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YexocI0BaUKHi MAaTeMaTHYeCKHil kypHa, T. 13 (88) 1963, Ilpara

ON BIANALYTIC SPACES

ZpENEK FroLik, Praha
(Received August 15, 1961)

Bianalytic spaces are introduced and studied. A metrizable space X is
bianalytic if and only if X is a separable Borel subset of some complete
metrizable space (and consequently, if X < Y and Y is metrizable, then X
is a Borel subset of Y). An intrinsic characterization of Borel subsets of
complete metrizable separable spaces is given.

1. NOTATION AND TERMINOLOGY

1.1. A centered family of sets is a family with the finite intersection property.

1.2. If ./ is a family of sets, then ., and .#; will be used to denote the family
consisting of all countable unions and countable intersections of sets from .. The
meaning of .#; is clear.

1.3. Let . be a family of sets. The symbol B(.#) will be used to denote the smallest
family of sets containing .# and closed under countable unions and countable
intersections. Let M be the union of .#. The complemented part of .#, denoted by
compl. p. A, is the family {P; P e 4, (M — P) e M}.

Finally, the symbol #*(.#) will be used to denote the smallest family A" of sets
containing .#, closed under countable unions and intersections and such that P ¢ A~
implies (M — P) e A Clearly

M < compl. p. B(M) = B(M) = B*(M)
and
' compl. p. B¥(M) = B*(M) .

1.4. The letter N always denotes the discrete space of all positive integers. The
letter S always denotes the set of all finite sequences of positive integers. The set of
all s € S of lenght n will be denoted by S,. The topological product N" will be denoted
by X.

Ifo = {6,,0,,...} eZand s = {5, ..., 5,} €S, then o > s means that s is a section
of o, i.e. that s; = g; for i < n.

1.5. A determining system in a family of sets . is a mapping M = {M(s)} of S
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into . A determining system is regular if always M(sy, ..., Sy41) © M(5y, ..., S,).
The nucleus of a determining system M is the set

(M) = U ) MGs).

ceX s<a

(M) denotes the family of A(M), where M varies over all determining systems
in . The sets from /() are called #-Souslin, or Souslin with respect to /.

1.6. All topological spaces under consideration are supposed to be completely
regular. If X is a space and ./ is a family of subsets of X, then .#* or merely .#
denotes the family consisting of closures of all sets from ..

1.7. If X is a space, then

1.7.1. F(X) and G(X) denote the family of all closed (all open, respectively) subsets
of X.

1.7.2. Z(X) denotes the family of all zero-sets of X, i.e. the family of all f~'[0],
where f varies over all continuous functions on X.

1.7.3. K(X) denotes the family of all compact subspaces of X.

1.8. A mapping of a space X onto a space Y will be called perfect if f is both
continuous and closed and if the inverse images of points are compact.

1.9. A(X) will always denote the Cech-Stone compactification of X.

1.10. A class D of spaces will be called A-closed if D is closed under continuous
mappings. D is 4™ !-closed if inverse images under continuous mappings of spaces
from D belong to D.

A class C of spaces is an A-base of D if each space from D is a continuous image
of a space from C. Using perfect mappings instead of continuous we obtain the defi-
nitions of a P-closed class, a P~ !-closed class, and a P~ 1-base, respectively.

2. PRELIMINARIES

If X is a metrizable space then
(M B(F(X)) = B*(F(X)) = B(G(X))

because every open set is an F,. In this case the elements of (1) are called Borel sets
of X. The theory of Borel sets was developped in the case of complete metrizable
separable spaces. In this case M < X is a Borel set in X if and only if both M and
X — M are analytic in the classical sense (that means, both M and X — M are
continuous images of the space X of all irrational numbers of the unit interval <0, 1)
of real numbers). The proofs of the majority of deeper results concerning Borel sets
essentially depend on the theory of analytic spaces.

