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ON THE LOGARITHMIC POTENTIAL OF THE DOUBLE
DISTRIBUTION

Joser KRAL, Praha
(Received January 11, 1963)

Necessary and sufficient conditions are established securing the existence
of limits of the logarithmic potential of the double distribution at points of
the curve on which the distribution is spread.

INTRODUCTION

Investigation of the logarithmic potential of the double distribution is a classical
topic occuring in a number of applications. The Fredholm method for solution of the
Dirichlet problem included in most courses of Integral Equations and Partial Diffe-
rential Equations may serve as an example. It is well known that this method is based
on the behaviour of the potential

Wi(z) = Im J FO g

{—z

as z approaches the curve K on which the double distribution is spread. To secure the
existence of limits of Wp(z) as z converges to an arbitrary point in K along any path
not meeting K the curve is usually submitted to diverse restrictions. (It has been re-
cognized that, for a simple closed curve K and a continuous function F on it, Wy(z)
need not admit a continuous extension from the bounded complementary domain D
of Kto D = D u K even if K is smooth, i.e. K possesses a tangent 7({) at any { € K
varying continuously as { describes K.) Most frequently it is assumed that K fulfils so-
called Ljapunoff condition (cf. [8], remark 2, § 7, chap. I; in [3] analogous surfaces in
3-space are considered) or that K is a curve of bounded rotation (,,Kurve beschréinkter
Drehung”) as introduced by J. RADON in his classical memoir [10] (cf. also [11].
According to the bibliography given in [7], a translation of Radon’s memoir appeared
in Uspekhi mat. nauk in 1946.) At this junction the work of T. CARLEMAN [2],
which is not available to the author, is also usually mentioned.

The present paper aims at showing that simple necessary and sufficient geometrlc
conditions can be established securing the existence of above mentioned limits for any

306



continuous F on a simple oriented curve K of finite length. Let K be such a curve in
the Buclidean plane E, (which is identified with the set of finite complex numbers).
Given z ¢ K write a(z) = Ag arg ({ — z) for the increment of the argument of { — z
as { describes K. Let C(M) be the Banach space of all (real-valued) bounded conti-
nuous functions F on M < E, with the norm ||F||,, = sup IF(z)l, z € M. With every

F € C(E,) we associate a (continuous) function UF on G = E, — K defined by

UF(z) = ImJv &dc — F(z)a(z), zeG.

x{—z
If M = G is any set containing K in its closure then the following conditions (I), (II)
are equivalent to each other:

0] For every F € C(E,), UF is uniformly continuous on M .
(I1) + oo > supv({), (eK,
4

where v5({) = (3" u¥(¢, o) de and p*(¢, o) stands for the number of points at which K
meets the half-line
{z; z={( + rexpia, r> 0}.

In particular, if D is a Jordan domain with oriented rectifiable boundary K, then
(II) is a necessary and sufficient condition that, for every continuous function F on K,
the corresponding potential Wg(z) be extendable from D to a continuous function on
D=DuK.

Similar results for non-simple curves are also established and some further results
concerning the operator

U:F—->UF
are obtained.

1

In this paragraph some auxiliary results are collected. In particular, theorem 1.11
will be our main tool in § 2.

The term path (on <a, b)) is taken to mean a continuous complex-valued function
on a compact interval <a, b) = {t;a <t < b}. Given such a path ¥, z€ E, and
a€ E; (= the set of finite real numbers) we denote by u¥(z, o) the number (0 <
< @(z, ) £ + o) of points in

{t;tea, by, Y(t) + z, Y(t) — z = |Y(t) — z| exp ia} .

If f is a finite (real- or complex-valued) function on an arbitrary interval J we write
var [ f; J] for the variation of f on J which is defined as the least upper bound of all

the sums .
Y1) - £(a)l
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{aiy, by), ..., {a,, b,y ranging over all finite systems of non-overlapping compact
intervals contained in J. If necessary, a more explicit notation of the kind var, [ f(¢); J]
will be used.

Proof of the following lemma may be left to the reader.

