Czechoslovak Mathematical Journal

Tiberiu Mihăilescu

Théorie de la correspondance entre deux variétés non-holonomes linéaires de l'espace projectif ordinaire

Czechoslovak Mathematical Journal, Vol. 13 (1963), No. 3, 435-472

Persistent URL: http://dml.cz/dmlcz/100577

Terms of use:

© Institute of Mathematics AS CR, 1963

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\mathit{DML-GZ: The Czech Digital Mathematics Library } \texttt{http://dml.cz}$

THÉORIE DE LA CORRESPONDANCE ENTRE DEUX VARIÉTÉS NON-HOLONOMES LINÉAIRES DE L'ESPACE PROJECTIF ORDINAIRE

TIBERIU MIHĂILESCU, Bucarest (Roumanie)
(Reçu le 2 février 1962)

On étudie les correspondances entre les variétés nonholonomes V_3^2 , V_3^2 dans les espaces projectifs S_3 , S_3' et l'on définit leurs déformations projectives; ensuite, on envisage le cas de $S_3 \equiv S_3'$.

I. INTRODUCTION

Les fondements de l'étude des propriétés différentielles projectives de la correspondance entre deux surfaces de l'espace ordinaire se trouvent exposés dans deux mémoires de E. ČECH et E. BOMPIANI ([1] et [2]).

Malgré de nombreuses analogies, nous sommes d'avis qu'il est nécessaire d'appliquer les idées de ces auteurs au cas plus général de la correspondance entre deux variétés non-holonomes linéaires V_3^2 de l'espace ordinaire. Les résultats que nous avons obtenus paraissent justifier l'opportunité de cette étude.

Nous employons la méthode du repère mobile de É. CARTAN de la manière que nous avons exposée dans un traité paru en roumain [3] et auquel nous renvoyons constamment pour ce qui regarde les principes et la théorie différentielle des variétés non-holonomes linéaires V_3^2 .

Rappellons d'abord quelques résultats concernant ces variétés.

1. La figure (M, π) formée par un point M de S_3 et un plan π incident avec le point M s'appelle plan centré.

Une variété dont les éléments sont des plans centrés est une variété non-holonome linéaire que l'on désigne par V_3^2 .

On dit qu'une courbe (C) de S_3 appartient à une V_3^2 donnée si la tangente en chaque point M de (C) est contenue dans le plan π centré sur ce point. Le plan π s'appelle plan tangent en M à la V_3^2 considérée.

Une courbe (C) de V_3^2 est une ligne asymptotique de la variété si en chaque point M de (C) son plan osculateur coïncide avec le plan tangent π .

En général, par un point de V_3^2 il passe deux lignes asymptotiques distinctes dont les tangentes s'appellent tangentes asymptotiques en M à la V_3^2 . L'ensemble des lignes asymptotiques se partage en deux congruences de courbes de S_3 qui sont les congruences asymptotiques de la V_3^2 donnée.

Ces V_3^2 générales dépendent de deux fonctions arbitraires de trois arguments.

Si en chaque point M d'une V_3^2 les tangentes asymptotiques sont confondues, alors la variété admet une seule congruence asymptotique. Ces variétés non-holonomes s'appellent variétés non holonomes paraboliques, existent, et nous avons démontré ailleurs ([4] et [5]) qu'elles dépendent d'une fonction arbitraire de trois arguments.

Etant donnée une V_3^2 arbitraire, on considère une droite (Δ) contenant un point M de la variété et sur cette droite un point M' situé dans un voisinage de M. La droite (π, π') , commune aux plans tangents à V_3^2 aux points M, M' tend vers une position limite (Δ') contenue dans le plan π lorsque M' tend à se confondre avec M. Il résulte de cette construction une correspondance projective entre les droites (Δ) de la gerbe ayant pour centre un point M de V_3^2 et les droites (Δ') du plan tangent à la V_3^2 au point M, correspondance que nous nommerons polarité de Pantazi. Cette correspondance induit, dans le faisceau de droites du plan tangent ayant pour centre le point correspondant M, une homographie admettant pour droites doubles les tangentes asymptotiques.

Si la variété n'est pas parabolique, l'invariant absolu de cette homographie s'appelle invariant fondamental de la V_3^2 . Si cet invariant est égal à -1, donc si l'homographie est une involution, la V_3^2 est une variété holonome c'est-à-dire qu'elle est formée par les plans tangents des surfaces d'une famille à un paramètre centrés sur les points de contact respectifs.

Les variétés non-holonomes particulières pour lesquelles la polarité de Pantazi est singulière sont appelées *variétés polaires*.

Les variétés V_3^2 holonomes, paraboliques et polaires seront exclues des considérations qui vont suivre.

2. A un point M d'une V_3^2 générale on peut associer deux cônes quadratiques.

Les tangentes aux courbes de l'une des congruences asymptotiques, considérées aux points d'une courbe (C) contenant le point M, forment une surface réglée. Cette surface est développable seulement si la courbe (C) est une courbe intégrale d'une certaine équation du type Monge [3, p. 445]. Par le point M, il passe un ensemble infini de ces courbes appelées courbes focales de la congruence de droites considérée, et les tangentes en M à ces courbes sont situées sur un cône quadratique appelé cône de Malus [6].

Les congruences asymptotiques étant distinctes, on a deux cônes de Malus associés à un point M de V_3^2 . Les plans polaires des points de l'une des tangentes asymptotiques par rapport au cône de Malus relatif à l'autre tangente asymptotique ont en commun une droite appelée normale projective de Bortolotti.

En utilisant ces éléments géométriques, on peut associer à un point M d'une V_3^2 générale donnée un repère mobile projectif de la manière suivante.

Un des sommets du tétraèdre (A_0, A_1, A_2, A_3) du repère, par ex. A_0 , coïncide avec le point M de la V_3^2 , un autre sommet, par ex. A_3 , est choisi dans une position arbitraire extérieure au plan tangent et les deux autres sommets A_1 , A_2 sont choisis aux deux points d'intersection des tangentes asymptotiques avec la droite qui correspond à $[A_0, A_3]$ dans la polarité de Pantazi.

Le point unité I restant complètement arbitraire, l'ensemble des repères ainsi définis est une famille dépendant de six paramètres, à savoir les trois paramètres de position du point A_3 et les trois paramètres de position du point unité I.

Tous les repères de cette famille, appelée famille de classe six et désignée par la notation (R_6) , sont projectivement équivalents à l'un d'eux par rapport aux transformations d'un sous-groupe projectif à six parametres appelé groupe de stabilité associé à la famille (R_6) .

Les formes de Pfaff ω_{ik} , qui interviennent dans les formules du déplacement projectif infinitésimal d'un repère de cette famile

$$dA_i = \sum_{k} \omega_{ik} A_k$$
 (i, k = 0, 1, 2, 3)

sont liées par des relations linéaires de la forme:

(1)
$$\omega_{13} = a_1 \omega_{02} , \quad \omega_{23} = b_1 \omega_{01} ,$$

$$\Delta a_1 + (a_1 + b_1) c_2'' \omega_{01} + c_2 \omega_{02} + c_2' \omega_{03} = 0 ,$$

$$\omega_{12} = a_2 \omega_{02} + c_2'' \omega_{02} + a_2' \omega_{03} ,$$

$$a_1 \omega_{32} + \omega_{10} = (a_1 + b_1) a_2' \omega_{01} + c_2' \omega_{02} + e_2 \omega_{03} ,$$

$$\Delta b_1 + f_2 \omega_{01} + (a_1 + b_1) f_2'' \omega_{02} + f_2' \omega_{03} = 0 ,$$

$$\omega_{21} = f_2'' \omega_{01} + b_2 \omega_{02} + b_2' \omega_{03} ,$$

$$b_1 \omega_{31} + \omega_{20} = f_2' \omega_{01} + (a_1 + b_1) b_2' \omega_{02} + e_2' \omega_{03} ,$$

qui sont les relations caractéristiques de la famille (R_6) et où

(2)
$$\Delta a_1 = da_1 + a_1(\omega_{00} - \omega_{11} - \omega_{22} + \omega_{33}),$$
$$\Delta b_1 = db_1 + b_1(\omega_{00} - \omega_{11} - \omega_{22} + \omega_{33}).$$

Les coefficients des formes principales ω_{01} , ω_{02} , ω_{03} , dans les relations (1) sont des invariants projectifs mais, en général, ne sont pas des invariants intrinsèques de la variété, c'est-à-dire qu'ils ne conservent pas une même valeur pour tous les repères de la famille (R_6) , associés à un point M de V_3^2 .

Mais certaines fonctions de ces coefficients jouissent de la propriété d'invariance par rapport aux repères de la famille (R_6) .

Cette famille possède 9 invariants finis et 12 invariants infinitésimaux indépendants, tout autre invariant de la famille (R_6) étant une fonction de ceux ci.

Un invariant fini de cette famille est l'invariant fondamental de la V_3^2 :

$$k = -\frac{b_1}{a_1}.$$

Les invariants

(4)
$$\varphi_1 = \frac{a_1 \omega_{01}^2}{\omega_{02}}, \quad \varphi_2 = \frac{b_2 \omega_{02}^2}{\omega_{01}}$$

sont des invariants infinitésimaux valables pour les figures formées avec le point M et un point M' du plan tangent situé dans un voisinage de M. A cause de leur structure analytique, les invariants (4) — qui vont jouer un rôle remarquable dans la théorie de la correspondance de deux V_3^2 — s'appellent les invariants du type Bompiani.

En choisissant dans la famille (R_6) ceux des repères pour lesquels A_3 est situé sur la normale projective en A_0 dans une position qui reste indéterminée, on extrait une famille (R_4) pour laquelle les relations caractéristiques se déduisent des relations (1) en y faisant

(5)
$$c_2'' = f_2'' = 0.$$

Pour cette famille (R_4) , les invariants (4) deviennent valables pour toute position du point M' du voisinage de M sans aucune restriction.

3. Au point de vue corrélatif on peut obtenir des variétés non-holonomes en prenant pour élément fondamental la figure formée par un plan π et un point M de ce plan déterminé suivant une loi quelconque ayant un caractère projectivement invariant. C'est une figure qui coïncide avec la figure ponctuelle qui est l'élément fondamental des V_3^2 .

On désigne par la notation \overline{V}_3^2 les variétés construites avec ces nouvelles figures. Elles ne diffèrent donc pas d'une manière essentielle des V_3^2 , mais il est parfois utile de considérer ces variétés sous leur aspect corrélatif.

Soit \overline{V}_3^2 une variété non-holonome duale. Si le plan π de la figure fondamentale varie en fonction d'un paramètre, il en résulte une surface développable. Pour une position initiale π_0 , le plan π admet une droite caractéristique (d_0) . Si cette droite est incidente avec le point M_0 qui est associé au plan π_0 et qui s'appelle point de contact de ce plan, on dit que la surface développable appartient à la \overline{V}_3^2 donnée.

Nous allons indiquer d'une manière brève comment on peut associer à un plan donné π d'une variété V_3^2 un repère tangentiel mobile formé par quatre plans indépendants α_i (i=0,1,2,3) et un plan unité η qui ne contient aucun des quatre sommets \overline{A}_i du tétraedre (α_0 , α_1 , α_2 , α_3). Pour cela nous nous tiendrons aux étapes et aux calculs indiqués dans notre ouvrage [3, Chap. VII] dans le cas du repère ponctuel associé à une V_3^2 .

En choisissant le plan π pour plan α_3 du repère tangentiel et en laissant les autres éléments arbitraires, on obtient un ensemble de repères qui est une famille (\overline{R}_{12}) dépendant de 12 paramètres. Les formes

$$\overline{\omega}_{30}, \overline{\omega}_{31}, \overline{\omega}_{32}$$

qui figurent dans les formules du déplacement infinitésimal projectif du repère

$$\mathrm{d}\alpha_i = \sum_k \overline{\omega}_{ik} \alpha_k$$

dépendent seulement des différentielles des paramètres de position τ_i (i = 1, 2, 3) du plan π , et s'appellent formes principales.