Each of the following families could be considered as a generalization of Borel
subsets of metrizable spaces:

A(F(X)), 2G(X), B*FX)) = B*GX),
B(Z(X)) = BX(Z(X)) »
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compl. p. B(F(X)). All these families are indentical if X is metrizable. In general all
these families are different. The study of each of the above listed families is of certain
importance. With the exception of the compl. p. #(F(X)), all of these families has
been studied by several authors, usually in connection with measure theory in topo-
logical spaces. V. SNEIDER introduced the family %(K(X)) as a generalization of
Borel subsets of complete metrizable separable spaces. Continuous images of spaces
belonging to #(K(X)) for some X, the so-called analytic spaces, were studied by G.
CHOQUET, M. S1oN and the author.

In the present note we shall study the above listed families for bianalytic X. A space
will be called bianalytic if both X and K — X are analytic for some compact space K
containing X, or equivalently, if X is a Baire set') of some compact spaces.

In section 3 an interval definition of analytic spaces is given and some older results
of G. Choquet, M. Sion and the author are reproved. Moreover certain new theorems
are proved.

Section 4 is devoted to a generalization of the first Luzin separation theorem. It is
proved that if {X,} is a disjoint sequence of analytic subspaces of a space Y, then
there exists a disjoint sequence {B,} of Baire sets of Y (i.e. B, e #(Z(Y)) with B, o X,,.

From this fact two theorems concerning the equality of #(F(X)), £(Z(X)) and
the complemented part of Z(F(X)) are deduced.

In section 5 bianalytic spaces are introduced and studied.

3. ANALYTIC SPACES

By definition, a space X isan E-space if X is an F_;in the Cech-Stone compactification
B(X) of X. If X is a K,,(Y) for some Y > X, then X is an E-space. The continuous
images of E-spaces are said to be analytic. By [4], a space X is analytic if and only
if there exists an analytic structure in X. For convenience, let us recall that an analytic
structure in a space X is a complete regular determining system M in X such that
& (M) = X, and a complete determining system in a space X is a determining
system M, where M(s) = X, such that the following condition is fulfilled: If .# is
a centered family of subsets of X and if there exists a ¢ € X with

seS, s<a=M(s)>L(s)ed ?)

then the intersection of .# is non-void.
Proposition 1. Let M be a regular determining system in a space X and put

@ M(o) = N M(s).

s<a

If M is complete, then all M(c) are compact and the following condition is satisfied:

1) A Baire set of X is an element of #(Z(X)).
2) Such a family .# will be called an M-Cauchy family.
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(*) If U is an open set containing an M(c), then there exists a neighborhood V
of o in X, such that

(3) teV=>M(x)<=U.

Conversely, if M is a mapping of X to K(X) such that the condition (*) is fulfilled
and

©) Li M(o) = X,
then M = {M(s)}, where
© M) = U M),

is a complete determining system in X with (M) = X.

Proof. The first part of the proposition was proved in [5]. Let M = {M(s)}
satisfy the condition of the second part of Proposition 1. Let .# be a maximal M-
Cauchy family. There exists a ¢ € X such that

(6) seoc= M(s)e M.

To prove () 4 + 0, it is sufficient to show that .# n M(c) is a centered family of
sets. From condition (*) it follows immediately that if a closed set F meets each M(s),
then F meets M(o). Thus .# n M(o) is centered and the proof is complete.

As a corollary of the preceding Proposition 1 we have:

Theorem 1. A space X is analytic if and only if there exists a mapping M of X
to K(X) such that the union of all M(o), 6 € X, is X, and the condition (*) is fulfilled.

Let us recall (for proofs see [5]), that the class of all analytic spaces is A-closed,
P~ !closed, countably productive®) and F-hereditary. Every analytic space is a Lin-
delof space, and consequently, a normal space. A metrizable space X is analytic if
and only if X is analytic in the classical sense, which means that X is the image under
a continuous mapping of the space X of irrational numbers of the unit interval of
real numbers. Finally, the family of all analytical subspaces of a given space is
closed under the operation (&), and if X is an analytic subspace of a space Y, then
X e Z(FK(Y)).