1.1. Lemma. Let ¢ be a continuous complex-valued function on the interval J
(which need not be closed) and let V be a segment disjoint with ¢(J). Then there
exists a single-valued continuous argument of go(t) —zonJ x V, i.e. a continuous
real-valued function 3(t, z) on J x V with

(1) —z = |o(t) — zlexpi Xt, z), ted, zeV.

1.2. Lemma. Let  be a path on {a, b, z € E, and let & be the system of all com-
ponents of <a, b)Y — ¥ ~Y(z) = {t; t e {a, b), Y(1) * z}. With every J € ® we asso-
ciate a single-valued continuous argument 9,(1) of Y(t) — z on J. Then p¥(z, o) is
Lebesgue measurable with respect to the variable o on 0, 27> and

2n
J Wz, o)doe =Y var[9;;J], Je®.
0 J

Proof of this lemma is easily obtained on account of the well-known Banach
theorem on variation of a continuous function (cf. [9], chap. VIII, § 5) and may be
found in [5] (cf. lemma 2.2).

By preceding lemma the following definition is justified:
1.3. Definition. Given a path  and z € E, we define

(z) = f :"m/(z, %) da .

1.4. Notation. Let ¢ be a continuous complex-valued function on an interval J
(which need not be closed) and suppose that ¢(t) = 0 for every t € J. Let § be a single-
valued continuous argument of @ on J. If a < b are the end-points of J and if there
exist finite limits 9(a+) = lim 9(¢), (b—) = lim ¥(f) we put

t—~a+ t—=b—

(1 darg[o; J] = (b—) — Ha+).

Clearly, neither the existence nor the value of the difference 9(b—) — 9(a+) depend
on the choice of 3 so that the definition (1) is justified. If necessary, we shall write
4, arg [¢(x); J] instead of 4 arg [¢; J].

The following lemma is obvious:

1.5. Lemma. Let z', 2%, z € E, and suppose that z does not belong to the segment
with end-points z', z2. Then

|4, arg [z + x(z2 — z'); €0, 1D]| <.
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Using 1.5 we obtain

1.6. Lemma. Let ¢ be a continuous complex-valued function on the interval J and
suppose that the segment V with end-points z*, z* does not meet ¢(J). Then

(2) |[darg [¢ — z';J] — darg[e — 2% J]| < 2n
provided the symbols A arg [¢ — z*; J] (k = 1, 2) are meaningful.

Proof. By lemma 1.1 there is a continuous single-valued argument 9(, z) of
@(f) —zon J x V(teJ,ze V). Fix a tye J. It is easily seen that = + 9(t,, z* +
+ x(z* — z')) is a continuous argument of z' + x(z® — z') — ¢(t,) on {x;0 =
< x £ 1} so that, by lemma 1.5,

(3) —1(te, 2%) — Hto, ")l < m.

Let u < v be an arbitrary pair of points in J. Using (3) with t, = u and ¢, = v we
derive
|4 arg [ — z'; <u, 0)] — darg [y — 2% <u, )] =
= IS(U, zl) - S(u, zl) — .9(0, 22) + 9(u, 22)| <
19(v, z%) — (v, z*)| + |(u, z%) — Hu, z')| < 2=m.

IIA

Making u — a + and v - b — (where a, b are the end-points of J) we obtain (2).

1.7. Notation. If ¥ is a path on {a, b) and z € E, we write N,(z) for the number
(possibly zero or infinite) of points in Y ~*(z) = {t; t € {a, b, Y() = z}.

1.8. Lemma. Let y be a path on {a, b), { e Y(<a, b)), ze E, — Y({a, b)) and
suppose that the segment with end-points z, { meets lﬁ((a, b)) at { only. Then

(4) |4 arg [y — z; <a, bY]| < 0"(0) + 2n(Ny() + 1).

