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ON THE PSEUDODIMENSION OF ORDERED SETS

. VitEzsLAv NovAk, Brno

(Received January 13, 1962)

In this paper the pseudodimension and the x-pseudodimension of ordered
sets are defined. The relation between the pseudodimension and the dimen-
sion is determined. The economy of the representation of ordered set and
the x-economy are defined. Finally, the a-pseudodimension of many ordered
sets for various « is obtained and the x-pseudodimension is compared with
the x-dimension.

1. INTRODUCTION

In literature concerning the theory of ordered sets'), there often appear papers
concerning the dimension of ordered sets. The dimension of an ordered set was
defined in 1941 by B. DUsHNIK and E. W. MILLER in the following manner (see [4]
p. 601): Let G be a non-void set ordered by a binary relation ¢. The dimension of G
is the smallest cardinal of a system of the linear extensions?) {r;} of the relation g
which realize ¢ in the sense that g is the meet of all 7;, ¢ = ;. It is clear that this

definition may be formulated in the following slightly different way:

Let G be a non-void ordered set and let {L;} be a system of linearly ordered sets.
Let f; be a single valued mapping defined on G having a single valued inverse and
such that f(G) S L;.

If, for any two elements x, y in G, x < y holds if and only if fi(x) £ fi(y) in L;
for every i, we say that the system of mappings {f;} realizes the ordering of the set G
and the dimension of the set G is defined as the smallest cardinal of such a system
of mappings.

This definition was used by H. Komm. Komm defined the a-dimension of the
ordered set G as the smallest cardinal of a system of the 1 —1 mappings of the set G
into a linearly ordered set L of a type o which realizes the ordering of the set G
(see [5] p. 511).

Now in the definition of dimension it is easy to omit the assumption that the

1) A (partially) ordered set is a set with a nonsymmetric transitive binary relation.
2) A linear extension of the ordering ¢ is a linear ordering 7 such that ¢ < 7 (see [1]).

587



mappings {f;} are 1—1. Hence let {f;} be a system of mappings of ordered set G
into the linearly ordered sets L;. If x < y in G is equivalent to fy(x) < f(y) in L;
for every i, we say that the system of mappings {f;} realizes the ordering of the set G.
The smallest cardinal of such a system we shall call the pseudodimension of the
set G and denote by pdim G. If all the sets L; are of the same type a, we shall speak
about the o-pseudodimension of the set G (2-pdim G). From this definition there
follows pdim G < dim G, a-pdim G < a-dim G. In the paper we shall prove that
always pdim G = dim G, and that this relation does not hold for the a-pseudodi-
mension. From Komm’s definition there follows that a-dim G need not exist. An
evident necessary condition for the existence of a-dim G is for instance the relation
card « = card G. On the other hand, ¢-pdim G exists always when « is not equal
to 0 nor 1. But even when a-dim G exists, the relation a-pdim G = a-dim G need
not hold. Further, in the paper the economy of representation and a-representation
of ordered set is defined. It is shown that this concept is in close relation with the
pseudodimension and the a-pseudodimension.

The a-pseudimension for « = 2, « = w, « = 1 of many specific ordered sets is
obtained. It is also shown that a-pdim G < a-dim G is possible.

The notation used in the paper is usually the customary. Identity of ordered sets
will be denoted by =, isomorphism by .

Let us define now the lexicographic sum (see [13]) and the cardinal product.
Let N be a non-void ordered set and {M, |« e N} a system of disjoint non-void
ordered sets. The lexicographic sum of the sets M, over the set N is a set of all pairs
[x, y], where x € N, y € M ordered in the following way: [x,, y;] < [x,, y,] if and
onlyif x; < x,orx; = x,and y; < y,.>) Let K be anon-void set and let {L, | x € K}
be a system of disjoint ordered sets. By the cardinal product [] L, of the sets L,

keK
over the set K we shall mean the set of all single-valued functions defined on K and

such that f(x) e L, for every k, and ordered as follows: f < g in[] L, < f(x) < g(x)
ke K

for every k e K. If K is a two-point set, this definition agrees with Birkhoff’s definition
of a cardinal product.