On extrait de (\overline{R}_{12}) une famille (\overline{R}_{10}) en choisissant les plans α_1 , α_2 du repère de manière qu'ils contiennent le point de contact \overline{A}_0 de α_3 . Pour tout déplacement du plan α_3 sur la variété \overline{V}_3^2 on a alors

$$\overline{\omega}_{30} = 0$$

et les formes $\overline{\omega}_{10}$, $\overline{\omega}_{20}$ dépendent linéairement des formes principales:

(7)
$$\overline{\omega}_{10} = \overline{a}_1' \overline{\omega}_{31} + \overline{a}_1 \overline{\omega}_{32} + \overline{b}_1' \overline{\omega}_{30},$$

$$\overline{\omega}_{20} = \overline{b}_1 \overline{\omega}_{31} + \overline{c}_1 \overline{\omega}_{32} + \overline{c}_1' \overline{\omega}_{30},$$

la condition d'holonomie étant

$$\bar{a}_1 - \bar{b}_1 = 0.$$

Si le plan (α_3) varie en passant par la droite

$$\left[\alpha_3, \bar{u}_0\alpha_0 + \bar{u}_1\alpha_1 + \bar{u}_2\alpha_2\right],$$

la droite des points de contact des plans

$$\alpha_3, \alpha_3' = \alpha_3 + d\alpha_3$$

admet une position limite

(D')
$$[\bar{A}_0, \bar{x}_1 \bar{A}_1 + \bar{x}_2 \bar{A}_2 + \bar{x}_3 \bar{A}_3]$$

οù

(9)
$$\varrho \bar{x}_{1} = \bar{a}'_{1}\bar{u}_{1} + \bar{a}_{1}\bar{u}_{2} + \bar{b}'_{1}\bar{u}_{0} ,
\varrho \bar{x}_{2} = \bar{b}_{1}\bar{u}_{1} + \bar{c}_{1}\bar{u}_{2} + \bar{c}'_{1}\bar{u}_{0} ,
\varrho \bar{x}_{3} = \bar{u}_{0} .$$

La correspondance existant entre les droites (D), (D') n'est autre chose que la polarité de Pantazi.

Si le point de contact de α_3 avec l'arête de rebroussement d'une surface développable (Δ) de la variété \overline{V}_3^2 coı̈ncide avec le point \overline{A}_0 , la développable (Δ) est une développable asymptotique de \overline{V}_3^2 dont l'arête de rebroussement est une ligne asymptotique.

Les développables asymptotiques sont les surfaces intégrales du système

(10)
$$\overline{\omega}_{30} = 0$$
, $\overline{a}'_1 \overline{\omega}_{31}^2 + (\overline{a}_1 + \overline{b}_1) \overline{\omega}_{31} \overline{\omega}_{32} + \overline{c}_1 \overline{\omega}_{32}^2 = 0$.

En prenant pour arêtes $[\alpha_3, \alpha_1]$, $[\alpha_3, \alpha_2]$ du repère les tangentes asymptotiques et pour droites $[\alpha_1, \alpha_2]$, $[\alpha_0, \alpha_3]$ deux droites correspondantes dans la polarité de

Pantazi, on extrait de (\bar{R}_{10}) une famille de repères (\bar{R}_6) pour laquelle les relations caractéristiques sont de la forme:

(11)
$$\overline{\omega}_{10} = \overline{a}_{1}\overline{\omega}_{32}, \quad \overline{\omega}_{20} = \overline{b}_{1}\overline{\omega}_{31},$$

$$\Delta \overline{a}_{1} + (\overline{a}_{1} + \overline{b}_{1}) \overline{c}_{2}''\overline{\omega}_{31} + \overline{c}_{2}\overline{\omega}_{32} + \overline{c}_{2}'\overline{\omega}_{30},$$

$$\overline{\omega}_{12} = \overline{a}_{2}\overline{\omega}_{31} + \overline{c}_{2}''\overline{\omega}_{32} + \overline{a}_{2}'\overline{\omega}_{30},$$

$$\overline{a}_{1}\overline{\omega}_{02} + \overline{\omega}_{13} = (\overline{a}_{1} + \overline{b}_{1}) \overline{a}_{2}'\overline{\omega}_{31} + \overline{c}_{2}'\overline{\omega}_{32} + \overline{e}_{2}\overline{\omega}_{30},$$

$$\Delta \overline{b}_{1} + \overline{f}_{2}\overline{\omega}_{31} + (\overline{a}_{1} + \overline{b}_{1}) \overline{f}\overline{\omega}_{32} + \overline{f}_{2}'\overline{\omega}_{30} = 0,$$

$$\overline{\omega}_{21} = \overline{f}_{2}''\overline{\omega}_{31} + \overline{b}_{2}\overline{\omega}_{32} + \overline{b}_{2}'\overline{\omega}_{30},$$

$$\overline{b}_{1}\overline{\omega}_{01} + \overline{\omega}_{23} = \overline{f}_{2}'\overline{\omega}_{31} + (\overline{a}_{1} + \overline{b}_{1}) \overline{b}_{2}'\overline{\omega}_{32} + \overline{e}_{2}'\overline{\omega}_{30},$$

οù

(12)
$$\Delta \bar{a}_1 = d\bar{a}_1 + \bar{a}_1(\overline{\omega}_{33} - \overline{\omega}_{11} - \overline{\omega}_{22} + \overline{\omega}_{00}),$$
$$\Delta \bar{b}_1 = d\bar{b}_1 + \bar{b}_1(\overline{\omega}_{33} - \overline{\omega}_{11} - \overline{\omega}_{22} + \overline{\omega}_{00}).$$

Un invariant fini de cette famille est l'invariant fondamental

$$k = -\frac{\overline{b}_1}{\overline{a}_1}$$

et parmi les invariants infinitésimaux on a les invariants du type Bompiani

(14)
$$\overline{\varphi}_1 = \frac{\overline{a}_2 \overline{\omega}_{31}^2}{\overline{\omega}_{32}}, \quad \overline{\varphi}_2 = \frac{\overline{b}_2 \overline{\omega}_{32}^2}{\overline{\omega}_{31}}.$$

Pour trouver la signification géométrique de ces invariants on considère les surfaces développables asymptotiques représentées par rapport à un repère de la famille (\overline{R}_6) par les développements

(15)
$$(\Delta_1): \quad v = \frac{\overline{a}_2}{2} u^2 + (3), \quad w = \frac{\overline{b}_1 \overline{a}_2}{6} u^3 + (4),$$

$$(\Delta_2): \quad u = \frac{\overline{b}_2}{2} v^2 + (3), \quad w = \frac{\overline{a}_1 \overline{b}_2}{6} v^3 + (4),$$

u, v, w étant les coordonnées tangentielles non-homogènes.

Les cônes ayant pour sommet le point \overline{A}_0 et pour courbes directrices les courbes d'intersection de ces deux développables avec un plan arbitraire que l'on peut prendre pour plan α_0 du repère sont représentés respectivement par les équations:

(16)
$$v = \frac{\overline{a}_2}{2} u^2 + (3), \quad u_0 = 0,$$
$$u = \frac{\overline{b}_2}{2} v^2 + (3), \quad u_0 = 0.$$

En considérant les plans tangents à ces deux cônes

$$\pi_1 = \alpha_3 + u\alpha_1 + \left(\frac{\overline{a}_2}{2}u^2 + (3)\right)\alpha_2,$$

$$\pi_2 = \alpha_3 + \left(\frac{\overline{b}_2}{2}v^2 + (3)\right)\alpha_1 + v\alpha_2,$$

situés dans un voisinage de a3, les valeurs des birapports

(17)
$$2\alpha_1(\alpha_3, \alpha_2, \pi_1, \pi_2) = \frac{\bar{a}_2 u^2}{v} + (2),$$
$$2\alpha_2(\alpha_3, \alpha_1, \pi_2, \pi_1) = \frac{\bar{b}_2 v^2}{u} + (2),$$

donnent les significations géométriques des invariants du type Bompiani qui sont valables pour les figures formées par les plans tangents de \overline{V}_3^2 situés dans un voisinage de α_3 et qui contiennent le point de contact \overline{A}_0 .

Considérons un plan $\pi = t\alpha_3 + \alpha_1$ passant par la tangente asymptotique $[\alpha_3, \alpha_1] = [\bar{A}_0, \bar{A}_2]$.

Pour qu'il détermine une surface développable dont l'arète de rebroussement soit tangente à $[\alpha_3, \alpha_1]$, on doit avois les relations

(18)
$$t\overline{\omega}_{32} + \overline{\omega}_{12} = 0, \quad t\overline{\omega}_{30} + \overline{\omega}_{10} = 0$$

des quelles, en éliminant le paramètre t, on déduit l'équation différentielle

(19)
$$\overline{\Phi}_1 = \bar{a}_1 \overline{\omega}_{32}^2 - \bar{a}_2 \overline{\omega}_{31} \overline{\omega}_{30} - \bar{c}_2'' \overline{\omega}_{32} \overline{\omega}_{30} - \bar{a}_2' \overline{\omega}_{30}^2 = 0.$$

Si le plan α_3 enveloppe une surface développable intégrale de cette équation, qui s'appelle surface développable focale, la tangente asymptotique reste tangente à une courbe, donc elle détermine une surface développable.

La figuré formée par les droites caractéristiques du plan α_3 relativement aux développables focales est la conique du plan tangent

(20)
$$\bar{a}_1 u_2^2 - \bar{a}_2 u_1 u_0 - \bar{c}_2'' u_2 u_0 - \bar{a}_2' u_0^2 = 0$$

qui s'appelle conique de Malus.

Pour la tangente $[\alpha_3, \alpha_2] = [\overline{A}_0, \overline{A}_1]$ on trouve la conique de Malus

(21)
$$\bar{b}_1 u_1^2 - \bar{f}_2'' u_1 u_0 - \bar{b}_2 u_2 u_0 - \bar{b}_2' u_0^2 = 0.$$

Ces deux coniques contiennent le point \bar{A}_0 où elles sont tangentes aux tangentes asymptotiques.

Le pôle commun des plans qui passent par la tangente $[\alpha_3, \alpha_1]$ par rapport à la conique (21) est le point

$$2\bar{b}_1 u_1 - \bar{f}_2'' u_0 = 0$$

et, de même, le point

$$2\bar{a}_1 u_2 - \bar{c}_2'' u_0 = 0$$

est le pôle, par rapport à (20), des plans qui contiennent la tangente $[\alpha_3, \alpha_2]$.

Si l'on choisit ces points pour sommets \overline{A}_1 et \overline{A}_2 du repère tangentiel on trouve une famille (\overline{R}_4) . Ce choix revient à prendre pour droite $[\overline{A}_0, \overline{A}_3]$ la normale projective de Bortolotti.

Les repères (\bar{A}_4) ainsi déterminés sont définis par les relations

$$\bar{c}_2'' = \bar{f}_2'' = 0$$

et le tétraèdre du repère tangential (\overline{R}_4) coı̈ncide dans ses éléments qui sont déterminés jusqu'à présent avec le tétraèdre du repère ponctuel (R_4) et les relations qui existent entre les éléments analytiques relatifs à ces deux familles de repères (R_4) et (\overline{R}_4) sont:

(25)
$$\overline{\omega}_{30} = -\omega_{03}$$
, $a_1\omega_{02} = -\overline{\omega}_{31}$, $b_1\omega_{01} = -\overline{\omega}_{32}$, $\overline{a}_1\overline{\omega}_{32} = -\omega_{01}$, $\overline{b}_1\overline{\omega}_{31} = -\omega_{02}$, $\overline{a}_1b_1 = 1$, $\overline{b}_1a_1 = 1$, $a_1\overline{a}_2 = b_2$, $b_1\overline{b}_2 = a_2$, $\overline{a}_2' = b_2$, $\overline{b}_2' = a_2$.

Les relations entre les invariants du type Bompiani (4) et (14) ne possèdent pas la simplicité de celles qui existent dans le cas des surfaces ([3], p. 263).

En effet on a

(26)
$$\overline{\varphi}_1 = -\frac{a_1}{b_1} \varphi_2, \quad \overline{\varphi}_2 = -\frac{b_1}{a_1} \varphi_1$$

d'où il resulte

$$\overline{\varphi}_1\overline{\varphi}_2=\varphi_1\varphi_2,$$

donc c'est seulement la forme quadratique

$$\varphi = a_2 b_2 \omega_{01} \omega_{02}$$

qui se conserve par dualité.

II. CORRESPONDANCE ENTRE DEUX V_3^2 ÉLÉMENTS FONDAMENTAUX. CORRESPONDANCES LOCALES INDUITES

4. Considérons, dans un S_3 où est définie une variété non-holonome linéaire V_3^2 déterminée, une correspondance ponctuelle biunivoque

(29)
$$X'_{i} = \Phi_{i}(X_{1}, X_{2}, X_{3}) \quad (i = 1, 2, 3)$$

qui transforme entre eux deux domaines (\mathcal{D}), (\mathcal{D}') de S_3 et soient M, M' deux points correspondants et π le plan tangent et M à la V_3^2 donnée.

Les courbes (C'), qui correspondent dans la correspondance (29) aux courbes (C) de la variété V_3^2 qui passent par le point M, sont incidentes avec le point transformé M' où elles sont toutes tangentes à un plan déterminé π' .

