vg then o; > Vg and og has a structure [a;, £;]. By (5.2.2) and (3), o; # [A4], and
og has two different structures, which is impossible. Hence Vg = «; = «,. Suppose
7; % Ry for some i. Then &, is not primitive and, since &; is an o;-decomposition of
Vg = a;, we have a; — «; and og = [4, ;] has two different structures [[A], [ai]],
[, €], which again is impossible. Hence Vg € 4 implies o; = o, = Vg, 7, =
= 1, = Rg which shows that Vg ¢ #A4 and we obtain

4) o, > Vg, a,— Vg

and [ay, &;], [o,, &,] are structures of gg. Hence [ay, & ] = [a,, &,] and by (1)
[o1, 71] = [«2, 7,]- This contradiction completes the proof.

9.4. Theorem. Let ¢ be a reducing or ((5)-reducing) transformation. Then & is
structurally unambiguous if and only if every g-invariant (i.e. such that og = g)
grammatical element is structurally unambiguous.

Proof. By (9.1.5) and Lemma 9.3.

9.5. Theorem. The existence of a reducing transformation g such that no gramma-
tical element is g-invariant is a necessary and sufficient condition for the structural
unambiguity of £.

Proof. The sufficiency follows from Theorem 9.3. If & is structurally unambiguous
and [Vg, Rg] is the unique structure of g for every g € g% then it is easy to verify
that (V, R) is a reducing pair. Let ¢ be induced by (V,R), geg¥, 0g =g =
= [4, t]. Then g has a structure [a, t] with o = ¢, which implies that either [A] =
=t >t or [A] = t=>t. The former case is impossible according to Theorem 7.6,
the latter case is impossible according to (5.2.2). Hence no grammatical element is
o-invariant.

9.6. Theorem. Let V, R be two transformations defined on g§%. For every g =
= [A4, t] € & let the following two conditions hold:

(1) Ry is a decomposition of 1, Vg is a sequence, AVg = IRy .

(2) For every structure [a,t] of g there is an index-decomposition x,
of Vg such that the decompositions & = 8(Vg, x,) and { = §Rg, x,)
satisfy

(22) T={®Ry
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and, for every i e da, at least one of conditions (2b1), (2b2) and (2b3) holds:
(2b1) Ai=1, [ai] =& —>r1i, So[ai, &i] < Solai, ti],

(262)  [A] #a, [oi] i, &= V[aiti], (i=R[a«,ri],

(263) &i =i, (i=38)(ti).

Then conditions (9.1.1), (9.1.3) and (9.1.4) hold for every g € 8% and each of its
structures [o, ©]. Moreover if for every such g = [A,t] and [«, 1] there holds
(9.1.2), then condition (9.1.5) is satisfied.

Hence if conditions (9.1.2) and (9.1.6) are satisfied, {(V, R) is a reducing pair.

Proof. First prove that (9.1.3) holds. Let [4] = ¢, [, t] = [[A4], [¢]]. Then the
decompositions & and { satisfy A& = A{ = At = 1 because of (2a) and at least one
of conditions (2b1), (2b2) and (2b3) is satisfied for i = 1. (2b2) does not hold. If (2b1)
holds then o[ A4, Vg] < 8o[4, 1] = 1, whence A = Vg. If (2b3) holds then Vg = t.
Hence (9.1.3) holds.

Secondly we shall show that conditions (1) and (2) imply (9.1.1) and (9.1.4). Con-
cerning the latter condition if suffices to prove that £ is an a-decomposition of Vg
(we note that £ ® Rg = { ® Rg = r). Since & is a decomposition of Vg we have
to prove that

(3) [«i] = ¢i, [(Vg)i]= (Rg)j forevery ieda, jedVyg.
We note that (3) implies the following property which is independent of [a, 7]:
4) [A]1= Vg, Rg is a Vg-decomposition of ¢ .

In proving (3) we may assume x,i < j < xo(i + 1). Put iy = xoi, iy = xo(i + 1) —
— 1. Note that according to (4.4.5) we have &i = (Vg)'™™, (i = (Rg)"™™,
according to (4.2.5) we obtain (Vg) j = (&) (j + 1 — ip), (Rg)j = (L) (j + 1 = iy).
From (2a) and Lemma (4.8) we have i = [](i. We shall show that each
of the two conditions (2bl), (2b3) implies (3). The condition [«i] = ¢&i is
explicitly expressed in (2bl) and follows from the relation [ai] = ti if (2b3)
holds. It remains to prove [(Vg)j]= (Rg)j. If(2bl) holds then A& = 1 which
implies iy = j = i; and [(Vg)j] = [(&i)1] = & — i = [[Ci = ((i) 1 = (Rg) j.
If (2b3) holds then [(Vg)j] = [(&i) (j + 1 — io)] = [(zi) (j + 1 — ig)] =
= (8,(ti))(j + 1 — ip) = (Ci) (j + 1 — iy) = (Rg)j. Hence if (2b1) or (2b3) then
(3) holds. Now let M be the set of all such g in g% for which (4) holds. Let
[4]=1t. Then [o, ] = [[4],[f]] is a structure of [4,(]. By (2), applied for
i = 1, we have that either (2b1) or (2b3) holds. Hence (3) and (4) hold for our
g=[4,t]andge M.

Suppose that g = [4, t] has a weakly M-regular structure [«, t]. We shall prove
that in this case (3) holds. Let i € du be given. If (2b1) or (2b3) hold, (3) is satisfied.
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Let (2b2) hold. Then [«i, 7i] € M and by (4) applied for [«i, 7i] we get from (2b2) that
[«i] = &, Ciis a Ei-decomposition of ti. Hence, putting j, = j — Xoi + 1, we have
[(Vg) i1 = [(¢i)jo] = (¢i) jo = (Rg)j and conditions (3) and (4) hold for our g.
Hence g € M. By Theorem 6.7, M = g&%. Thus every structure [o, 7] of a gram-
matical element g is weakly M-regular and (3) holds for every g € g% and each of its
structures [o, 7], which completes the proof of (9.1.1) and (9.1.4).

