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Yexoca0BanKkui MaTeMaTHYeCKHil xkypnaja, T. 14 (89) 1964, Ilpara

SOME INEQUALITIES CONCERNING THE CYCLIC
AND RADIAL VARIATIONS OF A PLANE PATH-CURVE

Joser KRAL, Praha

(Received November 5, 1962)

Let p be a path-curve in the Euclidean plane E,, z€ E,. Given real numbers
r > 0 and « write ,u,',”((x; z) for the number of points at which ¥ meets the
segment SXz) = {{;C =z + oexpix, 0 <g <r}. Then p¥xz) is
(Lebesgue) measurable with respect to o« and one may put v,'{’(z) =
= %," ,ur'l’(oc; z) dx. Further let v'”(g; z) stand for the number of points at
which y meets the circle {C; [ —z] = g}. ¥(0; z) being measurable
with respect to ¢ one may introduce the integral uf’(z) =[5 v¥(p; 2) do.
Suppose now that f is a fixed real number and y is a path-curve through z
not meeting |J $3,(2), x€(B— 06, B+ HUB+a—6, B+ n+ 9,

a
where 0 < 6 < z/2. Then

) sup o~ 'ul(z) £ KIo¥(2) + sup v%,(z + eexpif)],
O<e<r O0<eg<r

@ sup v¥(z + eexpif) < M[v4,(2) + sup o 'wl(2)]
0<e<r 0<eg<2r

with constants K, M depending on J only. These inequalities are useful in
connection with investigations concerning the boundary behaviour of the
logarithmic potential of the double distribution.

1

In this paragraph some auxiliary results concerning functions of a real variable are
collected. They will be used in § 2 below for the proof of some inequalities implying
(1) and (2). The term interval will be used to mean any non-void convex subset of
the real line E,. The variation of a (finite real-valued) function f on a compact inter-
val K, to be denoted by var [ f; K], is defined as usual. If f is a function on an arbi-
trary interval J, we put var [f; J] = sup var [f; K], K ranging over all compact

K

intervals in J. For every set G = J openin J put var [ f; G] = Y. var [ f; I], I ranging
I

over all components of G. Letting, as usual, var [f; M] = inf var [ f; G], Go M,
G

G open in J, we extend var f to a Carathéodory outer measure defined for any M < J,
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which, if restricted to the system of all var f — measurable subsets in J, represents
a measure (cf., e.g., [4]). The integral [, H d var f of a (real-valued, possibly infinite)
function H is always to be interpreted as the (Lebesgue-Stieltjes) integral with respect
to this measure. The following known theorem will be frequently used below.

1.1. Let f be a continuous function of finite variation on the interval I and let F
be a (possibly infinite) function on f(I). For every x € E, denote by N (x) the number
of points in f ~1(x) (0 £ Ny(x) £ + ). Then N is Lebesgue measurable on E, and

3) f F(f)dvarf = [ F(x) N(x) dx

I

provided the integral on the left-hand side exists. (The integral on the right-hand
side is the ordinary Lebesgue integral.)

A proof of this assertion in the case that I is compact can be found in [1]. It is
easily seen that the theorem extends to the case described above.

We shall also need the following formulation of the Banach theorem (cf. [3], part V,
§V.1):

1.2. Let f be a continuous function on the interval I. Then

walfil=| N dx(: f N dx),

= o0
N having the same meaning as in 1'1.

1.3. Lemma. Let f, h be continuous functions on {a, b) = {x;a < x < b} and
suppose that var[f;<a,b)] < +o. Let D= {a=x,<...<x,=b} be an
arbitrary subdivision of {a, b) and suppose that &;€{x;_y,x;> (1 £ i £ n). Then

Z h(¢)) |f(x,) - f(xi—l)| —’J‘ hdvarf
as max (x; — X;_;) - 0. :

Proof. Let us agree to write |D| = max (x; — x;—;). Put s(a) = 0, s(x) =

= var [f; {a, x)], a < x £ b. Then s is non-decreasing and

;h(ei) [s(x) — s(xi-1)] = j hd var fas|D|-0.
On the other hand, s(x;) — s(x;_) = |f(x;) a—-f(x,--l)l and
S e — -] = THE) ) = Fsi- )|
< max [h(x)|. {var [f; <a, )] = ¥ [f() = Fxizy)|} > 0
as |D| — 0 (cf. [—2]-’ chap. VIII, theorem 2). ¢
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We shall say that f has locally finite variation on J provided var [ f; K] < + oo for
every compact interval K < J.