The following result will not be used in the sequel:

Theorem 2. A space X is the inverse image under a perfect mapping of X (i.e.

X e P~1(2)) if and only if there exists an analytical structure U in X such that
_ the following two conditions are fulfilled:

(a) {U(s); s €S,} is disjoint for every n.
(b) all U(s) are open (and hence closed) and non-void.
Proof. For every s € S put

©) 2(s)={0;0¢Z 0>s}.
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Clearly £ = {Z(s)} is an analytical structure in X satisfying (a) and (b) reading X
instead of U). Let f be a perfect mapping of a space X onto the space . For every
s €S put

U(s) = f7'[2()] -

Clearly the conditions (a) and (b) are fulfilled. By proposition 1, U is an analytic
structure in X.

Conversely, let U be an analytic structure in X satisfying (a) and (b). Put
®) U(e) = NU(s)-

s>a

By our assumptions the sets U(c) are compact non-void and disjoint. For x € U(o)
put f(x) = . It is easy to see that f is a perfect mapping of X onto 2. The continuity
is clear from the facts that the family of all sets 2(s), s =S is an open base of ¥ and
the sets U(s) = f ~'[2(s)] are open. The sets f ~'[¢] = U(c) are compact because U
is an analytic structure. It remains to prove f is a closed mapping. Let F be closed
in X and let o be a point of £ — f[F]. Since F n U(a) = 0, we have by Proposition 1
that there exists a s < ¢ with U(s) n F = 0. It follows that 2(s) n f[F] = @ which
shows that ¢ is not in the closure of f[F]. Thus f[F] is closed. This completes the
proof.

4. SEPARATION OF ANALYTIC SPACES

By a classical theorem of Luzin (¢f. [7], 393), if X and Y are disjoint analytic
subsets of a complete metrizable space T, then there exists a Borel set B of T such
that X < B <« T — Y. This result has the following generalization.

Theorem 3. Let X, and X, be two disjoint analytic subspaces of a space X.
There exists a set B € B(Z(X)) such that

9) X, cBcX-X,.

Proof. For convenience, two subsets X, and X, of X will be called B-separated
if there exists a set B € Z(Z(X)) such that (9) holds. First we shall prove the following
simple result:

Lemma. If P=) P, and Q =\ Q, are subsets of X, and every P, and Q,
n=1 n=1

are B-separated, then P and Q are separated.
Indeed, if B,,, B-separates P, and Q,, then the set

B

s

B=U

n=1m=1

nm

separates P and Q.

3) Countable products of analytic spaces are analytic.
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Now let X; and X, be two disjoint analytic subspaces of X. Let P = {P(s)} and
Q = {Q(s)} be analytic structures in X, and X,, respectively. For every t €S put

P, = U NP,

ocX(t)r<o
2= U NQO).
geX(t)r< o
Clearly
(11) Pi(s) = P(s), Qy(s) = O(s)
and .

Pl({sla cees S,,}) =k91P1({sl’ vees Spy k}) >

0ulfs1s++5) = U Q{51 o5 ).

Now suppose that X; and X, are not B-separated. Using the above Lemma
one can construct by induction g, T € X such that for every n = 1, 2, ... the sets
P;({oy, ..., 0,}) and Q,({zy, ..., 7,}) are not separated. Put

P(o) = N P(s), Q(r) =N Q(s).
s<o t<t
The sets P(0) and Q(t) are disjoint (because X, and X, are disjoint) and compact
because P and Q are analytical structures. It follows that there exists a zero-set Z
such that

Plo)cintZc Z < X, — Q7).
By Proposition 1 there exists an n such that

P{oy,...,0,}) = Z,
O{rysecnt}) =X —Z.
By (11) P,({o4, ..., 0,}) and Q,({ry, ..., 7,}) are also B-separated which contradicts
our construction of ¢ and 7 and completes the proof.