Now suppose that (9.1.2) holds and let us prove that the set M = {g; g = [4, ] e
€g¥ and (Vg = [A] or Vg = t or Sgg < Jg)} is equal to g%. This will imply that
condition (9.1.5) holds, since § is positive-integer-valued and ¢ + Vg = [4] implies
09 ¢ <. The last implication can be proved as follows. If Vg = [A] # tand [4] —
— [A] then there is a structure [, 7] of [A4, t] such that « < [A], which contra-
dicts (9.1.2). '

Now let [4]=>t. Then by (9.1.3) [4, ] e M. Let [o, ] be an M-regular struc-
ture of g = [A4, t],lett & Vg + [A] and not [A] = 1. Let xo, ¢ and { be as in (2). We
have &[ai, &i] < Jo[ai, ti] if (2b1) holds. The same inequality follows from the
M-regularity if (2b2) holds and &i = ti. At least for one i one of these conditions is
satisfied because otherwise we would have Vg = Hr = t, contrary to the assumption.
Since for every i we have dy[ai, &i] < 8o[wi, ti] and since ¢ is an a-decomposition of
Vg we obtain by (6.4.1) and (6.6.1)

Aty Aty

d0g < S[A, o] + ¥ Solai, Ei] < 1+ Y o[ai, ti] = &g
i=1 i=1

and g € M. By Theorem 6.7 this implies M = g%.

9.7. Definition. (This definition is motivated by Theorem 9.4 which states that if ¢
is a reducing transformation then it suffices to investigate, for structural unambiguity,
only g-invariant grammatical elements. If then, for given A, «, i, every structure
[e, 7] of such an element [A,f] satisfies [«i] = i, we may attempt to replace
ai in o by another, terminal, element. An isolating transformation @ then determines
for which 4, o, i such a replacement should be made. (The “‘strongest” w for a given ¢
will be such that w[A4, «, i] # «i if and only if [«i] = i for every «, T as above.
However it suffices and is more convenient to require only the one-sided condition
(3).) The function ¢ then determines the element gai by which the original i may be
replaced. Condition (2.3) is not essential but ensures that @a determines a new ter-
minal element only if such a new element is required. The new language %, is then
defined: If « € £ A then #,4 contains «, which we get by isolating (i.e. replacing by
@ai) those elements of o for which w[A4, «,i] + «i. Moreover, £,A4 contains all
other o obtained by isolating some other symbols i such that gai = ai.)

o is an isolating transformation for a language & if the following conditions are
satisfied:

(1) do = {[4,0,i]; [A]=>a, i€ da}.
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{2) There is a one-to-one transformation ¢ on a such that
(2.1) for every aea¥ ecither pa = a or pa¢a?,
(2.2) w[A4, o, i] € {ai, pui} for every [A4,a, i]edw
and

(2.3) pa =+ a only if there is an [4, o, i] edw such that w[A4, o, i] & ai =a.

(3) There is a reducing transformation g such that if [«, t] is a structure of a g-in-
variant grammatical element [4, ] and if [4, o, i] edw, w[A4, , i] # «i then
[ai] = =i.

If w is an isolating transformation, &/ < d¥ and w[4, 0, i] # ai for every

[A, «, i] e do such that «i € o/ then we say that « is isolable (by ).

We remark that according to (2.3) the transformation ¢ is uniquely determined by

. We say that &, is an isolation of Z (by w) if w is an isolating transformation for £
and if

(4 dz, = d2,
(5) Lod = Is {Y[A4,o]; ae LA},
where

A
© 0[A. o] = [ [0l 4. % ]
and where, for any set M of texts,
(7) IsM = {t; 1o M, At = Aty and for every i edt either ti = t,i or ti = @tyi} .
It is easy to see that £, is a language,

(8) a%,cafurg.

At the end of this section we shall prove three theorems in which the properties of &
are compared with those of %, or of another language % related to £,,. These are
preceded by some lemmas in which the following conventions are used (the reader
who is interested only in results may skip the following text up to Theorem 9.11):

First, for every t, € 6.%, there is exactly one element vt, in 6.% for which

(9) MWty = Mg, toi € {(vto) i, @(vty) i} for every iedt, .
Ato
Further we write, for 7, in s6.%, uty = [ ] [vroi]; we have ur, € s Z.
i=1
On the other hand to every t in 6. we make correspond the sequence vyt of the

it . it
same length as ¢ defined as [ [@Vvot]. For every t in s6.% we define uot as [ [vori]-
i=1 i=1
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9.8. Lemma.

(1) The relations =, —, -, =2, =, =2 are stronger in %, than in & in the

sense that & :t; =>t, implies & : vt; = vt, etc.
(2) If [A, t] g%, then [A,vi]egZ .

(3) If [a, ] is a structure in %, of a grammatical element [A, t] of %,
then [va, pt] is a structure in £ of [A, vi] .

Proof. Let w € Lod, AedZ,. Then AedZ, = dZ, aels {y[4, «;]} for some
ay € LA, va = oy, V[ A] = [A]. Hence = is stronger in £, than in £. The rest of (1)
follows easily, and (1) implies (2) and (3) .

9.9. Lemma. Let g = [A4, {] be a g-invariant grammatical element of &. Then
go = [A, vot] is a grammatical element of £,. Moreover if o, t] is a structure of g
and if Jwy = Ao, agi = oi whenever [ai] + ti and oyi = @ai otherwise, then
[0, p07] is a structure of g, in Z,.

Proof. Let M be the set of all g € g% which either are not g-ivariant or for which
the first assertion of the theorem holds.