Proof. To prove this lemma we may clearly suppose that the right-hand side in (4)
is finite. We shall first assume that

(5) V) A (a, b) =0

(so that { € {y/(a), ¥(b)}). Then there is a continuous single-valued argument 9(¢) of
Y(1) — ¢ on (a, b). Since var [9; (a, b)] = v¥({) < + oo (cf. 1.2 and 1.3) the limits
(a+), 9(b—) exist and

(6) |darg[y — ¢ (a, b)]l = 19(b—) — a+)| £ var [%;(a, b)] = v¥({).
By lemma 1.6 we conclude that

|4 arg [y — z;<a, b))l = |darg [y — z;(a, b)]| < 2n + A arg [y — {5 (a, b)]|
which together with (6) implies

(™) |4 arg [y — z;<a, bY]| < 27 + v¥(().
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Now we shall drop the assumption (5). Since Ny({) < + co we may divide {a, b)
into p < N,(¢) + 1 non-overlapping intervals {a;, b;} such that
!l/_l(c)n(aj9bj)=07 léjép‘

p
Put Y/ = Y|y, b, If the half-line {{ + rexpio; r > 0} does not meet _Ul{tp(a )
=

p
¥(b;)} (which is true for almost every ae{0,2n)) then u*((;0) =Y (¢ a)
i=1
whence
p
®) Q) = X 0"(0) -
i=1
Using (7) with Y/ and {a}, b;) instead of y and {a, b) we obtain

©) ldarg [y — z;<a;, bl < 2n + 0¥(0), 1<j<p.
On account of (8), (9) we have

(A arg [¥ - 7 Ca, ]| < 3. M arg [V = =i 0 b1 <
< 2np + v¥(0) £ 2n(Ny(0) + 1) + v*(0)

and the proof is complete.
The following well-known property of harmonic functions will be used below:

1.9. Let G < E, be an open set with boundary B % 0 and let h be a harmonic
function on G such that lim h(z) = 0. Suppose that lim sup h(z) < ¢ (e E,) for

|z]= + o0 z=¢
zeG . . zeG

every { € B. Then h(z) £ c for every z€G.

1.10. Lemma. Let ¥ be a path on {a, by. Then h(z) = Aarg [y — z;<a, b>],
considered as a function of the variable z, is harmonic on E, — y(<a, b)) and

lim h(z) = 0.
|z] >+

Proof. h(z) = A arg [y — z; (a, b)] is the imaginary part of the increment (to be
denoted by I(2)) of log ({ — z) as { describes . I(z) being an analytic function of the
variable z on E, — y(<a, b)), h is harmonic on E, — ¥(<a, b)). It is easily seen that,
for sufficiently large |z, |h(z)| = |4 arg |y — z; <a, b)]| is merely the radian measure
of the (acute) angle enclosed by the vectors Y(a) — z and y(b) — z whence h(z) — 0
as |z| » + oo.

Now we are able to prove the main result of this paragraph.

1.11. Theorem. Let ¥ be a path on {a, b), K = y(<a, b)) and suppose that
+ 0 > sup (Ny(0) + v"({)), (eK.
¢

Then + oo > sup v¥(z), ze E,.
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Proof. Put

¢ =sup Ny(), ¢, =supv¥({), G=E, — K.
leK

leK |

We shall prove that, for any z, € G,
(10) WM(z0) < ¢; + 2¢4(cy + 2nc; + 1)) =c.

Fix a zo € G, a d € E; with d < v¥(z,) and denote by (¢) a continuous single-valued
argument of y(t) — z, on <a, b). Since

var [9; <a, bY] = v¥(z0) > d
we can find a subdivision {a =1, <... <t,= b} of {a,b) such that d <

< 2": 19(t;) — 8(t;-4)l. Put s; = sign (3(¢;) — 9(t;-,)) and define
i=1

kz) = Z"sjA, arg [Y(t) — z; {tj-1, ;7). z€G.

Clearly, .
(11) a <) (=3 9(0) - -0)

and h is a harmonic function on G with lim h(z) = 0 (cf. 1.10). We shall prove that,
|z]> +

for every { € K,

(12) . lim sup h(z) < c.
z={
zeG

Hence it follows by 1.9 that h < ¢ on G; in particular, d < h(z,) < c. Since d was an
arbitrary number with d < v¥(z,), (10) will be established.

