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PERIODIC SOLUTIONS OF A LINEAR AND WEAKLY
NONLINEAR WAVE EQUATION IN ONE DIMENSION, I

Ot1TO VEIVODA, Praha
(Received January 10, 1963)

The existence of periodic solutions of a linear wave equation (0.1) or a weakly
nonlinear wave equation (0.2) with boundary conditions (0.3) is studied.

Introduction. Many physical phenomena are described by a linear wave equation
(in one space dimension)
(0.1) Uy — @iy, = (1, x)
(a being a real constant) or by a weakly nonlinear wave equation
(0.2) Uy — @%ug = h(t, x) + ef(t, X, u, up uy, 8)

(¢ being a small real parameter) with boundary conditions

(0.3) u(t,0) = u(t,1) =0
and with initial conditions
(0.4) u(0, x) = o(x), u/0,x) = Y(x).

Now, if h(t, x) and f(t, x, u, u,, u,, €) are periodic in ¢ with period w, the question
arises if there exists for suitably chosen initial conditions (0.4) an w-periodic (in )

solution of (0.1), (0.3) or (0.2), (0.3).
By an appropriate choice of units of ¢ and x, a = 1 and | = n may be attained.

Let i be a solution of
(0.5) Uy — Uy = h(t,x), u(t,0)=u(t,m)=0.
Then by a substitution v = u — i, the system of equations
(0.6) Uy — Uy = h(t, x) + &f (t, x, u, u,, uy, €),
u(t,0) = u(t,m) = 0

\
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is transformed into the system
(0.7) Uy — Uy = &f4(t, X, 0,0, 0, 8), 0(t,0) =o(t,n) = 0.

In this form, a weakly nonlinear case will be always studied. (If h and f are @
periodic in ¢ and (0.5) has no w-periodic solution then (0.6) may have evidently no
w-periodic solution depending continuously on ¢ for small ¢.) It will be seen that we
must distinguish three different cases: (1) the totally resonance case when w = 2nn,
n a natural number (the totally critical case in the terminology of general boundary-
value problems in [1]), (ii) the resonance case when w = 2np/q, p and g natural
numbers, ¢ = 1 (the critical case), (iii) the nonresonance case when w = 27, « an
irrational number (the noncritical case). In the sequel we shall succeed to treat by
the Poincaré method in a satisfactory manner only the cases (i) and (ii). In the case
(iii) we are unable to overcome some difficulties arising from the number theory.
Hitherto, the case (i) was briefly studied by J. KurRzwEIL in [2]. (Kurzweil’s method
besides the existence of a periodic solution reveals its asymptotic stability.) Further,
a special problem of the case (ii) was several times investigated by Soviet mathe-
maticians ([3]—[10]).

The bibliography on periodic solutions of some related problems may be found
in [1].

In this paper, in paragraph 1 the existence of periodic solutions in the linear case
is treated. In paragraph 2 some auxiliary theorems from functional analysis are
introduced. In paragraph 3 theorems for a classical and generalized solution of
a weakly nonlinear mixed problem given by (0.2), (0.3) and (0.4) are derived. In
paragraph 4 the existence of periodic solutions of (0.7) in totally resonance case and
resonance case is investigated. In paragraph 5 two particular cases are treated in
more detail.

1. PERIODIC SOLUTIONS OF A LINEAR WAVE EQUATION

1.1. Mixed problem. Let the mixed linear problem (.#) be given:

(111) Uy — Uxx =f(t’ x)’
(1.1.2) u(t,0) = u(t,n) =0,
(1.1.3) u(0, x) = o(x), u(0,x) = ¥(x);

let the following conditions be fulfilled:

(,) the function f(t, x) is of class C°in t and of class C' in x for te ¥ — €0, o)
and xe X = <0, n);
(«#,) the function f(t, x) satisfies the relations

f(t,0)=f(t,m) =0;
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(w#3) the function o(x) is of class C? and the function y(x) is of class C* for x € ¥;
(w#,4) the functions ¢ and V¥ satisfy the relations

#(0) = ¢"(0) = Y(0) = 0, ¢(n) = ¢"(n) = ¥(n) = 0.

(The necessity of ¢(0) = y(0) = ¢(r) = Y(n) = 0 for the existence of a classical
solution u*(t, x), i.e. of class C? in t and x follows immediately from the equation

(1.1.2))

Let us continue the functions f, ¢ and ¥ in the variable x on the whole x-axis as
odd and 2n-periodic functions, i.e.

(1.1.4) f(t,x) = =f(t, — x) = f(t, x + 2m),
(1.1.5) o(x) = —p(=x) = o(x + 27), Y(x) = —Y(—x) = Y(x + 2n).

We shall denote these continued functions by the same symbols f, ¢ and . Now,
we may verify easily that f(t, x) is of class C° in ¢ and of class C' in x, ¢(x) € C?,
Y(x)e C* for te T and x e R = (— 0, o0). (Here the necessity of ¢"(0) = ¢"(n) = 0
arises for the continuity of ¢"(x).) Let us put

(1.16) () = %[qa(x) +[woacs ]
where c is a fixed real number. Then
(1.16) (=) = ;[—w(x) " j}(c) at + ]

On the other hand, by (1.1.6) and (1.1.6") functions ¢(x) and ¥(x) are uniquely
determined as

(1.1.7) o(x) = s(x) — s(—x), Y(x)=s(x) — s(—x).

Let us note that the set &, of functions s defined by (1.1.6) (where ¢ and ¥ fulfil
(o#3), (o#,) and (1.1.5)) is the set of all 2n-periodic functions of class C2. Indeed,
the function s(x) defined by (1.1.6) is evidently 2n-periodic and of class C2. Conver-

sely, s(x) being any 2zn-periodic function of class C 2,it may be verified easily that func-
tions ¢ and ¥ defined by (1.1.7) satisfy conditions (&3), («/,) and (1.1.5).

Theorem 1.1.1. Let the mixed problem () be given. Let the conditions (af,)—(s44)
be fulfilled.

Then there exists a unique solution u = u*(t, x) of this problem of class C* in x
and t for x € X and t € T and this solution is given by the formula

(L18)  wH(t,x) = s(x + &) — s(—x + ) + %f r“"sf(s, £)deds.

0Jx—-t+3

(To emphasize the dependence of the solution (1.1.8) on s we shall often write it
in an operator form U(s) (1, x).)
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Proof. We find by differentiating (1.1.8)

(1.1.9y) %“ti (tx)=s(x+1)—s(—x+1)+ %Jl A% x+1t—-9) +
+f(8, x —t + 9)]d9,

(1192) (t x) =s"(x + 1) — s"(—x + 1) + f(t, x) +
+5f [%(9,x+t—9)—-£(3,x—t+9)]d.9,
(1195) 2% (10 = ox + ) + 5(=x +) + %Jt)[f(“),x+t—.9)-
—f(%, x —t+ 9)]d9,

(1194) (tx)—-s(x+t)—s"( x+ 1)+
+~2-L|:§J;(9,x+t—9)-—§-£(9,x—t+3)]d9,

whence (1.1.1, 2, 3) follows immediately. The uniqueness of the solution is a conse-
quence of the energy equality

(1.1.10) f f’ut(& &) f(9, &) d9 d¢ =
= r j’ (U9, &) e (9, 8) — uax (9, 9]} d9dE =
- J [15. ) (5, T 45 + J "L (9, 8) + u2 (9, 5 d& =
- %L [uf (8. €) + ui (1, )] d€ - -;—L [W2() + ¢2(8)] dé¢ -

Indeed, if there would be two solutions u4(t, x) and u,(t, x) of the problem (.#) then
their difference v = u; — u, would fulfil the equations

(L111) v — v, =0, 9(t,0)=10(t,n) =0, v(0,x) =v/0,x)=0.

xx

Inserting v into (1.1.10) instead of u and the null-function instead of f, ¢ and |//
we get

0= j [2(1, €) + 021, £)] de
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which yields
v(t, x) = 0 = v,(t, x)

and in virtue of v(t, 0) = 0 also v(t, x) = 0. This completes the proof.

Remark 1.1.1. Let us note that (1.1.9,) shows the necessity of the condition

(##,). In fact, inserting x = 0, x = mrespectively, into (1.1.9,) and taking into account
that 9f /0x (¢, x) is even and 2m-periodic in x, we get

0=1u,t,0)=f(t,0), 0=u,tn)=f(tn).
(The necessity of () if f fulfils (7, ) is evident from (1.1.9;) or (1.1.9,), too.)

1.2. Adjoint boundary-value problem and the Green formula. Let the boundary-
value problem (%) with periodic “essential” boundary conditions be given

(1.2.1) L(u) = uyy — uy, = f(1, %),
(1.2.2) u(t,0) = u(t,n) = 0,
(1.2.3) u(w, x) — u(0, x) = ufw, x) — uf0,x) =0,

where the function f(t, x) fulfils the conditions (#/,) and (&,) and moreover it is
w-periodic in t, i.e.

(1.2.4) flt + o,x) = f(t,xy=0.

It is clear that under the condition (1.2.4) every solution of the problem (%) is -
periodic for ¢ > 0. The boundary conditions (1.2.2) will be called nonessential while
the boundary conditions (1.2.3) will be called essential. (Note that usually only the
conditions (1.2.2) are considered and they are simply called boundary conditions.)

As a boundary-value problem (%*) adjoint to () we define

(1.2.5) L(v) = v, — v, =0,
(1.2.6) u(1,0) =o(t,m) =0,
(1.2.7) v, x) — (0, x) = v(w, x) — v/0, X) = 0.

(The problem () is thus self-adjoint.) Evidently,

(1.2.8) s L{u) — u L) = L + 92,

ox ot
where
(1.2.9) P=—vu, +uv,, Q=rvu, —uv,.

Let us now recall the Green formula.
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Lemma 1.2.1. Let & be an open domain in the half-plane —o0 < x < o0,
0 <t < oo, bounded by a piecewise smooth curve €. Denote & = G U €. Let u(t, x),
u(t, x) be of class C* in &. Then it holds

(1.2.10) I 'f [6(9, &) L(u) (3, &) — u(8, &) L(v) (9, &)] 49 d& = f [Pd9 — Qde].

Hence, it follows

Lemma 1.2.2. Let u(t, X), o(t, x) be solutions of () and (#*), respectively.
Then it holds

(1.2.11) r Jvu(s, £)£(3,8)dEds =0.

Proof. By (1.2.10), (1.2.2), (1.2.3), (1.2.6), (1.2.7)
f i I "8, &) £(9, £) dE d3 =
- r[P(S, %) — P(9,0)] d9 — J"[—Q(o, &) + 0w, £] d& = 0.

Lemma 1.2.2 may be formulated as follows:

Corollary- 1.2.1. The boundary-value problem (%) has a solution only if the
function f is orthogonal on the rectangle 0 < x < n, 0 < t < w to any solution of
the adjoint problem (#*).