Let g = [4, t] be ¢-invariant, let [a, 7] be a structure in & of g.

First suppose o« = [A]. Then t € £ A, vot € LA, ie. ge M. Also o, = 1, and
apl = al = A since [A] * t. pot = polt] = [vot] and [oo, p1o] = [[A], [ot]] is
a structure in %, of g,. Hence in this case the assertion of the lemma holds. In parti-
cular, ge M if te ZA.

Now let o + [A] but suppose in addition that [a, 7] is weakly M-regular. If
[oi] = i then [aoi] = [@ai] = vo[ai] = voti = (pot) i. If [ai] # i then oyi = ai,
[od, i] is g-invariant (see (9.1.6)) and by weak M-regularity, [oi, voti] € §%,. In
this case we also have w[ 4, a, i] = ai (by (9.7.3)) which shows that «, € Is {y[A4,a]} =
o ZoA. Hence [4, to] is in g%, and [ao, #ot] is its structure. In particular, g € M,
by Theorem 6.7 M = g% and every structure [o, 7] in & is weakly M-regular. This
completes the proof.

9.10. Lemma. Let &/ be a subset of d% isolable by w, let | = P4q_.4 Let
[4, ] e gZ,.

Then:
(1) If A¢ o then viet(Z,, A).
(2) If [en 7] is a structure in P, of [A,t], [A] * «, i eda, [ai] + 7i
then
(2a) [oi, viile g2, .
Proof. Let M be the set of all [4, ] in 8%, which satisfy (1). If A ¢ o and t € A4
then t € Is {Y[ 4, «]} for some w € #A. Hence vt = a € A = ¥, A and [4, ] e M.
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Now we shall prove that if [ 4, t] has a weakly M-regular structure [«, 7] then both (1)
and (2) hold. If [4] = o then [4, t] € M and (2) is satisfied trivially. Let [A] # o. Let
i eda, [ai] * ti. Then according to the assumption concerning & and w, we have
ai ¢ . By (1) and weak M-regularity vti € t(&;, ai). Hence (2) holds for our 4, 1, «,
7. We shall prove (1). Let 4 ¢ o#. Then vae £ A. If [ai] + vi then (va) i = ai and
as we already know vti € t(Z, ai). If [ai] = ti then v[ai] = (va) i = vri. Hence
&, :va = [[ur = vtand (1) holds, [4, ] € M. According to Theorem 6.7, M = g%,
every structure in %, is weakly M-regular and the proof is complete.

9.11. Theorem. Let & be a language, ¥, an w-isolation of £. Then the structural
unambiguity of % is sufficient and necessary for that of £.

Proof. Let ¢ be the reducing transformation satisfying (9.7.3). Suppose & is
structurally ambiguous. Then there is a g-invariant g € g% with two different structu-
res (in &) [oy, 74, [2, 2] (see Theorem 9.4). According to Lemma 9.9, there is a
grammatical element g, € 8%, and two structures (in Z) [By, &1], [B2. &2] of go
such that o; = vB;, 1, = pé; for i = 1,2. If &, is structurally unambiguous then
By = By, & = &,, which implies a; = a,, T, = 1, contrary to the assumption. Hence
£, is structuraly ambiguous and the sufficiency is proved.

Now let & be structurally unambiguous and %, structurally ambiguous, so that an
gdo = [4, t,] € 8%, has two different structures [y, &1, [Ba, &2] in &,. Then by
Lemma 9.8, [vB;, u&;] are structures in % of an g € g< for i = 1, 2. Since g has only
one structure [o, ] in & we have o = v, T = pé;. Because [[¢; = []&, = 1, and
;= 1r, we have &; = &,; set & = &; and observe that du = df; = df, = d¢. Now
for every jeda and every ie{0,1} we have f;je {aj, paj}. We shall prove
B1j = B.j. If B;j + B,j then we have, possibly after interchanging indices, f;j = &,
Brj = @%j ¢dZL,. Hence in this case [B,j]= ¢, Lo:[of]=[pi]l—8& =
=[] = [ow], %, :[%] - [paj]. By Lemma 9.8 £ :[oj]— [aj], which
contradicts the assumed structural unambiguity of £ (see Theorem 7.6). Hence
B1j = B2j, By = B, which contradicts the assumption, and the necessity is proved.

9.12. Theorem. Let & be a language, ¥, = &, let o = d¥ — d&, be disjoint
with a%,, let every [A,t]e g% be structurally unambiguous if Aesf. Then
the structural unambiguity of &, is necessary and sufficient for that of £.

Proof. The necessity follows from Lemma 8.3. Concerning sufficiency, let &, be
structurally unambiguous. Let M = {[4,]; [4, 1] € g% and (either Ae o or
[4,t]egZ,)}. If te LA then [4, (] e M.

Let g = [4, f] be in g% and have a weakly M-regular structure [o, 7] in &, let
A ¢ of. We shall show that g € g%, and that [«, ] is a structure of g in %, also.

Suppose first [4] = . Then t€ £4 = £, A4 and the assertion holds.

Secondly let [A] # o. Then a € ¥4 = £, A and if [«i] = i then by weak M-
regularity, [ai, ti] € g% since by the assumption of the theorem, «i ¢ o/. Hence the
assertion holds again. In particular g € M, by Theorem 6.7 M = g%, every structure
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in & is weakly M-regular. Now let [ 4, t] € g have two structures [oy, 7,], [, 7,]
in £ If A ¢ o then by what we have already proved, [o,, ;] are structures of [4, 1]
in £, whence [a,, 7,] = [y, 7,]. The same equality follows from the assumption of
the theorem if A € o/.

9.13. Theorem. Let &/ be an isolable subset of d.Z, let £ = Ly4_ 4 and let for
every A in o/ and t in t(Z, A) there be at most one structure [a, t] in L of [A, 1]
satisfying either

(1) [ 7] = [[4]. [1]]

(2) [oi, ©i] € 8%, for every ieda such that [ai] = 7i.

