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Чехословацкий математический журнал, т. 14 (89) 1964, Прага 

ON А TOPOLOGICAL RELATION BETWEEN 
А t7-ALGEBRA А OF SETS AND THE SYSTEM OF ALL 

A-MEASURABLE FUNCTIONS 

JOSEF NOVAK, Praha 

(Received September 10, 1962) 

In the present paper the following statement is proved: Every (т-algebra A 
of subsets of a given non-void point set X and the system of all A-measu-
rable real functions on X are non-homeomorphic sequentially regular 
convergence spaces. 

In 1952 I put forward [1] the following problem: Are the class of all Borel linear 
sets and the class of all Baire functions homeomorphic? I solved the question by using 
notions of sequential regularity and zero-one sequential regularity of a convergence 
space. Actually more was proved, namely that a (т-algebra A of subsets of a non-empty 
set X cannot be homeomorphic to the system of all real-valued A-measurable functions 
defined on X. 

Let Z be a non-empty point set, X the system of all subsets of X and A a d-ring 
of subsets of X. Denote by % the system of all real-valued functions defined on X 
and by SDÎ the system of all A-measurable functions. Convergence in X is defined by 
the well-known condition in the general theory of sets: lim A„ = A if lim inf A„ — A = 

00 00 00 00 

= lim sup A„, where lim inf A„ =^ \J () A„ and lim sup A„ = Ç) [J A„. Convergence 
k=ln=k k=in=k 

in Щ is defined as point-wise convergence of real functions in X, Both the systems X 
and § are convergence spaces, their convergences fulfil two Fréchet's axioms J^i, JSf 2 
and the Urysohn's axiom if 3 of convergence [2]: 

(if 1): if x„ = X for each positive integer n then lim x„ = x, 
(if2): if lim y„ = y then lim Ущ = У for each subsequence {y„.} of {y„}, 
(if 3): If a sequence {z„} does not converge to a point z then there exists a subse­

quence {z„.} of {z„} no subsequence of which converges to z. 
The closure Ы of a subset Л in a convergence space L is defined as the set of all 

limits of sequences of points x„ belonging to the set Л. A set A is closed if A = XA. 
It is easy to see that each finite subset of L and the set L itself are closed sets; the topo-
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logy X is additive {X{A u Б) = АЛ u IB) and monotone (Л с Б implies XA с Aß); 
in convergence space, however, the closure of a subset need not be closed. In the 
sequel we shall always assume that the convergence space L fulfils all three axioms 
of convergence ^^,^2 ^^^ ^ъ-

Let (Li, Ai) and (L2, /I2) be two convergence spaces and (p a map of L^ into L2. 
According to usual definition, the map cp is continuous if ц>(Х^А) cz Х2Ц>{А) for each 
set Л c: LJL; the map ф is a homeomorphism if it is one-to-one and if ц>(Х^А) = 
= ^2 ц>{А) for each set A a h^. We define the map cp to be sequentially continuous 
if lim x„ = X in L^ implies lim (p(x„) = ф(х) in L2 for each point x e L^. 

Lemma 1. Let (Li, Я )̂ and (L2, ^2) be ^wo convergence spaces (fulfilling all three 
axioms of convergence o^^, ^2 ^^^ °^з)- ^^^ (p be a map of L^ into L2. Then (p is 
continuous if and only if it is sequentially continuous. The map (p is a homeo­
morphism if and only if it is one-to-one sequentially continuous map of L^ onto L2 
and if also the inverse map cp~^ is sequentially cgntinuous. 

Proof. Is contained in the book [4]. 

Definition 1. A convergence space L (fulfilling all three axioms of convergence 
. ^ 1 , S^2 ^11^ ^ъ) is called sequentially regular [3] if for each point XQ e Land each 
sequence of points x„ e L not converging to XQ there exists a continuous function / 
on Lsuch that the sequence of real numbers/(x„) does not converge to/(xo). 

Lemma 2. Let (L^, А )̂ be a sequentially regular convergence space. Let h be 
a homeomorphism of L^ onto a convergence space (L2, Я2). Then the space L2 is 
also sequentially regular. 

Proof. Let {уп} be a sequence of points in L2 not converging to a point уо ^ ^2-
From Lemma 1 it follows that the sequence of points h~^(y„) fails to converge to the 
point h~^{yo) in Lj. Because L^ is a sequentially regular space, there is a continuous 
function/on Li such that the sequence {/(Й~ЧУП))} does not converge to the number 
f(h~^{yo)). Consequently ö' = / / z " M s a continuous function on L2 such that д(уо) 
is not a limit of the sequence {д(Уп)}' 

Definition 2. A convergence space L (fulfilling all three axioms of convergence 
i f 1, ^2 ^îid ^3) is called zero-one sequentially regular if for each point XQ e Land 
each sequence of points x„ € Lnot converging to the point XQ there is a two-valued 
continuous function mapping Linto {0, 1} such that the sequence {/(xj} does not 
converge to / (XQ). 