En effet, si l'on considère l'équation du plan π de V_3^2 qui est centré sur un point M_0 :

$$\sum_{i=1}^{3} u_i (X_i - X_i^{(0)}) = 0,$$

pour une courbe (C) de V_3^2

$$X_i = X_i(t)$$

on a la relation

(30)
$$\sum_{i=1}^{3} u_i \, \mathrm{d} X_i = 0 \, .$$

Les paramètres directeurs de la tangente à la courbe correspondante sont

(31₁)
$$dX'_{i} = \sum_{k=1}^{3} \beta'_{ik} dX_{k}, \quad \beta'_{ik} = \frac{\partial X'_{i}}{\partial X_{i}}$$

d'où l'on déduit

(31₂)
$$dX_{i} = \sum_{k=1}^{3} \beta_{ik} dX'_{k}$$

les nouveaux coefficients étant définis par les relations

$$\sum_{k=1}^{3} \beta'_{ik} \beta_{kh} = \delta_{ih} = \left\langle \begin{array}{c} 0, \ i \neq h, \\ 1, \ i = h. \end{array} \right.$$

De (30), il résulte que les courbes (C') vérifient la relation

$$\sum_{i=1}^{3} u_i' \, \mathrm{d} X_i' = 0$$

οù

$$u'_{k} = \sum_{i=1}^{3} u_{i} \beta_{ik} \quad (k = 1, 2, 3)$$

par conséquent, les tangentes en M'_0 , le point correspondant de M_0 , aux courbes (C'), qui correspondent aux courbes (C) de la variété V_3^2 , appartiennent au plan

$$(\pi')$$
 $\sum_{i} u'_{i}(X'_{i} - X'^{(0)}_{i}) = 0.$

Ainsi, une correspondance ponctuelle biunivoque de S_3 fait correspondre à une V_3^2 donnée une autre V_3^2 déterminée.

Si l'on associe à chacune de ces deux variétés correspondantes, la variété donnée V_3^2 n'étant pas une variété parabolique ou polaire, les plus générales familles de repères

 (R_{12}) , il est évident, d'après les relations (31), qu'une correspondance (29) induit entre les formes principales ω_{0i} , ω'_{0i} (i=1,2,3) une substitution linéaire

(32)
$$\omega'_{01} = \sum_{i=1}^{3} \lambda_{i} \omega_{0i}, \quad \omega'_{02} = \sum_{i=1}^{3} \mu_{i} \omega_{0i}, \quad \omega'_{03} = \sum_{i=1}^{3} \nu_{i} \omega_{0i}, \\ |\lambda_{i}, \mu_{i}, \nu_{i}| \neq 0 \quad (i = 1, 2, 3).$$

Si l'on emploie les repères asymptotiques (R_p) $(p \le 8)$ ([3], p. 444) ces formules deviennent

(33)
$$\omega'_{01} = \sum_{i} \lambda_{i} \omega_{0i}, \quad \omega'_{02} = \sum_{i} \mu_{i} \omega_{0i}, \quad \omega'_{03} = \nu_{3} \omega_{03},$$
$$\nu_{3} \tau \neq 0, \quad \tau = \lambda_{1} \mu_{2} - \lambda_{2} \mu_{1} \quad (i = 1, 2, 3).$$

Etant donnée une courbe (C) de V_3^2

(34)
$$\omega_{02} = \sigma \omega_{01}$$
, $\omega_{03} = 0$

tangente en A₀ à la droite

$$\left[A_0, A_1 + \sigma A_2\right],\,$$

il lui correspond une courbe (C') de $V_3^{2'}$

(35)
$$\omega'_{02} = \sigma' \omega'_{01}, \quad \omega'_{03} = 0$$

tangente à la droite

$$\left[A_0', A_1' + \sigma' A_2'\right]$$

οù

(36)
$$\sigma' = \frac{\mu_1 + \sigma \mu_2}{\lambda_1 + \sigma \lambda_2}.$$

La correspondance induit entre les faisceaux de droites des plans tangents une projectivité qui est l'homographie fondamentale associée à la correspondance.

Les fonctions σ , σ' s'appellent coefficients directeurs des tangentes respectives.

Dans le cas des variétés non-holonomes linéaires V_3^2 on doit tenir compte de la nature même de la variété pour définir la figure formée par deux tangentes conjuguées.

En effet, l'homographie induite dans le faisceau des droites tangentes aux courbes (C) d'une V_3^2 , qui n'est pas polaire, en un point A_0 n'est pas une involution que dans le cas où V_3^2 est une variété holonome. En tenant compte de ce fait et pour conserver la propriété de symétrie projective des tangentes conjuguées en un point d'une surface on peut considérer la figure suivante.

Etant donnée une V_3^2 qui n'est pas parabolique, deux tangentes t_1 , t_2 en un point A_0 sont, par définition, tangentes conjuguées si elles sont harmoniquement conjuguées par rapport aux deux tangentes asymptotiques associées à ce point.

Pour que les tangentes qui correspondent dans l'homographie fondamentale à deux tangentes conjuguées $(\sigma, -\sigma)$ par A_0 soient aussi des tangentes conjuguées $(\sigma', -\sigma')$ en A'_0 , on doit avoir la relation

$$\lambda_2 \mu_2 \sigma^2 - \lambda_1 \mu_1 = 0.$$

Si l'on a

$$\lambda_2 = 0$$
 (ou $\mu_2 = 0$).

les courbes asymptotiques (C_2) , (C'_2) {ou (C_1) , (C'_1) } se correspondent. Pareillement, si l'on a

$$\lambda_1 = 0 \text{ (ou } \mu_1 = 0),$$

les courbes asymptotiques (C_2) , (C'_1) {ou (C_1) , (C'_2) } sont des courbes correspondantes.

Dans les deux cas le problème est impossible.

Donc si deux variétés V_3^2 , $V_3^{2\prime}$ sont en correspondance de telle manière qu'à une famille de lignes asymptotiques de l'une d'elles il correspond une famille de lignes asymptotiques de l'autre, correspondance que l'on appelle semi-asymptotique et que l'on désigne par la notation Γ_1 , il n'existe pas de tangentes conjuguées qui aient pour droites correspondantes dans l'homographie fondamentale des tangentes qui soient aussi conjuguées au point correspondant de l'autre variété.

Si les deux familles de lignes asymptotiques des deux variétés se correspondent, la correspondance s'appelle asymptotique et est désignée par Γ_2 . Dans ce cas, on a les relations

$$\lambda_2 = \mu_1 = 0$$
 (ou $\lambda_1 = \mu_2 = 0$),

l'équation (37) est indéterminée, la relation (36) devient

$$\sigma' = \frac{\mu_2}{\lambda_1} \, \sigma \,,$$

donc deux tangentes conjuguées quelconques ont pour droites correspondantes deux tangentes qui sont conjuguées.

En excluant ces deux cas, donc en supposant

$$\lambda_1 \lambda_2 \mu_1 \mu_2 \neq 0,$$

on conclut qu'il existe, en général, au point A_0 un seul couple de tangentes conjuguées

$$\sigma = \varepsilon \left(\frac{\lambda_1 \mu_1}{\lambda_2 \mu_2}\right)^{1/2}, \quad (\varepsilon^2 = 1),$$

auquel il correspond au point A'_0 un couple qui est conjugué.

Les correspondances caractérisées par la condition (38) seront désignées par le terme de correspondance Γ_0 .

Dans une correspondance de cette nature, à une ligne asymptotique (C'_1) de V_3^{2i}

$$\omega'_{02} = \mu_1 \omega_{01} + \mu_2 \omega_{02} = 0$$
, $\omega'_{03} = 0$

qui passe par A'_0 , il correspond sur V_3^2 une courbe par A_0 qui est tangente à la droite

$$[A_0, \mu_2 A_1 - \mu_1 A_2]$$

et la courbe de V_3^2 qui correspond à l'autre ligne asymptotique (C_2) est tangente à la droite

$$[A_0, \lambda_2 A_1 - \lambda_1 A_2].$$

Le birapport de la figure formée en A_0 par les tangentes asymptotiques $[A_0, A_1]$, $[A_0, A_2]$ et les deux droites (39), (40) est

$$\gamma = \frac{\lambda_2 \mu_1}{\lambda_1 \mu_2} \,.$$

Les courbes qui correspondent sur $V_3^{2'}$ aux lignes asymptotiques de V_3^2 qui passent par A_0 sont tangentes en A_0' aux deux droites

$$[A'_0, \lambda_1 A'_1 + \mu_1 A'_2], [A'_0, \lambda_2 A'_1 + \mu_2 A'_2]$$

qui, avec les tangentes asymptotiques en A'_0 déterminent une figure dont le birapport a la même valeur (41) qui s'appelle l'invariant fondamental de la correspondance.

Il s'ensuit que si dans une correspondance Γ_0 les tangentes asymptotiques de l'une des variétés correspondent à deux tangentes conjuguées de l'autre variété, cette propriété a un caractère de réciprocité, c'est-à-dire que les tangentes asymptotiques de la dernière variété correspondent à deux tangentes conjuguées de la première.

5. En différentiant extérieurement les relations (33) on trouve le système extérieur

(42)
$$\sum_{i} [\Delta \lambda_{i}, \omega_{0i}] = 0$$
, $\sum_{i} [\Delta \mu_{i}, \omega_{0i}] = 0$, $\sum_{i} [\Delta v_{i}, \omega_{0i}) = 0$ $(i = 1, 2, 3)$ où

(43₁)
$$\Delta \lambda_1 = d\lambda_1 + \lambda_1(E_{11} - E'_{11}) - \lambda_2\omega_{12} - \lambda_3\omega_{13} + \mu_1\omega'_{21}$$
,
 $\Delta \lambda_2 = d\lambda_2 + \lambda_2(E_{22} - E'_{11}) - \lambda_1\omega_{21} - \lambda_3\omega_{23} + \mu_2\omega'_{21}$,
 $\Delta \lambda_3 = d\lambda_3 + \lambda_3(E_{33} - E'_{11}) - \lambda_1\omega_{31} - \lambda_2\omega_{32} + \mu_3\omega'_{21} + \nu_3\omega'_{31}$;

(43₂)
$$\Delta \mu_1 = d\mu_1 + \mu_1(E_{11} - E'_{22}) - \mu_2\omega_{12} - \mu_3\omega_{13} + \lambda_1\omega'_{12},$$

 $\Delta \mu_2 = d\mu_2 + \mu_2(E_{22} - E'_{22}) - \mu_1\omega_{21} - \mu_3\omega_{23} + \lambda_2\omega'_{12},$
 $\Delta \mu_3 = d\mu_3 + \mu_3(E_{33} - E'_{22}) - \mu_1\omega_{31} - \mu_2\omega_{32} + \lambda_3\omega'_{12} + \nu_3\omega'_{32};$

$$\begin{array}{lll} (43_3) & \Delta v_1 & = & \lambda_1 \omega_{13}' + \mu_1 \omega_{23}' - v_3 \omega_{13} \,, \\ & \Delta v_2 & = & \lambda_2 \omega_{23}' + \mu_2 \omega_{23}' - v_3 \omega_{23} \,, \\ & \Delta v_3 & = \mathrm{d} v_3 \, + \, v_3 (E_{33} - E_{33}') + \lambda_3 \omega_{13}' + \mu_{23}' \omega_3 \quad \left(E_{ii} = \omega_{00} - \omega_{ii} \right). \end{array}$$

Du système (42) on déduit les équations de prolongement

(44)
$$\Delta \lambda_{i} = \sum_{k} \lambda_{ik} \omega_{0k} , \quad \Delta \mu_{i} = \sum_{k} \mu_{ik} \omega_{0k} , \quad \Delta v_{i} = \sum_{k} v_{ik} \omega_{0k}$$

$$(\lambda_{ik} = \lambda_{ki}, \ \mu_{ik} = \mu_{ki}, \ v_{ik} = v_{ki}; \ i, k = 1, 2, 3) .$$

Si (C) est une courbe de V_3^2 (34), les coordonnées du plan osculateur et du point de rebroussement associé sont données par les formules (96) et (98) du chap. VII ([3], 457).

Pour une famille (R_4) les coordonnées du plan osculateur sont:

(45)
$$\eta u_1 = (a_1 + b_1) \omega_{01} \omega_{02}^2$$
,
 $\eta u_2 = -(a_1 + b_1) \omega_{01}^2 \omega_{02}$,
 $\eta u_3 = \omega_{01} d\omega_{02} - \omega_{02} d\omega_{01} + \omega_{01} \omega_{02} (\omega_{22} - \omega_{11}) + a_2 \omega_{01}^3 - b_2 \omega_{02}^3$

et les coordonnées du plan osculateur en A'_0 à la courbe correspondante (35) sont données par des formules qui se déduisent de (45) en replaçant tous les éléments par des éléments accentués.

