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Yexoc10BaUKnii MaTeMaTHYeCKHii akypHas, T. 14 (89) 1964, INpara

ON THE STRUCTURE OF A CLASS
OF COMMUTATIVE SEMIGROUPS

MARIO PETRICH, Maryland (USA)
(Received March 18, 1963)

The purpose of the paper is to clarify the structure of a special type of
commutative semigroups to which several authors have been led by studying
decompositions of general semigroups.

1. Introduction and summary. In this paper we investigate the structure of a class of
semigroups which we call N-semigroups. An N-semigroup is a commutative non-
potent archimedean cancellative semigroup. E. HEwitT and H. S. ZUCKERMAN [2]
have shown that if G is any commutative semigroup, then there is a maximal separa-
tive homomorphic image G’ of G, and that a member H, of the maximal semilattice
decomposition of G’ is either a group or an N-semigroup. T. TAMURA [5] has given
a characterization of N-semigroups. T. TAMURA and N. KiMURA [4] have shown that
a member of the maximal semilattice decomposition of an arbitrary commutative
semigroup is archimedean and has at most one idempotent. S. ScHwARZ [6] has esta-
blished certain properties of decompositions of a semigroup similar to those already
mentioned.

In section 2 we define N-semigrcups and discuss some properties of comm utative
'semigroups in connection with it. Then in section 3 we establish a property of N-
semigroups with a finite number of generators. In section 4 we find the structure of
N-semigroups with two generators. Finally in section 5 we give a classification and
several examples of N-semigroups.

A semigroup is a non-empty set on which an associative multiplication is defined.
We will discuss only commutative semigroups. Throughout the whole paper S will
denote an arbitrary commutative semigroup unless stated otherwise. We follow the
notation and terminology of A. H. CLIFFORD and G. B. PResTON [1] for all concepts
not defined in the paper. By x™y" with m = 0 and n > 0, we mean y".

The writer wishes to thank Professor Edwin Hewitt for mentioning this problem
to him, and Professor Herbert S. Zuckerman for his help in preparation of this paper.

2. Definitions and properties. We first define an N-semigroup and then discuss
some properties of semigroups in connection with it.
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Definition. S will be called an N-semigroup if it has the following properties:

(A) for every x, y,z€ S, xz = yz implies x = y (S is cancellative);

(B) for every x, y € S, x" = ay for some a € S and some naturalnumber n (S is
archimedean);

(C) S has no idempotents (S is nonpotent).

Proposition 1. If S satisfies condition (B) and

(D) for every x,yeS, x*> = y*> = xy implies x = y (S is separative), then S
also satisfies (A).

Proof. Let S satisfy conditions (B) and (D) and suppose that xz = yz for some
X, y,z€ S. Then x™ = az and y" = bz for some a, b € S and some m, n. Hence

(1) : x"*1 = (az) x
@ yt = (bz) y
Ifin (1) m > 1, then

Il
Il

a(xz) = a(yz) = (az) y = x"y,
b(yz) = b(xz) = (bz) x = y"x .

m—2 m+l — M~ 2 2m— 2
Yy X x y = y s

- +
x2m ny =xm 1 my — Ym lxm 1

2m-2

x xy = x"

= x?
Consequently (x™~1y)? = (x™)* = x"(x™"'y) and thus x™ = x""'y. After m — 1
steps, we obtain x? = xy. Similarly from (2), we obtain y* = xy and therefore
x = y.

Corollary. In the definition of an N-semigroup, we can substitute condition (A)
by the weaker condition (D).

The proofs of the following statements are either contained in the works mentioned
at the beginning of the paper or in [3].

Proposition 2. If S satisfies.(B), then it contains at most one idempotent.
Proposition 3. If S satisfies (A) and (B) and does not satisfy (C), then it is a group.

Theorem 1. S contains no prime (proper semiprime) ideals if and only if S
satisfies (B).