Fix a { € K, denote by &, the set of all je {1, ..., n} with {t;_y, t;> Ny~ () =0
andput 8, = {1,...,n} — G,. Let K, = U¥(<{tj-y, 1), j € G, and define the func-
J

tion h; of the variable z on E, — K, = G; by
h(z) = ZsjA arg[¥ — z;{t;_ 1, 1)), je@ (k=1,2).
J
Since { € G, and h, is continuous on G, we have

(13) lin’; hy(z) = i) S Y ldarg [Y — G <ty tD]] £
z= JjeB,
zeG

< (cf.1.2and 1.3) S W) L ¢, -

On the other hand, with every z € G, we can associate a {, € K, such that the segment
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with end-points z and {, meets K, at {, only. By lemma 1.8 we obtain for every
je®,
[darg [Y — z; {ti—y, tD]] < V() + 2a(Ny(L) + 1) < ¢ + 27(c, + 1)

The number of points in Y ~*({) does not exceed ¢, and, consequently, the number of
elements in &, does not exceed 2¢,. We conclude that, for every z € G,,

hy(z) 2 [Adarg [¥ — z; <tj—q, 1] < 2¢4(c; + 2n(cy + 1)).

JjeB2
We have thus by (13)
lim sup h(z) = lim sup (hy(z) + h,(2)) < lim hy(z) +
z¢ ¢
zeG zeG

+ sup hy(z) < ¢, + 2¢4(c, + 2n(ey + 1))

zeG

and (12) is established. Thus the proof is complete.

1.12. Proposition. Let  be a path on {a, by, K = y(<a, b)). Then v" is lower
semicontinuous on E,. Further suppose that var [{; <a, bY] < + 0. Given z ¢ K
put o(z) = inf {|{{ — z|; { € K} and denote by 9,(t) a continuous single-valued argu-
ment of Y(t) — z on {a, b). Then

(z) = var [9,;<a, b)] < o7 '(2) var [¥; <a, bd], z¢K,
var [8, — 8,5 <a, b>] < |u — o] var [y; <a, bY] 7 '(u) 07 (v)
u¢K, vé¢kK.

Proof. Fix a z, € E, and let d be an arbitrary real number with d < v'”(zo). It
follows easily from lemma 1.2 (cf also 1.3) that there is a finite system of non-over-
lapping intervals <a;, b;> (j = 1, ..., n) contained in <a by — ¥~ Y(z,) such that

leA arg [ll/ — Zo; <ap 1>]| > d

Clearly,
lim darg [y — z;<a;, b)) = darg [y — z;<a; b>], 1<j=<n,

z—20

because zo ¢ U ¥(<aj, b;»). Noting that
i=1
¥(z) = Z |4 arg [Y — z;<a;, b)]|
whenever z ¢ U nll((a » bj>), we conclude that

lim inf v¥(z) = lim Z |[4arg [y — z;<a;, by]l = Z |[darg [¥ — zo; <aj, b))l > d
=1

z-z0 z—zo j=1

and the lower-semicontinuity of v” is established.
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Further suppose that var [; <a, b)] < + . We have for every z¢ K and 1€
e€{a, b)

4,arg [Y(t) — z;<a, )] = Im J dx//(t)

v(r) -

so that

8.x) = s(a)+1mj 4y, asTs0b.

v(1) -

Hence we derive for any subdivision {a = 1, < ... <1, = b} of {a, b)

T

- 1‘11()_

TORYOIES) 040 £ &7 e s o)

Consequently,
var [9,; <a, bY] = v¥(z) < @7 '(z) . var [y; <a, b)] .

Using similar arguments we obtain for every pair of points u, vin E, — K

9,(t) — 94(x) = 9(a) — 9(a) + Im J (M v) au(i), tela,by,

1
() -

var [, — 9,; <a, b)] < sup

astsb

.var [{; <a, bY] £

1 _ 1
y(it)—u  Y(t) — v
< u —vle Mu). 0" (v). var [Y; {a, b)].

In particular,

[v*(u) — v*(v)| = |var [9,; <a, bY] — var [9,; <a, b)]| £
Svar[9, — 9;<a, bY] < lu — v]. 07 (u). e '(v). var [¢; <a, b)]

and ¥ is locally Lipschitzian on E, — K.

Remark. Theorems 1.11 and 1.12 together with further results concerning v¥ were
announced in [6].