Then the structural unambiguity of &, is necessary and sufficient for that of &.

Proof. The necessity follows from Lemma 8.3. Suppose #, is structurally un-
ambiguous. In view of Theorem 9.11 it suffices to prove that an isolation %, of £ is
structurally unambiguous. Choose an isolating transformation w in such 2 way that
o[A, «, i] # «i if and only if ai € o; let &, be the isolation of & by w. By (9.7.2.3),
pa=a if and only if a e o/ and by (9.7.6) and (9.7.7) this implies that the set
Is{y[A4,0]} contains exactly one element, namely y[A4,«]. We have y[4, o] =
= v, LA = {voor; xe A}.

Let [oy, 74 ], [z, 72 ] be two structures of [ 4, t] in £, let A € /. By Lemma 9.8,
[very, pty ], [vay, pt,] are two structures in &. From (9.10.2) we conclude for i = 1,2
that [va;, ut;] satisfies either (1) or (2). Hence [voy, pty] = [ver,, pt,]. Since o; =
= Voo, T; = HopT;, We have [oy7y | = [y, 7,] and every [4, {] e g&, with A € o/ is
structurally unambiguous.

Set since o/ N a? = A we conclude from Theorem 9.12 that &, is structurally
unambiguous if Z = (Zo)ag, has this property. We have assumed that %, is
structurally unambiguous and 2 differs from %, in that terminal symbols a in
of of &, are replaced in % by terminal symbols @a. Since ¢ is one-to-one, the struc-
tural unambiguity of ., implies that of Z , which was to be proved.

10. ISOLABLE SYMBOLS

10.1. Remark. In this section we shall formulate some assymmetrical conditions
which are sufficient for the existence of isolating transformations. Roughly speaking,
they correspond to the case in which it is easier to recognize the end of an inserted text
than its beginning. It is possible to formulate and prove the results corresponding to
the other case. For this it sufficies to consider another language %, withd¥ = d.%,
and £ A = {f; B; = o Ao + 1 — i), i ed, da = 1B, € LA}.
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10.2. Definition. A subset &/ of d% is said to be complete if for every ¢ in
U{t(Z, A); A e/} thereis an 4, € o such that

(1) [B]»>t, Bed¥?
implies
(2) [B] = [4o], 80[B.[Ao]] <8[B.1]. [4o] +[Ao] —1.")

10.3. Definition. Let o = d.%. We say that &/ is f-recognizable if f is a transforma-
tion defined on g%, g[4, 1] = dt and the following two conditions hold for every
[4, 1] eif fZ:

(1) A+ Aif Aest; f[A (] =4 if A¢st, teZA.
(2) If g = [A, 1] egZ and [o, 7] is a structure of g, x = 1, a + [4], then
fg ={is i =xj, jef[4, o], [¢] =1} v
vl i=xj—1+s, jeda, [o] * 1), sefl[, 1]} .

10.4. Lemma. Let o7 =< d.%, Q < a,.%, for every o€ Ur &L let Q be disjoint with
symb {«} if and only if a ¢ Y{FA; A L}.

Then there is an f 'such that of is f-recognizable.

Proof. Put f[A4, 1] = {i; iedt, tie Q} for every [4, t]egZ.

10.5. Definition. Let ./ be an f-recognizable subset of d.#. We say that f, and f,
indicate the beginning and the end for f, if f,, f; are functions defined on the set
{[4.1,i]; [4, (] g, ief[A, (]} with values fj[A, ¢t i]edt: fo[A,t,i]<i<
< fi[A. 1, i] and if the following conditions are satisfied for every g = [4, t] € g&
and each of its structures [o, 7], i€ fg, x = 1, xj < i < x(j + 1):

(1) if [A] =t then fy[4,t, i] =1, f1[A4, 1, i] =,
(2) if [oj] = 7j and if for every iy < i, io€fg we have fo[A, 1,i5] =1,
filA 1, i) = At
then
folA, t,i] =1, fi[4,t,i] =121,
(3) if [aj] # 7j then for s = 0, 1
Al 6] =xj — 1+ floj, <, i + 1 = xj] .

(We note that the right-hand side of the equality in (3) is meaningful according to
(10.3.2))

1) We writte “a + b for “non (a— b)”.
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10.6. Definition. Let of = d.¥. We define the sets of left and right delimiters for o/
in the following way:
(1) Idel o/ = symb,_ {t; aeUr?, ieda, [ai] =B, pless, o« "D 2},
(2) rdel & = symb, {t; ac UrZ, ieda, [ai] = p, pABeot, ot 1HD 21},

10.7. Lemma. Let of < d.Z be f-recognizable, let ky, and k, be two integer-valued
functions defined on

0= {ti; ief[A, 1], A=1}.

Let Q < a. %, for every qeQ let B, = {a; [A] = o, ief[A, o], ai = q}, &, =
={4; [Al=> e}, T,={t; B=1, BeB,}.

For each q in Q let one of the conditions (2a), (2b), (2c) and also one of (3a), (3b),
(3¢) hold for every A, a, j such that

© [4]= o jefl4, o] o = q:

(2a) if «U2 =y then Ju = kyq,

(2b) (symb, 7)) A (symb {u*7 D5 a0 2}y = 4,
(2¢) (rdel o7,) 0 (symb {u; «V* " 2 y}) = 4,
(3a) if aWID 2y then Au = kogq,

() (symby 7,) o symb (a1} U

u{u; 1 <h <j, [ah] > u, flah,u] = A} U
U @ [al] > u, flal, u] = A})) = 4,
(3¢) (del &,) N (symb ({«"/ "D} U
ulu; 1 £ h <j, [ah] > u, flah,u] = 4})) = 4.
Then there are f, and f; which indicate the beginning and the end for f.