We shall often call a linearly ordered set a chain, the set in which every two distinct
elements are incomparable, i.e. which is ordered by the relation =, will be called an
antichain.

By the symbol n we shall mean on the one hand an antichain containing n elements,
on the other hand the type of this antichain, i.e. a cardinal number; analogously
by n we shall mean a chain containing n elements, and also the type of this chain.
We remark that throughout this paper every set in which an order is not exphcltly
given will be considered to be an antichain.

Finally, note these further references: S. GINSBURG ([6]), V. SEDMAK ([7]), T.
HraGucHI ([9], [10], [11]).

3) This set is denoted by 3" M,.
aeN
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2. THE REALIZER OF AN ORDERED SET

Definition 2.1. Let G be a non-void ordered set, K a set. To every x € K let there
be assigned a linearly ordered set L, and an isotone mapping f, of G into L, such
that x < y in G if and only if f(x) < f,(y) for every k € K. Then we shall say that
the system {L,, f, | k € K} is a realizer of the ordering of G. By the cardinal of the
realizer we mean the cardinal card K. If all the sets L, are of type o, we shall call the
corresponding realizer {L,, f, | k € K} an a-realizer.

Theorem 2.1. Let G be an ordered set, K a set. To every k € K let there be assigned
a chain L. Then the following statements are equivalent:
(A) G is isomorphic to a subset of the cardinal product [[L.: G = G’ S [] L.
kekK keK
(B) For every k € K there exists a mapping f, of the set G into L, such that
{L., f« | € K} is a realizer of G.

Proof. 1. Let (A) hold and let ¢ be the isomorphism of G onto G’ < [] L,. Thus ¢

keK
assigns to every x € G a function f defined on K such that f(k) € L,. Fix x; then to
every x € G there is assigned just one value f(x) € L,, i.e. there is defined a mapping
of G into L, which we denote by f,. We shall show that the system {L,, f, | k € K}
is a realizer of G. First, let x < y in G; then, if ¢(x) = f, ¢(y) = g, the relation
f(x) £ g(x) holds for every k e K, hence f,(x) £ f.(¥) and hence f, is isotone for
every k € K. If f(x) < f.(») holds for every x € K, then according to the definition
of the function f, the set {f.(x) | k € K} is the set of values of a certain function f
defined on K and belonging to [] L,; analogously {f.(y) | x € K} is the set of values

ke K

of a function g belonging to [] L, and hence f(x) < g(x) holds for every x €K,

keK
ie. f<g. As o(x) =f, ¢(y) =g and ¢ is an isomorphism, this implies x < y.
Hence {L,, f, | x € K} is indeed a realizer of the set G.
2. Let (B) hold. Form the cardinal product [] L, and to every element x € G

keK

assign an element ¢(x) = f of this cardinal product defined by f(x) = f.(x). In this

manner there is defined a mapping ¢ of G onto a subset G’ = [] L, and we shall
kekK

show that this mapping is an isomorphism. First, it is clear that ¢ is 1 —1. Now if
x £ yin G, then f(x) £ f.(y) for every K e K because {L,, f, | k € K} is a realizer
of G so that if we denote ¢(x) = f, ¢(y) = g, then f(x) < g(x) for every x € K,
ie. f£g in [[ L, Secondly let f < g, i.e. f(x) < g(x) for every k € K; then, if

xkeK
we denote ¢~ '(f) = x, ¢ !(g) = y, we have f(x) = f(x), g(x) = f.(y) for every «
so that f,(x) < f.(») holds for every x € K and hence x < y in G. Thus ¢ is indeed an
isomorphism.