Theorem 2. Each member of the maxtmal semilattice decomposition of S satis-
JSies (B). _

Theorem 3. S satisfies (D) if and only if S is a semilattice of semigroups each
of which satisfies (A).- :

3. Finitely generated N-semigroups. The set of positive integers under addition is
an N-semigroup generated by the element 1. It is evident that this is the only cyclic
N-semigroup. The following theorem establishes a property of N-semigroups with
a finite number of generators. . E
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Theorem 4. A finitely generated N-semigroup S satisfies the following condition:
(E) for every x, y € S, there are natural numbers p and q such that x? = y“.

Proof. Let ay, a,, ..., a, be the set of generators of S. We first show that condition
(E) holds for ay, a,, ..., a,. We do this by mathematical induction on the number k
defined as follows. A power of a fixed generator can be written as a product of powers
of any n — k of the remaining generators with the power of any specified generator
positive, 1 < k < n.

The proof for k = 1. Consider the generator ay; the other cases are similar. For
m > 1, we have
ai = (a'a%...ay) a,
n

for some t,ty,15,..., 8, with t > 1 and Y #; > 0. Here t > t,, for otherwise we
i=1
would arrive at a contradiction after cancellation. Hence

t—1ty

t t+1 t
ay .. T

= djy - a, e ay

Suppose now that the condition stated at the beginning of the proof is satisfied for
some k, 1 £ k < n. We again consider only the case of the generator a,, the other
cases being similar. We show that the condition in question is also valid for k + 1.
By hypothesis we have

p Pk +1 2Pk +2 14
) a; = aiyagyy ... ay”

where p, > 0. We obtain

Pqd _ Pk+19 4Pk +2 Pnd _ 91Pk+1,9Kk+2Pk+1 | dn Pk +1 Pk +29 pPnq
at? = afsiMapst ..oap = af ayts ..ar agst ... af

whence

all’q"qlpk+l — aqk+2pk+l+Pk+2q a:llnpk+l+an

since necessarily pq > q,pi+1 and also p,g > 0. The general case is proved by
considering in (1) any n — k generators different from a, which merely amounts to
a change of notation. This concludes the proof of induction.
. ki k
We have in particular o = a}‘ for i = 2,3, ..., n where m;, s; > 1. Let ay'a7’
.a¥, a''a% ... al"e S be arbitrary. Then
(01 az k,.)szs;; . Sn(115253.0. Sp+m21283...Sp+ ... FMps253...5n-11n

_ a(k;s;s;... S+ M2k25300. SpF oe F 052830 S - 1kn) (1152530 Sp+m2las3.. Syt oo H MAS283.0.Sn—1ln) _
1

l,.)szs;;... Sn(k18253.+- SnFM2k253.0. Sp+ oo +MpS253.0. Sn - 1kn
. s
n

= (a}a%...a

which completes the proof.
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4. N-semigroups with two generators. In this section we find the structure and give
a concrete realization of N-semigroups with two generators. We do not consider
N-semigroups with more than two generators because the characterization given in
this paper becomes too involved in such a case. We first introduce some notations.

Notation. Let S be an N-semigroup with two generators, say 41 and a,. Let m,
and m, be the smallest positive integers such that a™ = ua, and a3* = va, for
some u, v € S. We suppose that m; < m, and denote S by N(my, m,).

. . . . . .. k2
Since S is cancellative, a, is a generator of S, and m, is minimal, we haveu = a,
for some k, > 0, and thus aj* = a%*'. Similarly a7 = daf'** for some k; > 0.

By minimality of m, and m,, m; < k; + land m, < k, + 1.If k2 + 1 > m,, then

+ ko+1- +1 kp+1-—
avlnx = al;z 1 _ ar;zazz 1-m2 _ al;; Iazz my

which is impossible since m; < k; + 1. Thus m, = k, + 1, that is, a7' = a3

Notation. Let m,; and m, be integers such that 2 < m; < m,. A set S will be
denoted by (m,, m,)-s.g. if

'S ={(kp, k) |ky =0,1,2,..., k;=0,1,2,...,my — 1, ki+ky,>0}
with multiplication
(kis ko) (1, 1) = (ky + Iy + jmy, ky + 1, — jma)

where j is the integer such that 0 < k, + [, — jm, < m,, and (ky, k;) = (14, 1)
implies ky = I; and k, = I,.

