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Yexocsiopankuii MaTeMaTHuecksii xypuaia, 1. 13 (88) 1963, Ilpara

ON INVERTING PARTITIONED MATRICES

MirosLAV FIEDLER, Praha
(Received December 11, 1961)

In terms of linear mappings, formulae for inverting partitioned matrices
of a special form are given.

1. Introduction. We intend to investigate the form of the inverse matrix to a parti-
tioned matrix whose combinatorial structure of non-zero blocks is of a certain
simple kind (quasi-tridiagonal and quasi-triangular matrices are included). Similar
questions have been studied by H. I. MEYER and B.J. HOLLINGSWORTH [2], S.
ScHECHTER [3], G. SWIFT [4] and others. The main result is theorem (3,3) which
shows that — under certain restrictions — the inverse of such a matrix can be evaluated
by reccurent formulas and that the problem of inverting such a matrix is equivalent
with solving a smaller non-linear system of matrix equations.

2. Definitions and notation. Lemmas on e-simple graphs. In our considerations,
we shall use the customary notions of the theory of graphs. The reader may find
these notions in the book [1] by D. K6NIG. Moreover, we shall call a directed
graph G e-simple if each edge of G is contained in at most one (directed) cycle of G.
It is obvious that if a graph G has the property that for each pair u, v(u % v) of its
vertices there exists at most one (directed) path from u to v then G is e-simple.
Especially, a finite symmetric (or, non-directed) connected graph without loops
is e-simple if and only if it is a tree.

Further, we shall say that a finite-dimensional vector space X is partitioned if
a set X(u), u e U, of its linear subspaces is given in such a manner that X is their
direct sum:

X = Z X(u).
uel
If A is a linear mapping in this partitioned vector space X, there exists for each
pair u, v eU a (unique and linear) mapping a(u, v) of X(u) into X(v) such that if
for a vector x e X is x = ) x(u), x(u) € X(u), then its image xA =y =Y y(v),
vel

uelU

y(v) € X(v), where
y(©) =Y. x(u) a(u,v), velU.

uelU
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We shall write simply
A = [a(u,v)], u,veU.

Analogously, we shall call a unitary vector space X partitioned if X =Y X(u),
u € U, where X(u) and X(v) are orthogonal if u =% v, u, v € U. The scalar product of
two vectors x, y of X will be denoted by {x, y>.

If A= [a(u,v)], u,veU, is a linear mapping in a vector space X = Y X(u),
u eU, and if V = U, we shall denote by A[ V] the linear mapping A[V] = [a(u, v)],
u, v € V, in the subspace Y X(u), u € V.

We shall associate with a linear mapping in a partitioned vector space X = Y X(u),
u €U, a directed graph whose set of vertices is U and whose edges (u, v), u, v e U,
u # v, are those (ordered) pairs for which a(u, v) is different from the zero-mapping
of X(u) into X(v).

In section 3 we shall investigate mappings whose graph is e-simple and their
inverse mappings. It is obvious that — with a fixed basis in each X(u)—this is equivalent
to a similar problem for partitioned matrices.

In the sequel, we shall need some further notations and six lemmas on e-simple
graphs. We shall assume here that G is an e-simple graph whose set of vertices U
is finite.

If u e U, we shall denote by U(u) the set of all vertices w e U such that either
w = u, or w & u and there exists a (directed) path from u to w as well as a path
from w to u in G. If (u, v) is an edge of G, we shall denote by U(u, v) the set of all
vertices w € U such that either w = u, or w & u and there exists a path from u to w
not containing (u, v) as well as a path from w to u in G. The number h(u, v) =
= card U(u, v) will be called weight of the edge (u, v). It is obvious that U(u, v) = U(u).
If (u, v), (u’, v') are edges of G, we shall say that (u’, v') is inferior to (u, v) if there
exists a path from u to u’ not containing (u, v) as well as a path from u’ to u containing
(', ') (thus, u” # u). Further, if u is a vertex, (u’, v") an edge of G, we shall say that
(v, v') is inferior to u if there exists a path from u to u’ in G as well as a path from u’
to u containing (u’, v").

(2,1) If u, v are two different vertices of an e-simple graph G such that there
exist both paths from u to v and from v to u in G, then these paths are unique.