Theorem 2.2. Let G be an ordered set, K a set, L a chain of a type «. Then the
following statements are equivalent:
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(A) G is isomorphic to a subset of the cardinal power I¥: G ~ ¢' = L.
(B) To every k € K there exists a chain L, of type o and a mapping f. of set G
into L, such that {L,, f,. | k € K} is an o-realizer of G.

Proof. This theorem is an immediate consequence of theorem 2.1.

Lemma 2.1. Let A, B be chains of type a,  such that A =~ A, < B. Let G be an
ordered set, K a set. If G = G, < AX, then G = G, < BX.

Proof. If the assumptions of lemma are true, then clearly 4¥ ~ AX. Let ¢ be an
isomorphism of 4% onto A¥. Then G =~ G, = ¢(G,) = G, < BX.

Theorem 2.3. Let G be an ordered set, let L be any chain with at least two elements.
Then there exists a set K such that G = G’ < IX.
Proof. Let R be a chain containing just two elements. According to [2] there

exists a set K such that G = G’ = RX. Now our statement is a consequence of lemma
2.1.

Theorem 2.4. Let G be an ordered set, K a set. For every k € K let there exist

a chain L, such that G = G, < [] L,. Then there exists a chain L such that G =
keK

~ G, c IX

Proof. Let B be any chain of cardinal card K, let ¢ be any 1—1 mapping of B
onto K, and put L= Y Ly, Clearly L, < Lfor every k e K. Hence [[ L, @ L' =

BeB kekK
c IX. If ¢ is an isomorphism of [] L, onto L, then G =~ G, = ¢(G,) = G, <
keK

c L cIX

Corollary 2.1. Let G be an ordered set, let o be a type of any chain which contains
at least two elements. Then there exists at least one a-realizer (and hence at least
one realizer) of the set G.

Proof. This is a consequence of theorems 2.3, 2.2.

3. THE PSEUDODIMENSION OF AN ORDERED SET

Definition 3.1. Let G be an ordered set. The minimum of cardinals of all realizers
(o-realizers) of the set G is called the pseudodimension (a-pseudodimension) of the
set G and is denoted by pdim G (a-pdim G).

Theorem 3.1. Let G be an ordered set, o a type of any chain which contains at
least two elements. Then G has a-pseudodimension and thus also pseudodimension.
There holds pdim G = min a-pdim G.

Proof. This follows from corollary 2.1. and theorem 2.4.

Theorem 3.2. Let G be an ordered set. Then pdim G = dim G.
Proof. By the definition of pseudodimension, we have pdim G £ dim G. Thus it

)

590



is sufficient to show that dim G < pdim G. Thus, let pdim G = m. This means that
there exists a realizer {L,, f, | k € K} of the set G of cardinal m. Let M, = L, be the
set of all elements y such that there exists at least one x € G with f,(x) = y. Then f,
is an isotone mapping of G onto M,, and M, is a linearly ordered set. Let y € M,
be any element. Let M, denote the set which is a linear extension of the set f '(y).

Form the lexicographic sum Y M2 = N,. This set is linearly ordered and it is clear
YEMye

that it is a linear extension of the set G. Denote by g, the identity mapping of G
onto N,. Then g, is isotone mapping of G onto N, and this mapping is 1 —1. Now
show that the mappings {g, | x € K} realize the ordering of the set G.

Let g.(x) £ g(y) for every k € K. Then it is clear from the definition of the
mapping g, that f,(x) < f.(y) for every k € K and thus x < yin G. Hence {g,. | k € K}
indeed realize the ordering of the set G and thus dim G < m.

Theorem 3.3. Let G be an ordered set, m a cardinal. Then the following statements
are equivalent:

(A) pdim G £ m.

(B) There exists a set K of cardinality m, and for every x € K a chain L, such

that G is isomorphic to a subset of the cardinal product [] L,.
kekK
Proof. This theorem follows from theorem 2.1.

Corollary 3.1. Let G be an ordered set, m a cardinal. Then the following state-
ments are equivalent:

(A) pdim G < m.

(B) There exists a chain Land a set K of cardinality m such that G is isomorphic
to a subset of IX.

