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Yexoc/0BALKHH MaTeMaTHYeCKHil xypnat, T. 14 (89) 1964, Ilpara

ON A TOPOLOGICAL RELATION BETWEEN
A 0-ALGEBRA A OF SETS AND THE SYSTEM OF ALL
A-MEASURABLE FUNCTIONS

Joser NovAk, Praha

(Received September 10, 1962)

In the present paper the following statement is proved: Every o-algebra A
of subsets of a given non-void point set X and the system of all A-measu-
rable real functions on X are non-homeomorphic sequentially regular
convergence spaces.

In 1952 I put forward [1] the following problem: Are the class of all Borel linear
sets and the class of all Baire functions homeomorphic? I solved the question by using
notions of sequential regularity and zero-one sequential regularity of a convergence
space. Actually more was proved, namely that a g-algebra A of subsets of a non-empty
set X cannot be homeomorphic to the system of all real-valued A-measurable functions
defined on X.

Let X be a non-empty point set, X the system of all subsets of X and A a o-ring
of subsets of X. Denote by § the system of all real-valued functions defined on X
and by I the system of all A-measurable functions. Convergence in X is defined by
the well-known condition in the general theory of sets: lim 4, = AifliminfA4, = A4 =
= lim sup A,, where lim inf 4, = J N 4, and lim sup 4, = N U 4,. Convergence

k=1n=k k=1n=k
in § is defined as point-wise convergence of real functions in X. Both the systems X
and § are convergence spaces, their convergences fulfil two Fréchet’s axioms %, &,
and the Urysohn’s axiom %5 of convergence [2]:

(&1): if x, = x for each positive integer n then lim x, = x.

(&,): if lim y, = y then lim y,, = y for each subsequence {y, } of {y,}.

(&5): If a sequence {z,} does not converge to a point z then there exists a subse-
quence {z,.} of {z,} no subsequence of which converges to z.

The closure 14 of a subset A in a convergence space Lis defined as the set of all
limits of sequences of points x, belonging to the set A. A set A is closed if 4 = A4.
It is easy to see that each finite subset of L and the set L itself are closed sets; the topo-
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logy A is additive (A(4 U B) = 14 U AB) and monotone (4 = B implies A4 = 1B);
in convergence space, however, the closure of a subset need not be closed. In the
sequel we shall always assume that the convergence space L fulfils all three axioms
of convergence ¥, ¥, and % ;.

Let (Ly, 4,) and (L,, 4,) be two convergence spaces and ¢ a map of L, into L,.
According to usual definition, the map ¢ is continuous if ¢(1;4) = 4,¢(A) for each
set A < L; the map ¢ is a homeomorphism if it is one-to-one and if ¢(1,4) =
= A, ¢(A) for each set A = L,. We define the map ¢ to be sequentially continuous
if lim x, = x in L, implies lim ¢(x,) = ¢(x) in L, for each point x € L,.

Lemma 1. Let (Ly, A1) and (L, 1,) be two convergence spaces (fulfilling all three
axioms of convergence £, ¥, and ¥£;). Let ¢ be a map of L, into L,. Then ¢ is
continuous if and only if it is sequentially continuous. The map ¢ is a homeo-
morphism if and only if it is one-to-one sequentially continuous map of L, onto L,
and if also the inverse map ¢~ is sequentially continuous.

Proof. Is contained in the book [4].

Definition 1. A convergence space L (fulfilling all three axioms of convergence
£, %, and Z,) is called sequentially regular [3] if for each point x, € Land each
sequence of points x, € L not converging to x, there exists a continuous function f
on Lsuch that the sequence of real numbers f(x,) does not converge to f(x,).

Lemma 2. Let (Ly, A1) be a sequentially regular convergence space. Let h be
a homeomorphism of L, onto a convergence space (L, 1,). Then the space L, is
also sequentially regular.

Proof. Let {y,} be a sequence of points in L, not converging to a point y, € L,.
From Lemma 1 it follows that the sequence of points h~*(y,) fails to converge to the
point h~*(y,) in L,. Because L, is a sequentially regular space, there is a continuous
function f on L, such that the sequence {f(h~*(y,))} does not converge to the number
f(h™(y,)). Consequently g = fh~" is a continuous function on L, such that g(y,)
is not a limit of the sequence {g(y,)}.

Definition 2. A convergence space L (fulfilling all three axioms of convergence
£, %, and Z,) is called zero-one sequentially regular if for each point x, € Land
each sequence of points x, € Lnot converging to the point x, there is a two-valued
continuous function mapping Linto {0, 1} such that the sequence {f(x,)} does not
converge to f(xo)-

It is possible to prove, in the same way as above, that zero-one sequential regularity
of a convergence space is a topological property.

Lemma 3. Each system S of subsets of an abstract point set S is a zero-one
sequentially regular convergence space.

Proof. It may be observed that S is a convergence space fulfilling all three axioms
of convergence ¥, ¥, and ¥;. Assume that a sequence of sets S, e S does not
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converge to a set S € S; then there exists a point s belonging either to lim sup S, —
— liminf S, or to (S — lim S,) U (lim S, — S). Define a set function f on § as
follows: f(4) = 1 or f(A) = 0 according as s belongs to 4 or not. It is easy to see
that the function f is continuous on S and that the sequence {f(S,)} does not converge

to f(S).