Note 1. In [9] the following result is proved: If X; and X, are disjoint subsets
of a space X and if X;, X, € #(K(X)), then there exists a B € Z(K(X)) such that
X, © B < X — X,. The proof of this theorem is similar to that of Theorem 3.

Note 2. The proof of Theorem 3 yields the following result (in particular, the
result from Note 1): Let P and Q be two determining systems in a space X and let .
be a family of subsets of X which is closed under countable unions and intersections.
If for every o € ¥ and 7 € X, there exists a positive integer n and an M e ./ such that

P({o4,...,0,}) = M = X — O({zy, ..+ 1,})
then there exists an M in .4 with
Ad(P) =M c X — Q).
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Theorem 4. If {X,) is a disjoint sequence of analytic subspaces of a space X
then there exists a disjoint sequence {B,} of sets from %(Z(X)) such that Z, < B,.

Proof. By Theorem 3 for every (n, m), n % m there exists a B(n, m) such that

X,c B(n,m)c X - X,,.
Put

Clearly {B,} has the required properties.
Note 3. The preceding theorem will be used essentially in section 5.

Theorem 5. If X is an analytic space then
(12) #B(Z(X)) = compl. p. B(F(X)) .

Proof. Since Z(X) = F(X) and #(Z(X)) = #*(Z(X)) for every space X, we have
the inclusion <. If X is an analytic space and both M < X and X — M belong
to #(F(X)), then both M and X — M are analytic, because closed subspaces of
analytic spaces are analytic and the family of all analytic subspaces is closed under
the operation o/ and clearly «/(F(X)) > #(F(X)). By Theorem 3 there exists a Z €

e B(Z(X)) with M =« Z = X — M. 1t follows that Z = M.

Note 4. I do not know of any reasonable necessary and sufficient condition for
(12) to hold.

Theorem 6. If X is an analytic space and
(13) A(F(X)) = B(Z(X))
then X is a perfectly normal space.

Proof. If (13) holds, then every open set is an analytic space, and hence, a Lin-
delof space. Thus every open set is an F,. Since X is analytic, X is normal. Thus X
is perfectly normal.

Note 5. Obviously, if X is a perfectly normal space, then F(X) = Z(X), and
consequently (13) holds. I do not know whether (13), implies that X is perfectly
normal. (This is an old problem of M. KATiTOV [6].)

5. BIANALYTIC SPACES

Definition. A space X will be called bianalytic if both X and f(X) — X are analytic.

Theorem 7. If f is a perfect mapping of X onto Y, then X is a bianalytic space if
and only if Y is such.

567



Proof. Let g be the Cech-Stone mapping of B(X) onto B(Y). Since f is perfect, by
well known result we have

(14) g[BX) — X] = p(Y) - Y.

Thus if both X and B(X) — X are analytic, then also both Y and B(Y) — Y are
analytic. From (14) it follows at once that the restriction of g to f(X) — X is a perfect
mapping onto B(Y) — Y. Since the inverse image under a perfect mapping of an
analytic space is analytic if Y is bianalytic then X is analytic.

Theorem 8. The following conditions on a space X are equivalent:

(1) X is a bianalytic space.

(2) There exists a compactification K of X such that both X and K — X are
analytic spaces.

(3) X is analytic and for every compactification K of X the space K — X is
analytic.

(4) X e B(Z(B(X)))-

(5) For some compactification K of X we have X e B(Z(K)).

(6) For every space Y > X, X = Y, we have X € B(Z(Y)).

Proof. The equivalence of conditions (1)—(3) follows from Theorem 7. From
Theorem 6 it follows at once that (1) implies (4). Clearly (4) implies (5). If K is an
analytic space, then every set from «/(F(K)) is an amalytic space. Since &/(F(K))
contains #(Z(K)), we have that (5) implies (2). It remains to prove that (6) is equi-
valent with (1)—(5). Obviously (6) implies (4). Finally, suppose (3). Let Y > X,
X =Y. Let K be a compactification of Y. By (2), X € Z(Z(K)). Obviously X e
€ #B(Z(Y)). This completes the proof.