Proof. Assume that P; = (u,...,u’, w; ..., v), i = 1,2, are two different paths
from u to v whose parts (u, ..., u") are common but w, # w,. Since there exists
a path from v to u and a path (possibly trivial if u = u’) from u to u’, there exists
a “‘joining” (with not necessarily distinct vertices) from v to u’. Consequently, there
exists a path P = (v, ..., w, u’) from v to u'. But, if we denote by v,(i = 1, 2) the
last vertex of P different from u’ which P has in common with P; = (u', w;, ..., v)
< P;, then (w, u") is contained in two different cycles (u’, w;, ..., v;, ..., w, u’). This
contradiction with the e-simplicity of G proves our assertion.

(2,2) Let (u, v) be an edge of G, C = (u, Wy, ..., W, u), k = 1, a cycle of G passing
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through u but not containing (u,v). Then, (wy, w,), ..., Wiy, W), (Wi, u) are
inferior to (u, v) but (u, w,) is not.

Proof. Obvious.

(2,3) If (u, v) is an edge of G, wy, w, € U(u, v), then all vertices of the path from w,
to w, belong to U(u, v). If u eU, wy, w, € U(u), then all vertices of the path
(w1, ..., wy) belong to U(u).

Proof. Obvious.

(2,4) Let (u, v), (u', v') be edges of G such that (u’, v') is inferior to (u, v). Then:

1° If w e U(u', V'), then both paths (u, ..., ) and (w, ..., u) contain u’;

2° U@/, v') = U(u, v);

3° h(u', v") < h(u, v);

4° the edge (W', u') in the path (u, ..., w', u’) is the only edge of the form (w;, w,)
such that wy e U(u, v), wy ¢ U(u’, V'), wy € U(', V).

Proof. Let us denote P, = (u,...,u’), P, = (u',...,u), Py = (U, ..., w), Py =
= (W, ..., u’). To prove 1°, it is sufficient to show that P, and P; have the single
vertex u’ in common as well as P, and P, have only u’ in common. Assume that for
a vertex z + u' is z e Py, z € P;. Then, (4/,...,z) = P, is a path not containing
(u’,v"); but, combining P, and (u,...,z) = P; we obtain a joining from u’ to z
which contains u’ just once (namely in the edge (u’, v")), so that this joining contains
a path from u’ to z containing (u’, v"). This contradiction with (2,1) proves the first
part of 1°. Further, assume that P, and P, have a vertex z’ # u’ in common. Then,
(u',...,z") = P, contains v'; but, combining P; with (w,...,z") = P, we obtain
a joining which does not contain (u’, v). This contradiction with (2,1) completes
the proof of 1°. The part 2° follows easily from 1°: If w e U(u’, v"), then the path
P = (u,...,w) exists and contains u’. But since v’ + u and (u,...,u’) does not
contain (u, v), P does not contain (u, v) as well. Since (w, ..., u) exists, w e U(u, v).
But v' € U(u, v) while v ¢ U(u’, v") so that U(u’,v") = U(u, v). The part 3° is an
immediate consequence of 2°. To prove 4°, let us show first that w' ¢ U(u’, v'):
otherwise there would exist a path (u, ..., u’, ..., w') according to 1° which contradicts
the definition of w’. Let now (w;, w,) be an edge fulfilling the condition in 4°. Since
wy ¢ U(u’, v'), there exists a path P’ = (u’, v', ..., w;). Assume that w, + u’. Then,
combining P’ with (w,, w,), we obtain a joining from u’ to w, which contains u’ just
once, in the edge (u’, v"). Thus, (u’, v') is contained in (u’, ..., w,) in contradiction
with w, e U(u’, v"). Consequently, w, = u’. If we combine the path (', ..., u) not
containing u” with (u, ..., w, u’), we obtain a joining v’ to u’ containing u’ just once,
in (w,u’). But (v',...,w;) = P combined with (w;,u’) is a joining from v’ to u’
containing u’ just once, in (w;, u’). Consequently, w, = w’. The proof is complete.

(2,5) The relation of inferiority of edges in G is transitive but neither reflexive
nor symmetric.
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Proof. According to 3° of (2,4) it is sufficient to prove the transitivity. Let (u’, v")
be inferior to (u, v) and (u”, v”) inferior to (u’, v). If we combine the path (u, ..., u")
not containing (u, v) with the path (u’, ..., u"), we obtain according to 1° of (2,4)
a path from u to u” not containing (u, v). Similarly, the combination of the paths
", v",...,u") and (v, ..., u) yields a path from u” to u containing (u”, v"). Thus,
(u", v") is inferior to (u, v) and the proof is complete.