En faisant les calculs on trouve que ces coordonnées sont:

$$(46_{1}) \quad \eta'u'_{1} = (a'_{1} + b'_{1})(\lambda_{1}\omega_{01} + \lambda_{2}\omega_{02})(\mu_{1}\omega_{01} + \mu_{2}\omega_{02})^{2},$$

$$\eta'u'_{2} = -(a'_{1} + b'_{1})(\lambda_{1}\omega_{01} + \lambda_{2}\omega_{02})^{2}(\mu_{1}\omega_{01} + \mu_{2}\omega_{02}),$$

$$\eta'u'_{3} = (a_{1} + b_{1})(\Theta_{2}u_{1} - \Theta_{1}u_{2} + \tau u_{3})\omega_{01}\omega_{02} +$$

$$+(\lambda_{1}\omega_{01} + \lambda_{2}\omega_{02})Q(\omega_{01}, \omega_{02}) - (\mu_{1}\omega_{01} + \mu_{2}\omega_{02})P(\omega_{01}, \omega_{02})$$

οù

$$P(\omega_{01}, \omega_{02}) = \lambda_{11}\omega_{01}^{2} + 2\lambda_{12}\omega_{01}\omega_{02} + \lambda_{22}\omega_{02}^{2},$$

$$Q(\omega_{01}, \omega_{02}) = \mu_{11}\omega_{01}^{2} + 2\mu_{12}\omega_{01}\omega_{02} + \mu_{22}\omega_{02}^{2},$$

$$\Theta_{1} = \lambda_{1}\mu_{3} - \lambda_{3}\mu_{1}, \quad \Theta_{2} = \lambda_{2}\mu_{3} - \lambda_{3}\mu_{2}.$$

En éliminant les formes ω_{01} , ω_{02} on obtient les formules fondamentales de la correspondance induite par la correspondance (29) entre les plans des deux gerbes de plans osculateurs aux courbes des deux variétés en deux points correspondants:

(47)
$$\eta' u'_{1} = (a'_{1} + b'_{1}) (\lambda_{2}u_{1} - \lambda_{1}u_{2}) (\mu_{2}u_{1} - \mu_{1}u_{2})^{2},$$

 $\eta' u'_{2} = -(a'_{1} + b'_{1}) (\lambda_{2}u_{1} - \lambda_{1}u_{2})^{2} (\mu_{2}u_{1} - \mu_{1}u_{2}),$
 $\eta' u'_{3} = -(a_{1} + b_{1}) (\Theta_{2}u_{1} - \Theta_{1}u_{2} + \tau u_{3}) u_{1}u_{2} + (\lambda_{2}u_{1} - \lambda_{1}u_{2}).$
 $Q(-u_{2}, u_{1}) - (\mu_{2}u_{1} - \mu_{1}u_{2}) P(-u_{2}, u_{1}).$

Les formules inverses ont la même structure, donc la correspondance est crémonienne et, en général, cubique. Les plans fondamentaux, en A_0 , sont – outre le plan tangent α_3 – les deux plans:

(48)
$$\varrho u_{1} = (a_{1} + b_{1}) \lambda_{1}^{2} \lambda_{2},$$

$$\varrho u_{2} = (a_{1} + b_{1}) \lambda_{1} \lambda_{2}^{2},$$

$$\varrho u_{3} = (a_{1} + b_{1}) \lambda_{1} \lambda_{2} \lambda_{3} - P(-\lambda_{2}, \lambda_{1}),$$
(49)
$$\varrho u_{1} = (a_{1} + b_{1}) \mu_{1}^{2} \mu_{2},$$

$$\varrho u_{2} = (a_{1} + b_{1}) \mu_{1} \mu_{2}^{2},$$

$$\varrho u_{3} = (a_{1} + b_{1}) \mu_{1} \mu_{2} \mu_{3} - Q(-\mu_{2}, \mu_{1})$$

dont la droite commune

(50)
$$\left[A_0, \left\{ \lambda_1 \lambda_2 \mu_1 \mu_2 \Theta_2 + \mu_1 \mu_2^2 P - \lambda_1 \lambda_2^2 Q \right\} A_1 - \left\{ \lambda_1 \lambda_2 \mu_1 \mu_2 \Theta_1 + \mu_1^2 \mu_2 P - \lambda_1^2 \lambda_2 Q \right\} A_2 + \left(a_1 + b_1 \right) \lambda_1 \lambda_2 \mu_1 \mu_2 \tau A_3 \right]$$

est l'axe transversal de la correspondance au point A_0 et qui appartient au plan tangent α_3 seulement dans le cas d'une correspondance Γ_1 ou Γ_2 .

Les plans osculateurs aux courbes de V_3^2 qui correspondent aux courbes de V_3^2 dont les plans osculateurs en A_0 contiennent une droite donnée

$$[A'_0, \xi'_1 A'_1 + \xi'_2 A'_2 + \xi'_3 A'_3]$$

sont tangents à un cône de troisième classe dont l'axe cuspidal est la droite

$$[A_0, \xi_1 A_1 + \xi_2 A_2 + \xi_3 A_3]$$

οù

(53)
$$\varrho \xi_{1} = (a'_{1} + b'_{1}) (a\mu_{2}\xi'_{1} - b\lambda_{2}\xi'_{2}) + \{(a_{1} + b_{1}) \Theta_{2} + 2(\lambda_{2}\mu_{12} - \mu_{2}\lambda_{12}) + \lambda_{1}\mu_{22} - \mu_{1}\lambda_{22}\} \xi'_{3},$$

$$\varrho \xi_{2} = -(a'_{1} + b'_{1}) (b\mu_{1}\xi'_{1} - a\lambda_{1}\xi'_{2}) - \{(a_{1} + b_{1}) \Theta_{1} + 2(\lambda_{1}\mu_{12} - \mu_{1}\lambda_{12}) + \lambda_{2}\mu_{11} - \mu_{2}\lambda_{11}) \xi'_{3},$$

$$\varrho \xi_{3} = (a_{1} + b_{1}) \tau \xi'_{3},$$

$$(a = 2\lambda_{2}\mu_{1} + \lambda_{1}\mu_{2}, b = 2\lambda_{1}\mu_{2} + \lambda_{2}\mu_{1}).$$

Ces formules traduisent une correspondance entre les droites des deux gerbes ayant pour centres deux points correspondants.

C'est une correspondance projective qui est singulière seulement si l'on a la relation

$$\lambda_1^2 \mu_2^2 + \lambda_1 \lambda_2 \mu_1 \mu_2 + \lambda_2^2 \mu_1^2 = 0$$

et dans ce cas l'invariant fondamental (41) est égal à une racine complexe de l'unité positive.

6. Pour traiter le problème corrélatif on emploie le repère tangentiel (\bar{R}_4) et dans ce cas les formules de la correspondance entre les deux variétés sont

(54)
$$\overline{\omega}_{32}' = \overline{\lambda}_1 \overline{\omega}_{32} + \overline{\lambda}_2 \overline{\omega}_{31} + \overline{\lambda}_3 \overline{\omega}_{30},$$

$$\overline{\omega}_{31}' = \overline{\mu}_1 \overline{\omega}_{32} + \overline{\mu}_2 \overline{\omega}_{31} + \overline{\mu}_3 \overline{\omega}_{30},$$

$$\overline{\omega}_{30}' = \overline{v}_3 \overline{\omega}_{30}$$

avec la relation

$$\bar{v}_3\bar{\tau} \neq 0 \quad (\bar{\tau} = \bar{\lambda}_1\bar{\mu}_2 - \bar{\lambda}_2\bar{\mu}_1).$$

Les relations entre les coefficients des deux substitutions (33) et (54) s'obtiennent en utilisant le tableau (25):

(55)
$$b'_1\lambda_1 = b_1\bar{\lambda}_1, \quad b'_1\lambda_2 = a_1\bar{\lambda}_2, \quad b'_1\lambda_3 = \bar{\lambda}_3, \quad a'_1\mu_1 = b_1\bar{\mu}_1, \quad a'_1\mu_2 = a_1\mu_2, \quad a'_1\mu_3 = \bar{\mu}_3, \quad v_3 = \bar{v}_3.$$

Par différentiation extérieure on obtient le système extérieur:

$$[\Delta \bar{\lambda}_{1}, \, \bar{\omega}_{32}] + [\Delta \bar{\lambda}_{2}, \, \bar{\omega}_{31}] + [\Delta \bar{\lambda}_{3}, \, \bar{\omega}_{30}] = 0 ,$$

$$[\Delta \bar{\mu}_{1}, \, \bar{\omega}_{32}] + [\Delta \bar{\mu}_{2}, \, \bar{\omega}_{31}] + [\Delta \bar{\mu}_{3}, \, \bar{\omega}_{30}] = 0 ,$$

$$[\Delta \bar{v}_{1}, \, \bar{\omega}_{32}] + [\Delta \bar{v}_{2}, \, \bar{\omega}_{31}] + [\Delta \bar{v}_{3}, \, \bar{\omega}_{30}] = 0 ,$$

qui donne les équations qui prolongent le système (54)

Les coordonnées du point de rebroussement associé à une courbe (C) de V_3^2 sont:

(59)
$$\varrho x_{1} = -(\bar{a}_{1} + \bar{b}_{1}) \, \bar{\omega}_{31} \, \bar{\omega}_{32}^{2} ,$$

 $\varrho x_{2} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\omega}_{31}^{2} \, \bar{\omega}_{32} ,$
 $\varrho x_{0} = \bar{\omega}_{32} \, d\bar{\omega}_{31} - \bar{\omega}_{31} \, d\bar{\omega}_{32} + \bar{\omega}_{31} \, \bar{\omega}_{32} (\bar{\omega}_{11} - \bar{\omega}_{22}) + \bar{\omega}_{32}^{2} \, \bar{\omega}_{21} - \bar{\omega}_{31}^{2} \, \bar{\omega}_{12}$

et pour la courbe correspondante (C') de V_3^2 on trouve:

(60)
$$\varrho' x'_{1} = -(\bar{a}'_{1} + \bar{b}'_{1})(\bar{\lambda}_{1}\bar{\omega}_{32} + \bar{\lambda}_{2}\bar{\omega}_{31})^{2}(\bar{\mu}_{1}\bar{\omega}_{32} + \bar{\mu}_{2}\bar{\omega}_{31}),$$

 $\varrho' x'_{2} = (\bar{a}'_{1} + \bar{b}'_{1})(\bar{\lambda}_{1}\bar{\omega}_{32} + \bar{\lambda}_{2}\bar{\omega}_{31})(\bar{\mu}_{1}\bar{\omega}_{32} + \bar{\mu}_{2}\bar{\omega}_{31})^{2},$
 $\varrho' x'_{0} = \bar{\varrho}_{7}\bar{x}_{0} + (\bar{\lambda}_{1}\bar{\omega}_{32} + \bar{\lambda}_{2}\bar{\omega}_{31})\bar{Q}(\bar{\omega}_{32}, \bar{\omega}_{31}) - (\bar{\mu}_{1}\bar{\omega}_{32} + \bar{\mu}_{2}\bar{\omega}_{31}).$
 $\bar{P}(\bar{\omega}_{32}, \bar{\omega}_{31}) + (\bar{a}_{1} + \bar{b}_{1})(\bar{\Theta}_{1}\bar{\omega}_{32} + \bar{\Theta}_{2}\bar{\omega}_{31})\bar{\omega}_{31}\bar{\omega}_{32}$

οù

$$\begin{split} \overline{P}(\overline{\omega}_{32}, \overline{\omega}_{31}) &= \overline{\lambda}_{11} \overline{\omega}_{32}^2 + 2 \overline{\lambda}_{12} \overline{\omega}_{32} \overline{\omega}_{31} + \overline{\lambda}_{22} \overline{\omega}_{31}^2, \\ \overline{Q}(\overline{\omega}_{32}, \overline{\omega}_{31}) &= \mu_{11} \overline{\omega}_{32}^2 + 2 \mu_{12} \overline{\omega}_{32} \overline{\omega}_{31} + \overline{\mu}_{22} \overline{\omega}_{31}^2, \\ \overline{\Theta}_1 &= \overline{\lambda}_1 \overline{\mu}_3 - \overline{\lambda}_3 \overline{\mu}_1, \quad \overline{\Theta}_2 &= \overline{\lambda}_2 \overline{\mu}_3 - \overline{\lambda}_3 \overline{\mu}_2. \end{split}$$

En éliminant les formes $\overline{\omega}_{32}$, $\overline{\omega}_{31}$ de (59) et (60) on obtient les équations de la correspondance crémonienne entre les points de rebroussement:

(61)
$$\varrho' x_{1}' = -(\bar{a}_{1}' + \bar{b}_{1}')(\bar{\lambda}_{2}x_{2} - \bar{\lambda}_{1}x_{1})^{2} (\bar{\mu}_{2}x_{2} - \bar{\mu}_{1}x_{1}),$$

$$\varrho' x_{2}' = (\bar{a}_{1}' + \bar{b}_{1}')(\bar{\lambda}_{2}x_{2} - \bar{\lambda}_{1}x_{1})(\bar{\mu}_{2}x_{2} - \bar{\mu}_{1}x_{1})^{2},$$

$$\varrho' x_{0}' = -(\bar{a}_{1} + \bar{b}_{1})\bar{\tau}x_{0}x_{1}x_{2} + (\bar{\lambda}_{2}x_{2} - \bar{\lambda}_{1}x_{1})\bar{Q}(-x_{1}, x_{2}) -$$

$$-(\bar{\mu}_{2}x_{2} - \bar{\mu}_{1}x_{1})\bar{P}(-x_{1}, x_{2}) + (\bar{a}_{1} + \bar{b}_{1})(\bar{\Theta}_{1}x_{1} - \bar{\Theta}_{2}x_{2})x_{1}x_{2}.$$

Les points fondamentaux, dans le plan α_3 , sont – outre le point A_0 – les deux points