Proof. This follows from theorems 2.1 and 2.4.

Theorem 3.3x. Let G be an ordered set, K set of cardinality m, a the type of
a chain Lwith at least two elements. Then the following statements are equivalent:

(A) a-pdim G < m.

(B) G is isomorphic to a subset of LX.

Proof. Our theorem is an immediate consequence of theorem 3.3.

Theorem 3.4. Let m be any cardinal, K a set of cardinality m, o the type of any
chain Lwith at least two elements. Then a-pdim IX = m.

Proof. Denote IX = G. According to theorem 3.3a we have a-pdim G < m.
Let B be a chain which contains just two elements. Then m = dim B**) < dim I¥ =
= dim G = pdim G £ a-pdim G.

Corollary 3.2. For every cardinal m and every type o of a chain containing at
least two elements there exists an ordered set G such that a-pdim G = m.

4y see [5], Theorem 2.1. It is evident that the ordered sets P(a) — the system of all subsets of
any set of cardinality a ordered by set inclusion — and 22 are isomorphic.
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Theorem 3.5. Let A be a chain of type o, B a chain of type f. Let A =~ A; = B.
Let G be any ordered set. Then a-pdim G = f-pdim G.

Proof. Under the assumptions of our theorem AX =~ A} < BX holds for every
set K. Our statement is now an immediate consequence of theorem 3.3a.

Corollary 3.3. Let o be the type of a chain containing at least two elements.
Then 2-pdim G = a-pdim G.

Theorem 3.6. Let L be a chain containing at least two elements, let G be an
infinite ordered set. Let card oo < o-pdim G. Then 2-pdim G = a-pdim G.

Proof. According to corollary 3.3 we have 2-pdim G = a-pdim G. Now G = G, < IX,
where card K = a-pdim G. According to [2], L=~ L, = B” where B is a chain
containing just two elements and M is a set with card M = card L. Now, using the
assumption card « < a-pdim G, we have [X =~ Lf < (BM)X = B¥X = BX. Hence
G =~ G, < BX¥ and we have 2-pdim G < card K = a-pdim G.

Corollary 3.4. Let G be an infinite ordered set, let o be the type of a chain L
containing at least two elements and whose separability of ordering is m Sa-pdim G.
Then 2-pdim G = a-pdim G.

Proof. From the assumptions it follows that L=~ L, < B™ where B is a chain
containing just two elements and M is a set with card M = m (see [3], theorem 2).
Now the statement may be proved analogously as theorem 3.6.

4. THE ECONOMY OF A REPRESENTATION OF AN ORDERED SET

Definition 4.1. Let G be an ordered set. Further, let M be a set and for every m e M

let L, be a chain containing at least two elements. Let F < [] L, let r be an iso-
meM

morphism of the set G onto F. Then we shall say that [M, F, r] is a representation
of the set G. By the economy of this representation we mean the cardinal card M
and we define ek{G; [M, F, r]} = card M.

Theorem 4.1. Let G be an ordered set, [M, F, r] a representation of this set.
Then pdim G < card M.
Proof. This follows from theorem 3.3.

Corollary 4.1. Let G be an ordered set. Then min ek{G; [M, F, r]} = pdim G =
[M,F,r]
= dim G.

Proof. This statement follows from theorems 4.1., 2.1., 3.2.

Definition 4.2. Let L be a chain of type a containing at least two elements. Let G
be an ordered set. Further, let M be a set, F = I™, let r be an isomorphism of G
onto F. Then we shall say that [M , F, r] is an a-representation of the set G. By the
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a-economy of this a-representation we mean the cardinal card M and we put
a-ek{G;[M, F, r]} = card M.

Theorem 4.2. Let G be an ordered set, [M, F, r] an a-representation of this set.
Then a-pdim G < card M.

Proof. This follows from theorem 3.3a.