Remark. It can easily be proved that if an edge (u’, v") of G is inferior to a vertex u
and if (u”, v") is inferior to (u’, v'), then (u”, v") is inferior to u. Further, an analogous
argument as in (2,4) proves that if (u’, v') is inferior to u then U(v’, v') = U(u) and
the edge (w', u’) in the path (u, ..., w’, u") is the only edge of the form (w,, w,) such
that w; e U(u), wy ¢ U(u’, v'), w, e U(u’, v').

For the sake of completeness, we shall conclude this section by proving the follow-
ing characterization of e-simple graphs:

(2,6) A graph is e-simple if and only if each its strong component (i.e. a maximal
subgraph with the property that each vertex of it can be joined with any other
by a path) is a union of cycles, each two of which have at most one vertex in
common and such that this union contains no other cycles.

Proof. Let a graph G be e-simple and let E be the set of all edges of G contained
in at least one cycle. If e e E, let C(e) denote the corresponding (unique) cycle.
Then, U C(e) has the strong components of G as its components. From (2,1) it

ecU

follows that each two of the cycles C(e) either concide or have at most one vertex
in common. The first part of the theorem follows then immediately.

Let a graph G have the mentioned property. Then, each edge of G is evidently
contained in at most one cycle and G is e-simple. The proof is complete.

3. Results. In this section, we shall prove the main theorems.

(3,1) Let C = [c(u, v)], u, v € U, be a linear (auxiliary) mapping in a partititoned
vector space X =Y X(u), u € U, whose graph G is e-simple. Let c(u, u) be regular
for all u e U. Let us define a linear mapping B = [b(u, v)] in X in the following
manner:

) b(u,u) = c(u,u) for ueU; if us%v then b(u,v)=
= Ye(u, wy) 7wy, wy) (W, wa) €7 H(way Wy) .. €7 H (Wi, W) (Wi, )

where the sum is extended over all paths (u, Wy, Wy, ..., Wy, V) in G from u to v.

Further, let us define for each edge (u,v) € G a linear mapping m(u; v) in X(u)
in the following way:

(2) m(u; v) = c(u, u) — c(u,v) ¢ (v, v) c(v, wy) ... ™ (Ws, W) (W, 1) ,
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if there exists a (unique) cycle (u, v, wy, ..., w,, u) in G containing the edge (u, v);
W!(u; v) = c(u, u) otherwise.
Then:

1° If one edge (u,v) in a cycle of G has the property that the corresponding
mapping m(u; v) is regular then each other edge of this cycle has this property
as well.

2° The mapping B is regular if and only if m(u;v) is regular for each edge
(u’ U) e@G.

3° If Bisregular then its inverse mapping B™* = A = [a(u, v)] is determined by:

3) a(u,u) = ¢ 'u,u) + Y [m 'u;w) — ¢ Mu,u)], uelU;

w;(u,w)eG
a(u,v) = — m™Yu; v) c(u, v) ¢ (v,v) if wu=+v, (u,0)eG;
a(u, v) = 0 if u * v and there is no edge (u, v) in G.

4° G is the graph of A.

Proof. Let first u, v, w be elements from U, u + v, and let b(w; u, v) denote a sum
analogous to (1) but extended over those paths (u, ..., v) only which do not contain
w(if w = u or w = v then of course b(w; u, v) = 0). We shall prove that, if u and w
are in a cycle Z of G,

4) b(u, v) = b(u, w) ¢~ *(w, w) b(w, v) +
+ [e(u, u) — b(u, w) ¢~ (w, w) b(w, u)] ¢~ *(u, u) b(w; u, v) .
To prove this, notice that (4) is true if w = u or w = v. If u & w = v, it follows
from (2,1) that every path in G from u to v (if there is any) has with Z either the only
vertex w or a segment (W, ..., u’) of Z in common. Thus, we obtain all paths from u

to v which pass through w if we combine the path (u, ..., w) with all possible paths
from w to v, not passing through u. That means according to (1) that