(62)
$$\varrho x_{1} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\lambda}_{1}^{2} \bar{\lambda}_{2} ,
\varrho x_{2} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\lambda}_{1} \bar{\lambda}_{2}^{2} ,
\varrho x_{0} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\lambda}_{1} \bar{\lambda}_{2} \bar{\lambda}_{3} - \bar{P}(-\bar{\lambda}_{2}, \bar{\lambda}_{1}) ,
(63)
$$\varrho x_{1} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\mu}_{1}^{2} \bar{\mu}_{2} ,
\varrho x_{2} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\mu}_{1} \bar{\mu}_{2}^{2} ,
\varrho x_{0} = (\bar{a}_{1} + \bar{b}_{1}) \, \bar{\mu}_{1} \bar{\mu}_{2} \bar{\mu}_{3} - \bar{Q}(-\bar{\mu}_{2}, \bar{\mu}_{1})$$$$

qui déterminent la droite

$$u_1x_1 + u_2x_2 + u_0x_0 = 0$$
, $x_3 = 0$

οù

(64)
$$\eta u_{1} = \overline{\lambda}_{1} \overline{\lambda}_{2} \overline{\mu}_{1} \overline{\mu}_{2} \overline{\Theta}_{2} + \overline{\mu}_{1} \overline{\mu}_{2}^{2} \overline{P} - \overline{\lambda}_{1} \overline{\lambda}_{2}^{2} \overline{Q},$$

$$\eta u_{2} = -\left\{\overline{\lambda}_{1} \overline{\lambda}_{2} \overline{\mu}_{1} \overline{\mu}_{2} \overline{\Theta}_{1} + \overline{\mu}_{1}^{2} \overline{\mu}_{2} \overline{P} - \overline{\lambda}_{1}^{2} \overline{\lambda}_{2} \overline{Q}\right\},$$

$$\eta u_{0} = (\overline{a}_{1} + \overline{b}_{1}) \lambda_{1} \lambda_{2} \overline{\mu}_{1} \overline{\mu}_{2} \overline{\tau}.$$

Cette droite s'appelle l'axe tangentiel de la correspondance et il passe par A_0 seulement si la correspondance est Γ_1 ou Γ_2 .

Un axe pareil existe dans le plan tangent α'_3 à la variété correspondante au point A'_0 .

Les points de rebroussement associés aux courbes de V_3^2 qui correspondent aux courbes de $V_3^{2\prime}$ dont les points de rebroussement sont alignés sur une droite donnée du plan tangent α_3' :

$$u_1'x_1' + u_2'x_2' + u_0'x_0' = 0$$
, $x_3' = 0$,

sont situés sur une cubique nodale de ce plan ayant ses points d'inflexion sur la droite

$$u_1x_1 + u_2x_2 + u_0x_0 = 0$$
, $x_3 = 0$

où

(65)
$$\varrho u_{1} = (\bar{a}'_{1} + \bar{b}'_{1})(\bar{a}\bar{\mu}_{2}u'_{1} - \bar{b}\bar{\lambda}_{2}u'_{2}) + \{(\bar{a}_{1} + \bar{b}_{1})\overline{\Theta}_{2} + 2(\bar{\lambda}_{2}\bar{\mu}_{12} - \bar{\mu}_{2}\bar{\lambda}_{12}) + \\ + \bar{\lambda}_{1}\bar{\mu}_{22} - \bar{\mu}_{1}\bar{\lambda}_{22}\}u_{0},$$

$$\varrho u_{2} = -(\bar{a}'_{1} + \bar{b}'_{1})(\bar{b}\bar{\mu}_{2}u'_{1} - \bar{a}\bar{\lambda}_{1}u'_{2}) - \{(\bar{a}_{1} + \bar{b}_{1})\overline{\Theta}_{1} + 2(\bar{\lambda}_{1}\bar{\mu}_{12} - \bar{\mu}_{2}\bar{\lambda}_{12}) + \\ + \bar{\lambda}_{2}\bar{\mu}_{11} - \bar{\mu}_{2}\bar{\lambda}_{11}\}u_{0},$$

$$\varrho u_{0} = (\bar{a}_{1} + \bar{b}_{1})\bar{\tau}u'_{0}$$

et, de cette construction, il résulte une correspondance projective entre les droites des deux plans tangents en deux points correspondants. Cette correspondance est singulière seulement dans le cas où (53) est aussi singulière et réciproquement.

7. Les notions de système hypergéodésique axial et de système hypergéodésique radial s'introduisent de la même manière que dans le cas holonome.

Etant donnée une variété V_3^1 de classe I ([3], p. 463)

$$[A_0, \xi_1 A_1 + \xi_2 A_2 + \xi_3 A_3]$$

associée à la V_3^2 donnée, l'ensemble des courbes de V_3^2 dont les plans osculateurs en chaque point A_0 contiennent la droite (Δ^1) associée à ce point est, par définition, un système hypergéodésique axial.

Les courbes d'un tel système sont les courbes intégrales du système différentiel

(66)
$$\xi_3 \{ \omega_{01} \, d\omega_{02} - \omega_{02} \, d\omega_{01} + \omega_{01} \omega_{02} (\omega_{22} - \omega_{11}) + \omega_{01}^2 \omega_{12} - \omega_{02}^2 \omega_{21} \} + (\bar{a}_1 + \bar{b}_1) (\xi_1 \omega_{02} - \xi_2 \omega_{01}) \omega_{01} \omega_{02} = \omega_{03} = 0$$

et leur ensemble est une famille à deux paramètres.

D'une manière analogue, on définit par rapport à une variété V_3^1 de classe II

$$(\Delta^{II}) u_1 x_1 + u_2 x_2 + u_0 x_0 = 0, \quad x_3 = 0$$

associée à la variété V_3^2 , un système hypergéodésique radial qui est formé par les courbes dont les points de rebroussement associés en un point A_0 de V_3^2 sont alignés

sur la droite (Δ^{II}) du plan tangent. Les surfaces développables déterminées par ces courbes sont les surfaces intégrales d'un système de la forme:

(67)
$$u_0\{\overline{\omega}_{32} d\overline{\omega}_{31} - \overline{\omega}_{31} d\overline{\omega}_{32} + \overline{\omega}_{31}\overline{\omega}_{32}(\overline{\omega}_{11} - \overline{\omega}_{22}) + \overline{\omega}_{32}^2\overline{\omega}_{21} - \overline{\omega}_{31}^2\overline{\omega}_{12}\} - (\overline{a}_1 + \overline{b}_1)(u_1\overline{\omega}_{32} - u_2\overline{\omega}_{32})\overline{\omega}_{31}\overline{\omega}_{32} = 0, \quad \overline{\omega}_{30} = 0.$$

Les courbes du système hypergéodésique axial de la variété $V_3^{2\prime}$ associé à la droite $(\Delta^{1\prime})$ qui correspond à (Δ^{1}) dans la correspondance (53) sont les courbes intégrales d'un système qui se déduit de (66) en remplaçant toutes les lettres par des lettres pourvues d'accents qui désignent les coefficients du système de Pfaff associé à la variété $V_3^{2\prime}$.

En tenant compte des relations (46) ce système peut s'écrire:

(68)
$$\tau \{ \omega_{01} \, d\omega_{02} - \omega_{02} \, d\omega_{01} + \omega_{01}\omega_{02}(\omega_{22} - \omega_{11}) + \omega_{02}^2 \omega_{12} - \omega_{02}^2 \omega_{21} \} + (a_1 + b_1) (\Theta_1 \omega_{01} + \Theta_2 \omega_{02}) \omega_{01}\omega_{02} + \omega'_{01}Q - \omega'_{02}P + (a'_1 + b'_1) (\xi'_1 \omega'_{02} - \xi'_2 \omega'_{01}) \omega'_{01}\omega'_{02} = 0, \quad \omega_{03} = 0 \quad (\xi'_3 = 1).$$

En général, les courbes de ces deux systèmes hypergéodésiques axiaux (66) et (68) ne se correspondent pas. Pour que leurs courbes soient des courbes correspondantes il faut et il suffit que les deux systèmes (66) et (68) soient équivalents.

Le problème de la détermination des systèmes hypergéodésiques correspondants conduit donc au système:

$$(68_1) \qquad (a_1' + b_1') \lambda_1 \mu_1 (\mu_1 \xi_1' - \lambda_1 \xi_2') + \lambda_1 \mu_{11} - \mu_1 \lambda_{11} = 0 ,$$

$$(a_1' + b_1') \lambda_2 \mu_2 (\mu_2 \xi_1' - \lambda_2 \xi_2') + \lambda_2 \mu_{22} - \mu_2 \lambda_{22} = 0 ,$$

$$(a_1' + b_1') (b \mu_1 \xi_1' - a \lambda_1 \xi_2') + \lambda_2 \mu_{11} - \mu_2 \lambda_{11} + 2(\lambda_1 \mu_{12} - \mu_1 \lambda_{12}) +$$

$$+ (a_1 + b_1) \Theta_1 + (a_1 + b_1) \tau \xi_2 = 0 ,$$

$$(a_1' + b_1') (a \mu_2 \xi_1' - b \lambda_2 \xi_2') + \lambda_1 \mu_{22} - \mu_2 \lambda_{22} + 2(\lambda_2 \mu_{12} - \mu_2 \lambda_{12}) +$$

$$+ (a_1 + b_1) \Theta_2 - (a_1 + b_1) \tau \xi_1 = 0 .$$
Si

c'est-à-dire si la correspondance est une correspondance Γ_0 , il existe une seule variété V_3^1 de classe I à laquelle il correspond une variété $V_3^{1\prime}$ de même classe et telle que les systèmes hypergéodésiques axiaux associés soient formés par des courbes correspondantes.

 $\lambda_1 \lambda_2 \mu_1 \mu_2 \neq 0$,

En effet, dans l'hypothèse spécifiée les deux premières équations (68₁) déterminent les fonctions ξ'_1 , ξ'_2 et des deux dernières on obtient ξ_1 et ξ_2 . Les droites ainsi déterminées sont les axes transversaux de la correspondance (50).

Si la correspondance est Γ_1 ou Γ_2 , le problème, en général, n'admet pas de solution à cause des conditions de compatibilité qui interviennent.

Dans le cas d'une correspondance Γ_1 , on peut supposer que les lignes asymptotiques qui se correspondent appartiennent aux familles (C_1) , (C'_1) , c'est-à-dire que l'on a

$$\mu_1=0\,,$$

ce qui entraîne, d'après (43₂) et (44),

(69)
$$\mu_{11} = \lambda_1^2 \bar{a}_2 - \mu_2 a_2, \mu_{12} = \lambda_1 \lambda_2 \bar{a}_2 - \mu_3 a_1, \mu_{13} = -\mu_2 a_2' + \lambda_1 \lambda_3 \bar{a}_2 + \lambda_1 v_3 \bar{a}_2'$$

en surmontant d'une barre les coefficients du système de Pfaff relatifs à la variété V_3^2 .

Pour les correspondances particulières Γ_1 pour les quelles il existe la relation

$$\lambda_1^2 \bar{a}_2 - \mu_2 a_2 = 0,$$

le problème est possible et admet un ensemble infini de solutions et les axes des systèmes hypergéodésiques associées au point A_0 sont situés dans un plan passant par la tangente $[A_0, A_2]$.

Si la correspondance est Γ_2 , on peut supposer

$$\lambda_2 = \mu_1 = 0$$

et, par suite:

(71)
$$\lambda_{12} = -\lambda_{3}b_{1},$$

$$\lambda_{22} = \mu_{2}^{2}\bar{b}_{2} - \lambda_{1}b_{2},$$

$$\lambda_{23} = -\lambda_{1}b'_{2} + \mu_{2}\mu_{3}\bar{b}_{2} + \mu_{2}v_{3}\bar{b}'_{2},$$

$$\mu_{11} = \lambda_{1}^{2}\bar{a}_{2} - \mu_{2}a_{2},$$

$$\mu_{12} = -\mu_{3}a_{1},$$

$$\mu_{13} = -\mu_{2}a'_{2} + \lambda_{1}\lambda_{3}\bar{a}_{2} + \lambda_{1}v_{3}\bar{a}'_{2}.$$

Si les conditions de compatibilité

(72)
$$\lambda_1^2 \bar{a}_2 - \mu_2 a_2 = 0, \quad \mu_2^2 \bar{b}_2 - \lambda_1 b_2 = 0$$

sont vérifiées, le problème est indéterminé. On peut choisir arbitrairement les fonctions ξ'_1, ξ'_2 . A tout couple (ξ'_1, ξ'_2) les deux dernières équations (68) font correspondre un couple déterminé (ξ_1, ξ_2) .

Cette espèce de correspondance asymptotique s'appelle applicabilité projective, et elle conserve les invariants de Bompiani (4).

Réciproquement, si une correspondance conserve les deux invariants de Bompiani (4), elle est une applicabilité projective.