Theorem 9. Closed subspaces of bianalytic spaces are bianalytic.

Proof. Let X be closed in a bianalytic space Y. Then the space
zZ=X'""x

is a closed subspace of the analytic space f(Y) — Y and consequently Z is an analytic
~ space. By Theorem 8, X is a bianalytic space.

Theorem 10. The topological product of a countable number of bianalytic
spaces is a bianalytic space.

Proof. Let X,, n € N, be analytic and let X be the topological product of all X,
Let K be the topological product of all B(X,). Since the topological product of
analytic spaces is analytic, it is easy to see that K — X is the union of a countable
number of analytic spaces. Since A(K) is closed under Souslin’s operation &, in
particular under countable unions, K — X is an analytic space. By theorem 8 the
space X is bianalytic.
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Proposition 2. If Yis a bianalytic space and both X < Y and Y — X are analytic,
then X is a bianalytic space.

Proof. Consider the space

(15) Z=X'"_X.
We have
(16) Z=(Z.Y)u@ZnEY) - Y).

The first term of the right side of the above equality is closed in the analytic space
Y — X and hence it is analytic. The second term is closed in the analytic space
B(Y) — Y and hence it is also analytic. Thus Z is analytic, and finally by Theorem 6,
the space X is bianalytic.

If X is a bianalytic subspace of a space Y, then Y — X may fail to be an analytic
space. Moreover, open subspaces of compact spaces, in general, are not analytic.
For example, if M is an uncountable discrete space and K is a compactification of M,
then M is open in K, but M is not an analytic space because M is not a Lindelof
space. On the other hand we shall prove the following result.

Proposition 3. If X = Y, Y — X is dense in Y and both Y and Y — X are biana-
Iytic, then X is analytic (and by Proposition 2 bianalytic.) In particular, if Y
is a bianalytic space and both X < Yand Y — X are dense in Y, then X is a biana-
Iytic space if and only if Y is such.

Proof. Let K be a compactification of Y. Obviously

X=[K-(Y-X)]nY.

Since Y'is bianalytic and Y — X is dense in Y and hence in K, the first member of the
right side is an analytic space. Since Y is (by our assumption) analytic, the space X is
also analytic.

Theorem 11. A subspace X of a bianalytic space Y is bianalytic if and only if
(17) X e compl. p. Z(F(X")) (= B(Z(X"))).

The proof follows at once from propositions 2 and 3. As an immediate consequence
of the preceding result we have the following assertion.

Theorem 12. A metrizable space X is bianalytic if and only if X is separable
and an absolute Borel set, i.e., if Y is a separable metrizable space and X < Y,
then X € B(F(Y)).

Note 6. The union of two bianalytic subspaces of a given space may fail to be
bianalytic. Indeed, N is a bianalytic space and every one-point set is bianalytic.
However, X = N u (x) = B(N), where x € J(N) — N is not bianalytic, because
B(N) = B(X) and B(X) — X is not a Lindeldf space.
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Note 7. One-to-one continuous images of a bianalytic space may fail to be biana-
Iytic. Indeed, the space X from Note 6 is a one-to-one continous image of N.

Theorem 13. The intersection of a countable number of bianalytic subspaces of
a given space is a bianalytic space.

Proof. Let X,, n € N be bianalytic subspaces of Y and let X be the intersection
of all X,. Without a loss of generality we may assume that Yis compact. Let K be the
closure of X in Y. Clearly Y, = K n X, are also bianalytic. Since X is dense in K
and X < Y, < K, the space K is a compactification of each Y,. Thus K — Y, are
analytic, and consequently, the set

K—X=G(KTK1)
n=1

is analytic.