Remark 1.2.1. The equation (1.2.1) describes some physical phenomena in which
other nonessential boundary conditions than those of (1.2.2) may appear more
significant, e.g.

u(t,0) = u(t,m) = 0.

We find easily that this modified boundary-value problem is again self-adjoint.

1.3. Existence of periodic solutions. Let us now investigate the existence of solutions
of the problem (4), i.e. the existence of w-periodic solutions of (1.2.1), (1.2.2) under
the assumption (1.2.4). First, let us somewhat modify the essential boundary
conditions (1.2.3). According to (1.2.2) the first condition in (1.2.3) is evidently
equivalent to '

(1.3.1) u o, x) — u(0,x) =0.
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Now substituting the solution (1.1.8) of the mixed problem () into (1.2.3,) and
(1.3.1) we get

(132) s(x + o) —s(—x + o) +
t %jw[f(s,x -9 +f(%x — o+ 8)]dS — () + (=x) =0,
S(x + o) + 5'(—x + ©) +

1 W
* EJ [f8, x + @ —9) — f(8,x — w + 9)] dI — s'(x) — s'(—x) = 0.
0
Adding and subtracting these two equations we obtain the equivalent system

(1.3.3) s'(x + o) — s'(x) + %J‘wf(s, x+ow-—9d3=0,

(1.3.4) sS(=x + w) — §'(—x) — —;—Jmf(“), x—o+9)ds=0.

Putting —x instead of x into (1.3.4) and taking into account that f(9, —x — w + 9) =
= — f(9, x + o — 9) we see that (1.3.4) is a consequence of (1.3.3). Thus, (1.3.2)
is equivalent to a single equation (1.3.3). Hence, (1.3.3) represents a necessary and
sufficient condition that (1.2.1) with (1.2.2) have an w-periodic solution. We must
now distinguish three cases: (i) @ = 2zn, (ii) @ = 2np/q, (iii) @ = 2na, where n, p
and g =% 1 are natural numbers and « is an irrational number.

Theorem 1.3.1. Let the problem (&) be given. Let the following assumptions be
Sfulfilled.

(i) The conditions (), () and (1.2.4) are satisfied.
(i) @ = 27n, n a natural number.

Then there exist 2nn-periodic solutions of (%) if and only if
2nn

(iii) f f(8,x —9)ds=0.
0

These solutions are given by the formula (1.1.8) where s(x) is any 2n-periodic
function of class C2.

Proof. According to s(x + 27n) — s(x) = 0 the condition (1.3.3) (equivalent to
(1.2.3)) is satisfied if and only if (iii) holds. Thus, by Theorem 1.1.1 u*(t, x) defined
by (1.1.8) is a solution of (%) if and only if f satisfies (iii).

Let us show that the assumption (iii) is equivalent to (1.2.11). First, let us evaluate
several integrals. Let ¢ and ¥ be functions fulfilling conditions (#/5) and («,) and f
a function 2znn-periodic in ¢ and fulfilling (2/,), ().
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Functions ¢(x), ¥(x) and f(z, x) be continued onto the whole x-axis as odd and
2n-periodic functions. Denote

(1.3.5) W(x) = j :.//(5) de + ¢

and note that Y’(x) is even and 2zn-periodic. Then

(13.6) r"" Jnf(t,x)¢(x+t)dxdt r”"r"f(tg_typ(g)dgdt:

2n—1 pk+Dn

J f(t E— 1) (&) dtdé + Z j(t & — 1) p(¢)dtdé +
J(2n+ r 21mf(t’ - t) (p(é) dede =

=L {fp(é)[ of(t £—1t)dt + Z f“kﬂ f(t, &= i)de +

E+(2k—1)n

2nn n  pE+(2k—1)n
+J‘ f(, é—t)dt:|+<p(é+n)2j f(t, &+ n—t)dt}dé=
E+(2n—1)xn E+(2k—2)n
&+ 2kn

=£¢(5)[ f(t,g—t)dt+}: f(t, & —nyde +

E+(2k—1)n

+ rm‘ f(t, & —n)de + Z e f(t,E+ 1) dt] d¢

E+(2n—1)= —&+(2k—1)n

Similarly
2nn

(1.3.7) f ff(t, x) o(x — f)dx dt =
o Jo

T —&+n n—1 p—&+(2k+1)n
=J ¢(€)[ fLe+ndi+ 3 f(t, &+ 1)de +
0 0

—&+ 2kn

2nn n ¢+ (2k—1)n
+.[ f(t¢+t)dt+z f(t,é—t)dt]df

&+2mn E+(2k—2)m

(1.3.8) K" Lf (t, x) P(x + t)dx dt =
= J:'P(f)[ f(t, & — 1) dt + Z r”’m FE — ) dt +

E+(2k—1)n

2nn — &+ 2kn
+J f(t,f—t)dt——z f(t,é+t)dt]d£,

E+(2n—1)n k=1 _sr@2k-1)n
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(13.9) J o J (6, %) ¥(x — f)dx di =

0 0

—E+n n—1 p=—E+(2k+1)n
=JWW(€)U f(t,€+t)dt+2f f(t, &€+ 1)dt +
0 0 k

=1 —¢+2kn
2nn n &+ (2k—1)n
+f f(t,é+t)dt—2j f(t,é—t)dt]dé.
—&+2nn k=1 J e+ (2k-2)n
Of course any solution of the adjoint boundary-value problem (%*) is a linear

combination of ¢(x + ) + ¢(x — t)and ¥(x + 1) — ¥(x — t). Hence the condition
(1.2.11) by (1.3.6)—(1.3.9) yields

(1.3.10,) J 2"" J "1, %) [o(x + 1) + o(x — 1] dx dt =

o Jo
T x n—1 px+2kn
=f<p(x)Uf(t,x—t)dt+zj (b, x — f)di +
0 0 k=1 Jx+(2k=1)n
2nn n —x+2kn -x+n
+j [(t,x——t)dt+2j f(t,x+t)dt+j f(t, x + t)dt +
x+(@2n—1)n k=1 ] —x+@k-1)n 0

—x+2kn

n—1 p—x+Q2k+1)n 2nn
+ZJ f(t,x+t)dt+f f(t,x + t)dt +
k=1

—x+2nn

n x+(2k—1)n
+ 3y f(t,x—-t)dt]dx:O

k=1 ) x4+ 2k-2)n

and
2nn pm
(13.10,) j j 1t x) [2(x + ) + ¥(x — )] dx dt =
0 0
T X n—1 px+2kn
=j¥’(x)Uf(t,x—t)dt+z f(t,x — t)dt +
0 0 k=1 Jx+@2k-1)n
2nn n —x+2kn —-x+n
+j f(t,x—t)dt—zj f(t,x+t)dt—'{ ft,x + 1) dt —
x+(2n-1)n k=1 —x+@2k-1)n 0
n—1 p—x+2k+1)n 2nn
- J f(t,x+t)dt—j ft,x + t)de +
k=1 —x+2kn —x+nn2

= x+(2k—2)n

n x+(2k—1)n
+3 f(t,x—t)dt]dx=0.
k=1

In virtue of the arbitrariness of ¢ and ¥ we get readily from (1.3.10) after an elemen-
tary procedure :

X n—1 prx+2kn 2nn
Jf(t,x—t)dt+ J f(t,x——t)dt-i—j f(t,x — t)dt +
0

k=1

x+(2k—1)n x+(2n—1)n
n x+(2k—1)=n 2nn
+ZJ f(t,x—-t)dt:j ft,x —t)dt =0
k=1 ]J x4+ @2k=2)n 0
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and

—-x+n n—1 p—x+(2k+1)n 2nn
J f(t,x+t)dt+z-[ f(t,x+t)dt+J~ f(t, x + t)dt +
k

0 =1 —x+2kn —x+2nn

n —x+2kn 2nm
+Zj f(t,x+t)dt=j f(t,x +t)dt=0.
k=1 o

—x+(2k—-1)n

Since the second of these two equations is equivalent to the first one the assertion
is proved.

Thus, Corollary 1.2.1 and Theorem 1.3.1 may be joined to a single

Corollary 1.3.1. Let the problem (2) be given. Let the assumptions (i) and (ii) of
Theorem 1.3.1 be fulfilled.

Then the problem (%) has a solution if and only if the function f is orthogonal
to any solution of the adjoint problem (.@*) on the rectangle 0 < x < n, 05t <
< 2nn.

Corollary 1.3.2. Let the problem (&) be given. Let the following assumptions
be fulfilled: the function f(x) is for x € % of class C* and f(0) = f(n) = 0.

Then every solution of the problem (&) with f = f(x) is 2n-periodic.

Proof. In fact, we have to prove the assumption (jii) from Theorem 1.3.1. Since f(x)
is continued by (1.1.4), we get immediately

r"f(x-s)d9=o.
0

Let us note that some of these solutions may be considered as w-periodic, where @
is an arbitrary real number — namely those which do not depend on ¢. We get them
by solving the boundary-value problem

— () = £(x), 0(0) = o{m) = 0.

Theorem 1.3.2. Let the problem (%) be given. Let the following assumptions be
fulfilled.

(i) The conditions (o/,), (o,) and (1.2.4) are satisfied.

(ii) @ = 27np/q, p and q * 1 are natural, relatively prime numbers.

Then 2np/q-periodic solutions of the problem () exist if and only if

(1311) (i) U350, x + jo — 9)d8 = 0.

0o Jj=1
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These solutions are defined by (1.1.8) where s(x) = sy(x) + s,(x), s,(x) is any
2n/q-periodic function of class C* and

(1.3.12) so(x) = f Jw il(q = Nf(% x + jo — 9)d3

(i.e. a particular solution of (1.3.3)).

Proof. Let us investigate equation (1.3.3) or, writing

() = (), — %J:f(s,x +o— 8)d8 = F(x),

equation
(13.3) r (x + 3-;-‘—1’) — 1) = F(x).

Putting successively x + 2npj/q, j=1,2,...,q9 — 1, instead of x into (1.3.3'),
summing all these equations and making use of s(x + 27np) — s(x) = 0, we get
a neccessary condition for solvability of (1.3.3")

(13.17) ZF( 2q> 0.

Let us show that this condition is equivalent to

(1.3.13) Jm J‘wf(s, &) sin lgé cos 1g9 d9dE = 0,
0J0

J‘n.r)f(&é)sinqusin 1g9d%dé =0 (I=1,2,..).
0Jo

Indeed, under the stated assumptions the function f(#, x) may be developped into
the convergent Fourier series

£6x) = 3 ayd) sin kx , ak(t)=gjnf(t,£)sink§dé; k=1,2....
k=1 T Jo )

Now, by elementary calculations (r being a natural number)

oo . r 2
(1.3.14) Y sinlg (x +jzﬂ’) =rsinlgx, Y coslg (x +j—1f£) =rcoslgx
Jj=1 q q

i=1
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and form =+ Iq ,

(1.3.15,) Y sin m(x + jo) = 1 _dam <x + L) gin T ,
= sin % 2 2

(1.3.15,) Y cos m(x + jo) =
j=1 mao

r+1 . mro

cosm{x + —— w | sin —
. 2 2
sin —
2

and hence for m # Ig, I a natural number and o = 27np/q,
q q ‘
(1.3.16) Y sinm(x + jo) =0, Y cosm(x + jo) = 0.
i=1 =1
This shows by (1.3.11) that the expansion A
w  © q
Y Y al9)sin k(x + jo — 9)d9
1

o k=1 j=
must not contain non-zero coefficients with k = Iq. Since

f a1, (9) cos Iq (o — 9)d9 = j a,,(8) cos Ig 9.d9,

V] 0

J a1 (9)sinlg (0 — 9)d9 = — J a,,(9) sin Ig 9 d9
0 1]

even this is ensured by (1.3.13).