En effet, puisque ces deux invariants s'annulent respectivement sur les deux lignes asymptotiques, la correspondance doit être une correspondance Γ_2 et, dans ce cas, des égalités

$$\frac{\bar{a}_2 \omega_{01}^{'2}}{\omega_{02}^{'}} = \frac{a_2 \omega_{01}^2}{\omega_{02}}, \quad \frac{\bar{b}_2 \omega_{02}^{'2}}{\omega_{01}^{'}} = \frac{b_2 \omega_{02}^2}{\omega_{01}}$$

valables pour

$$\omega_{03} = 0$$
, $\omega'_{03} = 0$

on obtient les relations (72).

Cette correspondance asymptotique conserve aussi les lignes de Darboux et de Segre de deuxième espèce ([3], p. 455). La correspondance (47) devient une projectivité.

Dans la classe des correspondances asymptotiques, l'applicabilité projective peut être caractérisée par une autre propriété.

Considérons une courbe (C) de V_3^2 qui n'est pas une ligne asymptotique:

$$\omega_{02} = \sigma \omega_{01}$$
, $\omega_{03} = 0$.

Le coefficient directeur σ vérifie une équation de Pfaff de la forme:

$$d\sigma + \sigma(\omega_{22} - \omega_{11}) = \beta_1 \omega_{01} + \gamma_1 \omega_{02} + \gamma_1' \omega_{03}.$$

Par rapport à un repère (R_p) $(p \le 6)$, la courbe (C) est représentée par les équations

$$y = \sigma x + \frac{1}{2} (\beta_1 + \gamma_1 \sigma + a_2 - b_2 \sigma^3) x^2 + (3),$$

$$z = \frac{a_1 + b_1}{2} \sigma x^2 + (3).$$

La courbe correspondante (C') de $V_3^{2\prime}$ est représentée par les équations qui se déduisent de ces équations en remplaçant toutes les lettres par de lettres surmontées d'une barre, qui définissent les mêmes coefficients relativement au repère (R'_p) associé au point A'_0 de la $V_3^{2\prime}$ correspondante.

Dans le cas d'une correspondance asymptotique, de l'équation de l'homographie fondamentale

$$\bar{\sigma} = \frac{\mu_2}{\lambda_1} \, \sigma$$

on déduit, en tenant compte des équations (43) et (44),

$$\bar{\beta}_1 = \frac{1}{\lambda_1^2} \left(\mu_2 \beta_1 - \frac{P_1}{\lambda_1} \sigma \right), \quad \bar{\gamma}_1 = \frac{1}{\lambda_1 \mu_2} \left(\mu_2 \gamma_1 + \frac{P_2}{\lambda_1} \sigma \right)$$

оù

$$P_1 = \mu_2 \lambda_{11} + \lambda_1 \mu_3 (a_1 - b_1), \quad P_2 = \lambda_1 \mu_{22} - \lambda_3 \mu_2 (a_1 - b_1).$$

En utilisant ces relations, on trouve que les équations de la courbe correspondante (C') sont

$$y' = \frac{\mu_2}{\lambda_1} \sigma x' + \frac{\mu_2}{2\lambda_1^2} \left\{ \beta_1 + \gamma_1 \sigma - \frac{P_1 \sigma}{\lambda_1 \mu_2} + \frac{P_2 \sigma^2}{\lambda_1 \mu_2} + \frac{\lambda_1^3 \bar{a}_2 - \mu_2^3 b_2 \sigma^3}{\lambda_1 \mu_2} \right\} x'^2 + (3),$$

$$z' = \frac{\bar{a}_1 + \bar{b}_1}{2} \frac{\mu_2}{\lambda_1} \sigma x'^2 + (3).$$

Si l'on transforme la courbe (C') par l'homographie qui résulte du produit de l'homographie qui transforme le repère (R'_p) associé au point A'_0 dans le repère (R_p) associé au point A_0 avec l'homographie

$$x' = \lambda_1 x$$
, $y' = \mu_2 y$, $z' = \frac{\bar{a}_1 + \bar{b}_1}{a_1 + b_1} \cdot \frac{\mu_2}{\lambda_1} z$,

on obtient une courbe (\overline{C}) par A_0 qui est représentée localement par les équations

$$\bar{y} = \sigma x + \frac{1}{2} \left\{ \beta_1 + \gamma_1 \sigma + \frac{1}{\lambda_1 \mu_2} \left[\lambda_1 (\lambda_1^2 \bar{a}_2 - \mu_2 a_2) - P_1 \sigma + P_2 \sigma^2 - \mu_2 (\mu_2^2 \bar{b}_2 - \lambda_1 b_2) \sigma^3 \right] \right\} x^2 + (3),$$

$$\bar{z} = \frac{a_1 + b_1}{2} \sigma x^2 + (3).$$

En général, le contact entre les deux courbes (C) et (\overline{C}) est du premier ordre. Des relations

$$\bar{y} - y = \frac{1}{2\lambda_1\mu_2} \left\{ \lambda_1 (\lambda_1^2 \bar{a}_2 - \mu_2 a_2) - P_1 \sigma + P_2 \sigma^2 - \mu_2 (\mu_2^2 \bar{b}_2 - \lambda_1 b_2) \sigma^3 \right\} x^2 + (3),$$

$$\bar{z} - z = (3)$$

on déduit que le contact devient du second ordre pour les courbes intégrales du système

$$\begin{split} \lambda_1 (\lambda_1^2 \bar{a}_2 - \mu_2 a_2) \, \omega_{01}^3 - P_1 \omega_{01}^2 \omega_{02} + P_2 \omega_{01} \omega_{02}^2 - \\ - \, \mu_2 (\mu_2^2 \bar{b}_2 - \lambda_1 b_2) \, \omega_{02}^3 = 0 \; , \\ \omega_{03} = 0 \; , \end{split}$$

qui s'appellent courbes principales de la correspondance Γ_2 .

Il est évident que l'homographie considérée transforme le plan osculateur en A_0 à une courbe principale dans le plan osculateur en A_0 à la courbe principale correspondante

On voit aisément que la condition nécessaire et suffisante pour qu'une Γ_2 soit une applicabilité projective est que les lignes asymptotiques soient des courbes principales.

8. Les systèmes hypergéodésique radiaux qui sont conservés par une correspondance entre deux variétés tangentielles \overline{V}_3^2 , $\overline{V}_3^{2\prime}$ sont donnés par les solutions du système:

(73)
$$(\bar{a}'_{1} + \bar{b}'_{1})(\bar{\lambda}_{1}u'_{1} - \bar{\mu}_{1}u'_{2}) - \bar{\lambda}_{1}\bar{\mu}_{11} + \bar{\mu}_{1}\bar{\lambda}_{11} = 0 ,$$

$$(\bar{a}'_{1} + \bar{b}'_{1})(\bar{\lambda}_{2}u'_{1} - \bar{\mu}_{2}u'_{2}) - \bar{\lambda}_{2}\bar{\mu}_{22} + \bar{\mu}_{2}\bar{\lambda}_{22} = 0 ,$$

$$(\bar{a}_{1} + \bar{b}_{1})\overline{\Theta}_{1} - (\bar{a}'_{1} + \bar{b}'_{1})(\bar{a}\bar{\lambda}_{1}u'_{1} - \bar{b}\bar{\mu}_{1}u'_{2}) + \bar{\lambda}_{2}\bar{\mu}_{11} - \bar{\mu}_{2}\bar{\lambda}_{11} +$$

$$+ 2(\bar{\lambda}_{1}\bar{\mu}_{12} - \bar{\mu}_{1}\bar{\lambda}_{12}) + (\bar{a}_{1} + \bar{b}_{1})\bar{\tau}u_{1} = 0 ,$$

$$(\bar{a}_{1} + \bar{b}_{1})\overline{\Theta}_{2} - (\bar{a}'_{1} + \bar{b}'_{1})(\bar{b}\bar{\lambda}_{2}u'_{1} - \bar{a}\bar{\mu}_{2}u'_{2}) + \bar{\lambda}_{1}\bar{\mu}_{22} - \bar{\mu}_{1}\bar{\lambda}_{22} +$$

$$+ 2(\bar{\lambda}_{2}\bar{\mu}_{12} - \bar{\mu}_{2}\bar{\lambda}_{12}) - (\bar{a}_{1} + \bar{b}_{1})\bar{\tau}u_{2} = 0 .$$

Dans une correspondance Γ_0 il existe un seul système hypergéodésique radial qui est conservé par la correspondance.

Si la correspondance est Γ_1 , par exemple

$$\bar{\mu}_1 = 0$$
,

le problème n'admet pas de solution en général. Mais si l'on a la relation

(74)
$$\bar{\mu}_{11} = \bar{\lambda}_1^2 \bar{b}_2 - \bar{\mu}_2 \bar{b}_2 = 0$$

où l'on a surmonté de deux barres les coefficients du système de Pfaff relatif à la variété $\overline{V}_3^{2\prime}$, le problème admet un ensemble infini de solutions.

Les axes de tous ces systèmes qui sont situés dans le plan tangent α_3 passent par le point fondamental (62).

Mais la condition (74) n'est plus équivalente à la condition (70), comme il arrive dans le cas holonome de deux surfaces.

En effet, en utilisant les relations (25), on trouve

(75)
$$\bar{\mu}_{11} = -\frac{a_1'}{b_1^2} (k' \lambda_1^2 \bar{a}_2 - k \mu_2 a_2)$$

οù

$$k = -\frac{b_1}{a_1}, \quad k' = -\frac{b_1'}{a_1'}$$

sont les deux invariants fondamentaux des deux variétés.

Par conséquent, la correspondance Γ_1 qui admet un ensemble simplement infini de systèmes hypergéodésiques axiaux qui sont conservés ne coïncide pas avec la correspondance Γ_1 qui admet une solution de même nature concernant les systèmes hypergéodésiques radiaux.

Si les courbes des deux familles (C_1) , (C'_1) de lignes asymptotiques qui se correspondent ne sont pas des lignes droites, c'est-à-dire si l'on a

$$a_2\bar{a}_2 \neq 0$$
,

la coïncidence des deux correspondances Γ_1 ne se réalise que pour les variétés dont les deux invariants fondamentaux sont égaux.

Dans le cas d'une correspondance Γ_2 , par exemple si l'on a

$$\bar{\lambda}_2 = \bar{\mu}_1 = 0$$
,

le problème, en général, est impossible. Mais si les conditions de compatibilité sont vérifiées

(76)
$$\bar{\lambda}_{22} = \bar{\mu}_2^2 \bar{a}_2 - \bar{\lambda}_1 \bar{a}_2 = 0, \quad \bar{\mu}_{11} = \bar{\lambda}_1^2 \bar{b}_2 - \bar{\mu}_2 \bar{b}_2 = 0,$$

il est indéterminé. Dans ce cas, à tout système hypergéodésique radial ve \overline{V}_3^2 il correspond un système de même nature de $\overline{V}_3^{2\prime}$ et la correspondance Γ_2 qui admet cette propriété s'appelle une applicabilité projective.

Mais, puisque les relations (76) ne sont pas équivalentes aux relations (72) parce que, outre la relation (75), on a encore

(77)
$$\bar{\lambda}_{22} = -\frac{a_1'}{a_1 b_1} (k \mu_2^2 \bar{b}_2 - k' \lambda_2 b_2),$$

il est nécessaire d'établir une distinction entre ces deux applicabilités projectives en appelant applicabilité projective axiale la correspondance Γ_2 définie par les relations (72) et applicabilité projective radiale la correspondance Γ_2 définie par les relations (76).

Ces deux correspondances Γ_2 coïncident si les lignes asymptotiques des deux variétés ne sont pas des lignes droites et si leurs invariants fondamentaux sont égaux.

Dans le cas d'une applicabilité projective radiale, la correspondance (61) est une projectivité.

Si les deux V_3^2 en correspondance sont simplement réglées, c'est-à-dire si les courbes d'une seule famille de lignes asymptotiques de chaque V_3^2 sont des lignes droites, et si ces deux familles de droites se correspondent, les conditions (70) et (74) sont vérifiées. Donc, les deux variétés admettent des systèmes hypergéodésiques des deux espèces qui se conservent.

Et si les deux V_3^2 sont doublement réglées et sont en correspondance asymptotique, à tout système axial ou radial de l'une d'elles il correspond un système de même nature de l'autre.

III. COUPLES TRANSVERSAUX

9. Considérée par rapport à une V_3^2 donnée, une correspondance ponctuelle de S_3 s'appelle correspondance transversale si la droite [M, M'] déterminée par un couple arbitraire de points correspondants n'est pas incidente avec la droite $[\pi, \pi']$ commune au plan tangent π en M à la V_2^3 donnée et au plan tangent π' au point homologue M' à la V_3^2 ' qui lui correspond dans la correspondance considérée.

La figure formée par deux V_3^2 en correspondance transversale peut être rapportée à un repère mobile unique en choisissant deux points correspondants pour deux des sommets du repère, par exemple les sommets A_0 et A_3 , les deux autres sommets A_1 , A_2 étant choisis sur la droite commune $[\pi, \pi']$ des plans tangents sur laquelle ils ont des positions arbitraires et le point unité étant indéterminé.