2

We shall assume throughout that y is a path on <a, b) with var [; (a, b)] <+ oo,
K = y(<a, b)). If z ¢ K then 9,(f) will stand for a single-valued continuous argument
of Y(f) — z on <a, b). Further we put

a(z) = darg [y — z;<a, bY] (= 8,(b) — 9,(a)).
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2.1. Definition. Given z ¢ K we define for every (real-valued) continuous function f
on {a, b)

wy(z:f) = I " 1) d9.(1) <= Im b& dn//(t)).

If F is a continuous function on K we put
Wy(z; F) = wy(z;f), where f(t)=F(t)), a<t=<bh.

2.2. Remark. Clearly, this definition does not depend on the choice of the argument
9.,(¢). It follows easily from 1.12 that wy(z; f) is a continuous function of the variable z
on E; — K and lim wy(z;f) = 0.

J2]=+ e

2.3. Notation. As in the introduction, we shall write C(M) for the Banach space of
all (real-valued) bounded continuous functions on M < E,, G = E, — K. For every
F € C(E,) we put

UF(z) = Wy(z; F) — F(z)a(z), z€eG.

UF is continuous on G and UF(z) - 0 as |z| - + oo.

2.4. Theorem. Suppose that + oo > sup Ny({), { € K. If v* is bounded on a set
4

dense in K then, for every F € C(E,), UF is bounded and uniformly continuous on G

and the operator
U:F->UF

from C(E,) into C(G) is bounded.
Proof. By 1.12 and 1.11, v* is bounded on E,. Put k = sup v¥(z), z € E,. Given
zeGand Fe C(E,), |F| £ 1, we have

la(z)] = 19.(b) — 8.(a)| < var [9,;<a, bY] = v¥(z) £ k,

j "F(1) 9,00

a

IWW(Z; F)I = § var [’923 <a9 b>] é k >

so that |U F(z)| < 2k. We see that UF e C(G) and |U|| < 2k.

To prove that UF is uniformly continuous on G (F € C(E,)) it is sufficient to show
that the sequence

{U F(zn)}:o= 1

si convergent provided z,€ G, z, > {eK (n - oo). Let us fix such a sequence
{za}o- 1. If F reduces to a constant y on K then Wy(z; F) = 7. (9,(b) — 9,(a)) = 7.
.a(z) (z€ G) and UF(z,) = (y — F(z,)) . a(z,) » 0 as n = o (note that |a(z,)| <
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< v¥(z,) £ k). We may therefore suppose that F({) = 0. Assuming this we shall show
that, for any ¢ > 0, such a s(¢) and n, can be assigned that

(14) n>ny=|UF(z,) - s(e)] <¢.
Given ¢ > 0 we can find disjoint intervals <a;, b;> = <a, bY — Yy () (1 £ j < p;
14

p < Ny(¢) + 1) such that k|F(y(f))] < ie whenever te<a, by — U<a;, b;> = R.
i=1
For every j,

<

f “F(©) 49..(1) — f “F(©) 48,()

< |F| var[9,, — 9;;<a;, b;>] - 0 as n > oo (cf. 1.12) .

We have thus a n, with

n>n; =

1
<§8.

2 [P a0 - 5, [rwe s

Since |F(z) a(z)| < k|F(z)| and F(z,) > 0 as n — oo we can fix a n, with

n> ny= |F(z,) a(z,)| < 3¢.
Put

P (bs
s(e) =-21 J‘ F(1))dS(t), bo=a, a,., =b, no=max(ng,n,).
J= aj
We have then for every n > n,

UF(z,) - sl < )

)

j=1

aj

[[roman.o -3, w0

P
+ )
j=0

j F(9) 48.,(0)

+ |F(z,) a(z,)| < %e + max I[F((0))] -

.var, [9,(¢); <a, bY] + 3¢ < Ze + max [F(y(1))| k S ¢

and (14) is verified. _
The proof of the following simple lemma may be left to the reader.
2.5. Lemma. Let & be a continuous function of bounded variation on {a, b) and

let Q be a finite subset in {a, b). Write Z(Q) for the subspace of all f € C({0, 1))
vanishing on Q. Then

b
var [ <a, b>]=s1;pffd9, fez(Q), Ifls1.
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2.6. Remark. We say that the path y(on <a, b)) is simple provided y(t;) =+ y(t,)
whenever 0 < |t; — t,| <b — a, t;,t,€<a, b).