5) b(u, v) = b(w; u, v) + b(u, w) ¢~ (w, w) b(u; w, v).
Analogously,
b(w, v) = b(u; w, v) + b(w, u) ¢~ (u, u) b(w; u, v) .
By elimination of b(u; w, v) we obtain (4).
Further, it is easy to see thatif u + v then
©) b(u, v) = Y.c(u, w) c=*(w, w) b(u; w, v)

where we define b(u; v, v) = b(v, v) and the sum is extended over all vertices w e U
for which (u, w) € G. '

Let now (u;, 4,) be an edge of G and let m(uy; u,) be singular. Then, according to
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the definition of m(uy; u,), (uy, u,) is contained in a cycle Z = (uy, Uy, ..., Uy, ty),
k = 2, and there exists a non-zero vector x, € X(u,) such that

@) xym(ug;u,) =0.
Let us denote by x; (j = 2, ..., k) the vector
(®) xXj = xy bug, uy) ¢ (uyu) -
IfveU, v # uy, (4) yields that
) xy b(uy, v) = x; b(ug, u;) e (uj, uj) b(uj, v)

since c(uq, uy) — b(uy, uy) ¢ (uy, uj) bluj, ug) = m(uy; uy). If v = uy, (9) is fulfilled
as well. Thus,

(10) xq b(uy,v) = x; b(u;,v) foreach veU.
It follows that x; are non-zero vectors for j = 1,2, ..., k and (if we put u; ., = u,)

xjmug ujyg) = Xq buy, ug) ¢ (uy, uy) [e(u;, uy) —
— b(uj,ug) e (uy, ug) b(ug,u;)] =0.

This proves 1°. Moreover, in this case the non-zero vector y = x; — x, has the
property that yB = 0 according to (10) for j = 2. Consequently, B is then singular.
This proves “only if”” in 2°.

Let now m(u; v) be regular for each edge (u, v) € G. Then, the mapping A defined
in (3) exists. Thus, to prove both 3° and the remaining part of 2° it is sufficient to
show that ) a(u, w) b(w, v) is the identity mapping e(u) in X(u) if v = u and zero

welU

if v & u.
But

Y. a(u, w) b(w, u) = a(u, u) b(u,u) + Y. a(u, w) b(w, u) =

welU w;(u,w)eG

= w Y [m M wsw) - e )]} el u) -

w;(u,w)eG

— Y mT (us w) c(u, w) e (w, w) b(w, u) = e(u) +

w;(u,w)eG

+ Y {m7(u; w) [e(u, u) — c(u, w) ™ (w, w) b(w, u)] — e(u)} = e(u)

w;(u,w)eG
since
c(u, u) — clu, w) ¢~ (w, w) b(w, u) = m(u; w).
If v + u then
Y a(u, w) b(w, v) = a(u, u) b(u, v) + Y. a(u, w) b(w, v) =

welU w;(u,w)eG

=c Mu,u)blu,v) + { Y [m (u;w) — ¢ (u, u)]} b(u, v) —

w;(u,w)eG

- Y m(u; w) c(u, w) e (w, w) b(w, v) .

w;(u,w)eG
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Let us denote by M, N resp. the sets of those w € U for which (u, w) € G and (u, w)
is resp. is not contained in a cycle of G. Then, by (4) and (5),

> a(u, w) b(w, v) = ¢~ *(u, u) b(u, v) +

welU

+W€ZM{’"—1(“; w) [b(u, v) — c(u, w) ¢~ '(w, w) b(w, v)] — ¢~ *(u, u) b(u, v)} —
= 2 ¢ (u, u) c(u, w) ™ (w, w) b(w, v) ="t (u, u) b(u, v) +

+w§l{c_1(u, u) b(w; u, v) — ¢~ *(u, u) b(u, v)} +
+w;v ¢~ Y(u, u) c(u, w) ¢~ *(w, w) b(w, v) = ¢~ *(u, u) b(u, v) +

- > ¢ Yu,u) c(u, w) c"*(w, w) b(u; w,v) = 0 according to (6).

weMuUN

It remains to prove 4°. But this is an easy consequence of (3). The proof is complete.

(3,2) Let C = [c(u, v)], u, veU, be a symmetric linear mapping in a parti-
tioned unitary vector space X = Y X(u), u e U, whose graph G is e-simple.') Let
c(u, u) be regular for all u eU. The mapping B defined by (1) (where the sum
consists of at most one term) is positive definite if and only if each c(u, u) is positive
definite as well as the mappings m(u;v) = c(u, u) — c(u, v) ¢~ (v, v) c(v, u) are
positive definite for all edges (u, v) € G.