Corollary 4.2. Let G be an ordered set, let a be the type of a chain containing

at least two elements. Then min a-ek{G; [M, F, r]} = a-pdim G.
[M,F,r]

Proof. This statement is a consequence of theorems 4.2., 2.2.

5. EXAMPLES

Theorem 5.1. Let G be a finite antichain such that card G = m. Let n be a positive

n—1 n
integer such that( ) <m= ( > Then 2-pdim G = n.
[3(n — 1] [5n]

Proof. Our statement will be proved if we show that the cardinal power 2"

contains an antichain of cardinality { _,
>N
2

greater cardinal. Consider the set of all sequences {x,}; k = 1, ..., n, where x, =0

> and that it contains no antichain with

or 1, and which contains [3n] 0’s and n-[3n] I’s. This set contains clearly ([ln ]>
L
2

elements and each two elements of this set are incomparable. In [12] it is proved

that the cardinal power 2" contains no antichain with cardinal greater than <[1n ]>
En
Theorem 5.2. Let G be a chain, card G = m. Then
a) if m is finite, then 2-pdim G = m — 1.
b) if m is transfinite, then 2-pdim G = n, where n is the separability of ordering
of the set G.
Proof. a) is a consequence of the obvious fact that the cardinal power 2" contains
a chain with n + 1 elements:
[0,0,...,0]
[0,0,...,1]

[1,1,...,1]
and it contains no chain with more elements.

b) Is a consequence of the corollary of theorem 2 in [3].

Let us denote by P(a) the set of all subsets of a set of cardinality a ordered by
set inclusion. H. KoMM proved in [5] that dim P(a) = a. We shall prove:
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Theorem 5.3. 2-pdim P(a) = a.

Proof. P(a) = B where B is a chain containing two elements and M is a set
such that card M = a. From this we obtain 2-pdim P(a) = 2-pdim B™ = a.

* Qur theorem can be also proved in the following manner:

Let M be a set of cardinality a. We shall construct to every x € M a function f, in
the following manner: for A = M we put f,(4) = 0if x€ A and f(4) = 1if x € A.
The system of all these functions has cardinality a and, moreover, it realizes P(a).
Indeed, let A = M, B< M, A § B. Then f(A) < f.(B) for every x e M; also
there exists an element'y € B, y € A such that f(A) =0<1=f(B). Let 4| B;
then there exist elements x, ye M, x€ 4, x € B, y € A, y € B such that f,(4) = 0 <
< 1= f,(B), fi(A) =1 > 0 = f(B). Hence 2-pdim P(a) < a. On the -other hand
2-pdim P(a) = pdim P(a) = dim P(a) = a. Hence 2-pdim P(a) = a.

Corollary 5.1. Let o be the type of a chain containing at least two elements.
Then a-pdim P(a) = a.

Proof. This is a consequence of theorem 5.3 and corollary 3.3.

Let E, denote the set of all sequences [xy, X, ..., X, ], where x(1 < i < k) is
any real number. H. Komm defined two orders P'(E,) and P(E,) in the following man-
ner: [ Xy, Xa, ... X ] < [ V15 Y2, ... »i] in P'(E,) if and only if x; < y; for every i; and
[x1, %5, ... ] < [¥1> Y2» - »i] in P(Ey) if and only if x; < y; for every i. If we
denote the set of all real numbers ordered in the natural way by E, then evidently
P'(E,) is the same as the cardinal power E*.

Theorem 5.4. 2-pdim P(E,) = 2™°.

Proof. As card P(E,) = 2%, we have 2-pdi1i1 P(E,) < 2™. On the other hand we
shall prove (corollary 6.4) A-pdim P(E,) = 2%°; this implies 2-pdim P(E;) = A-pdim .
. P(E,) = 2.

Theorem 5.5. 2-pdim P'(E;) = N,.

Proof. The set E has separability of ordering N,. Thus E = E; < 2™, From this
we have P'(E,) = E* = E} = (2%) = 2% = 2% Hence 2-pdim P'(E,) < N,. But
2-pdim P'(E,) is certainly infinite. Hence 2-pdim P'(E,) = N,.