Now, we shall show that the condition (1.3.11’) is sufficient, too.

Denote
k
(1.3.17) Si(%) = ¥ Flx + jo).
ji=o0
By preceding calculations under our assumptions
(1.3.18) S;-1(x) =0.
Clearly,
(1.3.19) Six + ©) = Spiq(x) — So(x) .
Putting
1 q—2 1 q—1
(1.3.20) M) = —~ Y Six) = — ~ ¥ S(x),
q k=0 q k=0
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‘we obtain

(x + @) — r(x) = qu[—sk(x o)+ S9)] =

| =

- é [_iijls"(x) + (g — 1) So(x) +q%:25k(x)] = F(x)

and thus (1.3.20) is a solution of (1.3.3").

Inserting into (1.3.20) for Sy(x) and F(x) and integrating with respect to x, we
get s,(x) . (f(¢, x) being odd in x, this integral is again 2n-periodic.) The function
s1(x) + s5(x), where s,(x) is the general 2n-periodic solution of the homogeneous
equation sj(x + w) — sj(x) = 0, is obviously the general solution of (1.3.3) in our
«case. It is a simple calculation to see that s,(x) is an arbitrary 27/g-periodic function
.of class C2, which completes the proof.

Corollary 1.3.3. Let the problem (%) be given. Let the assumptions (i), (i) of
Theorem 1.3.2 be fulfilled. ’

Then the problem (%) has a solution if and only if the function f is orthogonal
10 every solution of the adjoint problem (#*) on the rectangle 0 £ x < 7,0 <t <
< 2=np/q.

Proof. The complete set of orthogonal solutions of (%*) is evidently given by
{1.3.21) sinlgxcoslg®, sinlgxsinlg9, I=1,2,....

‘Thus conditions (1.3.13) express exactly orthogonality of f to (1.3.21) on <0, m) x
x <0, 2np/g>.

Finally let us treat briefly the case @ = 27a, o an irrational number. The necessary
-condition (1.2.11) is satisfied in a trivial way since the unique solution of the adjoint
boundary-value problem (#*) is evidently v(t, x) = 0. In spite of it, the solution of
the problem (4) does not always exist. Indeed, let us consider the equation

(1.3.22) s'(x + w) = s'(x) = — %wa(S, x + o —9)dy = F(x).

‘Since the function F(x) is of class C' and 2n-periodic it may be written in the form
of a Fourier series

) 2n
.(1.3.23) F(x) = Z ce™ . ¢, = ij F(f) e gg
o 2t Jo -

Since the solution s(x) of (1.3.22) is sought in the class C?, s'(x) is due to be develop-
.able in a Fourier series, too,

© 2n
\(1.3.24) s’(x) = Zake""‘ , o= ;_nj S'(f) ek gg
“ o
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Inserting (1.3.23) and (1.3.24) into (1.3.22) we get

Ck
elkw -1

(1.3.25) oy =

By a known theorem from the number theory the expression e*® — 1 can be made
arbitrarily small for infinitely many k and thus the series (1.3.24), where the o, are
given by (1.3.25), is divergent in general. (The reader may verify easily that the special
form of F(x) given by (1.3.22) cannot change anything on this fact. Moreover, the
series (1.3.24) with o as in (1.3.25) is in general not even (C, 1)-summable, see [11].)

Of course, for special classes of irrational numbers o and functions f(¢, x) the
existence of a 2na-periodic solution of class C? of (1.3.22) may be proved. Thus, e.g.
if (a) o is an arbitrary irrational number and f(#, x) is a trigonometrical polynomial
in x or (b) « is an algebraic number of degree m and f(t, x) is of class C™*3, In case (a)
the assertion is clear (see (1.3.25)). As to (b) by a known theorem to any real irrational
algebraic number a of degree m there exists such a constant ¢ > 0 that
p c .
o — == —> P4 arbitrary natural numbers .

q q

On the other hand, if (1, x) is of class C"in x, then ¢, = O(k™") whence the statement
follows readily.

2. AUXILIARY THEOREMS OF FUNCTIONAL ANALYSIS

Definition 2.1. A complete linear normed space will be called a Banach space
(briefly a B-space).

By a linear operator will be meant an algebraically linear and bounded operator.

The space of all linear operators mapping a B-space B, into a B-space B, will be
denoted [B; — ¥B,]. In the sequel S(uo; o, W) (or briefly S(u,; ) if no confusion
may arise) will denote the set of all points u from the B-space Il such that ”u - ”o" <
< 0. The closure of a set M will be denoted M.

Definition 2.2. Let the operator P map an open set D of a B-space B, onto a set R
of a B-space B,. Let ug € D. Let the limit

.1 _ — _
lim — [P(uq + tid) — P(ug)] = 0P(uo; ) = Pyu,) (),
t—0 ¢
where éu = i is any point of B, and P,(u,) € [B; — B,], exist. Then P is said to
be %-differentiable at the point u,, 6P(uo; @) is called a Gateaux differential of P
at ug and Py(u,) is called the ¥-derivative of P at u,,.

Remark 2.1. Partial derivatives P;(uo, v,) and Py(u,, v,) at the point (o, v,) of an
operator P(u, v) mapping an open set D of a direct product I x B of two B-spaces Il
and B into a B-space 3 are defined in a quite analogous way.
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Lemma 2.1. Let P, map an open set D, of a B-space B, into an open set D, of
a B-space B, and let the operator P, map D, into a B-space B5. Let P; (i = 1, 2)
have a continuous 9-derivative P; on ®;. Then the composed operator P,P; has
a continuous 9-derivative P,P} on D;.

Theorem 2.1. Let the equation
1) P(u,s)(e) = —u + L(s) + eR(u) () = 0

be given, where P(u, s) (¢) maps the direct product W x & into Wl for every value
of the numerical parameter ¢ from € = (0, g4, g, > 0.

Let Le [@ — W]. Let R(u)(g) be continuous in u and & and have a 9-derivative
R(u) (¢) continuous in u and ¢ for any u e Wand e € €.

Then to every s € S there exist numbers 6 and €%, 6 > 0, 0 < &* < &, such that
the equation (2.1) has a unique solution U(s)(¢)e W for each se S(s; ) and e€
€40, e*). This solution has a 9-derivative U(s) (¢) continuous in s and e.

Proof. Choose s € &. In virtue of the continuity of R)(u) (¢) in u and & there exist
to a prescribed number ¢ numbers 7 and ¢;, 0 < & < ¢, such that

|Ruu) ()| S e for |u—-L(s)) <n and 0<e=<e.

Let &, < 1/g. According to the continuity of R(L(s)) (¢) in s and e there exist &,
0 < ¢ < min (g, &,) and & > 0 such that

eR(L(s)) (¢)

" + s —5)| Sn for seS(5;6) and 0Se<e,.
— &0

Now, it may be verified that successive approximations defined by
U(s) = L(s), U""(s) (e) = L(s) + eR(U™(s)) (2)

stay in the sphere S(L(s); 1) and converge to a limit operator U(s) (&) € Ul.

Similarly as in [12] it may be shown that the found operator U(s) (¢) has for
0 =< e =¢*0 <¢* < ¢y a continuous ¥-derivative (6s = 5)

(22) Us) (8) (3) = [T — eR(U(s) () ()] L(3)
(I being the identical operator).

Since U™(s) (&) are continuous in ¢ and converge to U(s) (¢) uniformly with respect
to s and &, the limit operator U(s) (¢) is continuous in & and by (2.2) U(s) (¢) (3) is
continuous in ¢ as well.

Theorem 2.2. Let the equation
(2.3) G(p)(e) =0
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be given, where G(p) (¢) maps a B-space P into a B-space Q for all e€ € = (0, &),
gy > 0. Let the following assumptions be fulfilled.
(i) The equation

(2.4) G(po) (0) =0
has a solution p, = pg 9. )

(ii) The operator G(p) (¢) is continuous in p and & and has a 9-derivative G (p) (e}
continuous in p and ¢ for p € S(p; 8) (8 > 0 being a suitably chosen number such
that S(pg; 0) = P) and ¢ € €.

(iii) There exists

H = [Gy(po) (0)] " e[2 - ¥].

Then there exists e* > 0 such that the equation (2.3) has for 0 < ¢ < ¢* a unique

solution p = p*(¢) € P, continuous in & such that p*(0) = pg.

Proof. Define the successive approximations by

P =ps,
" *1(e) = p™(e) — H[G(p™(e)) (¢)] -

Then by the assumption (ii) and (iii)
1P ~ 5o~ HG() @) ~ 66~ 0]l =

1
p0 = 5 = B[ [ G0 4 ol = ) @ty = )]

o

IIA

= |H]- j:[G,’,(p’S) ©) = G + o«p™ = PV (] do - [ — 7] -

Again by (ii) choose numbers 6;, 0 < 8; < dand &, 0 < ¢ = g so that

[H] . |[G(»3) (0) = Gip) ()] = k <1
for pe S(py; 6;) and 0 < & < ¢;.
Now, choose ¢*, 0 < &* < ¢; so that

IH] - 16(r5) ()] = (1 = K) 3y .

Then, it may be easily verified that all approximations p‘"’(a) stay for 0 < ¢ < ¢* in
the sphere S(pg; 6,) and converge to an element p*(e) € P uniformly with respect to ¢,
which completes the proof.

Remark 2.2. If the operators R(u) (¢), G(p) (¢) are analytic in both arguments in
a suitable region, it may be found (similarly as in [12]) that the solutions whose
existence has been proved in Theorems 2.1 and 2.2, are analytic in ¢, too. )
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Lemma 2.2. Let the linear operator L map a B-space V) into a B-space £. Then
a linear inverse operator L™! exists if and only if:

(i) the equation
(.9 1) = g

has a unique solution p = P(q) € for arbitrary €L,
(ii) there exists a constant k > 0 such that |P(q)| < k|q|. (Cf.[12].)

3. EXISTENCE OF A SOLUTION OF A WEAKLY NONLINEAR MIXED PROBLEM

3.1. Classical solutions. Let the mixed problem (.%)

(3.1.1) Uy — Uy = &f(t, X, u, Uy, Uy, 8),
(3.1.2) u(t,0) =u(t,m) =0,
(3.1.3) u(0, x) = ¢(x), u,(0, x) = Y(x)

be given. Choose a fixed number T > 0 and denote
T=<0,T), £=<0,7), R=(—00,0) and € =<0,¢, & >0.