Proof. It is easy to prove this if U has one or two elements. In the last mentioned
case U = {l, 2} it follows from the relation

{xB, x) =
= {[x(1) + x(2) e(2. ) c™'(1, )] (1, 1), [x(1) + x(2) c(2, 1) ¢~ (1, D]) +
+ <x(2) [¢(2,2) — e(2, 1) c71(1, 1) ¢(1, 2)], x(2)>

where x = x(1) + x(2), x(i) € X(i), i = 1, 2.

From this and the fact that if B = [b(u, v)], u, v € U, is positive definite in X =
=Y X(u), u eU, then all mappings B[V] = [b(u, v)], u,veV < U, are positive
definite as well, follows the necessity of the condition. We shall prove the sufficiency
by induction with respect to the number n of vertices in G. If n = 1 or if there is no
edge in G, our assertion is true. Thus, let n = 2 and let there exist an edge in G,
contained in a component K of G. Since K is a tree (with at least two vertices),
there exists an end-vertex u in K such that (u, v) is the unique edge in G from u.
Consequently,

(11) b(u, z) = c(u, v) ¢ (v, v) b(v,z) foreach zeU, z + u.

If Uy = U — {u}, B, = B[U,] then the graph G, of B, is e-simple, too, and has
n — 1 vertices. Since B, is generated in the same manner as B, the induction hypo-

4) This means that each component of G is a tree.
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thesis yields that B, is positive definite. But if x € X, x = x(u) + x;, x(u) € X(u),
x; € Y X(v) for v € Uy, it follows from (11) that

<xB, x) = {x(u) [e(u, u) — c(u, v) ¢™H(v, v) c(v, u)], x(u) +
+ {[xy + x(u) c(u, v) ¢ (v, v)] By, [x; + x(u) c(u, v) ¢~ (v, v)]) .

Let x = 0.If x(u) = 0, the first member of the right-hand side is positive according
to our assumption, the second being non-negative. If x(u) = 0, x; # 0and {xB, x) =
= {x;By, x;) > 0 as well. Thus, B is positive definite and the proof is complete.

(3,3) Theorem. Let A = [a(u, v)], u, v € U, be a linear mapping in a partitioned
vector space X = EX(u), u € U, whose graph G is e-simple. Let there exist a solution
of the following system (12) with unknown mappings c(u,u) in X(u) for each
u eU and c(u, v) of X(u) into X(v) for those pairs u, v for which (u, v) is an edge
of G:

(12)  a(u,u) =cMw,u)+ Y [mT'usw) — ¢ N(u,u)], uelU,

w;(u,w)eG

a(u,v) = — m~(u; v) c(u,v) c"'(v,v) iIf u+v, (u,v)eG,
where we denote by m(u; v) etc. the mapping
m(u; v) = c(u, u) — c(u, v) (v, v) c(v, wy) ... ¢~ (W, wy) c(w,, 1)
if there exists a (unique) cycle (u, v, wy, ..., wy, u) in G containing the edge (u, v);

m(u; v) = c(u, u) otherwise.
Then, the inverse mapping A™! = B = [b(u, v)] exists and is determined by

(1) b(u,u) = c(u,u) for ueU; if u+v then b(u,v)=
= Y, wy) ¢ (Wi, we) e(wi, wa) €7 (way wy) oen €7 (Wi W) (Wi, 0)
where the sum is extended over all paths (u, wy, w,, ..., W, 0) in G from u to v.

Moreover, the solution of (12) exists if and only if the following algorithm is
available:

Associate with each edge (u,v) € G a linear mapping r(u; v) in X(u) as follows
supposing that all of them are regular:

r(u; v) = a(u, u) if the weight h(u,v) = 0; if h(u,v) > 0 put by induction with
respect to the weights
(13) r(us v) = a(u, u) + Y(=1)" alu, wi) 17 (wgs w5) alwy, w,) .

T (was wy) a(wa, wa) o T (W w) a(wy, u)

where the sum is extended over all cycles (u, wy, w,, ..., W, u) in G which contain u
but not (u, v).

If u e U, let a mapping r(u) in X(u) be defined by an analogous sum (14) as in (13)

but extended over all cycles in G containing u without exception. Suppose that
these mappings are all regular as well.
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Then, the solution of (12) is
(15)  c(u,u) =r~*(w), c(u,v) = —r~*(u;v)au,v)r~'(v) for (u,v)eG.