6. THE COMPARISON OF THE «-DIMENSION
WITH «-PSEUDODIMENSION

From the definition it follows that ¢-pdim G < a-dim G, if a-dim G exists. We
now shall show that there exists an ordered set G such that a-pdim G < a-dim G.

It is clear that if o« is a finite ordinal then a-dim G exists if and only if card G <
< card o; in this case a-dim G = a-pdim G = dim G. We shall therefore ﬁrst
consider the w-dimension and w-pseudodimension.

Define two ordered sets: Let N denote the set of all positive integers ordered by
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magnitude. Let N, be the set of all sequences [X1s X35 .., X ] where x; e N, 1 < i < k.
We define P'(N,) = N*, P(N,) in a manner similar to P'(E,), P(E,) respectively.

Theorem 6.1. w-dim N? exists.

Proof. As w is a homogeneous order type (see [5]), it is sufficient to show that N*
has an w-extension. Let us decompose the set of all positive integers into countably
many classes {W,} in such a manner that each W, is infinite. Let W, = {a1, a5, a3, ...},
where a} < aj for i < j. Let us assume that for m < n, af' < af holds for every i.
Such a decomposition can always be constructed, for instance in the following manner:

W, ={1,2,4,..,2", ...}, W, = {3,9,27,...,3", ...},
W, = {5,25,125,...,5", ...}, W, = {6,36,216,...,6" ...} .

Now to every element [x, y] € N> we assign the element a}. This mapping is evidently
one-one and it is an w-extension, because [x;, y,;] < [x,, y,] in N implies x; < x,
and y; < y, and this implies a}! £ a3’ according to our construction.

- Corollary 6.1. w-dim N* exists for every positive integer k.

Proof. We shall prove our theorem by induction. For k = 2 our statement holds.
Assume it holds for k — 1, so that there exists an w-extension ¢ of the set N*71.
Construct the same decomposition as in the proof of theorem 6.1 and assign to
every element [x;, X5, ..., X;_1, X; ] € N* the element a¢*»*2~*<=1D_This mapping is
evidently an w-extension so that w-dim N* exists.

Corollary 6.2. w-dim P(N,) exists for every positive integer k.

Proof. The w-extension of N* constructed in the proof of corollary 6.1 is evidently
the w-extension of P(N,).

Theorem 6.2. If there exists in any ordered set G an ascending chain C of type o
and an element a such that a || x holds for every x € C, then G has no finite w-
dimension.

Proof. Assume the contrary, w-dim G = r < N,. Let {f;, N;i =1,2,...,r} be
the w-realizer of G in Komm’s sense. Denote C = {x,}, where X, < X,,, for n =
= 1,2, .... Then f(x,) < fi(x,+,) holds for every i and n. Choose any i. As f; is an
w-extension, there exists an index p; such that fi(x,,) < fia) < fi(xp,+1) and hence
fa) < fdx,) for every n > p;. Let p = max {p;}. Then fy(a) < f(x,) for n > p

13
and for every i, which implies a < x,. This contradicts our assumption and thus the
theorem is proved.

Theorem 6.3. If in the ordered set G there exists an infinite antichain, then
w-pdim G is infinite.

Proof. If w-pdim G = k < X, then G is isomorphic to a subset of the cardinal
power N*. We shall show (lemma 6.1) that the cardinal power N* contains no infinite
antichain, which will contradict our assumption.
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Lemma 6.1. If k < N,, then the cardinal power N* contains no infinite antichain.

Proof. We shall prove our statement by induction. Let k = 2. Assume that N?
contains an infinite antichain C = {[x,, y,]}; n = 1,2, .... Note that the elements
[x, y], [x, z] are always comparable in N? so that all x, are distinct and we may
assume x; < x, < .... But then it is clear that the elements y must satisfy the relation
Y1 > Y2 > Y3 ... so that the elements y determine an infinite descending chain in N.
This is impossible and, therefore, N does not contain any infinite antichain.