Further denote u = uy, u, = uy, u, = u, when it will be useful. Suppose the following:
conditions be fulfilled.

(#,) The function f(¢, X, ug, y, u,, €) is on the interval M =T x £ x R* x &
together with its partial derivatives
F ¥ ¥ ¥
ox’ du; Oxou; ou, Ou;

(3.1.4) , ,j=012,

continuous in all its variables.
(€,) The function f(t, x, ug, uy, u,, €) satisfies the equalities f(1,0, 0, 0, u,, &) =
= f(t,m,0,0,uy,¢) = 0.
(#5) The function ¢(x) is of class C? and the function y(x) is of class C* for x € ¥..
(€,) The functions ¢ and ¥ satisfy the equalities

9(0) = ¢"(0) = ¥(0) = 0, o(n) = ¢"(n) = Y(n) = 0.

Now, continue the functions f, ¢ and ¥ in the variable x from the interval ¥ onto-
the interval R by the relations

(3.1.5) ft, %, ug, ug, uz,8) = —f(t, =X, —ug, —uy, Uy, &) =
= f(t, x + 2m, ug, uy, uy, €),

(3.1.6)  o(x) = —p(—x) = o(x + 27), Y(x) = —Y(—x) = Y(x + 27).

357



For functions continued in this way keep the same notation, i.e. f, ¢ and y. Let us
denote IM* the set of points (1, X, ug, Uy, U,, &) such that for x + nn (n being an
integer) thete is t € ¥, uq, uy, u, € R, e € and for x = nn thereiste , uy = u; =
=0, u, € R, ec€. Evidently, by (%,) the continued function f is on IM* up to
points (¢, nm, 0,0 u,, €) of the same class in all variables as the original function f
on M and on the whole set M* it is of class C° in t and ¢, of class C! in x, uq, u,
and u,. Further, by (%,) the continued functions ¢ or y, respectively, are on R of
class C? or C?, respectively.

Denoting again

(3.17) =2 l:(p(x) + J :.//(5) de + c] ,

where c is an arbitrary number, we have

G18)  s(—x) = %I:——(p(x) + J :w(c) dé + c], (e + 2m) = s(x)
and

(3.1.9,) o(x) = s(x) — s(—x),
(3.1.9,) Y(x) = s'(x) — s'(—x).

Using the result of sec. 1.1 we find easily that every solution of the problem (.#)
satisfies the integro-differential equation

(3.1.10) u(t,x) = s(x + t) — s(—x + 1) +

t x+t—3
+ —;- : f j 109, & (S, &), u(S, &), u(9, &), 5) dé d9
0

x—t+8

and on the other hand it may be easily verified that every solution of (3.1.10) which is
of class C* in t and x is a solution of (.#), too. Indeed, the fact that every such solution
of (3.1.10) fulfils (3.1.1) and 3.1.3) is found immediately. With help of Remark 3.1.1
it may be proved easily that it satisfies (3.1.2), too.

We shall seek the solution of (3.1.10) in the B-space U, of functions u(t, x) which
are of class C2 on & x R. The norm in U, is given by

(3.L.11) ol = sup (ol i )

Further, let us denote &, the B-space of functions s(x) which are 2z-periodic and
of class C2. The norm in &, is given by '

(3112 Isl = max (sCo)l [sC 1G9 -
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Let us prove the following

Theorem 3.1.1. Let the problem () be given. Let the conditions (%,)—(%,) be
Fulfilled.

Then being given a function s€ &, and a number T > 0, there exist numbers
0 > 0 and ¢* 0 < &* < ¢, such that the problem (./il) for 0 < ¢ < ¢* and for all
s € S(s; 6; ©,) has a unique solution u*(e) (¢, x) = U(s) (¢) (t, x) € W,. The operator U
is continuously 9-differentiable in s and continuous in ¢ while

(3.1.13) u*(0) (¢, x) = U(s) (0) (t, x) = s(x + t) — s(—x + 1).
Proof. Write the equation (3.1.10) in the form

(3.1.10") P(u,s)(e) =0

where the operator P is defined by

(3.1.10") P(u, s)(e) (t, x) = —u(t, x) + s(x + 1) — s(—x + 1) +

t x+t—3
+ % . f j F9, & u(9, &), ul(9, &), un(9, &), 6) d d9 .
0

x—t+3

Let us show that the equation (3.1.10°) fulfils the assumptions of Theorem 2.1.
First, let us verify in detail that P maps I, x &, into U,. Indeed, denoting

(3.1.14) u(t, x) = P(u, s) (¢) (1, x)

and

(3.1.15) F(u) () (t, x) = f(t, x, u, uy, uy, €)

(if no confusion can arise we shall write briefly F(u) (1, x) instead of F(u) () (¢, x)),
we have

(3.1.16)  vft,x) = —uft,x) + s(x + 1) — (= x + 1) +
i %ef;[F(u)(S,x F ot )+ F(u) (9 x — t + 9)] 9,
vt,x) = —u(t, x) + s'(x + 1) + 5'(—x + 1) +
n %sj;[F(u)(S,x F 1= 8) — Fu)(%,% — 1 + 9] d9,
(B.117) v t,x) = —u(t,x) + s"(x + 1) — s"(—x + t) + eF(u) (¢, x) +

+ %ej'[p,,(u)(s,x F = 8) — Fu) (8 x — t + 9)]d9,
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0t X) = —un(t,x) + s"(x + 1) + "(—x + 1) +
L, f TF(u)(9, % + 1 — 8) + Fu(u)(8, x — 1 + 9)]d9,
0
Uen(t, X) = —ug(t,x) + s"(x + 1) — s"(—x + 1) +
—s‘[r[Fx(u)(S,x +t—8) — Fy(u) (%% — 1 + 9] d9.
0
where of course

F(u)(t, x) = f (t X, Ug, Uy, Uy €) + Z a——~ (t X, Ug, Uy, U, 8) (t x).
u

(Observe that all integrals in (3.1.10, 16, 17) are actually continuous in ¢ and x
on T x N).

Putting
(3.1.18) L(s)(t,x) = s(x + t) — s(— x + 1),
(3.1.19) R (&) (1, x) = %L j xi';:F(u) (8) (9, &) dé 49

there is L(s) € [&, - W,] and R(u) (&) is continuous in u and & for all u € 1, and
e € €. Further, the 9-derivative R,(u) (¢) given by (du = )

(3120  Riw)() (@) = j j xH—:F'(u) () (@) (5, &) dE 48 —
JJ 3,2 . (9 & ua(8, &), (8, ) ua(3: £), ) 79, €) de 4

is continuous in u and ¢ in virtue of (%,). This completes the proof of our theorem.

Remark 3.1.1. Note that the solution of (3.1.10) consequently to the way of
continuation of functions f, ¢ and y, is in the variable x odd and 2zn-periodic, i.e.

(3.1.21) u*(t, x) = — u*(t, —x) = u*(t,x + 2m)

and of course

(3.1.22) ur(t, x) = — uy(t, —x) = uf(t, x + 2n),
uwi(t,x) = ui(t, —x) = ul(t,x + 2n).

In fact, inserting — u*(t, —x), u*(t, x + 2m) into (3.1.10) we find easily that these
functions are also solutions of this equation and in virtue of the uniqueness of the
solution of (3.1.10) the assertion follows readily.
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Denote i1, and &, subspaces of 11, and &,, respectively. (In general, € will always
denote a subspace of a space @.)

Remark 3.1.2. In paragraph 4 it will turn out that it is often useful to consider
only some subspaces {l, and &, of I, and &,, respectively. Let us note that if s &,
and the operator P(u, s)(e) defined in (3.1.10”) maps I, x &, into 1, for every
¢ € €, then again by Theorem 2.1

U(s) (¢) (1, x) e i,
for every s € S(s; 8; &,) and for every e € €.

Remark 3.1.3. The mixed problem (.#’) which differs from (.#) in equation
(3.1.1) being replaced by

(3.1.1) Uy — Uy = g(t, x) + &f (1, x, u,, uy, €),

where the function g(t, x) is of class C®in t € ¥ and of class C' in x € ¥ and g(1, 0) =
= g(t, n) = 0, may be carried over to the problem (.Il) by introducing a new
unknown w by putting

(3.1.23) w=u— _J r' "4(3, &) de ds.

t+3

Theorem 3.1.2. Let the problem (#) be given. Let besides the conditions (%) —(%,)
the assumption

(##) The function f(t, x, ug, uy, uy, &) is analyticinu; (i = 0, 1,2) and ¢,
be fulfilled.
Then the solution u*(¢) (t, x) = U(s) (&) (¢, x) of (Jl) whose existence is ensured

by Theorem 3.1.1 is analytic in . Writing u = Zau it may be found by solvmg
a recursive system of equations

© () ©
(3.1.245) Uy — Uy, = 0, u(t 0) = u(t, n) = O, u(O x) = ¢(x), u,(O x) = yY(x).
(n) (n) 0) (n—1) (0) (n—1) (0) (n—1)
(3.1.24,) Up — Uyy = Ft, Xty ooy Uy Uy ooy Uy Ugyonny Uy, €),
(O]
u(t, 0)~u(t ) = 0, u(() x)—u,(O x)=0,n=12,.

The proof may be performed in accordance with Remark 2.2.

Remark 3.1.4. In (%,) and (%,) the requirements on the function f may be
restricted only on the set te®, x€X, |up—s(x +1) + s(—x +1)| <o,
luy = Sx+0)+5(—x+1) <o |uu—5x+1)—s(—x+1)| <o, €€
since obviously by choosing & and e sufficiently small we may reach that u*(t, x),
u;(t, x) and uZ(t, x) stay for t €  in the prescribed sets.
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Remark 3.1.5. If we are interested only in proving the existence and uniqueness
of a solution u*(t, x) € N, of the problem (.#), it is sufficient to suppose that 9f/dx,
of [ou; (i = 0, 1, 2) are Lipschitzian in u; on M instead of supposing the existence of
continuous derivatives

*f o*f
0x du; ’ Ou; Ou; )

3.2. Generalized solutions. The equation (3.1.10) which is under assumptions
stated above equivalent to the problem (J/l), enables us to define a generalized solution
of this problem.

Definition 3.2.1. A function u(t, x) of class C' in t and x on T x R which satisfies
eugation (3.1.10) is called a (1)-generalized solution of (.#).
Let us formulate the following set of conditions:

(#}) Function f(t, x, uo, 4y, u,, &) is together with its partial derivatives of /ou;
(i = 0, 1, 2) continuous in all variables on ¥ x ¥ x R> x €.

(#3) o(x)e C, Y(x)e C® for xe X.
(€2) ¢(0) = ¥(0) = 0, p(z) = ¥(x) = 0.