Proof. From (10.3.2), Q = {ti; Aed?, [4] »t, ief[A,t]}. Hence if [4, (] e
eg¥,ief[A, 1], q = tithen ge Q. Set u = [4, ¢, i] and define fou and f,u as the
largest and smallest integers respectively, for which fou < i < fyu and either fiu =
= At or

(4) if (1) implies (2a) then
(42) fiu=1i+kyq
else if (1) implies (2b) then

(4b) tf,u e symb, 7,
else
(4¢) ((fiu + 1) erdel &7,
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and either fou =1 or

(5) if (1) implies (3a) then

(5a) fou =i — koq
else if (1) implies (3b) then
(5b) tfou € symb, 7,
else
(5¢) H(fou — 1) e ldel o7, .
Now let us state two assumptions:
(62) g=1[A4,1]eg?, iefg, q=ti,

(6b) condition (6a) holds, [A] = a, t is an a-decomposition of #, x = vt
xj<i<x(j+1),p=xj—1.

Directly from the definition of f, and f; we conclude:

(7a) if (6b) holds and [«j] # 7j then
foloj. tj, i — p] > 1 implies fo[4, t,i] = fo[aj, tj,i — p] + p;
folwi, i, i — p] =1 implies fo[d,t,i]<p+1

and

(7b) if (6b) holds and [aj] # 7j then
filw, v, i — p] < Atj implies fi[A, t,i] = fi[oj, 1j. i — p] + p;
filed, @i, i — p] = A7j - implies fi[A4,t,i] 2 x(j + 1) — 1.

We shall prove the following three properties:

(8a) if (6a) holds and fo[4,t,i] = 1 then there is a B such that [4] =
=Zp=1, fled, tlesymb, T, and kog = i — 1 if (1) implies (3a)

(8b) if (6a) holds and fi[4, t,i] = At then there is a f such that [4] =
=pB=1t, pIBest, titesymb T, and k,q = it — i (1) implies (2a)

(9) if (6b) holds and [aj] + 7j then xj < fo[4,1,i] and f,[4, 1, i] < x(j + 1.

Let M be the set of all grammatical elements g = [ A, ¢] for which (8a) and (8b) hold.
If [A] = t then A € &, and both (8a) and (8b) hold.

Now if (6a) holds and [«, 7] is a structure of [4, ] then (6b) holds with suitably
chosen x, j, p. Hence in proving (8a) and (8b) we may assume that not only (6a) but
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also (6b) holds. Moreover, assume [ah, Th] € M whenever [ah] # th, and prove that
then (8a), (8b) and (9) hold. According to Theorem 6.7 we shall then have M = g%,
the additional condition will be a consequence of (6b) and, hence, the proof of (8a),
(8b) and (9) will be completed.

First let [oj] # ©j. If fo[o), 7j, i — p] > 1 then fo[4, t, i] > xj according to (7a).
Hence in this case (8a) and the first inequality in (9) hold. Let fo[oj, 7j, i — p] = 1.
Since [aj, 7j] € M, there is a B, such that [oj] = B, = 1j, fol € #,, 1j1 € symb, T .
If xj = 1 then (8a) holds with 8 = B, x []:Y***” and the first inequality in (9) also
holds. Let xj > 1. The first equation in (9) obviously holds if, for our g, (1) implies
(3a) or (1) implies (3b). Otherwise (1) implies (3c) and from B, = 7j, ol € o/, we get
t(xj — 1) e Idel &/, and, consequently by (5¢) f[ 4, t, i] = xj > 1, the first inequality
in (9) holds again and (8a) is satisfied trivially. (8b) and the second inequality in (9) can
be proved similarly.

Secondly, let [aj] = 7j. Then (9) is satisfied trivially and (8a) and (8b) hold with
B = [A] because j € f[4, «] by (10.3.2), aj = q, a € B,, pl = pA = Ae o/, This
completes the proof of (8a), (8b) and (9). Combining (9), (7a) and (7b) we obtain

(10) if (6b) holds and [«j] # 1j then for s = 0, 1
flA, 1] = floj, 1. i — p] + p.
As the next step we shall prove:
(1) if
(11a) condition (6b) holds, and for every i, < i, io €fg we have
folA. t, il =1, fi[4,t,i,] = 4,
then
(11b) U{f[aeh,th]; 1< h <j, [ah] +th} =4
and
(11c)  [wj] =1 implies fo[d,t,i] =1, f[4,1,i]=2r.

Let (112) hold but let there be an h < j such that [ah] * th, i, € f[ah, th] for some
io. By (11a) fo[A4, t,i0] = 1, f1[4, 1, iy] = At. According to (9), this implies At <
< x(h + 1) < xj which contradicts the assumption i€ f[ 4, t], i Z xj. Hence (11b)
holds. We shall prove (1lc). Let [oj] = 7j. We are to prove fo[A4,¢t,i] =1,
fi[A4,1,i] = At. We shall prove only the first equality; the proof of the second
equality is analoguous and a little simpler. We may assume i > 1 since otherwise
1 £ fo[A, t,i] < i = 1. Firstlet, for our g, (1)imply (32). Then o/~ = [/~ 1,
kog = Al[x"" " V=xj—1=i—1 and by (52) fo[4,t,i]=i—-(i—1)=1
Secondly, let (1) not imply (3a). Denote by R, and R, the right-hand terms of the
intersections in (3b) and (3c), respectively. If, for an k < j, [«h] = th then by (11b),
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f[eh,th] = A.  Hence R, > symb ({«®?} U {th;1 <h <j}u {(z1) @20y 5
> symb {7}, Similarly R, > symb {*""D}. If (1) implies (3b) then symb, T,
nsymb {t®Y} = A and f,[A,1,i] = 1. Otherwise (1) implies (3c), Idel oA, 0
symb {{"F"V} = A and by (5¢), fo[4, t,i] = 1 again; the proof of (11) is com-
pleted.