Now, let us assume that our theorem holds for k — 1 so that N*~! does not contain
any infinite antichain. Suppose that N* contains an infinite antichain R. Denote the
projection of the set R into N*~! by R’. R’ is certainly infinite. Suppose that R’ is
finite, i.e.

R = {[x{, x2, .., xp1]}, where 1=<i, Sn;, 1<i,<n,,...,

1 S iy Sy

Then R = {[x{!, x, ..., xj"{, xi<]} where the set of indexes i, is infinite. From this
we obtain that there exists at least one system of indexes i9, i3, ..., if_; such that
[x4° x2°, ..., xi%7*, xi] € R holds for infinitely many i,. But all these elements are
comparable in N* and this contradicts the assumption that R is an antichain. Hence R’
is infinite. The assumption that N*~! contains no infinite antichain implies that
every infinite subset of R’ contains at least two comparable elements, so that according
to [4] (Theorem 5.24) R’ contains an infinite chain C = {[x7, X3, ..., xi_{]}; n =
= 1,2,.... As N*"! satisfies the descending chain condition, this chain is necessarily
ascending and we may suppose [x}, x5, ..., xi_;] < [x1, X3, ..., xi—;] < .... This
chain determines a certain subset in R: {[x], x3, ..., Xk—;, Xz |} and it is clear that
Xp > Xx£ > ... so that we obtain an infinite descending chain in N. This, however,
is impossible and the theorem is proved.

Theorem 6.4. »-dim N* = X, for any posiﬂtive integer k = 2.

Proof. N* is a countable set, hence w-dim N* < N,. Now, put x, = [n + 1, 1,
l,..,1]forn=1,2,...,a =[1,2,1,..., 1]. Then the set {x,} is a chain of type w
and a | x, for every n. Hence according to theorem 6.2. N* has no finite w-dimension.

Theorem 6.5. w-pdim N* = k for every k.

Proof. The theorem is a consequence of theorem 3.4.

Theorem 6.6. w-pdim P(N,) = N, for any positive integer k = 2.

Proof. P(N,) is a countable set, therefore w-pdim P(N,) < N,. Now, put x, =
=[n,1,1,...,1]; n = 1,2, .... Then the set {x,} forms an infinite antichain. Hence
according to theorem 6.3. P(N,) does not have finite w-pseudodimension.

Corollary 6.3. w-dim P(N,) = N,.
Proof. This fact follows from the inequalities

Ry = w-pdim P(N,) £ w-dim P(N,) £ N, .
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Let us now consider the A-pseudodimension. We shall determine A-pdim P'(E)),
A-pdim P(E}). It is known ([5]) that both A-dim P'(E;) and A-dim P(E,) exist and
J-dim P'(E,) = Ny, A-dim P(E,) = 2%°.

Theorem 6.7. A-pdim P'(E,) = k for every k.

Proof. This follows from theorem 3.4.

Theorem 6.8. A-pdim P(E,) = 2%°.

Proof. As card P(E,) = 2™, we have A-pdim P(E,) < 2%°. Suppose that
A-pdim P(E,) < 2%° so that P(E,) is realized by the set {f,, | k € K, card K < 2%°}
of mappings into a set L of order type A. Consider in P(E,) the set of all points [x, 0]
and [x, 1]. For any x, we have [xg, 0] || [xo, 1]. As card K < 2%°, there exists
a ko € K such that f,([x, 1]) < f,,([x, 0]) for a non-denumerable set of x’s i.e. for
x € C, where card C > X,. Now, if x, y e C, x < y, then [x, 0] < [y, 1] in P(E,)
so that £, ([x, 1]) < feo([X> 0]) = fiol[y> 1]) < feo([y> 0])- If we denote £, ([x, 1]) =
= a, (e L), f([x,0]) = b, (¢ L), we have a, < b, < a, < b, for x,yeC, x < y.
From this it follows that we may construct in L a non-denumerable set of non-
overlapping intervals. But this is impossible, because Lhas the order type A and hence
each set of non-overlapping intervals in Lis denumerable. Thus, A-pdim P(E,) = 2™,