Denote I, the B-space of functions u(t, x) which are of class C' in ¢ and x on
2 x R while the norm is defined by
ou
ox|)

Denote &,(S,) a B-space of functions s(x) which are of class C'(C°) and 2n-periodic
in x on R with the norm:

(322) Ise, = max (569l )
(Isle, = max }49)-

0
(3.21) Jeds. = g, (I, 5
t ot

¥, xef

(Clearly, if ¢ and y fulfil (¥3) and (%) then s(x) defined by (3.1.7) belongs to &;.
On the other hand if s € &,, then ¢ and ¥ given by (3.1.9) fulfil (¥3) and (%}).)

Theorem 3.2.1. Let the problem (.#) be given. Let the conditions (), (¢3), (¢4)
be fulfilled.

Then to a given function s € &, and to a given number T > 0 there exist numbers
8> 0and ¢*, 0 < &* < g, such that the problem (.#) for any e€ 0, e*) and for
any s€ S(s; 6; &,) has a unique (1)-generalized solution

u*(e)(t,x) = U(s)(e) (£, x) ey on T x R
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where U(s) (¢) is continuously 9-differentiable in s and continuous in ¢ while
u*(0) (1, x) = U(s) (0) (¢, x) = s(x + 1) — s(—x + 1).

The proof is quite analogous to the proof of Theorem 3.1.1.

Remark 3.2.1. A theorem similar to Theorem 3.1.2 and remarks similar to all
those of section 3.1 may be stated for the (1)-generalized solution, too.

4. PERIODIC SOLUTIONS OF A WEAKLY NONLINEAR WAVE EQUATION

4.1. Total resonance. Let the boundary-value problem () with periodic boundary
conditions be given by equations

(4.1.1) Uy — Uy = &f (1, X, 1, Uy, Uy, €),
(4.1.2) u(t,0) = u(t,n) = 0,
(4.1.3) u(2nn, x) — u(0, x) = u(2nn, x) — u 0,x) =0,

where n is a natural number. Suppose the function f fulfils besides the conditions
(%), (%,) the condition of 2zn-periodicity in ¢

(4.1.4) f(t + 2mn, x, ug, uq, uy, &) = f(t, x, ug, uy, Uy, €.

Let us use the same notations as in the foregoing paragraph.

Let ¢ and ¥ be arbitrary fixed functions fulfilling conditions (%) and (%,). Take
the solution U(s) () (t, x) of the problem (.#) corresponding to these functicns ¢
and y (whose existence for e€ &, = €0, ¢,) is ensured by Theorem (3.1.1)) and
write that this solution satisfies conditions (4.1.3):

(4.1.5) U(s) (¢) (2nn, x) — U(s) (¢) (0, x) = 0,
ULs) (&) (2m, x) — U(5) () (0. ) = 0.
Making use of the identity
(4.1.6) Uis)(e) (. x) =s(x + 1) — s(—x + 1) +
e3e[ [ oo @6 009
and repeating the considerations of sec. 1.3 Qe find easily that equations (4.1.5) are

equivalent to a single equation (after dividing the resulting equation by & and making
use of 2z-periodicity of f and U(s) (¢) (1, x) in x):

@17 6() () () = J " B(U(s) (8) (9, x — 9) () (9, x — 9)d9 0.

o
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This is a necessary and sufficient condition for s(x) (and hence, in virtue of (3.1.7)
for ¢(x) and y(x)) that the solution U(s) (&) (t, x) of (/) be a solution of (#). Of
course, this condition cannot be verified in practice and thus, we have to replace it
by a necessary or by a sufficient condition which are more apt to a practical treatment,
as it is usually done in the Poincaré method of a small parameter. Letting ¢ = 0
in (4.1.7) we get instantaneously the limit equation

(4.18)  G(so) (0)(x) = -[ :""F(U(so) (0) (8, x — 9))(0) (8, x — 8)d3 = 0

which must have a solution sg(x) € &, that a solution of (%) exist. Let us prove

Theorem 4.1.1. Let the problem (%) be given. Let besides the conditions (%), (%)
and (4.1.4) the following assumptions be fulfilled:

(i) The equation (4.1.8) has a solution s, = si(x) € &,.

(ii) There exists the operator

H =[6{s3) (0] ' €[&, - &,],
where &, o G(&,) ().

Then there exists a number &¢* > 0 such that the probiem (9) has for any
£€(0,e*) a unique solution U(s*(e)) (¢) (1, x) € W,, such that s%(0)(x) = s5(x),
while the function s*(¢) (x) € &, is continuous in e.

Proof. Let us apply Theorem 2.2 with p =5, P = S,, Q = &,. Evidently, we
have to verify only the assumption (ii) of that theorem. We shall show slightly-more,
namely that the assumption (ii) is fulfilled even for P = &, and Q = &,.

In fact, by Theorem 3.1.1 there exist numbers ¢, 0 < &; < &, and é > 0 such
that the solution U(s) (¢) of (.#) for 0 < & < ¢, and s € S(s§; 6) is continuous in s
and ¢ and has a 9-derivative Uy(s) (¢) €[S, - W,] which is also continuous in s
and &. Further, it follows readily that the operator

27n
J F(u) () (9, x — 9) d9
0

has at each point u € Il a %-differential (u; = ;)

Jmm i i % x -9 “0(9, x = 9),uy (9 x —9),

o i=00u;
uz(s, X — 9), 8) ai(g, X — 9) dde [uz hnd @1]

so that the @-derivative is continuous in u; and ¢. Hence by Lemma 2.1 the operator
G(s) (&) has a continuous (in s and &) ¥-derivative G{s) (¢) € [&, - &,] for 0 <
< & < ¢, and s € S(sg; 6), which completes the proof. (It is easily seen that e* may
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be chosen so that [|s*(e) — s§]| < & for 0 < & < ¢*, § having the same meaning as
in Theorem 3.1.1.)

Theorem 4.1.2. Let the problem (&) be given. Let besides the conditions (%7)
and (4.1.4) the following assumptions be fulfilled:

(i) The equation (4.1.8) has a solution s, = sp(x) € &,.

(ii) There exists a linear operator

H = [G{(s5) ()]~
which maps &, onto &, while G(&)) (¢) = &,.

Then there exists a number ¢* > 0 such that (?) has a unique (1)-generalized
solution u*(e) (t, x) = U(s*(e)) (¢) (, x) € Wy such that s*(0)(x) = sg(x), while the
function s*(g) (x) € &, is continuous in e.

Proof is very similar to the preceding one and may be therefore omitted.

In the two foregoing theorems we supposed that G(s) (¢) maps &, into &;_; o
> G(&,)(¢), i = 1,2, respectively. This is reasonable only in the cases when
|of [6uy| + |of |ou,| % 0. In the opposite case we must apply one of the following
theorems.

First let us formulate the condition:
(%1) The function f(t, x, u, €) is together with its partial derivatives

o o o of o ¥ & Of

ox ou’ 0x?’ oxou ou* ox®ou oxout oud

continuous in all its variableson & x £ x R x €.

Theorem 4.1.3. Let the problem () be given with f = f(t, x, u, €). Let besides the
conditions (€1), (¢,) and (4.1.4) the following assumptions be fulfilled:

(i) The equation (4.1.8) has a solution s, = sg(x) € &,.

(ii) There exists the operator H = [Gy(s3) (0)]* which maps &, onto S, where
&, 5 6(&) (o).

Then there exists ¢* > 0, such that the problem (2) has for any g€ {0, ¢*)

a unique solution u*(e) (t, x) = U(s*(e)) (¢) (¢, x) € U,, such that s*(0)(x) = s5(x),
while the function s*(¢) € &, is continuous in . '

Theorem 4.1.4. Let the problem (2) be given with f = f(t, x, u, &). Let besides the
conditions (€,) and (4.1.4) the following assumptions be fulfilled.

(i) The equation (4.1.8) has a solution s, = sy(x) € &,.
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(ii) There exists the operator H = [G{ss)(0)]~" which maps él onto &,
where S; o G(&,) (¢).
Then there exists a number ¢* > 0 such that the problem (%) has a unique
(1)-generalized solution
u*(e) (t, x) = U(s*(¢)) (¢) (1, x) €Wy for any €40, *),
such that s%(0) (x) = s§(x), while the function s*(e) (x) € &, is continuous in e.

Proof. Assumptions in both last theorems are chosen in such a way that the
continuous %-differentiability of G(s)(e) in corresponding B-spaces be ensured in
a neighborhood of s = s}, &¢ = 0. Details may be omitted.

Theorem 4.1.5. Let the problem () be given. Let the assumptions of one of
Theorems (4.1.1, 2, 3, 4) be fulfilled. Further, let the assumption (&) of Theorem
3.1.2 be fulfilled.

Then the solution u*(e)(t,x) of the problem (P) as well as the associated
function s*(¢) (x) whose existence and uniqueness for 0 < ¢ < * is ensured by
corresponding theorem are analytic in ¢. This solution may be determined by

(W]
finding succesively 2mn-periodic solutions u*(t, x) (and thereby the n-th factor
(n) (n)
s(x) in s(e) (x) = Y&" s (x)) of the system

) ) ) 0)
(4.1.9) Uy — Uy =0, u(t,0) =u(t,n) =0,

@ W (0) (0) (0) 1) 1)
Uy — gy = f(t, X, 0, up u,, 0), u(t,0) =u(t,m) =0,

2) 2) of \(@ M of \(© W) of \(@r () of\(®
Uy — Uy = —f u + _f u,+—f ux+—f ,
dug Ou, ou, de
2) (€3]
u(t,0) =u(t,m) =0,
(n) (n) a (0) (n—1) a (0)(n—1) 6 0)(n—1)
Uy — Uyx = 'i u + —f u, + —f Uy +
du, ou, u,
(n=2) (0) (n—2) (0) (n-2) )

+ Ot X, Uy Uy Upy e Uy Uy, ty) (n=3,4,.)

(where the index O at the derivatives of f denotes that we have to take them at the

(0) (0) (0)
point (t, x, u, u,, u,, 0)) or, in the case of generalized solutions, of the system
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)

0) 0)

(4.1.10) u(t,x)=s(x+1)—s(—x+1),
1) 1) 1
u(t,x)=s(x+10—s(—x+1)+

+ %Lr' 19, &, 0(9, &), w9, &), u9 £),0)d& g,

x—t+39

n) (m) (n)
u(t,x) =s(x+1)—s(—x+1)+

1 t px+t—9 (n—1) 0)
+5Jf i3, u (3 8), (9, 8)..) dEAI.
0

x—t+9

Proof. The first part of the assertion is again an immediate consequence of
Remark 2.2 applied to equation 4.1.8, since the operator U(s) (&) is already according
to Theorem 3.1.2 or Theorem 3.2.3 analytic in e. Hence, s*(¢) (x) being analytic
in &, U(s*(¢)) (¢) (1, x) is analytic in ¢ as well.