1.4. Lemma. Let f be a continuous function of locally finite variation on the
interval J. Let F be a function on f(J) and suppose that F possesses a continuous
derivative on f(J). Then

4) var [F(f); J] =J‘|F’(f)ldvarf.

Proof. Let <a, b) be an arbitrary compact interval contained in J (a < b). We
shall prove that

®) var [F(f); <a, by] = fb|F’(f)| dvarf.

The rest of the proof is obvious and will be left to the reader. Consider an arbitrary
;subdivision D = {a = xo < ... < x,, = b} of {a, b). Between f(x;) and f(x;_,) such
a point y; can be found that F(f(x;)) — F(f(x;-1)) = F'(y:) (f(x;) — f(xi=1))-
Since f is continuous we have a ¢; € (x,_;, x;> with f(¢;) = y{(1 < i < n). We have
thus

ZilF(f(xi)) = F(f(xi-1)) |= ;lF'(f(éi))l Nf () = fxizo)] -

Making |D| — 0 we obtain on account of 1.3 the formula (5) (cf. also [2], chap.
VIII, theorem 2).

1.5. Lemma. Let f, g be continuous functions of locally finite variation on the
interval I. If h is a continuous non-negative function on I then

(6) jhdvar(f.g)gfhlf]dvarg+Jh|g[dvarf.
I I I
Proof. It is sufficient to prove that, for any compact interval <a, b) < I,

©) var [f. g; <a, b)] grlﬂdvarg +Jb|gldvarf.

a a

Let D = {a = x4 < ... < x, = b} be an arbitrary subdivision of (d, b>. Then ‘
Zlf(xi) g(x;) — f(xi-1) g(x;- 1)] =
= Z|f(xx)| . lg(xi) - g(xi—l)l + ;Ig(xi—1)| . |f(x,) - f(xi—l)l .

Making |D| — 0 we obtain the inequality (7) (cf. 1'3 and [2], chap. VIII, § 2, theo-
rem 2). '
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1.6. Lemma. Let f, g be continuous functions of finite variation on the interval I,

0 <k = |f| £K,l|g| £ |f| If h is a continuous function of locally finite variation
on I then

(8) var [arccotg (g + fh); I] < L{var [g;I] +
+ var [ f;I] + var [arccotg h; I}
with constant Ldepending on constants k, K only.
Proof. By 1-4 and 1-5 we obtain
1

var [arccotg (g + fh); I] =j m?vh)—zdvar (g +fh)

IIA

1 |f] ||
_ d — V1l dvarh — 4 <
j,l + (g9 + fh)? varg + L 1+ (g + fh)* varh + f,l + (g + fh)? varf =

e |f| d var h ‘ || d var f .
=varlgll+ f,l T+ (fL-Hl = Jal? +Ll + (£ - 1] = lal®

We have
If] K 1+ h? 1

3 = 2 2§K'k1. 2?
L+ (f]-|p] = Jg)* ~ 1+ B> 1+ (f]-|n] - |g]) 1+h
where we put

2
k, = max| 2, sup _ 1y .
y>11 + kz(y - 1)2
Hence

|f| d var h < J‘dvarh .
<K.k;.| —— = K.k, var [arccotg h; I] .
Ll +(|f] - |r] = |a])? Vhitew '

In a similar way

Ih| =< 1, sup y

< max —_— =k,
1+ (If] - |h] = |g])? [ 11+ KXy — 1)2]

|h| d var f <k var[£11.
£1+(|f|-|hl—|gl)2= wvarlf ]

We conclude that
var [arccotg (g + fh); I] < var [g; I] + ky{var [f;I] + K var [arccotg h; I]}
and (8) is established.