6. INTERNAL CHARACTERIZATION OF METRIZABLE
BIANALYTIC SPACES

By a well-known classical theorem the image under a one-to-one continuous map-
ping of an absolute Borel set is an absolute Borel set.

By Note 6 of Section 5 the image under a one-to-one continuous mapping of
a bianalytic space may fail to be a bianalytic space. In this section a class of spaces
invariant under one-to-one continuous mappings is defined, such that the metrizable
spaces from this class are precisely the absolute Borel separable sets.

Proposition 4. Let X be a subspace of a space Y. Let there exists an analytic
structure M in X such that

(a) {M(s); s €S,} are disjoint,

(b) every M(s) is an analytic space.
Then X € B(F(X)). If, in addition, the closures of M(s) in Y are zero-sets, then
X e B(Z(X)).

Proof. By Theorem 4 there exist sets Z(s) € %(Z(X)) such that Z(s) > M(s) and
that the families

(18) {Z(s); s €S,}
are disjoint. We may assume Z(iy, ..., ip+1) < Z(iy, ---, i). Put
F(s) = Z(s) n M(s)" .

Since the families (18) and hence also the families {F(s), s € S,} are disjoint, we have

(19) | SF) =N U Fs).

n=1 seS,
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But

X=oM)> 4(F)> X.
Thus

X=N U F&).
n=1 seSp
Clearly M(s) € #(F(Y)) and hence X e Z(F(Y)). If in addition the sets M(s)" are
zero-sets in Y, or more generally, if M(s)" € B(Z(Y)), then F(s) € B(Z(Y)). This
completes the proof.

As an immediate consequence of Proposition 4 we have the following results:

Theorem 14. If there exists an analytic structure M in a space X such that the
conditions (a) and (b) from Proposition 4 are fulfilled, and if exists a perfectly
normal compactification of X (in particular, if X is metrizable), then X is a biana-
Iytic space.

Note 8. If M = {M(s)} is an analytic structure in X such that the families .#, =
= {M(s); s €S,} are disjoint, then {.#,} is a complete sequence*) of countable
disjoint coverings of X such that .#,, , refines .#,. Conversely, if {.#,} is a complete
sequence of countable disjoint coverings of X such that ./, refines .Z,, then there
exists an analytical structure M in X such that

M, = {M(s); seS,}.

‘Theorem 15. A metrizable space X is bianalytic (= absolute Borel separable
space) if and only if there exists a complete sequence {M,} of countable disjoint

coverings of X such that all sets from \J M, are analytic.
n=1
Proof. By Theorem 14 and the preceding Note 8, the condition is sufficient.
Conversely, let X be bianalytic. By a well-known classical theorem X is a disjoint
union of a countable set X; and a set X, which is a one-to-one continous image of Z.
Denoting this mapping by f, let .#, be the covering of X consisting of all one-point
sets (x), x e X, and all f[2(s)], s €S,. Clearly {.#,} is a complete sequence of coun-

table disjoint coverings of X, the sets from |J .#, are analytic and .4, refines /.
This completes the proof. =1
We have proved that any bianalytic metrizable space has a complete sequence

{#,} of countable disjoint coverings such that all M e) .#, are analytic. All
n=1

one-to-one images of inverse images under perfect mappings (see Theorem 2) also

have such complete sequences. For the sake of completeness we shall prove the

following result:

4) For definition see [5], [4] or [3].
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Theorem 16. A space X is the one-to-one continuous image of the inverse image
under a perfect mapping of the space X (of all irrational numbers) if and only if
there exists an analytical structure M in X such that

(a) the coverings {M(s); s €S,} are disjoint, and

(b) the sets M(c) = N M(s) are non-void and disjoint.

s<o

Proof. By Theorem 2 the condition is necessary. Conversely, let M be an analytic
structure in X such that the conditions (a) and (b) are fulfilled. Let us define a new
topology in X such that M(o) are subspaces and the sets M(s) are open. Denote
this space by Y. It is easy to see that M is an analytic structure in Y satisfying the
conditions (a) and (b) from Theorem 2. Thus Y is the inverse image under a perfect
mapping of Z. This completes the proof.