Now we see that all the conditions of Definition 10.5 are satisfied: (10.5_]) follows
from (11) applied for « = t, T = ¢ successively for all i e f[4, t]. (10.5.2) follows
from (11) also and (10) implies (10.5.3).

10.8. Theorem. Let o/ be a complete and f-recongnizable subset of d.2, let f,
and f, indicate the beginning and the end for f, let w and ¢ satisfy conditions
(9.7.1)=(9.7:2), let w[A, o, i] = i unless ai € o/ and either
(1) not aiTD x glitlA0 2 4
or

(2) the condition that

(2a) [oi] > t, [B] = [A4]. [B. 7] is a structure of [B, t]
implies
(2b) there is an sedrt such that [Bs] - s = t.

Then o is an isolating transformation.

Proof. For every g = [4, t] € g% denote by #,g the subset of fg containing all
such i for which fo[4, t,i] = 1, f[A4, 1, i] = At. Let Fg be the set containing the
smallest element of the set fg — # g, if this set is non-empty; otherwise put fg = A.

First we shall prove the following assertion:
(3) If [A,f]e g% and Jog + A then te Y{t(Z, 4); Aes}.

Let M be the set of all such [4, {]e g% for which (3) holds. Suppose [A]=t.
Then J,g + A implies fg + A and according to (10.3.1) this implies that 4 € /;
hence [A, t] € M. Now suppose that [ A4, 7] has a weakly M-regular structure [o, t].
Choose i € 7(g), let j be such that xj < i < x(j + 1), where x = . If [oj] = 7j
then by Definition 10.3, 4 € /. If [¢j] # tj then by (10.5.3) tj = t, S [wj, 1] *+ 4
and since we assume [«j, 7j] € M, there is an A, €&/ for which [4y] — 1j = 1.
According to Theorem 6.7, this completes the proof of (3). By the completeness of o/
(see Definition 10.2) and by (3) there is a transformation v defined on 8.% such that

(4) [v(] # ¢, andif
(4a) [4,1]eg?, Fo[A,t]+ A4, BedZ, [B]-t
then

(4)  [BI=[l—>t, 6B [v]] <6o[B.1], [vi]-[vi].



In the next step we shall define two transformations V, R on g% in the following
manner:

If g =[A4,t]egs and if

(52) Fg+ A
then
(5b) Vg = tio= 1y [yplioi] x f(1+1.20
Rg = 8t~ 1) x [flioin] x §gii*1:a0
where
sefg, iy =fo[A t,s], iy=fi[4 t5];
if

(6a) Fg = A, fg + A, vt + [A] and (2b) holds for every structure [B, 7]
of a grammatical element [B, f] with [B] = [4],

then

(&) Vg =Dil. Rg=[1:

if

(7a) neither (5a) nor (6a) holds

then

(7b) Vg=t, Rg=3,t.

We shall show that (¥, R) is a reducing pair. Let g = [4, t] € g&, let ¢ be defined
as in Definition 9.1. By the definition of #g we have AVg > 1 if (5a) holds; Vg =
= [vt] # [A] if (6a) holds; otherwise by (7b), Vg = t. Hence the relation t + Vg =
= [A] cannot hold and (9.1.2) is satisfied.

For the proof of (9.1.1), (9.1.3), (9.1.4) and (9.1.5) we shall use Theorem 9.6.
Clearly, condition (9.6.1) is satisfied. If [, 7] is a structure of g then Ry is finer than 7.
This is obvious if (7a) or (6a) holds, and it is a consequence of (10.5.1)—(10.5.3) if
(5a) holds. Hence there is an index-decomposition x, of Rg (and of Vg also, because
AVg = ARg) such that the decomposition { = 8(Ry, x,) satisfies (9.6.2a). Because
(Rg) i % A for every i e dRg, we obtain from Lemma 4.11 that x, is determined uni-
quely. We shall prove that { and & = §(Vy, x,) satisfy, for every i € do, at least one of
conditions (9.6.2b1), (9.6.2b2), (9.6.2b3); this is sufficient to prove (9.6.2).

Put x = i1, x; = WRg.

First let (7b) hold. Then x, is the identical transformation on I(At + 1), X, =X,
E=08(Vg,x0) =8(t,x) =17, {=580,t,x), & =i, {i=(3,) V" V=3§i
and (9.6.2b3) holds.
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Secondly let (6a) hold. Then there is an s such that [as] — ¢ = s hence A&i = ALi
is equal to zero and one for i # s and i = s, respectively. For i % s, i e da, &i =
= (i = A satisfy (9.6.2b3). For i = s we obtain from (6b) ¢i = [vt] and from (4)
[wi] = [vi] = & = t = =i, So[u, &i] < o[a, Ti] and (9.6.2b1) holds.

Thirdly let (5a) hold. Let s € g, xj < s < x(j + 1). By (10.5.2) we have [oj] # 7j.

If i # j then according to (5b), {i = §t*H* (D=1 = § ¢ ¢ = (*H*EHDTD = g4
and (9.6.2b3) holds.

If i = j then

Ci — (5pt(xi,io—1)) X [t(io,il)] X (5pt(i,+1,x(i+ 1)—1))’

Ei = fxiio=1) o (vt(io,ix)) x linx@+1)-1)

with iy, iy as in (5b). First let [io, i;] # [xi, x(i + 1)]. Then according to (10.5.3),
S, ti] = {s + xi — 1}. Hence in this case & = V[ai, ti], {i = R[ai, ti]. Ac-
cording to (10.5.1), from .#g % A we obtain further that t ¢ £ A4 and hence o % [A4].
Thus in this case (9.6.2b2) holds. Secondly let [io, i;] = [xi, x(i + 1)]. Then & =
= [vti], #o[wi, ti] + A and from (4) [ai] = &i - i, A&i = 1, o[, &i] < do[adi, 7i]
and (9.6.2b1) holds.

