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YexocoBaukuii MaTeMaTHueckuii xypuaa, 1. 14 (89) 1964 Ilpara

REMARKS ON SPACES OF LARGE CARDINAL NUMBER

JoHN R. IsBeLL, Seattle (Washington)
(Received January, 21 1963)

It is proved that a completely regular space of sufficiently large cardinal
number F(n) must contain an arbitrarily large (n) discrete subspace.

1. This paper shows that for a completely regular space X to have a discrete
subspace of power n, it suffices that the power of X exceed the sum of all the numbers
exp exp exp m, m < n (where exp p denotes 27). The method involves a subspace,
in any space of more than exp m points, which contains more than m points but has
a covering by open sets each containing at most m points. An additional consequence:
a hereditarily Lindel6f space contains at most exp &, points. P. S. ALEKSANDROV and
P. S. UrysonN [1] proved this in the compact case.

The number F(n), the successor of the sum of all exp exp exp m, m < n, is too
large if n = No; for every other infinite cardinal n, I do not know whether F(n) can
be replaced by a smaller number. Product spaces D™ (D a space of two points) show
that if m < n then F(n) > 2™. Note that a lincarly ordered space of power greater
than 2™ must contain a discrete subspace of power > my; this is essentially due to
Urysohn (see [1]), though it is implicit in earlier work of F. HAUSDORFF [2; VI, 8].

2. Consider any completely regular space X. Fix an embedding of X in a Tychonoff
cube; thus the points x of X are represented by functions on some index set J to the

< interval’l = [0,1].

We define by transfinite induction a set of functions on subsets of J to I, called
sorting functions; the sorting functions introduced at the a-th step will be said to
have length a. All sorting functions will be restrictions of limits of functions in X;
those which are restrictions of just one x € X will be called complete.

We may begin with the empty function, which we suppose is not complete; in fact,
let us assume X is infinite. Inductively, for each incomplete sorting function & of
length o, £ : S — I, select an index je J — S on which some two extensions of &,
that are restrictions of functions in X, differ. Define the immediate extensions of &
to be all such extensions of ¢ over S u {j}. The sorting functions of length a + 1
are defined as the immediate extensions of sorting functions of length a. For a limit

383



ordinal B, a function (considered as a set of ordered pairs) is a sorting function of
length f provided it is a union of sorting functions of all lengths « < f. This completes
the definition.

Evidently each x in X has one or more restrictions that are complete sorting
functions. The number of sorting functions whose lerngth is an ordinal of power at
most m (an infinite cardinal) is at most 2™. Hence the number of sorting functions
of length less than n(n > N,) is at most the sum of all 2™, m < n.

If the power of X exceeds 2™ there must be a sorting function 1 whose length 4 is
the first ordinal of power greater than m, for there are at most 2™ shorter complete
sorting functions. For m = 2™°, the same conclusion follows from the weaker hypo-
thesis that the character of X exceeds m. ’

From the sorting function 5 of length 4 we can determine points x, (¢ < 4) such
that the restriction of n of length o is a restriction of x,, but the restriction of n of
length « + 1 is not. The x, form a subspace S of X having more than m points. The
open sets U; = {x €S : x(j) # n(j)}, as j runs through the domain of 5, cover S;
and each contains at most m points. Taking account of limit cardinals, we find

Lemma. If the power of X exceeds the sum of all 2" for m < n (or, for non-limit
cardinals n > 2%°, if X merely has character at least n) then X contains a subspace
that has power less than n locally but not globally.

3. Restating the lemma affirmatively, we have the bound on the size of hereditarily
Lindelof spaces:

Theorem 1. If every family of open sets in X has the same union as some subfamily
of power at most m, then X contains at most 2™ points, and if m = 2%, X can even
be embedded in a product of m intervals.

Theorem 2. If X has power at least F(n), then X has a discrete subspace of at
least n points.

To prove Theorem 2, apply the lemma (to the cardinal successor of exp exp p
when n is the successor of p; with suitable modification for the other case). Then
build up a discrete subspace, cushioning each point as it is added by a neighborhood
-of small power, and always avoiding the closure of the set of points aiready added.
As long as only r points have been added, the power of the closure is at most exp
exp 7.
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Pesrome

3AMEYAHHUE O INPOCTPAHTCBAX BOJIBIION MOIHOCTU

Hx. P. UCBEJIJI (J. R. Isbell), Custn

Mt Kak/10r0 Kap[MHAJILHOTO YMCIA 1 CYMIECTBYET TaKOoe HAHMEHDbLICE YOO
G(n), uto mr060€ BrIOITHE peryispHOE IIPOCTPAHCTBO X, MOILHOCTb KOTOPOTO NPEBOC-
xomuT G(n), CONEPKUT TUCKPETHOE TTOIITPOCTPAHCTBO Y, UMEIOILEE MOIIHOCTD H.

G(n) He mpeBOCXOTUT CyMMBI Beex wuncen 2227, m < n, HO mis N, 310 — He
HAMJyqIIas OUEHKA; SBJIACTCS M OHA HAllIydilell s KapAMHATBHBIX Gicell > No,
MHE HE H3BECTHO.
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