1.7. Lemma. Let v be a non-negative integrable function on {0, q)- Then, for any
x €40, g,

r T wedes T sup lrv(é)dé.
0

£2+X 20<x<qx 0
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Proof. Put F(0) = 0, F(x) = (5 ¥(§)d¢ (0 < x < q), k = sup x~! F(x). Integrating
0<x<g

by parts we obtain for any x € (0, 4> = {x; 0 < x < g} the estimate

F(q) + 2x qL(é)déﬁ

qu W) dt = -~

o 4:2 + x2 q2 + x2 o (62 + x2)z
kqgx
= qz + x2

A

q 2
+ 2kx C—dé:karctgg<kﬁ.
0(52+X2)2 b 2

2

The term path will be used to denote a continuous complex-valued function defined
on an interval. We shall suppose throughout that ¥ is a fixed path on the interval J.
Further we shall fix a point z € E,. For every G = J and x e E; we denote by
1¥(x; z, G) the number (possibly zero or infinite) of pointsin {t; t € G, [y(t) — z| > 0,

W(1) — z = [Y(1) — 2| exp ix}.

2.1. Lemma. Let I = J be an interval, [y(t) — z| > O for every tel. Let 9; be
a real-valued continuous function on I with

9) Y(t) — z = |Y(r) — z| exp i9y(1), tel.

Then p¥(x; z,I) is Lebesgue measurable with respect to x and

27
j 1 (x; z, I)dx = var [9;1] .
0

Proof. We shall write simply & instead of 9;. Let Ny have the meaning described

in 1-1. It is easily seen that
o]
wW(x; z, 1) = Ny(x + 2nm).

n=—

N, being measurable the same is true about p¥(x;...) and we have by 12

var [9;1] = j " Nx) dx = j ", ) dx

— 0

2.2. Lemma. Let G be open in J and denote by & the system of all components
of the set {t;teG, [l//(t) — z| > 0}. For every I €S fix a continuous real-valued
function 8; on I with (9). Then p¥(x; z, G) is measurable and

27
f w(x;z,G)dx = Y var [91].
1S

0

Proof. This assertion follows at once from 2-1 on accourt of the equality
w(x;z,G) =Y p(x;z,1).
1e&

275



2.3. Definition. Let G be open in J. We define

¥(z; G) = f

0

2n
wWi(x; z, G)dx .

2.4. Remark. The definition 2.3 is justified by 2.2. From geometric reasons the
quantity v¥(z; G) could be called the cyclic variation of ¥ | G with respect to z,
while the function p¥(x; z, G) could be called the cyclic indicatrix of I G with respect
to z.

We shall write v/(z) instead of v¥(z; G,) where
G, ={t;teJ, |y(t) — z| <r}.
Given G < J and ¢ > 0 we shall denote by
- W¥(052,6)(0 £ (5 7,6) £ +w)
the number of points in {t; te G, |[¥(t) — z| = ¢}.

2.5. Lemma. Let G be open in J and write S for the system of all components of
{t; te G, [y(t) — z| > 0}. Then v*(¢; z, G) is measurable with respect to ¢ and

(10) j W(o; z, G) do = ¥ var, [|y(1) — z|; 1]
° =
Proof. For every I € &, v¥(g; z, I) is measurable and, on account of 1.2,

va"'(g; z,I)do = var, [|y(t) — z|;I] .

W]

Noting that v¥(g; z, G) = Y. v(¢; z, I) we obtain (10).
=3

2.6. Definition. Let G be open in J. We define

u¥(z; G) = .[ v(o; z, G)do .
0
2.7. Remark. This definition is justified by 2.5. The quantity u¥(z; G) could be called
the radial variation of | G with respect to z and the function v¥(¢; z, G) could be
called the radial indicatrix of ¥ | G with respect to z. We shall write u/(z) instead of
u%(z; G,) where G, = {t; te J, |y(t) — z| < r}. Thus u¥(z) = [§v/(¢; z, J) do.

2.8. Theorem. Let y be a pathon J, e E,,z€E,,0 <9 <r,{ =z + gexpip.
Suppose that z + x exp ia ¢ Y(J) whenever 0 < x <r, |a — B| <6 (0 < 6 < 7/2)
and put G = {t; te J, 0 < |[y(t) — z| < r}. Then
(11) (¢ G) = M{v)(z) + sup x~"'ul(2)}

O<x=r

with M depending on 6 only.
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Proof. We may suppose that z = 0, 8 = 0. Let & be the system of all components

of G. For every I € @ and g € <0, r) denote by 9,(t, ¢) a continuous function (of the
variable f) on I with

(12) Y(t) — o = |¥(r) — o] .exp i (t, 0), tel.
We have then
0 _ Im [Y(1) — o] _ Im y(?)