Finally, this solution exists if and only if all mappings A[U(u)] and A[U(u, v)]
withu € U and (u, v) € G are regular. Especially, if A is symmetric positive definite
(in a unitary space), this condition is fulfilled.

Proof. If there exists a solution of (12) then c¢(u, u) is regular for each u e U as
well as m(u; v) for each edge (u, v) € G. Thus, it is possible to define the mappings A
and B in (3,1) given by (3) and (1). According to this theorem, these mappings are
inverse to each other. But since our original mapping A4 coincides with the mapping A
from (3), B is of the form (1) or (1’) as asserted.

To prove the second part, observe that the possibility of inductive definition of
the mappings r(u; v) in (13) follows from (2,2) and 3° of (2,4). Thus, let the algorithm
(13) and (14) be available and let c(u, u) and c(u, v) be defined by (15). Let us show
first that the corresponding mappings m(u; v) (for (u, v) € G) fulfil

(16) m(u;v) = r~'(u;v).
This is true if there is no cycle in G containing (u, v) since then m(u; v) = c(u, u) =
= r~Yu) = r"}u; v). If (u, v, wy, ..., w,, u) is such a (unique) cycle, then according

to (2'), (13) and (14)

c(u, u) — m(u; v) = (=1)° r~(u; v) a(u, v) r~(v; wy) a(v, wy) ...
vt wg u) a(wg, u) i w) = — r N us 0) [r(u) — r(us 0)] r N (u) =

= —r u;0) + r ') = c(u, u) — r(u; v)

which completes the proof of (16).

Now, it is easy to see (using (13) and (14)) that the mappings c(u, u) and c(u, v)
fulfil the system (12). Conversely, if there exists a solution ¢(u, u) (for u € U) and
c(u, v) (for (u,v) e G) of (12) then all mappings c(u, u) as well as the mappings
m(u; v) defined by (2') are regular. If we define r(u; v) as m™'(u; v) and r(u) as
¢ !(u, u), then it follows easily from r~*(u; v) a(u, v) = — ¢(u, v) ¢~ *(v, v) (according
to the second relation in (12)) and from both parts of (12) that (13) and (14) are
fulfilled. Thus, the algorithm is available.

To prove the last assertion of the theorem, let us prove the following two state-
ments:

A. Let (u, v) be an edge of G and let all mappings r(w,; w,) exist and be regular
for which (w4, w,) € G is inferior to (u, v). Then:

1° If yA[U(u, v)] € X(u) for a vector y = Y y(z), ¥(z) € X(z), then

(17) yA[U(u, v)] = y(u) r(u; v)
and
(18) y(w') a(w', w) + y(w) r(w; w") =0
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whenever w e U(u, v), w # u, where (u,...,w’,w),(w, w’,...,u) are the (unique)
paths in G from u to w (not containing (u, v)) and from w to u.

2° If y(u) is a vector from X(u) and if vectors y(w) (u & w € U(u, v)) are defined
inductively by (18) with respect to the length of the path (u, ..., w), then (17) is
fulfilled for y = Y y(z), z € U(u, v).

B. Let u e U and let all mappings r(w,; w,) exist and be regular for which (w,, w,) €
e G is inferior to u. Then:

1° If yA[U(u)] € X(u) for a vector y = Y ¥(z), y(z) € X(z) then
(19) YA[UW)] = y(u) r(u)
and (18) holds where (u, ..., w', w), (w, w”, ..., u) are paths in G.

2° If y(u) is a vector in X(u) and if vectors y(w) (w % u, w € U(u)) are defined
by (18) inductively with respect to the length of (u, ..., w), then (19) is fulfilled for
y = 2¥()

To prove A, we shall proceed by induction over the weight h(u, v). If h(u, v) = 0,
both parts are fulfilled in a trivial way. Thus, let h(u, v) > 0 and suppose that the
assertion is true for all edges (u’, v') € G, for which h(u’, v') < h(u, v). Let yA[U(u, v)] e
e X(u)andletw + u,w e U(u, v). If (u, ..., w', w), (w, w", ..., u) are the corresponding
paths in G, then (w, w") is inferior to (u, v). From 4° of (2,4) it follows that, if y
denotes the vector y = Y y(z), then

zeU(w,w")

AV ] = 1Y @)= S S ()2 -

z,2’eU(w,w z'eU(w,w"”) zeU(u,v)
— y(w") a(w', w) = — y(w) a(w’, w) € X(w) .