2.7. Theorem. Let  be simple, M = G. Suppose that UF is bounded on M whene-
ver F € C(E,). Then v” is bounded on M (= the closure of M).

Proc” “Veknow from 1.12 that v” is lower-semicontinuous on E,, continuous on G
and v¥(z) - 0 as |z| » co. In order to verify

+ o0 > sup¥(z), zeM,
z

it is therefore sufficient to prove that
(15) sup v¥(z,) < +

for every sequence of points z, € M with lim z, = { € K. Fix such a sequence and put
n—*oo

Q = {a, b} U Yy ~({). With any f e Z(Q) (cf. 2.5 for notation) we can associate an
F € C(E,) such that

Fy()=f() (a<t<b), Flz)=0(n=12,..).
Clearly, UF(z,) = [ fd9,,. UF being bounded, so must be the sequence UF(z ) We

s€e that the Sequence
{J‘ fdsz } =
a n=1

is bounded for every f € Z(Q). On account of the Banach-Steinhaus theorem and 2.5
we conclude that
sup v¥(z,) = sup var [9,,; <a, b)] < +
n n

and (15) is checked.

Similar and even easier arguments leed to the following theorem, where i need not
be simple.

2.8. Proposition. Suppose that w¥(z;f) is bounded on M = G whenever fe
€ C((a, b)). Then

(16) + o0 > sup¥(z), zeM.
Proof may be omitted. )
2.9. Notation. Let y// be a simple path on <a;, b;»,
Ky =W, b) (1SS 0), K= UK.

Suppose that
1sj<k=p=K;,nK,=0.
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For every a € E; denote by u*(z; o) the number of points in K N {z + rexp io;
r > 0}. It is easily seen that

¥z, @) =j§1u“’j(z; @)

p
provided the half-line {z + rexp ia; r > 0} does not meet ) {¢/(a;), y’(b;)}. In
j=1
particular, p*(z; «) is Lebesgue measurable with respect to o (cf. 1.2) and we may put
2n
v¥(z) = J p5(z; o) dox .

0
) 4

Clearly, v*(z) = Y v*(2).

j=1

2.10. Theorem. Let us keep the notation introduced in 2.9. Further suppose that
var [y/; <a;, b;>] < + oo and Y/ is closed (i.e. y(a;) = y/(b;)), 1 < j < p. Let D
be a domain (= open and connected set) disjoint with K and containing K in its
closure. For every F € C(K) put '

)4
WF(z) =Y Wy,{z;F), zeE,—K.
j=1
Then WF is continuous on E, — K, WF(z) > 0 as |z| » + oo and the following

conditions (a)—(c) are equivalent to each other:

(a) For every F € C(K), WF is uniformly continuous on D (or, which is the same,
WEF can be extended from D to a continuous function on D).

(b) WF e C(D) whenever F e C(K).
(¢) + o0 > supv((), {eK.
¢

If (c) takes place, then the operator
W.F—> WF
from C(K) into C(D) is bounded.

Proof. Let us agree to write simply Wy,(z; F), WF instead of W,,(z; Fly), WF|x
provided F e C(E,). Put

aj(z) = darg v/ — z;<a;, b;3],
U;F(z) = Wy(z; F) — afz) F(z), zeE, — K, FeC(E,).
Thus
W F(z) =j§;1(Uj F(z) + afz) F(z)), zeE, — K, FeC(E,).
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Noting that every a; reduces to a constant on D (which is equal to zero if D is un-
bounded) and using 2.4 we easily verify that (a), (b) hold and the operator

W:F —» WF
from C(K) into C(D) is bounded provided (c) takes place, because every F € C(K) can
be extended to an F e C(E,) with ||z, = |[Fllk
Conversely, let (a) take place. Fixa j (1 < j < p) and an ¢ > 0 such that

e < dist(K;, K;) = inf {|z — {|; ze K}, {eK,}

whenever 1 < k # j < p. Further put M; = {z; z€ D, dist(z, K;) < ¢}. For every
k # j, U,F is continuous on M; < E, — K, (F € C(E,)) and, consequently, uniformly
continuous on M;. Hence

U;F = WF — a;F — Y (U/F + a,F)
k+j

must be uniformly continuous on M; whenever F e C(E,) and, by theorems 2.7 and
111, + oo > sup t*(2), z € E,. We see that
2z

@)=(9)-
Similar reasonings show that
(b)=(c) .