The second part is also obvious enough. Note that the finding of 2zn-periodic
solutions of the system (4.1.9) alucidates the role of the assumptions (i) and (ii) of
Theorem 4.1.1. By Theorem 1.3.1 the assumption (1) of Th. 4.1.1 is a necessary and
sufficient condition that the equation (4.1.9,) have a 2zn-periodic solution. On the
other hand the assumption (ii) is the simplest sufficient condition ensuring the

(W)
solvability (in a unique way) with respect to s of the equation

(n)

(n) (n)
(@.1.11) J {~—(u)(0)(9 x = O[5 (¥) = & (—x + 29) + 0 (% x — ] +
OF § Q) (m )
+ a—ul (u) 0) (3, x — 9)[s'(x) — s'(—x +29) + v(8,x — 9] +
oF (0) (n) (n) (n)
+ 5;2(“)(0)(9% — 9 [s(x) + s(—x +29) + 0%, x — 9] +

+ B9, x — 9)} d9 =0

) 0)
(where v(t, x) is the particular 2nn-periodic solution of the equation for u such that
(n)
v (0 x) = v0, x) = 0, and the meaning of &, is clear) whlch represents the necessary
(n+1)
and sufficient condition that the equation for u have a 2znn-periodic solution.

Remark 4.1.1. The problem (£#) may be solved by another method which enables
us to determine the sought solution to an arbitrary degree of accuracy without
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knowing the explicit solution U(s) (&) (¢, x) of the associated problem (.#). Indeed,
let us consider simultaneously the equations

P(u,s)(e) (t, x) = —u(t, x) + s(x + 1) — s(—x + 1) +

o1 sj' JWH_SF(u(S, £) () (9 €) de d9 = 0,

2 0Jx—t+9

() (6) (x) = f :""F(u(s, x — 9)(9)(9,x — 9)ds = 0.

Put
G =(P,G), p=(u5), q = G(p) = (P(u, s), G(u)),
P=0,x&,9=0,x8&, or {i, x8,.

Then applying again Theorem 2.2 to the equation G(p)(¢) = 0 we may prove all
theorems stated above.

4.2. Resonance; general case. Let the problem (.@) be given by

(421) Uy — Uyx = 8f(t, X, Uy Uy, Uy, 3) P
(4.2.2) u(t,0) = u(t,m) = 0,
(4.2.3) u(w, x) — u(0, x) = uw, x) — uf0,x) =0,

where w = 27np/q, p and g =+ 1 being relatively prime natural numbers and the
function f besides (%, ), (%) fulfils

(4.2.4) flt + o, x, ug, uy, uy, &) — f(t, X, ug, uy, i, 8) = 0.

Let U(s) (¢) (#, x) be the solution of the mixed problem (.#) associated to (%). By
the same reasoning as in sec. 1.3 we get the necessary and sufficient condition for the
existence of a solution of (9?) in the form

(4.2.6)
s(x + ) —s'(x) = — %a‘[ FU@G) () (% x+ 0 —9) ()% x + o —9)dI.

0

By Theorem 1.3.2 the necessary and sufficient condition for the solvability of (4.2.6)
reads

(4.2.7) J

Denoting

’ qu(U(s)(s)(S,x+jco— 9) () (9, x + joo — 9)d3 = 0.

0o J=

@

#(5) (2) (x) = _2%}; (a-J) 0 j F(UGS) (8) (9 € + joo—9)) (5) (9, € + jor— 9) 49 &

0
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by Theorem 1.3.2 the equation (4.2.6) is equivalent to

(4.2.8) Gy(s, 0) (&) (x) = — s(x) + o(x) + &®(s) () (x) = 0,

where o(x) is some 27/g-periodic function of class C2. Making use of (4.2.8) the
equation (4.2.7) may be written as

(4.2.9) Gy(s, o) (¢) (x) =

E,i CF(U(e + £ 9(9) (2) (&) (% x + joo — 9) (6) (9, x + joo — 5)d8 = 0.

q-1 q
(Clearly in the last three equations we may write ). instead of ).
0o 1

Let us denote &(p/q) (i = 0, 1, 2) the space of 2np/q-periodic functions of class C*
with the norm of &;. (We shall write &, instead of &(1).) It may be easily verified
that the operator G(s, o) (¢) maps &, x &,(1/q) into &, for every ¢ € and
there exist continuous %-derivatives Gi(s, 0) (¢) €[S, > &,], Gi,(s, 0) (¢) =
=I1€[&,(1/q) - &,(1/q)] for every g€ €. First, let us suppose, that |of /ou,| +
+ |0f/ou,| % 0. Then the operator G,(s, o) (¢) maps &, x &,(1/g) as in &, as
in &,(p/q) whence it follows that it maps &, x &,(1/q) into &,(1/g) for every
e€C. (In fact, that G,(s, o) (¢) (x) belongs to & is clear. On the other hand, since

U(s, o) (e) (£, x + (g + 1) @) = U(s, 0) (&) (t, x + 27p + w) =
=U(s,0) (e) (1, x + o)
and similarly
Fu) (&) (t,x + (g + 1) @) = F(u) () (1, x + )
we have

Gy(s,0)(e) (x + w) =
-3 j F(U(o + 68) (&) (8, x + joo — ) () (9, x + joo — 8)d9 =

[

= % [(HUG + 0 @05+ jo - 9) ()03 + jo - 905 =

= Gs, 0) () (x).)

We find readily that the operator G,(s,c)(g) has continuous %-derivatives
Gy s, 0) (e) €[S, = &,(1/g)], G,(s, 0) (e) € [S,(1/q) - Sy(1/q)] at any point
s€8,, g€ &,(1/q) for every e € €.

Further, let |0f /ou,| + |8f/0u2| = 0 and let f fulfil (¢}) and (%,). Then G(s, o) (¢)
maps &, x S,(1/q) into S,(1/g) for every e€ € and there exist continuous %-
derivatives Gj(s, 6) () €[S, = &,(1/g)] and G,(s, 6) (¢) € [S,(1/q) — S,(1/9)]
for every e € €.
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Letting &€ — 0 in (4.2.8) and (4.2.9) we get
(4.2.10) Gy(s0, 00) (0) (x) = — so(x) + ao(x) =0

(4.2.11)
G50, 70) (0) (x) = qul f HU(e0) () (3, + Jo = 8) 0)(8,x + oo — ) =

=,§:1 fmF(ao(x + jo) — oo —x — jo + 29))(0) (3, x + jo — 9)d3 =0.

Now we can state following two theorems.

Theorem 4.2.1. Let the problem (&) be given with |0f [0u,| + |0f/0u,| % 0. Let
besides the conditions (%,), (¢,) and (4.2.4) the following assumptions be fulfilled.

(i) The operator G(s, o) () maps &, x @z(i/q) into &, and Gys, o) (¢) maps
&, x &,(1/q) into &(1/q) for every ¢€ €.
(ii) The equation (4.2.11) has a solution

oo = o¥(x) € &, G) .

(ili) There exists an operator

~ ~ (1
H, = [Gy(o%, o) (0] ' € [@1 (l> NC <->] .
q q
Then there exists ¢* > 0 such that the problem () has for ¢ € {0, &*) a unique

solution u*(e)(t, x) = U(s*(¢)) (¢) (t, x) e U, such that s*(0)(x) = s3(x) = og(x),

while s*(¢) is continuous in .

Theorem 4.2.2. Let the problem (%) be given with f = f(t, x, u, €). Let besides the
conditions (€7), (€,) and (4.2.4) the following assumptions be fulfilled.

(i) The operator Gi(s, o) (¢) maps &, x &,(1/q) into &, and G,(s, o) (¢) maps
&, x &,(1/q) into &,(1/q) for every ¢ € €.
(ii) The equation (4.2.11) has a solution o, = ag(x) € S,(1/q).

(ili) There exists an operator

H, = [Gy(a%, o8) (0] * € [@ G) - &, G)] -

Then there exists ¢* > 0 such that the problem (%) has for e € €0, ¢*) a unique
solution u*(g) (t, x) = U(s*(e)) (¢) (1, x) € U, such that s*(0) (x) = ag(x), while s*(g)
is continuous in &.
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Proof of Theorem 4.2.1. Let us make use of Theorem 2.2 where we put p = (s, a),
q =(r,0), G =(Gy,G,), g = G(p), r = Gy(s,0), ¢ = Gy5,0), P = &, x &,(1/q),
=8, x @1(1/Q)~

Then according to the assumptions of our theorem and to the considerations above
there are fulfilled all assumptions of Theorem 2.2 in the neighborhoed of the point
ps = (05, 0g) with H(r, ¢) = (— r + H,o, H,g), (, ¢) being any element from Q.

Proof of Theorem 4.2.2 is quite analogous.

Remark 4.2.1. In this section we forgo the formulation of corresponding theorems
for generalized solutions and solutions analytic in e.

4.3. Resonance; a special case. A special case of the preceding problem has been
thoroughly studied by several Soviet mathematicians using other methods (see
papers [3]—[10]). Let

(4.3.1) w=2n2 where p=2k-1, q=2I,
q

k1=12,....

Let f = f(t, X, u, u,, ¢) satisfy (%,), (¢,) and (4.2.4) with o from (4.3.1) and let f be
symmetric in x with respect to the point x = /2, i.e.

(4.3.2) ft, x, ugp, uq, 8) = f(t, © — X, ugp, uy, €) .

We shall show that in this case there always exists a unique solution of the problem
(#) in the subspace {l, of 2n-periodic and odd in x functions u(t, x) from 11, such

that
(4.3.3) u(t, x) = u(t,n — x).

First let us show that if U(s) (¢) (¢, x) has the property (4.3.3) then the equation (4.2.9)
is identically satisfied. Indeed, by (3.1.5) and (4.3.2)

(4.3.4)  FU(s)(e) (1, x + m)) (&) (¢, x + =) = F(U(s) (¢) (1, — x)) () (¢, —%) =
= — F(U(s) (¢) (1, x)) (e) (1, x) -

Then
jiF(U(s) (&) (3, x + joo — 9)) (e) (9, x + joo — 9) =
= RO 06, + jo = ) 0.+ jo — ) +
+ SRV E 05 + 0 = D+ jo = 9)) (3 + 2k~ D+ o~ ) =
= SHUO @ 05+ o = 9) () 0.5 + o~ 9) +
+ LHUG @ @5+ 7 +jo = 9)QOx + 7+ jo— 9 =0.
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Now let us show that U(s) (¢) (#, x) has the property (4.3.3) if and only if

(4.3.5) s(x + ) + s(x) = s(n) + 5(0).
In fact let
(4.3.6) U(s) (t,x) = U(s) (t, = — x).

Then making use of the identity (4.1.6) and taking into account

j ' j R UG) (9, 9) (9, &) de 48 =

n—x—t+3

- .r fx_MF(U(s) (8,7 ~n) (8,7 —n)dnds =

_ f ' f xjt_sF(U(s) (8, 1)) (9, n) dy d8

the equality (4.3.6) reduces to
(4.3.6") sx+t)—s(—x+t)=s(n—x+1)—s(—n+x+1).