Le repère dépend de trois paramètres principaux, par exemple les paramètres de position t_1 , t_2 , t_3 du point A_0 , et de cinq paramètres secondaires. En un point déterminé A_0 de S_3 l'ensemble de tous les repères qu'on peut associer de cette manière à la figure est une famille (R_5) .

Il s'ensuit que les équations des deux variétés V_3^2 , $V_3^{2\prime}$ du couple sont, respectivement:

(78)
$$(A_0): \quad \omega_{03} = 0,$$

$$(A_3): \quad \omega_{30} = 0.$$

$$\omega_{01}, \; \omega_{02}, \; \omega_{03}$$

pour formes principales, on déduit que les formes

$$\omega_{31}, \ \omega_{32}, \ \omega_{30}$$

dépendent seulement de dt_1 , dt_2 , dt_3 , donc elles appartiennent au module engendré par les formes principales, c'est-à-dire que les équations qui traduisent la correspondance ponctuelle qui fait correspondre à la V_3^2 donnée la V_3^2 dont les éléments fondamentaux sont les figures formées par les point A_3 et les plans α_0 sont:

(79)
$$\omega_{31} = \sum_{i} \lambda_{i} \omega_{0i}$$
, $\omega_{32} = \sum_{i} \mu_{i} \omega_{0i}$, $\omega_{30} = v_{3} \omega_{03}$ $(i = 1, 2, 3)$ avec

 $\tau v_3 \neq 0 \quad (\tau = \lambda_1 \mu_2 - \lambda_2 \mu_1).$

Le système extérieur associé au système de Pfaff (79) est

(80)
$$\sum_{\mathbf{i}} [\Delta \lambda_i, \omega_{0i}] = 0 , \quad \sum_{\mathbf{i}} [\Delta \mu_i, \omega_{0i}] = 0 , \quad \sum_{\mathbf{i}} [\Delta \nu_i, \omega_{0i}] = 0 ,$$
 où:

(81₁)
$$\Delta \lambda_1 = d\lambda_1 + \lambda_1(\omega_{00} - \omega_{33}) - \lambda_2\omega_{12} - \lambda_3\omega_{13} + \mu_1\omega_{21} - \omega_{30}$$
,
 $\Delta \lambda_2 = d\lambda_2 + \lambda_2(\omega_{00} + \omega_{11} - \omega_{22} - \omega_{33}) - \lambda_3\omega_{23} + (\mu_2 - \lambda_1)\omega_{21}$,
 $\Delta \lambda_3 = d\lambda_3 + \lambda_3(\omega_{00} + \omega_{11} - 2\omega_{33}) - \lambda_1\omega_{31} - \lambda_2\omega_{32} + \mu_3\omega_{21}$,

(81₂)
$$\Delta\mu_1 = d\mu_1 + \mu_1(\omega_{00} - \omega_{11} + \omega_{22} - \omega_{33}) - \mu_3\omega_{13} + (\lambda_1 - \mu_2)\omega_{12}$$
,
 $\Delta\mu_2 = d\mu_2 + \mu_2(\omega_{00} - \omega_{33}) + \lambda_2\omega_{12} - \mu_1\omega_{21} - \mu_3\omega_{23} - \omega_{30}$,
 $\Delta\mu_3 = d\mu_3 + \mu_3(\omega_{00} + \omega_{22} - 2\omega_{33}) - \lambda_3\omega_{12} - \mu_1\omega_{31} - \mu_2\omega_{32}$;

(81₃)
$$\Delta v_1 = \lambda_1 \omega_{10} + \mu_1 \omega_{20} - v_3 \omega_{13},$$

 $\Delta v_2 = \lambda_2 \omega_{10} + \mu_2 \omega_{20} - v_3 \omega_{23},$
 $\Delta v_3 = dv_3 + v_3 (2\omega_{00} - 2\omega_{33}) + \lambda_3 \omega_{10} + \mu_3 \omega_{20}.$

En résolvant le système extérieur (80), on trouve les équations de prolongement

(82)
$$\Delta \lambda_{i} = \sum_{k} \lambda_{ik} \omega_{0k}, \quad \Delta \mu_{i} = \sum_{k} \mu_{ik} \omega_{0k}, \quad \Delta v_{i} = \sum_{k} v_{ik} \omega_{0k},$$
$$(i, k = 1, 2, 3; \ \lambda_{ik} = \lambda_{ki}, \ \mu_{ik} = \mu_{ki}, \ v_{ik} = v_{ki})$$

qui contiennent 18 coefficients arbitraires.

Les nombres caractéristiques du système étant $s_1 = 3$, $s_2 = 3$, $s_3 = 3$, il est en involution et on vérifie de cette manière que la correspondance ponctuelle la plus générale de S_3 dépend de trois fonctions arbitraires de trois arguments.

Pour une variation δ des paramètres secondaires de la famille de repère (R_5) on a

$$e_{10} = e_{13} = 0 \; , \quad e_{20} = e_{23} = 0 \quad \left(e_{ik} = \omega_{ik}(\delta) \right) , \label{eq:e10}$$

donc les formes de Pfaff ω_{10} , ω_{13} , ω_{20} , ω_{23} appartiennent au module des formes principales.

En posant

(83)
$$\omega_{13} = a_3 \omega_{01} + b_3 \omega_{02} + c_3 \omega_{03},$$

$$\omega_{23} = e_3 \omega_{01} + f_3 \omega_{02} + g_3 \omega_{03},$$

les expresions des formes ω_{10} , ω_{20} se déduisent des équations (82):

(84)
$$\Delta v_1 = \lambda_1 \omega_{10} + \mu_1 \omega_{20} - v_3 \omega_{13} = v_{11} \omega_{01} + v_{12} \omega_{02} + v_{13} \omega_{03},$$

$$\Delta v_2 = \lambda_2 \omega_{10} + \mu_2 \omega_{20} - v_3 \omega_{23} = v_{12} \omega_{01} + v_{22} \omega_{02} + v_{23} \omega_{03}.$$

Cela signifie que, étant donnée une variété V_3^2 — définie par les équations (83) — et une correspondance ponctuelle qui est déterminée par les équations (79), la variété $V_3^{2\prime}$ est déterminée.

Une telle figure dépend donc de cinq fonctions arbitraires de trois arguments.

Il est plus utile d'exprimer les formes ω_{10} , ω_{20} sous la forme

(85)
$$\omega_{10} = a_0 \omega_{01} + b_0 \omega_{02} + c_0 \omega_{03},$$

$$\omega_{20} = e_0 \omega_{01} + f_0 \omega_{02} + g_0 \omega_{03},$$

les nouveaux coefficients vérifiant les relations

(86)
$$a_0\lambda_1 + e_0\mu_1 - a_3v_3 = v_{11}, \quad a_0\lambda_2 + e_0\mu_2 - e_3v_3 = v_{12},$$

$$b_0\lambda_1 + f_0\mu_1 - b_3v_3 = v_{12}, \quad b_0\lambda_2 + f_0\mu_2 - f_3v_3 = v_{22},$$

$$c_0\lambda_1 + g_0\mu_1 - c_3v_3 = v_{13}, \quad c_0\lambda_2 + g_0\mu_2 - g_3v_3 = v_{23},$$

qui entraînent la conséquence

$$(86_1) b_0 \lambda_1 + f_0 \mu_1 - b_3 \nu_3 = a_0 \lambda_2 + e_0 \mu_2 - e_3 \nu_3.$$

Pour déterminer les éléments géométriques relatifs à la variété V_3^2 on pose

(87)
$$\omega_{10} = a'_0 \omega_{31} + b'_0 \omega_{32} + c'_0 \omega_{30},$$

$$\omega_{20} = e'_0 \omega_{31} + f'_0 \omega_{32} + g'_0 \omega_{30},$$

et l'on a

(88)
$$a_0 = a'_0 \lambda_1 + b'_0 \mu_1$$
, $b_0 = a'_0 \lambda_2 + b'_0 \mu_2$, $c_0 = a'_0 \lambda_3 + b'_0 \mu_3 + c'_0 v_3$, $e_0 = e'_0 \lambda_1 + f'_0 \mu_1$, $f_0 = e'_0 \lambda_2 + f'_0 \mu_2$, $g_0 = e'_0 \lambda_3 + f'_0 \mu_3 + g'_0 v_3$.

A une droite par A_0

(89)
$$\left[A_0, \xi_1 A_1 + \xi_2 A_2 + \xi_3 A_3 \right],$$

la polarité de Pantazi par rapport à la variété V_3^2 fait correspondre la droite du plan tangent $[A_0, A_1, A_2]$:

$$u_1x_1 + u_2x_2 + u_0x_0 = 0$$
, $x_3 = 0$

οù

(90)
$$\eta u_1 = a_3 \xi_1 + b_3 \xi_2 + c_3 \xi_3$$
, $\eta u_2 = e_3 \xi_1 + f_3 \xi_2 + g_3 \xi_3$, $\eta u_0 = \xi_3$

et une droite par A3

$$[A_3, \xi_0 A_0 + \xi_1 A_1 + \xi_2 A_2]$$

a pour correspondante dans la polarité de Pantazi par rapport à la variété correspondante $V_3^{2'}$ la droite du plan tangent $[A_3, A_1, A_2]$:

$$u_1x_1 + u_2x_2 + u_3x_3 = 0$$
, $x_0 = 0$

οù

$$(92) \quad \eta u_1 = a_0' \xi_1 + b_0' \xi_2 + c_0' \xi_0 \,, \quad \eta u_2 = e_0' \xi_1 + f_0' \xi_2 + g_0' \xi_0 \,, \quad \eta u_3 = \xi_0 \,.$$

Les couples de tangentes qui se correspondent dans l'homographie fondamentale rencontrent la droite $[A_1, A_2]$ en des points qui appartiennent à la correspondance homographique définie par l'équation

(93)
$$\lambda_2 \sigma \sigma' - \mu_2 \sigma + \lambda_1 \sigma' - \mu_1 = 0$$

et qui est une correspondance propre.

En laissant de côté le cas où les deux points doubles de (93) sont confondus, on en conclut que sur chacune des deux variétés V_3^2 , V_3^2 du couple il existe des courbes telles que la tangente en A_0 à une de ces courbes rencontre la tangente en A_3 à la courbe correspondante en un point situé sur la droite $[A_1, A_2]$.

Ces courbes, qui s'appellent les courbes fondamentales associées à la correspondance, sont les courbes intégrales du système différentiel

(94)
$$\mu_1 \omega_{01}^2 + (\mu_2 - \lambda_1) \omega_{01} \omega_{02} - \lambda_2 \omega_{02}^2 = 0, \quad \omega_{03} = 0.$$

Si l'homographie (93) est une involution, on a la relation

$$(95) \qquad \qquad \lambda_1 + \mu_2 = 0$$

et la correspondance respective s'appelle correspondance harmonique.

Les lignes asymptotiques de la variété V_3^2 sont les courbes intégrales du système

$$\omega_{01}\omega_{13} + \omega_{02}\omega_{23} = 0$$
, $\omega_{03} = 0$,

ou

(96)
$$a_3\omega_{01}^2 + (b_3 + e_3)\omega_{01}\omega_{02} + f_3\omega_{02}^2 = 0, \quad \omega_{03} = 0,$$

et celles de la variété correspondante $V_3^{2\prime}$ sont définies par le système

$$\omega_{31}\omega_{10} + \omega_{32}\omega_{20} = 0, \quad \omega_{30} = 0,$$

c'est-à-dire par

(97)
$$a_0'\omega_{31}^2 + (b_0' + e_0')\omega_{31}\omega_{32} + f_0'\omega_{32}^2 = 0, \quad \omega_{30} = 0,$$

système qui peut s'écrire sous la forme plus utile

$$(97_1) a_3'\omega_{01}^2 + (b_3' + e_3')\omega_{01}\omega_{02} + f_3'\omega_{02}^2 = 0, \quad \omega_{03} = 0$$

οù

(98)
$$a'_{3} = a_{0}\lambda_{1} + e_{0}\mu_{1}, \quad b'_{3} = a_{0}\lambda_{2} + e_{0}\mu_{2},$$
$$e'_{3} = b_{0}\lambda_{1} + f_{0}\mu_{1}, \quad f'_{3} = b_{0}\lambda_{2} + f_{0}\mu_{2}.$$

Remarquons que si l'on tient compte des nouveaux coefficients (98), la relation (86₁) s'écrit:

$$(99) b_3' + b_3 v_3 = e_3' + e_3 v_3$$

et peut être vérifiée si l'on pose

(100)
$$b_3 = \Theta + \Theta_1, \quad e_3 = \Theta - \Theta_1,$$
$$b_3' = \Theta' - \Theta_1 v_3, \quad e_3' = \Theta' + \Theta_1 v_3,$$

 Θ , Θ' , Θ_1 étant trois fonctions auxiliaires.