Corollary 6.4. -pdim P(E,) = 2™ for every finite k =

2.
Proof. As card P(E;) = 2™, we have A-pdim P(E,) < 2™. On the other hand
A-pdim P(E,) = A-pdim P(E,) = 2%,
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Pe3ome
O IICEBIOPA3BMEPHOCTU VIIOPAIOYEHHBIX MHOXECTB
BUTE3CJIAB HOBAK (Vitézslav Novak), Bpao

B craThe OIpeeNseTCs ICEBIOPa3MEPHOCTh U (-IICEBIOPA3MEPHOCTD YIOPSIO-
YEHHOTO MHOXECTBa Cle[ylomuM obpasom: ITycTh G — HeIycToe YHOpPsIOYCHHOE
MHOKecTBO. TIceBopa3sMepHOCThIO MHOXeCTBA G (pdim G) MBI pasyMeeM HanMeHb-
IIY}0 MOILHOCTb CHCTEMBI H30TOHHBIX oToGpaxeHuil {f;} G B JuHeiHO ymopso-
YeHHbIe MHOXECTBa L; Takoif, 4To uMeeT mecTo x = y <> fi(x) = fi(y) mis Beex i.
Ecnu Bce MHOXecTBa L; TOro e Tuma o, MBI TOBOPHM O 0-IICEBIOPa3MEPHOCTH
MHoxecTBa G («-pdim G).

B cratee mokaseiBaercs: pdim G = dim G [ BCSKOTO YHMOPSIOYEHHOTO MHO-
xectBa G (teopema 3.2), pdim G = min a-pdim G (teopema 3.1).

a

JHanee mokaspiBaercsi: TeopeMa 3.3. [t ymopsiioyeHHOro MHOXeCTBa G 9KBH-
BaJICHTHBI clefyromue yrepkaerus: (A) pdim G < m. (B) Cymecrsyer MHO-

xkectBo K MoutHocTH m, U IjIs Besikoro K € K nenb L, TakoBa, yto G = G < H L.
keK

Teopema 3.30: [Iy11 ymOpsIOYEHHOTO MHOXeCTBa G 3KBUBAJICHTHBI CJICAYIOLIHE
yreepxaenust: (A) a-pdim G =< m. (B) CymecrByeT MHOXecTBO K MOIHOCTH m
U uenb Ltuna o Takas, 9yto G =~ G’ < IX.

Janee, onpenesnsieTcs 3KOHOMUS TPEICTABICHUS YIMOPSIOYEHHOTO MHOXECTBA.

Ecmu r — H30M0p(bI/I3M YOOPAOOYCHHOI'O MHOXECTBA G Ha MHOXeCcTBO F = H Lm
meM

(F [ LM), rae L, — nenu (L — Henb THIa oc), TO Tpoiika, [M, F, r] Ha3bIBaeTcs
NpeJICTaBIeHUEM (oz-npencraﬂnenneM) MHOXecTBa G. Momnbocts card M Ha3HI-
BaeTCs YKOHOMMUEH (oc-31<0H0Mﬂe17I) 3TOro MpeACTaBICHUS. B cTaThe MOKa3bIBAETCA:
min ek{G; [M, F,r]} = pdim G = dim G (cmencrsue 4.1),
[M,F,r]
min o — ek{G; [M, F,r]} = a-pdim G (cumencrsue 4.2).
[M,F,r]
Haxonen, B craThe NIpuBeIeH psf IPHUMEPOB B KOTOPBIX JOKAa3bIBAETCS, YTO
CYLIECTBYIOT TaKde YHOpSOO4YeHHble MHOXecTBa G, I KoTophix a-pdim G '<
< a-dim G.
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