Since h(w, w”) < h(u, v) according to 3° of (2,4) and since the induction can be
applied according to (2,5), the induction hypothesis yields that

}A[U(w, w)] = y(w) r(w; w").
Consequently,
y(w) a(w’, w) + y(w) r(w; w") = 0
as asserted in (18).
Further, let Cy, C,, ..., C; be all cycles in G passing through u and not containing

(u, v),

Then,

Ci=(u,v,wy..zpyu), i=12..k.
YA[U(u, v)] = ) )y(z) a(z, u) = y(u) a(u, u) +
zeU(u,v h

#3320 o ) = 200 [ ) +

"ﬂi(N 15 Ya(u, v;) r~ (v wy) a(vs, wy) ... 774z u) a(z;, u)]
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according to 1° of (2,4) where s; denotes the number of distinct vertices in C,. Thus,

yA[UGw, 0)] = y(u) r(u; v)
by (13).
This proves not only (17) but also the fact that the definition of y in 2° which is
possible according to (2,1) implies that

> w(z)a(z, u) = y(u) r(u; v) .

zeU(u,v)
It remains to prove that from this definition it follows that

Y y(z)a(z,w) =0 if weU(u,v), w+ u.

zeU(u,v)

Let thus w #+ u and let (u, ..., w’, w) (not containing (u, v)) and (w, w’, ..., u) be
the corresponding paths in G. Then, in U(w, w”), the analogous vector y = Y ¥(2)

zeU(w,w"”)

is defined according to 1° of (2,4) in the same manner by y(w) as y by y(u). Conse-

quently,
o )y(Z) a(z, w) = y(w) r(w; v"),
zeU(w,w"”
so that by 4° of (2,4)
; )y(Z) a(z, w) = y(w) a(w’,w) + 3 )y(Z) a(z, w) =
zeU(u,v zeU(w,w”

= y(w')a(w', w) + y(w) r(w; w") = 0
by the definition of y(w). The proof of A is complete.
To prove B, let yA[U(u)] e X(u), y = Y, ¥(z), y(z) € X(2). If weU(u), w = u,
zeU(u)

andy = Y y(z) where (w, w”, ..., u) is the path from w to u, then

zeU(w,w")

yA[Uw, W] = ¥ )y(Z)a(Z,Z')= Y X za(zz) -

z,z’eU(w,w” z'eU(w,w"”) zeU(u)
— y(w") a(w', w) = — y(w') a(w’, w) € X(w)

according to the remark in section 2. Consequently, it follows from 1° of A that "
yA[U(w, w")] = p(w) r(w; w”) so that (18) in 1° of B holds. To prove both (19) and

the converse part 2° of B, it is sufficient to use quite analogous methods as in the

proof of A.

We are now able to conclude the proof of the theorem. Suppose first that all
mappings A[U(u, v)] and A[U(u)] exist and are regular. Then, an easy induction
over the weights h(u, v) shows that all mappings r(u; v) exist and are regular: If
(u, v) is an edge in G such that h(u, v) = 0, then r(u; v) exists and is regular. Let
h(u, v) > 0 and suppose that r(u’, v") all exist and are regular if h(u’, v") < h(u, v). Then,
r(u; v) exists by (13). Let r(u;v) be singular, y(u)r(u;v) = 0 where y(u) + 0,
y(u) € X(u). Then yA[U(u, v)] = 0 as well if y # 0 is defined as in 2° of assertion A
according to (17) in 2° of A, which is a contradiction.

584



An analogous argument based on 2° of B shows that all mappings r(u) exist and
are regular as well.

Conversely, let all mappings r(u; v) and r(u) exist and be regular. Then,
yA[U(u,v)] =0, y = > p(w), y(w) e X(w) implies that all vectors y(w) are zero

weU(u,v)
according to (17) and (18) in 1° of assertion A. Analogously, A[U(u)] is then regular
by assertion B. The proof is complete since the rest is obvious.
Remark. If 4 is symmetric (in a unitary space), then the mappings r(u) and r(u; v)
are all symmetric, too.