This concludes the proof of condition (9.6.2). According to Theorem 9.6, if also
(9.1.6) holds then (¥, R} is a reducing pair. Let us prove (9.1.6). First note that og = ¢
if and only if (7a) holds; this follows from the property [vf] =& t for every tedv.
Now suppose that o[ai, ti] = [ai, ti] for some i eda, [«i] * ti. If S[ai, ti] + 4,
then #g + A and ¢g =+ g according to (5a) and (5b). Otherwise [ai, 7i] must satisfy
condition (6a) (for [i, 7i] substituted for [A4, ]). In this case fg + 4, vti # [ai]. If
Jg #+ A then again ¢g #+ g by (52) and (5b). If Fg = A then according to (10.5.3),
[ei, ti] = [ai, t]. Since [A] = [«i] — [vt] -» [vf], we have 4 # vt. The remainder
of condition (6a) is clearly satisfied for g as well as for [ai, t]. Hence (6a) holds for g
and og #+ g again. This completes the proof of (9.1.6)), which is the last condition
needed to verify that (V, R) is a reducing pair.

For the proof of the theorem we must now show that (¥, R} and ¢ have the pro-
perty (9.7.3). Let 4, t, «, 7, i be as in that condition, let w[4, a, i] * ai, [«i] * 7i.
We have [4] = « and proceed to show that g satisfies either (5a) or (6a), i.e., that
09 + g. According to the assumptions of the theorem, w[A, a, i] # ai implies that
i € o/ and either (1) or (2) holds. «i € o/ implies f[ai, 7i] + A and, by (10.3.1),
fg + A.If g + Athen(5a) holds and og + g, and this is the case if (1) holds. Hence
it remains to consider the case in which (2) holds, (1) does not hold and g = A.
Then o170 x ot 12 = 4, [ai] = a — t and by (4), [4] - [«i] = [v1] » [v(]
which implies [A4] # vt. Since [ai] — i = t, condition (2) implies (6a) and again
09 * g, which completes the proof.

10.9. Example. Let 4, 4,, ..., 4,,, {eo}, E = {ey, e,, ..., e,} be disjoint sets, let &
be a language with d.% = E and, for every i € I(n), let

(1) Ze,; U{{ei—p 0, €0 i85 1, ei5iei—1}§ d;€ A.’} .
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For example, ZLe, may be equal to U{{d,, e;8,}; 6, € 4;}. The terminal e,-texts
are then in s4, and may be called primaries. Elements of 4;(i > 1) may be
called operators with priority i and texts derived from e; may be called expressions
of order i.

Put o = {e,}. Let e; > t, e, > t. Then {t} = {e,} U 4,, and every derivation o
of t from e; has a part 6*? = [e;, e;_y, €;_5, ..., ¢;]. Hence e; = ey, do[e;, €] <
< doles t], ey - €, and o is complete by Definition 10.2. Now let Qo = 4, U {e,}
and f[4, 1] = {i; tie Qp} By Lemma 10.4 & is f-recognizable. We shall proceed to
show that the assumptions of Lemma 10.7 are satisfied and that, in particular,
(10.7.1) implies (10.7.2c) and (10.7.3c). We have Q < {eo} U 4, and &/, = {e,}
for every qe Q. If a, B, t are as in (10.6.1) and if ¢t & A then Bl = e, ai€E,
i>1, o(i —1)ed;, j>1 and hence Idel o, = 4; If o f,t are as in

. j=2
(10.6.2) then again aie E but i < Aa = 2, hence a/"P e 4;,j = 1 and rdel &/, =
< U 4;. Nowlet (10.7.1) hold. Then 4 = ey, € {eg, 5;, €,01, 8¢, €;5,¢0} with 8, € 4,
i=1
and «j € Q. Hence o+ 129 js either empty or equal to e,, and the right-hand side of
the intersection in (10.7.2¢) is part of the set {e,} which is disjoint with rdel <7,
Hence condition (10.7.2c) holds. Concerning (10.7.3c), a*~1 is either empty
or equal to e; or J; or e;d;, so that(10.7.3c) also holds. Hence there exist, by
Lemma 10.7, f, and f, indicating the beginning and the end for f.

Now let A= a, ai € o/. This implies ai = e;, 4 = e,,. If o + ¢; then (10.8.1)
holds. Suppose (10.8.2a) holds, i. e. e, > t, B=e,, [B, ] is a structure of
[B,f]. Then B= B =e, which implies A = 1, and (10.8.2b) holds. After
suitable choice of w such that co[A, o, i] =+ oi as soon as oi = e;, we obtain by
Theorem 10.8 thats/ is isolable. Since it is easy to see that every grammatical
element [el, t] has a unique structure, from Theorem 9.13 we obtain that & is
structurally unambiguous if and only if &; = &, .. . .., is such.

.....

Onputting 4; = A;,_;, i =n — 1, &, = e; _, we see that #, satisfies all the condi-
tions originally imposed on .#. Hence %, is structuraly unambiguous if and only if
&) = Ze,...,eny 18 such. Since 4 is a structurally unambiguous language, we obtain
that & is structurally unambiguous.

11. ISOLATING PARENTHESIZED SETS

11.1. Definition. A subset &/ of d.Z will be called parenthesized if o7 is complete, if
for every a € UrZ, i e da, ai € o either (10.8.1) or (10.8.2) holds, and if there are two
disjoint subsets L, R of a,.% such that « € YrZ and «i € L(e R) if and only if x € Z 4,
Aest,i=1(=ia).
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11.2. Theorem. Every parenthesized subset of d.% is isolable.