Lemma 4. Let X be a point set and & a system of real-valued functions on X.
Then & is a sequentially regular convergence space.

Proof. First notice that & is a convergence space fulfilling all three axioms of
convergence %, #, and Z;. Let g, be an element of & and {g,} a sequence of
functions g, € & not converging to g,. Then there is a point x, € X such that the
sequence {g,(xo)} does not converge to g(x,). Define a real-valued function h on &
by h(f) = f(x,) for each fe ®; evidently h is a sequentially continuous function
such that the sequence {h(g,)} does not converge to h(go).

Theorem. Let X be a non-empty point set and A a o-algebra of subsets of X. Then
the system M of all A-measurable real-valued functions on X is a sequentially
regular convergence space which is not zero-one sequentially regular.

Proof. The first part of the assertion follows from Lemma 4. In order to prove the
second part notice that X € A, so that each constant function ¢ belongs to M. The
value of ¢ will be denoted by ¢’. Now, choose a sequence {c,} of constant functions
¢, € M which does not converge to a constant function ¢, € M. Suppose the contrary,
that there is a continuous zero-one valued function g on M such that the sequence
of real numbers g(c,) does not converge to g(c,). Then there is a positive integer p
such that g(c,) * g(co). The mapping h = {¢’ - ¢} is a homeomorphism and thus
the function gh is continuous on the set of all real numbers. Since gh is a two-valued
function, it follows that gh is constant. Thus we have the contradiction, that g(c,) =

= g(co)-

Corollary. Let X be a non-empty point set and A a o-algebra of sets of X. Then
the convergence space A is not homeomorphic to the convergence space M of all
A-measurable functions defined on X.

As a matter of fact, according to Lemma 3, the convergence space A is zero-one
sequentially regular; on the other hand, by the Theorem, the space I is not zero-one
sequentially regular. Therefore the spaces A and I cannot be homeomorphic, since
zero-one sequential regularity is a topological property.

Remark. Since lim 4, = A4 in A if and only if lim ¢4 (x) = c,(x) for each point
x € X, and because each characteristic function cg(x), B € A, is A-measurable, it
follows that the convergence space A is homeomorphxc to a subspace of the system
of all A-measurable functions.
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It is well known [5] that the system % of all Baire functions is identical with the
system of all Borel measurable functions. Consequently the system of all linear
Borel sets is homeomorphic to a subsystem but not to the whole system of all Baire
functions.
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Pe3rome

O TOIIOJIOTUYECKOM COOTHOIIEHUU MEXIY ¢-AJITEBPOI A
MHOXECTB U CUCTEMOM BCEX A-UBMEPUMBIX ®VHKIIUN

MOCE® HOBAK (Josef Novak), Ilpara

TIpocTpaHCTBO CXOMUMOCTH L, BHIOJHSAOIIEE TPH aKCHOMBI CXOJUMOCTH £ 1, &5
H &3, Ha3bIBACTCS CEKBEHIMAIHO PEry/SIPHBIM [HYJIb OJUH CEKBEHIMAIHO PeryJisip-
HBIM |, €CTM IS KaXJO# TOYKH Xo € L M JUIS KaxIo#f IOCIEN0BATEIBHOCTH TOYEK
X, € L, XOTOpast He CXOOUTCS K TOUKE X,, CYIECTBYeT HempephiBHas GyHknus f Ha L
TaKasi, YTO IOCIEOBATENLHOCTh AeHCTBUTENbHEIX wncen f(x,) He cxomuTes K f(Xo)
[(fx) = 0 wmn = 1 mns xaxmoit Toukm x € L].

O06a 3T cBOCcTBA OYAYT UMETH MECTO IPH TOMEOMOP(HHOM OTOOpaKEHHH.

IIpruMepOM CeKBEHIMAJIHO DpETYJSPHBIX IIPOCTPAHCTB CIYXHT o-airebpa A
NOOMHOXECTB JAaHHOIO HENMyCTOro MHOXeCTBa X, IJ¢ HMMeEeTCs CXORUMOCTh

o0 0 @ @
lim A, = A, xak Tomeko A = Y N 4,= N U 4, u cucrema IM Bcex A-U3MEPUMBIX
k=1n=k k=1n=k
BELLECTBEHHBIX (DYHKIWH, ONpeieIcHHbIX HAa X, TIe MMEeTCsA CXOMMMOCTh lim f, = f
Kax TonbKo lim f,(x) = f(x) ana xaxmoit Touku x € X. Ilpu sTom mpocrpancTso A
SIBJIIETCS HYJIb OJUH CEKBEHLMAJHO PEryJSIPHBIM, B TO BpeMsl Kak MpOCTpaHCTBO M
TakiM CBOWCTBOM He oGiamaer. IToatromy mpocrpanctBa A u M He sBIAIOTCS
romeoMopdHbIMU. OTCIOIA BHITEKAET, YTO CHCTEMa OOpENEeBCKHX JIMHEWHBIX MHO-
JKECTB HE SBJIIETCA ToMeOMOpdHOH ¢ cucTeMoii Beex dyHkumit bapa.
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