34 Let F = [f(u,v)], u,veU, be a symmetric positive definite mapping in

a partitioned unitary vector space X =Y X(u), u € U, such that f(u, u) is identity
in X(u) and the graph G of the inverse mapping is e-simple. Then:

1° f(u,v) = 0if u + v and there is no path in G from u to v,
fu,v) = flu, w) f(w, wy) ... f(w,0) if u%v
and (u, Wy, ..., Wy, v) is such a (unique) path,
2° the Euclidean norms of f(u, v)
n(u, v) = sup {[Ix(u) f(u, V)II; x(u) € X(u), |x(u)| < 1}
(where ||x||* = {x, x)) have then the property that

n(u, v) < 1
ifu=%v,uvel.

Proof. The first part follows immediately from the preceding theorem. To prove 2°,
let (u, v) be an edge in G. Since F is positive definite, it follows from (3,2) that e(u) —
— f(u, v) f(v, u) is positive definite where e(u) is the identity mapping in X(u).

Thus, if x(u) € X(u), x(u) * 0, [x(u)] £ 1,

0 < (x(u) [e(u) — f(u, 0) f(v, w)], x(u)) = {x(u), x(u)) —
— <x(u) f(u, v), x(u) f(u, 0)y = 1 — [x(u) f(u, V)] .
Consequently, [[x(u) f(u, v)| < 1 and, since X is finite-dimensional, n(u, v) < 1.
The general case in 2° follows then from 1° and the submultiplicative property of
the Euclidean norm.

4. Concluding remarks. Let us show first that the task of inversion partitioned
matrices of the type mentioned occurs at solving important problems of the numerical
praxis. Thus, if we solve the Dirichlet problem for a simply connected region in the
plane by finite difference methods using the most simple square lattice, then this
lattice (without the boundary points) can be identified with the graph of the (not
partitioned) matrix of the corresponding linear system. This graph is in general not
e-simple. But, if we group the unknowns properly, e.g. so that we collect to one group
those unknowns which form a connected segment of each ‘‘horizontal” lattice line,
we obtain a partitioned matrix of the system whose graph is e-simple.
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The relations in Th. (3,3) may have an importance at numerical inversion since
they show that there exists a one-to-one correspondence between the mappings
a(u, u) and a(u,v) — for (u,v) e G — on one side and c(u, u) and c(u, v) on the
other side, provided that these mappings exist. This correspondence is according to
(12) of a very simple kind in one direction. That may help to improve an approximate
solution by iterative methods. The direct solution given by (13)—(15) contains
perhaps too much inversions than to be of greater practical value. On the other side,
the knowledge of elements ¢(u, u) and c(u, v) enables us to evaluate all elements of 4
by simple formulas (1°). If 4 is positive definite, this procedure is numerically stable
in the following sense:

Let us put?)

[e(u', w)] 712 c(u’, v') [e(v', v)] 712 = f(u', ')
if (u’, v') e G; then,
b(u, v) = [c(u, u)]'? f(u, w,) f(W1, W) ... f(Wgs 0) [ (v, v)]*/?

where (u, Wy, W,, ..., W, v) is the path from u to v in G. But (3,4) shows then that
the Euclidean norms of f(u, wy), f(wy, w,), ..., f(w,, v) are all smaller than one.
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Pe3rome
Ob OBPAIIEHUUW KJIETOUHBIX MATPUL]
MUPOCJIAB ®UIJIEP (Miroslav Fiedler), IIpara

Jloxa3bIBAIOTCS TEOPEMBI O CBOMCTBAX MATPHIIBI, 00PATHOM K KJIETOYHON MaTpPHIIE,
KJIETOYHBIH Tpad KOTOPO# TaKOB, YTO BCSKOE ero pedpo Comep UTcs He Ooiee ueM
B ofHOM LuKJe. I[Ipu orpaHUYeHUsIX, KACAIOLIMXCS HEBBIPOXKICHHOCTH HEKOTOPBIX
TJIABHBIX MHHOPOB 3TOM MAaTpHIBL, TNMPUBEACHBI peKyppeHTHbIe (OPMYJIBI IS
HaX0XJICHUs 0OPaTHON MaTPHIIBI TP MTOMOLIM KOHEYHOTO Yuciia maros. Ilpu sTom
00palaroTCs TOJIBKO MATPUIBI MEHBIIIETO IMOPSIKA.

2) Since c(’, w') is positive definite, a positive definite mapping [c(«’, u’)] ™% exists.
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