2.11. Remark. Main results of this article together with further theorems concer-
ning the logarithmic potential of the double distribution were announced in [4].
Quite recently some related problems for the Eucleidean 3-space were treated by
10. JI. Byparo, B.T. Masps and B. JI. Canoxnuxosa in [1]. They consider a closed
surface I' < E; (= the Euclidean 3-space) and denote by  its bounded complement-
ary domain. For every P € E, they introduce a quantity denoted by vs which — in
the case of a plane curve I' — corresponds to our ,,cyclic variation” v'(P). They as-
sume that

) o > supvy, PekE,
P
and then define the potential W(P) of the double distribution (with a continuous den-

sity spread on I') and investigate ist behaviour. In particular, they announce a theorem
showing that (¥) is a sufficient condition for the existence of limits

W(S) =lim W(P), PeQ and W/(S)=1im W(P), PeE; —Q
P-S P-S

for every S € I'. This is a result related to the theorem 4 announced in [4] and the
theorem 2.4 proved in the present paper. o
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2.12. Remark. All paths considered in the present paper were supposed to be
rectifiable. This is not necessary because every path y with sup Ny({) < + oo (cf. 1.7
4

for notation) is rectifiable provided v¥(z,) < + oo for at least 3 points zy, z,, z;
which are not situated on a single straight-line. (Cf. [6].) Since, by theorem 1.11, v*
is bounded on the whole plane whenever it is bounded on the curve itself, we see that
the assumption concerning rectifiability of the paths considered might be dropped in
2.4 and, partly, in 2.10.

2.13. Remark. Suppose that I' is a simple closed curve and D is its bounded comple-
mentary domain. For simplicity, let I' be oriented in the counterclockwise sense. We
have proved that

(**) sup v'({) < + o

tel
is a necessary and sufficient condition that, for any continuous function F on I, the
corresponding potential

W) = Imf Cif% d

r

be extendable to a continuous function on D U I'. Assume (**) and consider the
operator
T:F-TF

on the Banach space C(I') (cf. 2.3) defined by

TF() = n F({) — lim WF(z), zeT.
2oL

zeD

This operator is bounded. The réle played by T in connection with the Dirichlet
problem is well known (cf. [11], n°s 81 and 91). If I" is a curve of bounded rotation in
the sense of Radon then the Fredholm radius of T is given by the Radon theorem
([117], n° 91); in particular, T'is completely continuous provided there are no angular
points on I'. It is interesting to observe that Radon’s theorem on the Fredholm radius
of T ceases to hold for curves I" submitted to (**) only. Indeed, example can be given
of a curve I' without angular points fulfilling (**) such that the corresponding ope-
rator T is not completely continuous.” An expression for the Fredholm radius of T
which is valid for any curve I submitted to (**) only was given in [4], theorem 5.

2.14. Remark. Investigation of the logarithmic potential of the double distribution
is closely connected with investigation of Cauchy’s type integrals which find many
applications. Interested reader is referred to N. I. MUSCHELVILI’S monograph [8]
and the surveys in ‘“Maremaruka B CCCP 3a copok ner 1917 —1957” for the biblio-
graphy on the subject. ‘
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Pe3romMme
O JIOTAPU®MUYECKOM ITOTEHIIUAJIE JIBOMHOI'O CJIOA