Proof. Putting Q = R we get from Lemma 10.4, the conditions of which follow
from our assumptions, that <7 is f-recognizable with f [A, t] = {i;iedt, tieR}.
Furthermore the assumptions of Lemma 10.7 are satisfied with Q = R, koq = k,q =
= 0 for every q € Q, since for every ¢ in Q condition (10.7.1) implies (10.7.2a) (be-
cause oV ") = A,y = A, Ju = k,q) and (10.7.3.b). Concerning the last condition,
it follows from the fact that f[4,u] = A implies LN symb {u} = A and that
symb, 7, < Lfor q e Q. Thus according to Lemma 10.7 there are f;, and f, indicating
the beginning and the end for f.

We see that the assumptions of Theorem 10.8 are satisfied if we choose suitably
such that w[4, a, i] # «i if ;€ o and @[ 4, o, i] = «i otherwise.

11.3. Theorem. Let o be a parenthesizeds subset of d.Z, let ¥y = L4 4. For
every Aesl, tet(&, A), let there be at most one structure [a, t] in £ of [A, t]
satisfying either

1) [#, <] = [[4]. [

or

2) [oi, ©i] € 8L for every ie da such that [ai] + <i.

Then the structural unambiguity of & is necessary and sufficient for that of £.

Proof. The assertion follows from Theorem 9.13 since by Theorem 11.2, & is
isolable.

11.4. Example. Let 4;, e; be as in Example 10.9, denote by ., the language investi-
gated (and denoted by %) there. Let p € 4, let (,) be two different elements not in
a¥%,.

Let & be defined on the set {p} U E, let p = {[(e,)]}, Lr = &;. By an easy
application of Theorem 11.3 we have that & is structurally unambiguous if £, is
such. According to Example 10.9, & is structurally unambiguous.

Bibliography

(11 J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (editor), A. J. Perlis.
H. Rutishauser, K. Samelson, E. Vauquois, J. H. Wegstein, A. van Wijngaarden, M. Woodger:
Report on the Algorithmic Language ALGOL 60. Numerische Mathematik 2 (1960),
106—136.

[2] H. Bottenbruch: Ubersetzung von algorithmischen Formelsprachen in die Programm-
sprachen von Rechenmaschinen. Zeit. fiir math. Logik und Grundlagen der Mathematik 4
(1958), 180—221.

[3] D. G. Cantor: On the Ambiguity Problem of Backus Systems. J. Assoc. Comp. Mach. 9
(1962), 477—479. i

429



[4] Noam Chomsky: On certain Formal Properties of Grammars. Information and Control 2
(1959), 137—167.

[51 Noam Chomsky: Three Models for the Description of Language. IRE Trans. I, T-2, No. 3
(1956), 113—124. (Russian translation: KibernetiCeskij sbornik 2 (1961), 237— 266, Izd. in.
lit., Moskva.)

[6]1 N. Chomsky and M. P. Schiitzenberger: The Algebraic Theory of Context-free Languages.
Computer Programming and Formal Systems (ed. by P. Braffort and D. Hirschberg),
Amsterdam 1963.

[71 Martin Davis: Computability and Unsolvability. New York, McGraw-Hill 1958.

[8] Francois Genuys: Commentaires sur le langage Algol. Chiffres 5 (1962), 29— 53.

[9]1 Sheita A. Greibach: The Undecidability of the Ambiguity Problem for Minimal Linear Gram-
mars. Information and Control 6 (1963), 119—125.

[10] Peter Zilahy Ingerman: A Syntax-Oriented Compiler for Languages whose Syntax Is Expres-
sible in Backus Normal Form, and Some Proposed Extensions Thereto. University of Penn-
sylvania, The Moore School of Electrical Engineering, Philadelphia, Pennsylvania, April
1963.

Pe3srome
O CTPYKTYPHOM O/THO3HAUHOCTU ®OPMAJIbHBIX SA3BIKOB

BAILIJIAB ®ABUAH, (Vaclav Fabian), Ilpara

B paborte usyyaercs mpobiema (CprKTypHoﬁ) OJTHO3HAYHOCTU (DOPMAJIBHBIX SI3BI-
KOB HECKOJIbKO Oostee 0OIero kiacca, 4eM Kiacc XOMCKOTO I'paMMAaTHK THIa 2.
W3BecTHO, YTO HE CYMIECTBYET aJrOpuTM, KOTODBIif JaBajl ObI OTBET HA 3TOT BOIPOC
171 Kaxaoro s3bika nansoro kiacca ([3], [6], [9]). Hacrosmas paGora mogxomut
K Ipo6JieMe ¢ JpYyroit CTOPOHBL. B Heit BEIBOAUTCS PSIT HEOOXOJMUMBIX U TOCTATOYHBIX
YCIIOBYI JIJIsl TOTO, YTOOBI JAHHBIN SI3BIK £ ObLI CTPYKTYPHO OJHO3HAYHBIM. MHOTHE
U3 3THX YCJIOBUI IOKAa3bIBAIOT, YTO £ OYHET CTPYKTYpPHO OJHO3HAYHBIM TOT/A
M TOJIBKO TOT/Ia, €CJId IPYroi, Oojee MPOCTOH S3BIK 00JIalaeT 3THM CBOMCTBOM.
IToapo6HO m3y4aeTcsi TAKXKE CBSI3b MEXIAY CTPYKTYpPHOH OIHO3HAYHOCTBIO S3BIKA
M BO3MOXHOCTBIO OIPEACNCHHS IS 3TOTO s3blIKa CEMaHTHKH Ha OCHOBAaHHU pe-
KYPPEHTHBIX COOTHOLUEHHH, aHAJOTMYHBIX TEM, C IOMOUIbIO KOTOPBIX OBLI oIpe-
JEJIEH CHHTAKCHC.
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