) B 70 R 70 e

o _ _ ol O —e_
(14) sin [94(1, @) — 9:(1, 0)] W) - 2 I )

_ WOl Im[WOP - o] _ _ eImy()

lw(®) - o 0% (|- () - ol
so that
(15) sin 9,(1, 0) WOl p e ©, r>

sin [94(z, @) — 9,(1, 0)]

(which, in fact, is the elementary sine theorem applied to the triangle 0, ¢ V(1))
Noting that

W(G) N {oexpia; |o| S 1, o] <5} =0
we obtain

19) Isin 8,(1, 0)] = Elr%)(lt)l > sins, 1€G.

Fix now an I € &. From (15) we conclude that

Tﬁtﬂ = cos 9,(t,0) — cotg 9,(1, o) . sin 9,(t, 0)

whence
cotg 9,(t, 0) = cotg 9,(t, 0) — sin™! 9,(1,0). —2—, tel.

o/
Defining the function § on I by

9(t) = arccotg {cotg 94(t,0) — sin™! 9(t,0) - w/;z)‘} , tel,
t

we observe easily that the difference 9,(, @) — 9(1‘) must reduce to a constant on I.
Hence

17) var, [9,(t, 0); I] = var [3(2); 1] .
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Our aim being to prove (11) we may clearly suppose that v¥(z) + sup x~'.u%z) <
< +00. In particular, O<xsr
W(z) = Y var [9,(1,0);I] < + 0,
I
() = Sar ) ] = [ (60,6106 < 4o
IeS 0
(cf. 22 and 2-5). Next we use 16 concluding that
(18) var [$;1] < L{var [cotg 9,(,0); I] +
+ var [sin™" 84(¢, 0); I] + var, [arccotg " ok ]}

with Ldepending on d only. Applying 1-4 we obtain (cf. also (16))

(19) . var [cotg 94(t, 0); I] < sin™ 2§ . var [9,(1, 0); I],
(20) var [sin ™" 94(t, 0); I] < sin™? & . var [9,(1, 0); I],
(21) var, [arccotg m )l ] j L d var |y .
From (17)—(21) we derive (cf. 2-2)
(22) v’(¢; G) = Z var, [9,(t, 0); I] <

< 2Lsin"? 6 {v}(0 ————dvar

< 2Lsin { ©) + = J‘ |l/1|2 a Il/ll}

By 1-1 and 1-7 it follows

—d , V(& 0,G)dé £ = 1" w0, 6) de =
I Vi W= LQZ+€ (% )£<2squ Lv(é )4

O<x<r

= (cf. 26 and 2-7) = 5 sup x~'u?(0)

0<x<r

which together with (22) gives

¥(0; G) £ 2Lsin™ 2% {vf(o) +7 sup x‘luﬁ(O)} .
4 0<x<r
We see that it is sufficient to put M =2Lsin"2 5 to satisfy (11).

2.9. Remark. Observing that {t; |y(t) — ¢| < 3r} < {t; [¥(1) — z| < r} whenever
{ =z + gexpif with g € (0, r/2) we obtain as a corollary of 2-8 the inequality
sup v},(z + gexpif) £ M[v¥(z) + sup x~'u¥(z)]
0<o<ir 0o<x<r

(compare (2)).
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2.10. Theorem. Let  be a path on J, z€E,, r >0, f€E{, { =z + rexpip.
Suppose that z + g exp ia ¢ Y(J) whenever 0 < o <r, |x — B| <& (0 < & < x/2)
and put G = {t;te J, 0 < |[y(t) — z| < r}. Then

(23) r~tul(z) £ K[v¥(2) + v¥((; G)]
with K depending on J only. ’