Conversely, if (4.3.6") holds, we find easily by the successive approximation method
that U(s) (1, x) has the property (4.3.6). Putting nowin (4.3.6)x — t = 0,x + t = ¢,
we get
{0) — S(0) = s(n) — s(~7 + ),
whence the necessity of (4.3.5) follows. On the other hand from (4.3.5) the equality
(4.3.6") follows readily.
The equality (4.3.5) is identically satisfied for x = 0 and hence it is equivalent to

(4.3.5") sS'(x +n) +s'(x)=0.

Denote &,(p/q) the subspace of functions s(x) from &,(p/q) which fulfil (4.3.5").

Now we have to show that functions s(x) € &, and o(x) € &,(1/q) may be chosen
so that they satisfy the equation (4.2.8). Since any solution s*(g) (x) of (4.2.8) must
satisfy (4.3.5) for & = 0 it follows that s*(0) (x) = o(x) must belong to &,(1/g). But
by the 2n/g-periodicity of o(x)

d'(x) =d'(x + lo) =d'(x + 2k — 1)7) = o'(x + m).
On the other hand, by (4.3.5")

o'(x) = —d'(x + 7)
which implies

(4.3.7) o'(x) = 0 (or o(x) = d, d being any real constant) .
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Finally let us show that the operator G; defined by

(4.3.8) Gy(s) (e) (x) = —s(x) + d + &9(s) (¢) (x) ,
maps &, into &,. We know already that G,(s) (¢) (x) € &, for s(x) € &, and e€ €.
Further,

?(s) (2) (x + =) + @'(s) () (x) =

= ZL i(‘l —j)j‘w[F(U(s)(e)(S,x + 7+ jo—9)()(%x+ 1+ jo—9)+
qi=1

0

+ F(U(s) (¢) (9, x + joo — 9)) () (9, x + joo — 9)]d9 =0

whence the assertion results.
Hence, the equation

(4.3.9) Gy(s)(e)(x) = — s(x) + d + e &(s) () (x) = 0
satisfies all assumptions of Theorem 2.2 with p =5, P = Q = &,.

The solution of our problem () is independent on the constant d. Indeed, by
(3.1.10) U(s)(e) (t, x) = U(s + so) (¢) (t, x) for any constant s, and accordingly
&(s) (¢) (x) = D(s + so) (&) (x). Hence without loss of generality we may take instead
of s a new function s; = s — d for which we get the equation

(4.3.10)  —sy(x) + e P(sy + d) (g) (x) = —s54(x) + € D(s;) () (x) = 0.
Thus, we may state the following

Theorem 4.3.1. Let the problem (&) be given with f = f(t,x, u, u,, €) and © =
=2n(2k — 1)/2l, k,1 = 1,2, .... Let the conditions (%,),(%,), (4.2.4) and (4.3.2)
be fulfilled.

Then there exists e* such that the problem (%) has for ¢ € €0, e*) in 11, a unique
solution u*(e)(t, x) = U(s*(e)) (¢) (t, x) such that s*(¢) is continuous in & and s*(0) = 0.

Remark 4.3.1. The assumption (¢;) may be weakened, viz. it is sufficient to
suppose the function f(1, x, u, u,, &) is together with its derivatives f /du, of /ou,
continuous in all variables and Lipschitzian in u and u,. This turns out, immediately
if we solve (4.3.9) by successive approximations.

5. EXAMPLES

51. f = au + pu® + h(t,x), @ = 2n. Let us consider the problem (%) with
n = 1 and with

(5.1.1) f=ou+ Bu® + h(t, x)
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where «, § are constants, «f > 0 and h(t, x) is of class C° in ¢, of class C? in x,
2n-periodic in ¢ and x, odd in x and

(5.1.2) h(t,x + m) = —h(t, x),

(5.13) 2mBy(x) = j h(3,x — 9)d9 % 0.

0

Clearly, the function f satisfies the conditions (%7) and (%) for (¢, x,u, g)e R x
xR xR xR

Now, the necessary condition (4.1.8) reads
2n
(5.1.4) 'f (ofso(x) — so(—=x + 29)] + BLso(x) — so(—x + 29)° +
[
+ (3, x — 8)}d9 = 0.
Dividing by 27 and putting

2n n
(5.1.5) f so(—x + 29) d9 =r se(é)dé = 2nl, (k=1,2,3),

(5.1.6) - y = % >0,

(5.1.4) yields

(5:1.7) G(s0) (0) (x) = s5(x) — 3Iys5(x) + (v + 312) so(x) — 91y — I5 + x(x) = 0,
where by (5.1.2) and (5.1.3)

(5.1.8) xx + 1) = —x(x).

We shall seek the solution of (5.1.7) in the subspace &, of functions s(x) € &, such
that

(5.1.9) s(x + m) = —s(x).
Then, of course,
(5.1.10) I,=1,=0.

Let us consider for a while the functional I, as an absolute positive constant. Denoting
(5.1.11) 3p=9y+3l,, 2q=yx>x),

(so that p* + ¢* > 0)

the unique real solution of (5.1.7) is given by

(5.1.12)  so(x;1,) = [—q + (a* + P*)*]* + [—q — (¢* + P))']*.
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In virtue of (5.1.8) 54(x; I,) € &, for each I,. It remains to show that I, > 0 may be
chosen in such a way that (5.1.5) be satisfied for k = 2.

Clearly, for y -+ 3I, = 0

2n 2n
f so(& —5r) dé = f (e de >0

o o

and for I, — oo the solution so(x; I,) — 0 uniformly with respect to x so that
2n .
j so(&;1,)dE -0
0

monotonically with respect to I,. (Indeed, it is easily found by (5.1.12) that
d/ol,s3(x; I1,) < 0 for all x and 9/dl, s3(x;I,) <0 on a set of a positive measure.)
Hence, because of

2
(5.1‘13) — %‘)’ <J x%(é) de¢
‘ 0
there exists a unique positive value I, = I such that sg(x) = 5,(x; I3) fulfils

r“sgz(g) dé = 2al3 .

(]

Now, having in view the assumption (ii) of Theorem 4.1.3 we have to prove the
existence of the inverse operator. It may be easily verified that if s € &, and

f(t,x,ue) = —f(t,x + m, —u, €

then the solution u(t, x) of (3.1.10) lies in the subspace 1, of 2n-periodic and odd in x
functions u(t, x) from U,, which satisfy the relation

u(t,x) = —u(t,x + m).
(In fact, observe that if u(t, x) € il,,

J' j RO, & u(s, ), 8) de dg =

oJntx—t+38

t rx+t—9
=‘[J‘ f('g”1+n,u('9:’1+n),ﬁ)dﬂd3=
0

x=t+3

t x+t—39 '
= —j J F(%, 1, u(9, 1), e)dnd3.)
0Jx—t+8

Then we find easily that our operator G(s) (¢) maps &, into &,. Let us show that at
the point s = s, ¢ = 0, the operator G/(s) (¢) maps &, onto &,. Then we shall be
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able to prove by Lemma 2.2 that there exists
H = [G(s0) (0)] ' € [&, ~ &,].
Clearly, (ds = 3)
Gy(s5) (0) (5) = (355> + y + 3I3) 5 + 3J,55 —

— (358 + 9) Jy + 3J,55 — Js
where

L f ) )

By (5.1.9)
Ji=J,=0.

Thus, by Lemma 2.2 we have to verify that the equation
(5.1.14) (Bst2(x) + 7 + 312) 5(x) + 3J,55(x) = r(x)

where r(x) is an arbitrary function from &,, has a unique solution §(x) such that

(5.1.15) [5*x)] = | k>0.
Evidently,

(5.1.16) §*(x) = a(x) [r(x) — 373 sg(x)],
where

a(x) = [3s5%(x) + v + 313] 7' > 0,

s = j ECECEURLERE j al8) s37(2) 4]

0

is a unique solution of (5.1.14). The function §*(x) is from &, and fulfils the inequality
(5.1.15) with

k= max (a(x) + 2Ja'(x)] + [a"()]) -

it fres RGELC | ") ) o).

Hence, we may state the following

Theorem 5.1.1. Given the problem (&) with n =1 and with f = oau + pu® +
+ h(t, x), where o > 0 and h(t, x) is of class C° in t, of class C* in x, 2n—periodic
int and x, odd in x and fulfils (5.1.2), (5.1.3).

Then there exists €* > 0 such that our problem (2) has for 0 <& < &* in uz
a unique 2n-periodic solution U(s*(¢)) (¢) (t, x) such that s*(0) = sj.
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Remark 5.1.1. By more detailed calculations it may be shown that there exists
a solution of our problem () also for sufficiently small nonpositive values of 7.

Remark 5.1.2. Applying Theorem 4.1.1 it may be shown by similar considerations
as above that the problem () for

(5.1.17) f=(x+ pu*)u, + h(t, x)

has in flz a unique 2zn-periodic solution if the constants o, f and the function h(t, x)
fulfil following assumptions:

(i) op >0,
(ii) h(t, x) is of class C° in t, of class C* in x, 2n-periodic in t and x, odd in x and
2n
Wi, x + 1) = —h(t, %), 27p(x) =f M, x — 9)d9 % 0.
(V]
The proof will be published elsewhere.

5.2. f = ou + Pu® + h(t, x), ® = n. Let us consider the problem () with v = =
(i.e. p =1, g = 2) and with

(5.2.1) f=ou+ pu®+ h(t,x),

where a, § are constants, «f > 0 and h(t, x) is of class C°in t, of class C? in x,
n-periodic in ¢, 2n-periodic and odd in x and

(52.2) h(t, x + 3n) = —h(1, x) .
(5.2.3) wBy(x) = Jm[h(s, x—9) + WS x+n—9)]d9 %0,

The function f again satisfies conditions (%}) and (%,) for (t, x,u,e)e R x K x
x R x R. Now, let us write the operators G{s, a) (¢) (i = 1, 2) from (4.2.8) and
(4.2.9) in the form G(s, o + &c) (¢) (i = 1,2) where ¢ is from S,(3) and c is some
constant. (This is possible since ¢ is also from &,(3).) The necessary condition (4.2.11)
in our present case reads

(5.2.4) J “([oox) — oo(—x + 29)] + Bloa(®) — ao(—x + 29T +

+ h(9, x — 9) + ofoo(x + 1) — 6o(—x — 7 + 29)] +
+ Blog(x + 1) — ao(—x — 7 4+ 29)P + h(%, x + = — 9)}d9 = 0.

Taking into account that ¢ is a n-periodic function and denoting

(5.2.5) ra’g(—x + 29)d$ = nl,,
0 '
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(5.2.6) Y

=™ IR

(5.2.4) yields

(5:2.7) Ga(s0, 30) (0) (x) = 03(x) — 3I,05(x) + (v + 3I,) oo(x) — yI, — I + x(x) =0,
where by (5.2.2) and (5.2.3)

(5.28) x(x +3m) = —x(x).