MIOCE® KPAJI (Josef Kral), Ilpara

Ilyrem Ha <a, b) nmoapa3ymMeBaeTcs HelmpepblBHOE OTOGpakeHHe oTpeska {4, b)
B eBKJIUJIOBY IUIOCKOCTh E, (KOTOpast 0TOX/IECTBISETCS C MHOKECTBOM KOMILICKCHBIX
wucern). Ilycrs Y — myte Ha <{a, b), ¥(<a, b)) = K. dms { € K 0603H2aunM 4Yepes
N,({) uncmo Touex muoxectsa Y~ ({) (0 =< Ny({) < +0). s z € E, u aeiicTBu-
TeJIBHOTO YHciIa o 0603HaYMM depe3 p1(z, o) wncio Touek MHOXKecTBa {t; a < t < b,
Y(t) * z, Y(1) — z = [Y(t) — 2| . expia} (0 =< p¥(z, ) < + o0). Tak kak yHKIus
#/(z, &) M3MepUMa OTHOCHTESIBHO @, TO MOXHO monaratb v¥(z) = (3" p(z, «) da.

Chavajia oKa3bIBaeTCs

Teopema. Ecau sup (N,({) + v¥({)) < + o, mo supv¥(z) < + 0.
leK

zeE>

Ons M < E, o603Ha4uM yepe3 C(M) IPOCTPAHCTBO BCEX JIEHCTBUTENBHBIX OIPa-
HWYEHHBIX HENPEPHIBHBIX pynkmuii F Ha M ¢ Hopmoii ||F|| = sup |F(z)|. TIpeanona-
zeM
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ras OyThb |/ COPAMIISEMBIM, TIOJIOXHM AJIsl Kaxmod ¢yskm F e C(E,) M Kaxnoi
Toukd z€ G = E, — K

UF(z) = Imf CFE—C)ZdC — F(z) a(2),
4

rae a(z) o6o3HauaeT MPUpALIEHKEe HEMPEPHIBHO H3MEHAIOLIEroCs apryMeHTa KOM-
IJIEKCHOTO yucia { — z TpH mepeMelieHud { BIOJIb TyTH Y.

Ha ocHOBe MpeAuIeCTBYOIEH TEOPEMBI MOJIYYaeTCsl

Teopema. ITycmb sup Ny(0) < + co. Ecau @ynxyus v¥(¢) nepemennozo { ozpa-
leK

HUYeHa Ha MHoxcecmege, niomHom 6 K, mo 041 xaxcooi gynkyuu F e C(E,) dynkyua
UF pasromepHo HenpepvisHa Ha G u onepamop

U:F—->UF,
oeticmeyrowuii uz C(E,) 6 C(G), oepanuuen.
Haobopom, ecau 0aa xancooii gynkyuu Fe C(E,) ¢ynkyus UF ozpanuuena Ha

muoncecmee M < G, mo gynxyus v'(z) nepementozo z ozpanuuena na samvikanuu M
MHOMCecmea M.

TIpe/IoNoXHUM Telepb, 4TO Y/ — MpOCTOH 3aMKHYTHIH myTh Ha {aj, b;> (3T0
3naunrt, 4ro Y’(u) = Y/(v) BepHO ML u < v TOrAA M TONBKO TOTAR, €CIM U = 4;
uv=">b)K;,=y(Ka;,bp)(j=1,....p)n

1§j<k§p:anKk=0.

IMonoxum K = UKJ, v¥(z) = v"”(z) Iycts, mamee, D-obmacte, D N K = 0,
K < D. C'-m'raﬂ nyra Y’ (j = 1 ) cnps{MJmeMLIMH, nonaraem mist F e C(K)
uzeD
p
WF(z) = 3 Im —[ ) o
j=1 'WC -z
W3 npeecTBYIOMUX TEOPEM BBITEKAET

Teopema. [[aa mozo, umobsl 045 kaxcoot gyuryuu F e C(K) gynxyua W F okasa-
Aacb pasHomepHo HenpepuvieHoi Ha D (uau, umo mo xuce camoe, W F npodoaxcarace
00 HenpepbigHoill Pynkyuu Ha D U K) Heobxo0umo u 00cmamouno, umoosl

(A) sup v5({) < +o0.
ek

Ecau umeem mecmo (A), mo onepamop
W: F > WF,

oeiicmeyiowuii us C(K) ¢ C(D), ozpanuuen.
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