References

[1] G. Choquet: Ensembles boreliens et analytiques dans les espaces topologiques. C.R. Acad.
Sci. Paris, 232 (1951), 2174.
[2] G. Choquet: Ensembles K-analytiques et K-sousliniens. Ann. Inst. Fourier, Grenoble,
5 (1953—1954), 75— 381.
[3] Z. Frolik: On Almost Realcompact Spaces. Bull. Acad. Pol. 7X (1961), 247 — 250.
[4] Z. Frolik: On Analytic Spaces. Bull. Acad. Pol. IX (1961), 721 — 724.
[5] Z. Frolik: On descriptive theory of sets. Czech. Math. J. 73 (88), 1963, 335—359.
[6] M. Katétov: Measures in Fully Normal Spaces. Fund. Math. XXXVIII (1951), 73— 84.
[7] K. Kuratowski: Topologie 1. Warszawa 1952.
[8] M. Sion: On Analytic Sets in Topological Spaces. Trans. Amer. Math. Soc., 96 (1960),
341 —354.
[91 M. Sion: On Uniformization of Sets in Topological Spaces. Trans. Amer. Math. Soc.,
96 (1960), 237 —245.
[10] V. Sneider: Continuous Images of Suslin and Borel Sets. Dokl. Akad. Nauk SSSRy 50
(1945), 81— 83.
[11] V. Sneider: Descriptive Theory of Sets in Topological Spaces. Dokl. Akad. Nauk SSSR,
50 (1945), 77—179.

Pesome

O BUAHAJIUTUYECKHNX IMPOCTPAHCTBAX

3JEHEK ®POJIUK (Zdenék Frolik), ITpara

Ecmu X - mpoctpancTBo, To Z(X) 0G03Ha4aeT COBOKYIHOCTH BCEX MHOXKECTB
suga f~'(0), rae f — BemecTBeHHas HempepbiBHas GyHkuus Ha X. HanmmeHbiuas
CHCTEMa MHOXECTB, COZIepXXallasi JAHHYIO CUCTEMY 4 W 3aMKHYTasl IO OTHOLLCHHIO
K CYCTHBIM IIEPECEUCHHSM M COCAUHCHMsM, oGosHauaercs uepes B(.#). Cuemys

572



M. KarteToBYy, MHOXE€CTBa, NpUHAIJICKAILIME CHCTEME .@(Z(X)), Ha3BbIBAIOTCS
MHoxecTBaMu Bapa mpoctpaHcTBa X. '

B cTaThe paccMaTpUMBAIOTCS POCTPAHCTBA, TAK HA3. OMAaHATMTHYECKHE, KOTOPBIC
SIBJIAFOTCA MHOXECTBAMH B3pa B HEKOTOPOM KOMIAKTHOM IpocTpaHcTBe. Okasbl-
BAETCs, 4TO BIOJIHE PETYJISIPHOE MPOCTPAHCTBO X SIBJIAETCA OMaHAMTHYECKHM, ECIIH
M TOJBKO €CJOM Ul OJHOTO M, CJeJOBaTelbHO, JJISL BCAKOro KommakTHoro K,
cofiepkallero X Kak IUIOTHOE MHOXeCTBO, mpocTpanctBa X u K — X sBistoTCS
aHaTMTHYeCKuMH TIpocTpancTBamu (B cMbicie Illoke). JloKa3aTeqbCTBa OCHOBaHBI
Ha 0600uleHuM NepBoi TeopeMbl Jly3uHa 00 OTIEIMMOCTH aHaJMTUYECKHX IPO-
CTPaHCTB.

B 3akiroyeHHe [JaeTCsi BHYTPEHHsIL XapakTepu3anus OOpeseBCKMX MOJMHOXECTB
MOJIHO METPU3YeMBIX cernapabesbHbIX NPOCTPAHCTB.
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