We shall seek the solution of (5.2.7) in the subspace &,(3) of functions &(x) from
&,(3) such that

(5.2.9) o(x + 3n) = —a(x),
so that
(5.2.10) I,=1,=0.

In a quite analogous way as in the foregoing section we can show that the equation
(5-2.7) has a unique solution ¢*(x) € &,(3).

Let us now examine the existence of the inverse operator H,. Let &, be the subspace
of functions s(x) from &, such that

(5:2.11) s(x + 3m) = —s(x)

and let {i, be the subspace of 2n-periodic and odd in x functions u(t, x) from 1,
such that

(5.2.12) u(t,x + 37m) = —u(t, x).

Then by the inspection of the equation (3.1.10") it may be verified that the operator
P(u, s) (¢) maps I, x &, into 1l,, if

flt,x +3n, —u, &) = —f(t, x,u,¢).

Further choosing the constant ¢ in G(s, o + c) (¢)

_1
4q

S J: "’ f:F(U(s) () (9, & + jo — ) (2) (5, & + joo — 9) d9 e,

the operator G,(s, 6) (¢) maps &, x &,(3) into &,.

Finally, the operator G,(s, o) () from (4.2.9) maps &, x &,(}) into 62(2)
Similarly as in 5.1, it turns out that there exists the inverse operator

H; = [G3,(05, 03) (0] € [€:(3) » &:(3)] -
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Hence by Theorem 4.2.2 the following theorem is valid:

Theorem 5.2.1. Given the problem (&) with f = au + Pu® + h(t, x), where
af > 0 and h(t, x) is of class C° and n-periodic in t, of class C?, odd and 2n-periodic
in x and fulfils (5.2.2), (5.2.3).

‘Then there exists ¢* > 0 such that our problem () has for 0 <& < &* in i,
a unique m-periodic solution U(s*(e)) (€) (¢, x) such that s*(0) = sg.
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Pe3rome

MEPUOOWYECKUE PEIIEHU S IMHEVNHOI'O U CJIABO HEJIMHEMHOTI' O
BOJIHOBOT'O VPABHEHUS B OJIHOI PA3ZMEPHOCTH, I

OTTO BEMBOJA (Otto Vejvoda), Ipara

B nepsoM maparpade uccueayeTcs CyIeCTBOBaRNE KIACCHYECKOTO (-TIEPHO/IIYEC-
KOro (B t) pemieHust sl BOJHOBOTO yPaBHEHUS

(1.1.1) Uy — Uy, = f(1, %)
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C KPaeBBIMHU YCIIOBUSMM
(1.1.2) u(t,0) = u(t, ) = 0,
M [I0Ka3bIBAIOTCS TIPEX/IE BCEIO JBE CIIeLYIOIIHEe TEOPEMBL.

Teopema 1.3.1. ITycmp

(1) dynryus f(t, x) kaacca C° 6 t uxaacca Ct 6 x 042t = 0,0 < x < nuf(t,0) =
=f(t,m) = 0;

(2) dyuryus f(t, X) w-nepuoduuna 6 t, 20e ® = 21N, n — HAMYPAALHOE YUCAO.

Tozoa cywecmeyrom 2nn-nepuoouueckue pewenus ypasnenuii (1.1.1) u (1.1.2) mozoa
U MoavKo moezoa, ecau

2nn )

o) f (8 x — 9)d9 = 0.
0 v

Omu pewenus oaromesn gopmyaoii

(118)  u(tyx) = s(x +1) — s(—x + 1) +%J r'_sf(s, £ de 9,

0Jx—t+8

20e s(x) — npoussoavras 2m-nepuoduueckan @ymkyus xaacca C* u f npodossxcena
6 X Ha (— o0, 00) Kak 2m-nepuoduueckas u HeuemHas PYHKYus.

Teopema 1.3.2. ITycmeo
(1) mo ace camoe, kax 6 Teopeme 1.3.1;

(2) pynxyusn f(t, x) w-nepuoduuna ¢ t, 20e w = 2np/q, p u q £ 1 — Hamyparvnoie
HecoKxpamumvie Yucia.
Toz0a cywecmeyrom 2np[q-nepuoduueckue pewenus ypasnenuii (1.1.1) u (1.1.2)
moz0a u moavko mozoa, ecau
@ q
(3) f(%, x +jo —9)d=0.
o j=1
Dmu pewenusn Oaomca gopmyaoii (1.1.8), 6 romopoii s(x) = s,(x) + s,(x), 20e
dpyukyus f npodoancena 8 x xax ¢ Teopeme (1.3.1), sl(x) — npouseoavHas 2w/q-
nepuoduueckas @ynkyus xaacca C? u

(1.3.12) 5i(x) = Elq' j N ‘fii(q ~ )8 x +jo — 9)ds.

0Jo J=

Hdanee noka3bIBaeTCs, YTO €CIH ) = 270, O-UPPALMOHAIBHOE YHCIIO, TO KJIACCU-
Yeckoe 2na-IIepUOAUYECKOe PEIIeH)e BOOOLIE He CYIIECTBYeT.

Bo BTOpoM maparpade MpUBOIATCS HEKOTOpBIE BCIIOMOTaTeNIbHBIE TEOPEMBI U3
(YHKIHOHAIBHOTO aHANM3a.
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B TpeTheM maparpade JoKa3bIBaeTCS

Teopema 3.1.1. ITycmyb dana cmewannasn 3adaua () Ypasnenuem
(3.1.1) Uy — Uy = &f (1, X, U, Uy, s g),
Kpaesvimu yCA08UAMU
(3.1.2) u(t,0) = u(t,m) = 0
U HAUAALHBIMU YCAOBUAMU

(3.1.3) u(0, x) = o(x), u 0, x) = ¥(x).

IIycmob svinoanensl caedyrowue yCcao8usn:

(a) Dynxyus f(t, x, ug, Uy, Uy, &) 8Mecme co céoumi npoussoonvimu (3.1.4) nenpe-
pbléHa no ecem nepemerrvim 0441 =2 0,0 < xS n, —0o <uy; < + 0 (i =0,1,2),
0<e¢=s¢u

£(t,0,0,0,u,,8) = f(t, 7, 0,0, uz,8) =0
6) ¢(x) — kaacca C* u Y(x) — kaacca C* 0420 £ x < nu
?(0) = ¢"(0) = ¥(0) = 0, o(n) = ¢'(n) = Y(z) = 0.

Toz0a 045 Oamnnoii 2m-nepuoduueckoii gyuxyuu s(x) xaacca C* u dannozo uucia
T > 0 cywecmeyrom uucaa 0 > 0 u ¢*, 0 < &* < g, makue, umo 3adaua (M) umeem
0150 < & < &% u 0as 6cex s us chepvt S(s; 8) eduncmeennoe Kaaccuueckoe peuienue
u*(e) (¢, x) = U(s) (¢) (¢, x). Onepamop U Henpepvigen 6 & u obaadaem HenpepwigHOL
npouseoonoii I'amo omuocumenvto S, npuiem

(3.1.13) u*(0) (1, x) = U(s) (0) (1, x) = s(x + 1) — s(—x +1).

(Kpome Toro, foka3piBaeTcs mpr Oosiee cIabbIX YCIOBHSAX CYIIECTBOBaHHE 0606-
IEHHOTO B HEKOTOPOM CMBICIIC PSIICHHS TOM XKe 3a/1a4H.)

It

JIBe OCHOBHEIE TeOpeMBI maparpada 4eTBepTOro IJacsr:

Teopema 4.1.1. ITycme 3adaua (?) dana ypasnenuamu (3.1.1), 3.1.2) u
(4.1.3) u(2mn, x) — u(0, x) = 0, u,(2nn, x) — u,(0,x) =0,
20e n — HAMypaabHoe Yucio.

ITycmy, kpome ycaosusn (a) uz meopemot (3.1.1) u ycaosus
(4.1.4) Sf(t +2mn, x, ug, uq, uy, &) = f(t, x, ug, uy, Uy, €),

8bINO/IHEHbl cxte()y/ou;ue ycaosua:
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(1) ypasnenue
(4.13) ] G(s0) (0) (x) =
= f F(9, % — 9 so(x) — sa—x +29) , sp(x) — si(—x +29),
’ so(x) + si(— x +29),0)d3 =0

umeem pewienue s, = sy(x) u3 Hekomopozo noonpocmpancmea S, npocmpancmea S,
2m-nepuoduyeckux gynxyuii kracca C.

(2) Cywecmeyem auneiinsii onepamop H = [Gi(s3) (0] 1 € [&; - &,].
(8, — npocmpancmeo 2n-nepuoduueckux dynxyuii kaacca C* u e2o nodonpocmparcmeo
&, > 6(&:) ().

Toz0a cywyecmeyem uucao ¢* > 0 makoe, umo 3adaua (P) umeem 04a 6cex €€
€40, e*) eduncmeennoe xaaccuueckoe pewenue U(s*(e)) (e) (¢, x) maxoe, umo
5*(0) (x) = s5(x), npuuem gynxyus s*(e) (x) € &, nenpepeigna 6 e.

Teopema 4.1.3. ITycmb dana 3adaua (?) ¢ f = f(t, x, u, €), 20e Pynkyus f co ceoumu
NPOU3BOOHBIMU
of of & o o of *f o
dx  du’ ox*  oxou’ ou?’ 9x*ou’ oxou®’ oud

HenpepoviHA NO 6CeM NepeMEeHHbIM, 2TH-NEPUOOUYHA 6 T U
f(t,0,0,¢) = f(t,7,0,¢) = 0.
ITycmob svinoanenvt caedyroujue yca08us:
(1) ypasnenue (4.1.8) umeem pewenue s, = sg(x) € S,;
(2) cywecmsyem onepamop
= [G{(s3) (0] €[S, » &,],
20e ©, o G(S)) (e).

Toz0a cywecmeyem ¢* > 0 maxoe, umo 3adaua (P) umeem 044 ecex ¢ €0, e*)
edurncmeentoe Kaaccuueckoe peutenue U(s*(¢)) () (¢, x) maxoe, umo s%(0) (x) = s5(x),
npuuem @ynxyua s*(e) € &, nenpeprisna 6 e.

Haree mOKa3bIBAIOTCS. aHAJIOTHYHBIE TEOPEMBI UL OOOOINEHHBIX PeIICHHI U T

ciaydasi o = 2np/q. B 0cOGEHHOCTH, B ITOCJIECTHEM CIIy4ae MCCIEIYETCst OHA OT/IENb-
Has 3a/1a4ya, KoTopas ObUIa HECKOJIbKO pa3 pacCMOTPEHa B COBETCKOM JIMTepaType

([31-[10]).
B nsitom maparpade mpuMeHeHWeM TeopeM HpeHBIAYyINero maparpada mxoxasbl-
BAETCs CYILECTBOBAHME IIEPUOANYECKOTO PELIEHHS B CIIydae

f=ou+pu* +h(t,x), o=2n u o=n

TIPH HEKOTOPBIX OrpaHuueHwsX Ha o, B u h(t, X).
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