The following theorem gives a simple characterization of N-semigroups with two
generators:

Theorem 5. Let S be a set. Then S = N(my, m,) if and only if S = (my, m,)-s.g.

Proof. We first prove necessity. Thus let S = N(my, m,) with the generators a,
and a, such that a7 = a72 If x is an element of S, then x = a%'a% for some non-
negative integers k; and k, such that k; + k, > 0. We have 0 < k, — jm, < m,
for some non-negative integer j, and hence

k>

ky+j
axaz 1+ my

Jmz+ (k2= jmz) __ =ad}

= a¥'a} akrmime

Thus every element of S can be written in the form of an element of (my, m,)-s.g.
with a suitable change of notation. One checks similarly that the multiplication of S
coincides with that of (ml, mz) -s.g. under the restriction that 0 < k, < m, where
ai'des. Suppose that a%'a% = al'ay? with 0 < k,, I, < m,. If k, > I;, then
a*'"a% = a¥ and thus necessarily k, < I,. Consequently a*' ™"t = g27* and thus
I, —k, = m2 by minimality of m,. But this contradicts the hypothesis that I, < m,.
The case k; < l; is symmetric. Hence k; = I, and consequently k, = 1,. Therefore

= (my, m;)-s.g.
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We next prove sufficiency. Let S = (m,, m,)-s.g. It is clear that S is closed under
its multiplication and is commutative. We verify the postulates for N(m, m,).

Associativity. It is easily seen that both [(ky, k3) (I, 1,)] (ry, 72) and (ky, k).
(1, 1) (ry, 72)] are equal to (ky + Iy + ry + imy, ky + 1, + 1, — im;) where i
is the integer such that 0 < k, + [, + r, — im, < m,. Hence the associative law
holds.

Condition (A). If (ky, k,) (r1, r2) = (I, 1) (ry, 15), then
(ky + ry + imy, ky + 1y — imy) = (Iy + 1y + jm, I + 1y — jmy)

where i and j are the integers such that 0 < k, + r, — imy, <m, and 0 £ I, +
+ r, — jm, < m,. Hence

) ki +ry +imy =1 +ry + jmy,

) ky+r, —imy =1, +ry —jm,.

From (2) we obtain k, — I, = (i — j) m, which implies that i = j and consequently
k, = 1,. But i = j in (1) yields k, = I,. Therefore (k,, k,) = (I, I,) and the can-
cellation law holds in S.

Condition (B). Now let (ky, k,) and (I;, I;) be any elements of S. If k; > 0,
then let n = m; + I; + 1 and g be the non-negative integer such that 0 < nk, —
— myq < m,. If ky =0, then let ¢ = m; + I; + 1 and »n be the integer satisfying
the inequality m,q/k, < n < (m,q/k,) + 1 (in this case k, > 0). Moreover let

j=/1 if nk, —myq —1,<0,
N0 if nk, —myq—1,=0.
It follows easily from the definitions of n, g, and j that

(@) nky + myg — 1y — jmy > (my + 1y) = Iy — jmy 2 0;

(b) nky + myq > 0;

(c) 0 < nky — myq < my;

(d) 0 < nky, — myg — 1, + jm, < m,.

We therefore have

(nky + myq — Iy — jmy, nk, — maq — I + jmy) (Iy, 1) =
= (nky + myq, nky — maq) = (ky, k)" .

Condition (C). Suppose now that (ky, k,)* = (ky, k,) for some (ky, k,)€S.
Then
(2ky + jm, 2k, — jmy) = (ky, k)

where j is the integer such that 0 < 2k, — jm, < m,. Hence 2k, + jm, = k, and
2k, — jm, = k,. Consequently k, — jm, = 0 which implies that j = 0 and hence
also k, = 0. But j = 0 in the first equation yields k; = 0, which is impossible.
Therefore S has no idempotents. '
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S = N(my, m,). We have already proved that S is an N-semigroup. It is clear
that (1,0) and (0,1) are the generators of S. Let n be the smallest positive integer such
that (1,0)" = (ky, k,) (0, 1) for some (ky, k;) € S. Then k; = 0 by minimality of n.
Hence (1, 0)" = (0, k,) (0, 1) and thus (n, 0) = (jmy, k, + 1 — jm,) where j is the
integer such that 0 < k, + 1 — jm, < m,. Therefore n = jm; and 0 = k, + 1 —
— jm,. Consequently j = 1 and thusn = m, and k, = m, — 1.