Proof. We suppose again that z = 0, = 0. Let &, 9,(t, ¢) (¢ €0, r)) have the
same meaning as in the proof of 2-8. We may assume that

v/(0) = Y var [9,(1,0); I] < + 0,
%
W G) = Y var, [9(t, r); I] < + 0.
=

Fix now an Ie€®& and write 9,(t,r) = g(1), %4(t,r) — 34(t,0) = f(t), sing = g,
F=sin™', F(f)=/. Then varfg <sup|f|varg + sup|g|varf. Clearly,
sup |g| < 1; (14) and (16) imply |f| < sin™*5. (¢ + r) )r = 2sin™! §. Further we
have by 14 var f < sup |F'(f)| var f < 4 sin™2 § var f, var g < var g. Consequently,
var fg £2sin?§(varg + 2 varf). Hence it follows on account of (15) that
r=tvar[|W(0)|; I] = var, [{sin 9,(t, r)}/{sin [9,(t, r) — 941, 0)]}; I] < 2 sin™% 5.
{3 var, [9(t, r); I + var, [9,(t, 0); I]} for every I € &. On account of 2-5 (cf. also
2:6 and 2-7) and 22 (cf. also 2-3 and 2-4) we obtain r~'.u¥(0) = Z rot,

var, [[Y(0)|; I] £ 2sin™2 §{3 Zvar, [9:(t, r); 1] + 2var [9:1,0) I} =2 sm “25.
{3v"(r; G) + v¥(0)}. We see that it is sufficient to put K = 6sin™2 § to satisfy (23).

2.11. Remark. Given { = z + g exp if with0 < ¢ < irthen GQ = {t; (1) — | <
< o} = {t; |Y(tf) — {| < 20} and, consequently, v¥((; G,) < v%,({). Hence it follows
on account of 2:10 sup o 'u¥(z) < K[v!,(z) + sup v4(z + ¢ exp ip)]
(compare (1)) 0<eo<r/2 0<eg<r/2

2.12. Remark. The inequalities (1), (2) make it possible to establish simple necessary
and sufficient conditions for the existence of non-tangential limits of the logarithmic
potential of a continuous double distribution. Such conditions were announced in [5]
where, however, in theorem 1 the assumption that the path-curve ¢ be rectifiable is
to be completed.
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Pe3rome

HEKOTOPBIE HEPABEHCTBA OTHOCUTEJIBHO LIMKJIMYECKOM
U PAIIMAJIBHOW BAPUALIMU IIJIOCKOT'O IYTHU

MOCE® KPAJI (Josef Krél), Ilpara

ITyreM pa3symeeTcsi HENpEpHIBHOE OTOOpakeHHE OINHOMEPHOTO WHTepBana J
B eBKJIMAOBY miockocth E,. Ecmu y — nyTs, z€ E, i r > 0, & — HelicTBUTEIbHEIE
wucna, To 0603HaumM uepes p!(x; z) (0 =< p¥(a; z) < +00) uMCIHO TOYEK, B KOTO-
PBIX |/ TiepecekaeTcs C OTKPHITEIM OTpeskoM {{;{ =z + gexpia, 0< g <71} =
= SY(z). Tak xax Qynxums p!(o; z) mepemennoro o wamepuma (mo JleGery), To
MOXHO T1aJIaraTh IO ONPE/ICIICHUIO v',”(z) = fg" ,uf(oc; z) da. AranormaHo 0603HAYHM
uepe3 V/(o; z) uncio mepecedennii Y ¢ oxpyxHocrsio {{; | — z| = ¢} u momOXUM
(aro BO3MOXHO BCNEACTBHE W3MePUMOCTH V(] Z) OTHOCHTEIBHO NEPEMEHHOTO Q)
u¥(z) = [5v¥(0; z) do. Ecmut y He mmeer obumx Todek ¢ MHOxectBoM U S3,(z),

a

rneae(f—6, B +0)v(B+n—6B+n+05), 0<d<m2,To Wik KAKIOTO 0,
0 < ¢ < r, CIIpaBe/IJIMBLI HEPABEHCTBA

o™ 'ul(z) = K[ol(z) + vh(z + e exp if)],
o¥(z + gexpif) = M[v4,(z) + sup x"'ul(z)],
O<x<2r

1€ KOHCTAHTEI K, M 3aBHCAT TOJBKO OT 8. DTH HEPABEHCTBA HAXOJAT IPUMCHCHUEC
B HCCJICJOBAHUAX T'PAHUYHOTO NOBECACHUS JIOT: apH(blVlI/I‘IeCKOTO NOTCHIHAJIA IBOM-
HOro CJiod.
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