It is possible to prove, in the same way as above, that zero-one sequential regularity 
of a convergence space is a topological property. 

Lemma 3. Each system S of subsets of an abstract point set S is a zero-one 
sequentially regular convergence space. 

Proof. It may be observed that S is a convergence space fulfilling all three axioms 
of convergence J^i, ^2 ^iid i f3 . Assume that a sequence of sets S„eS does not 
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converge to a set iS G S; then there exists a point s belonging either to lim sup iS„ — 
— lim inf S„ or to (S — lim S„) u (lim S„ — S). Dehne a set function / on S as 
follows: f(Ä) = 1 от f(A) = О according as s belongs to A or not. It is easy to see 
that the function/is continuous on S and that the sequence {f(S„)} does not converge 
to / (S ) . 

Lemma 4. Let X be a point set and @ a system of real-valued functions on X. 
Then @ is a sequentially regular convergence space. 

Proof. First notice that @ is a convergence space fulfilling all three axioms of 
convergence J^^, ^2 ^^^ ^ъ- Let g^ be an element of ® and {̂ „} a sequence of 
functions 6̂„ G @ not converging to g^. Then there is a point x^eX such that the 
sequence {ö „̂(xo)} does not converge to д{х^^. Define a real-valued function /i on @ 
by /ï(/) = /(л:о) for each / e @ ; evidently /Ï is a sequentially continuous function 
such that the sequence {/г(б̂ „)} does not converge to /i(éfo)-

Theorem. Let X be a non-empty point set and A a a-algebra of subsets of X. Then 
the system Ш of all A-measurable real-valued functions on X is a sequentially 
regular convergence space which is not zero-one sequentially regular. 

Proof. The first part of the assertion follows from Lemma 4. In order to prove the 
second part notice that X e A, so that each constant function с belongs to 5W. The 
value of с will be denoted by c'. Now, choose a sequence {c„} of constant functions 
c„ G SDÎ which does not converge to a constant function CQ G 5Ш. Suppose the contrary, 
that there is a continuous zero-one valued function gonWi such that the sequence 
of real numbers g(c„) does not converge to g(co). Then there is a positive integer p 
such that g{Cp) Ф д(со). The mapping h = {с' -> с} is a homeomorphism and thus 
the function g h is continuous on the set of all real numbers. Since g hiss, two-valued 
function, it follows that g h is constant. Thus we have the contradiction, that g{Cp) = 
= 9(co)' 

Corollary. Let X be ä non-empty point set and A a a-algebra of sets of X. Then 
the convergence space A is not homeomorphic to the convergence space Wl of all 
A-measurable functions defined on X. 

As a matter of fact, according to Lemma 3, the convergence space A is zero-one 
sequentially regular; on the other hand, by the Theorem, the space 5Ш is not zero-one 
sequentially regular. Therefore the spaces A and SOî cannot be homeomorphic, since 
zero-one sequential regularity is a topological property. 

R e m a r k . Since lim A„ = A in A if and only if lim Cj^J^x) — c^(x) for each point 
X G X, and because each characteristic function Сд(х), Б G A, is A-measurable, it 
follows that the convergence space A is homeomorphic to a subspace of the system 
of all A-measurable functions. 
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It is well known [5] that the system 95 of all Baire functions is identical with the 
system of all Borel measurable functions. Consequently the system of all linear 
Borel sets is homeomorphic to a subsystem but not to the whole system of all Baire 
functions. 
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Резюме 

О ТОПОЛОГИЧЕСКОМ СООТНОШЕНИИ МЕЖДУ (Т-АЛГЕБРОЙ А 
МНОЖЕСТВ И СИСТЕМОЙ ВСЕХ А-ИЗМЕРИМЫХ ФУНКЦИЙ 

ЙОСЕФ НОВАК (Josef Novak), Прага 

Пространство сходимости L, выполняющее три аксиомы сходимости «^i, ^2 
и if 3» называется секвенциално регулярным [нуль один секвенциално регуляр­
ным], если для каждой точки XQ е L и для каждой последовательности точек 
х„ G L, которая не сходится к точке XQ, существует непрерывная функция / н а L 
такая, что последовательность действительных чисел /(х„) не сходится к /(хо) 
[(/х) = О или = 1 для каждой точки х е L]. 

Оба эти свойства будут иметь место при гомеоморфном отображении. 
Примером секвенциално регулярных пространств служит а-алгебра А 

подмножеств данного непустого множества X, где имеется сходимость 
00 00 00 00 

lim Л„ = л, как только А = \J f j ^ „ = n U^n^ система Ш всех А-измеримых 
fc=lп=к fc=lп=к 

вещественных функций, определенных на X, где имеется сходимость lim/„ = / 
как только lini/„(x) = Дх) для каждой точки хеХ, При этом пространство А 
является нуль один секвенциално регулярным, в то время как пространство Ш 
таким свойством не обладает. Поэтому пространства А и SDÎ не являются 
гомеоморфными. Отсюда вытекает, что система борелевских линейных мно­
жеств не является гомеоморфной с системой всех функций Бэра. 
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