Similarly we see that if n is the smallest positive integer such that (0, 1)" =
= (ky, k;) (1, 0) for some (ky, k;) € S, then n = m,. Since m; < m,, we have proved
that S = N(my, m,).

Remark. From the definition of (m,, m,)-s.g. it follows easily that (m,, m,)-s.g.
is isomorphic to the free commutative semigroup on two generators, say a, and a,,
with the defining relation a7' = a%2. This furnishes a second characterization of
N(my, m,) by virtue of Theorem 5.

We next give a concrete realization of (m,, m,)-s.g. First we introduce some

notation.

Notation. For integers m; and m, such that 2 < m; < m,, let C(m,, m,) be the

subsemigroup of the group of non-zero complex numbers, generated by the two

elements
a, = 21/m18(21u')/m1 and a, = 21/m2e(4ni)/mz .

Then we have the following result:

Theorem 6. The semigroups C(my, m,) and (my, m,)-s.g. are isomorphic.

Proof. First note that a, =+ a, because 2 < m; < m,. Since C(m,, m,) is a sub-
semigroup of a commutative group (non-zero complex numbers), by the remark
above it suffices to show that a*' = a¥ implies k,/k, = m;/m, and k,; = m,. If

d¥ = a%, that is,

k 2ni )1k k. 4ni k
/i LC wi)/(m)ler _ Qka/m2 JL(4ni)/(m2)]k2 ,

then by equating moduli, we obtain k,/m,; = k,/m,. But then

e2nil2(k/my) = (ki/mD] — 1

and consequently k; = m;. The theorem follows.
The following is essentially a resume of some results of this section:

Theorem 7. The semigroup C(ml, m,) is an N-semigroup with two-generators and
C(my, my) = C(my, my) only if my = m] and m, = mj. Conversely, every N-
semigroup with two generators is isomorphic to the semigroup C(my, m,) for some
(unique) integers m; and my, 2 < m; S m,.

5. Classification and examples of N-semigroups. We classify N-semigroups ac-
cording to whether they satisfy condition (E) of Theorem 4, whether they are finitely
generated, and whether they contain indecomposable elements. We say that ‘an
element x of S is indecomposable if x + yz for all y, z € S. We also give an example
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for each group of N-semigroups. All the examples given are subsemigroups of the
additive semigroup of positive real numbers. The numbers in brackets denote the
generators of S; the letter a denotes any positive real number.

N-SEMIGROUPS
|

|

)
satisfying (E) not satisfying (E)
1 1
| O
) with indec.  without indec.
finitely not finitely elements elements
generated generated reals >a >0  reals >0
i l
L S
f ‘\ | f \
one generator two generators more than with indec. without indec.
{1} {2,3} two gene-  elements elements
rators rationals rationals >0
{2,3,5} >a>0
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Peszrome

O CTPOEHUU OITPEJEJIEHHOI'O KJIACCA KOMMYTATHUBHBIX
IIOJIVI'PVIIIL

MAPHO IETPUX (Mario Petrich), Mapunaun (CIIA)

KommyratuBHas monyrpynna S HasbiBaeTcs N-mosyrpynnoi, ecom 1. B S nmeer
MECTO NIPABUJIO COKPAILEHHs; 2. I KaX 10l mapkl X, y € S CyLUECTBYET a € S U IeJIoe
yucsto n > 0 Tak, yTo X" = ay; 3. S He UMeeT UAeMIIOTeHTOB. PaboTa mocBsieHa
u3yueHuro crpoesus N-mojyrpynn. FImeHHo, ommcaHa CTPYKTypa -Bcex N-mojy-
rpynn, o6iafaromux AByms TeHepaTOpaMy.
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