Les équations des systèmes (96) et (97₁) deviennent donc respectivement:

$$a_3\omega_{01}^2 + 2\Theta\omega_{01}\omega_{02} + f_3\omega_{02}^2 = 0, \quad \omega_{03} = 0,$$

(102)
$$a_3'\omega_{01}^2 + 2\Theta'\omega_{01}\omega_{02} + f_3'\omega_{02}^2 = 0, \quad \omega_{03} = 0.$$

10. Un couple de V_3^2 en correspondance transversale détermine deux V_3^1 qui lui sont associées. L'une d'elles est la V_3^1 des droites $[A_0, A_3]$, c'est la V_3^1 transversale, et l'autre est formée par les droites $[A_1, A_2]$, c'est la V_3^1 tangentielle qui est corrélative de la première V_3^1 .

Si en chaque couple de points (A_0, A_3) les deux droites $[A_0, A_3]$, $[A_1, A_2]$ se correspondent dans les deux polarités de Pantazi qui sont associées aux deux variétés du couple, on dit que la figure est un *couple normal* et les relations qui caractérisent une figure de cette nature sont

$$(103) c_3 = g_3 = 0, c_0 = g_0 = 0.$$

Des relations focales de la variété V_3^1 des droites $[A_0, A_3]$

(104)
$$x_0 \omega_{01} + x_3 \omega_{31} = 0$$
, $x_0 \omega_{02} + x_3 \omega_{32} = 0$,

on déduit que ces droites déterminent une surface réglée développable si le point A_0 varie sur une courbe intégrale de l'équation de Monge:

(105)
$$\mu_1 \omega_{01}^2 + (\mu_2 - \lambda_1) \omega_{01} \omega_{02} - \lambda_2 \omega_{02}^2 + \mu_3 \omega_{02} \omega_{03} - \lambda_3 \omega_{02} \omega_{03} = 0$$
 qui définit les courbes focales de la V_3^1 considérée.

Les tangentes de ces courbes au point A_0 sont situées sur un cône de second ordre qui est le cône de Malus que la variété V_3^1 associe au point A_0 et qui est représenté localement par l'équation:

(106)
$$\mu_1 x_1^2 + (\mu_2 - \lambda_1) x_1 x_2 - \lambda_2 x_2^2 + \mu_3 x_1 x_3 - \lambda_3 x_2 x_3 = 0.$$

Les génératrices rectilignes de ce cône qui appartiennent au plan tangent $[A_0, A_1, A_2]$ passent par les points doubles de l'homographie (93). Les courbes focales (105) qui sont aussi des courbes de la variété V_3^2 coïncident, par conséquent, avec les courbes fondamentales (94).

Les relations focales relativement à la variété V_3^1 des droites $[A_1, A_2]$ sont:

$$(107) x_1\omega_{10} + x_2\omega_{20} = 0, x_1\omega_{13} + x_2\omega_{23} = 0,$$

et, en éliminant x_1, x_2 , on trouve l'équation des courbes focales de la variété

$$\omega_{10}\omega_{23} - \omega_{20}\omega_{13} = 0$$

c'est-à-dire

(108)
$$\sum_{i,k} a_{ik} \omega_{0i} \omega_{0k} = 0 \quad (i, k = 1, 2, 3; i \le k)$$

οù

(109)
$$a_{11} = a_0 e_3 - e_0 a_3,$$

$$a_{22} = b_0 f_3 - f_0 b_3,$$

$$a_{33} = c_0 g_3 - g_0 c_3,$$

$$a_{12} = a_0 f_3 - a_3 f_0 + b_0 e_3 - b_3 e_0,$$

$$a_{13} = a_0 g_3 - a_3 g_0 + c_0 e_3 - e_0 c_3,$$

$$a_{23} = b_0 g_3 - b_3 g_0 + c_0 f_3 - c_3 f_0.$$

11. Un couple de variétés V_3^2 en correspondance transversale dont les courbes focales de la V_3^1 formée par les droites $[A_0, A_3]$ sont indéterminées est caractérisée par les relations

(110)
$$\mu_1 = 0$$
, $\mu_2 = \lambda_1$, $\lambda_2 = 0$, $\lambda_3 = 0$, $\mu_3 = 0$,

donc les équations de la correspondance (79) deviennent

(111)
$$\omega_{31} = \lambda_1 \omega_{01}, \quad \omega_{32} = \lambda_1 \omega_{02}, \quad \omega_{30} = v_3 \omega_{03}.$$

Des deux premières de ces équations on déduit les relations

(112)
$$\left[d\lambda_1 + \lambda_1(\omega_{00} - \omega_{33}) + (\lambda_1^2 - \nu_3) \,\omega_{03}, \,\omega_{01} \right] = 0 ,$$

$$\left[d\lambda_2 + \lambda_1(\omega_{00} - \omega_{33}) + (\lambda_1^2 - \nu_3) \,\omega_{03}, \,\omega_{02} \right] = 0 ,$$

qui admettent pour conséquence l'équation de Pfaff

(113)
$$d\lambda_1 + \lambda_1(\omega_{00} - \omega_{33}) + (\lambda_1^2 - \nu_3)\omega_{03} = 0.$$

En différentiant extérieurement cette équation et en tenant compte des équations (80) et (81₃) on obtient un resultat nul.

Le point

$$(114) F = A_3 - \lambda_1 A_0$$

est un point fixe de S_3 en vertu de la relation

$$dF = (\omega_{33} - \lambda_1 \omega_{03}) F.$$

Les droites $[A_0, A_3]$ déterminées par les couples de points correspondants appartiennent à une gerbe ayant le point F pour centre et les deux variétés V_3^2 du couple sont en relation de projection centrale.

Une telle correspondance dépend d'une fonction arbitraire de trois arguments comme on le déduit de la forme finie des équations qui la définissent

(115)
$$x'_{i} = x_{i} f(x_{1}, x_{2}, x_{3}) \quad (i = 1, 2, 3)$$

si l'on prend pour origine 0 du repère projectif fixe le centre de projection.

En tenant compte de (86), les équations des lignes asymptotiques de la variété V_3^2 (102) deviennent

(116)
$$(v_{11} + a_3v_3)\omega_{01}^2 + \{2v_{12} + (b_3 + e_3)v_3\}\omega_{01}\omega_{02} + (v_{22} + f_3v_3)\omega_{02}^2 = 0,$$

 $\omega_{03} = 0.$

Si la correspondance (111) conserve les lignes asymptotiques, on a les relations

(117)
$$\frac{v_{11}}{a_3} = \frac{2v_{12}}{b_3 + e_3} = \frac{v_{22}}{f_3},$$

d'où l'on déduit

(118)
$$v_{11} = 2a_3\varrho, \quad v_{12} = (b_3 + e_3)\varrho, \quad v_{22} = 2f_3\varrho,$$

ϕ étant une fonction auxiliaire.

Dans ce cas l'équation (108) des courbes focales de la V_3^1 tangentielle $[A_1, A_2]$ est:

(119)
$$\varrho(e_3 - b_3) \left\{ a_3 \omega_{01}^2 + (b_3 + e_3) \omega_{01} \omega_{02} + f_3 \omega_{02}^2 \right\} + a_{13} \omega_{01} \omega_{03} + a_{23} \omega_{02} \omega_{03} + a_{33} \omega_{03}^2 = 0.$$

Si la variété donnée (A_0) est une variété non-holonome propre et si le cône de Malus associé au point A_0 par la V_3^1 des droites $[A_1, A_2]$ ne se décompose pas en deux plans l'un d'eux étant le plan $[A_0, A_1, A_2]$, c'est-à-dire si l'on a

$$\varrho(b_3-e_3)\neq 0$$

les courbes focales de cette V_3^1 qui sont en même temps des courbes de la variété V_3^2 coïncident avec les lignes asymptotiques de cette variété.

Réciproquement, supposons que les deux courbes focales de la V_3^1 des droites $[A_0, A_3]$ d'un couple transversal de variétés V_3^2 soient indéterminées et que les lignes asymptotiques de la V_3^2 de base (A_0) sont les seules courbes de V_3^2 qui soient des courbes focales de la V_3^1 tangentielle $[A_1, A_2]$.

On a donc les relations (110) et les relations

(120)
$$\frac{a_{11}}{a_3} = \frac{a_{12}}{b_3 + e_3} = \frac{a_{22}}{f_3}$$

desquelles on déduit

(121)
$$e_{3}v_{11} - a_{3}v_{12} = a_{3}\varrho',$$

$$f_{3}v_{11} - a_{3}v_{22} - (b_{3} - e_{3})v_{12} = (b_{3} + e_{3})\varrho',$$

$$f_{3}v_{12} - b_{3}v_{22} = f_{3}\varrho',$$

 ρ' étant une fonction auxiliaire qui n'est pas identiquement nulle.

En éliminant v_{11} et v_{22} on trouve la relation

$$(122) (b_3 - e_3)(a_3f_3 - b_3e_3)v_{12} = (b_3 + e_3)(b_3e_3 - a_3f_3)\varrho'.$$

Donc, si la variété V_3^2 donnée est une variété non-holonome propre et si elle n'est pas une variété polaire, c'est-à-dire si l'on a

$$(b_3 - e_3)(a_3f_3 - b_3e_3) \neq 0$$
,

on peut déduire de (122) la valeur de v_{12} et l'on trouve les relations

(123)
$$\frac{v_{11}}{a_3} = \frac{2v_{12}}{b_3 + e_3} = \frac{v_{22}}{f_3} = -\frac{2\varrho'}{b_3 - e_3},$$

par conséquent les lignes asymptotiques des deux variétés V_3^2 du couple transversal se correspondent.

12. Pour étudier le cas corrélatif où les courbes focales de la V_3^1 tangentielle $[A_1, A_2]$ sont indéterminées il est plus convenable de rapporter le couple transversal à une famille de repères (R_3) .

En supposant d'abord que la correspondance n'est pas une correspondance harmonique, donc

$$\lambda_1 + \mu_2 \neq 0$$
,

on prend pour sommets A_1 , A_2 du repère les points d'incidence des tangentes aux courbes fondamentales ce qui entraîne les relations

(124)
$$\lambda_2 = \mu_1 = 0 , \quad \lambda_1 - \mu_2 \neq 0 .$$

Dans ce cas, les formes ω_{12} , ω_{21} appartiennent au module des formes principales et leurs expressions peuvent être obtenues des équations

(125)
$$\Delta \lambda_2 = -\lambda_3 \omega_{23} + (\mu_2 - \lambda_1) \omega_{21} = \lambda_{12} \omega_{01} + \lambda_{22} \omega_{02} + \lambda_{23} \omega_{03},$$
$$\Delta \lambda_1 = -\mu_3 \omega_{13} + (\lambda_1 - \mu_2) \omega_{12} = \mu_{11} \omega_{01} + \mu_{12} \omega_{02} + \mu_{13} \omega_{03},$$

déduites de (80) et (81) en tenant compte de (124).

Le repère ne dépend que des paramètres de position du point unité comme paramètres secondaires.

La relation (86₁) devient

$$(126) b_0 \lambda_1 - b_3 \nu_3 = e_0 \mu_1 - e_3 \nu_3$$

et les lignes asymptotiques de la variété $V_3^{2\prime}(A_3)$ sont définies par le système

(127)
$$a_0 \lambda_1 \omega_{01}^2 + (b_0 \lambda_1 + e_0 \mu_2) \omega_{01} \omega_{02} + f_0 \mu_2 \omega_{02}^2 = 0, \quad \omega_{03} = 0$$

qui peut être écrit encore sous la forme (116).

Les relations qui caractérisent les couples de V_3^2 en correspondance transversale pour lesquels la variété V_3^1 des droites $[A_1, A_2]$ est à courbes focales indéterminées s'obtiennent en annulant les coefficients a_{ik} (109):

(128)
$$a_0 = \varrho_1 a_3$$
, $e_0 = \varrho_1 e_3$, $b_0 = \varrho_2 b_3$, $f_0 = \varrho_2 f_3$, $c_0 = \varrho_3 c_3$, $g_0 = \varrho_3 g_3$, $(\varrho_1 - \varrho_2)(a_3 f_3 - b_3 e_3) = 0$, $(\varrho_1 - \varrho_3)(a_3 g_3 - c_3 e_3) = 0$, $(\varrho_2 - \varrho_3)(b_3 g_3 - c_3 f_3) = 0$,

 $\varrho_1, \varrho_2, \varrho_3$ étant des fonctions auxiliaires.

Si

$$(\varrho_1 - \varrho_2)(\varrho_2 - \varrho_3)(\varrho_3 - \varrho_1) \neq 0;$$

on déduit d'abord

$$\frac{a_3}{e_3} = \frac{b_3}{f_3} = \frac{c_3}{g_3} (= \varrho) ,$$

donc

$$\omega_{13} = \varrho \omega_{23}$$
,

 ϱ étant une nouvelle auxiliaire. Le cône de Malus associé au point A_0 par la V_3^1 tangentielle se décompose dans les plans

$$a_3x_1 + b_3x_2 + c_3x_3 = 0,$$

$$e_3(a_0x_1 + b_0x_2 + c_0x_3) - a_3(e_0x_1 + f_0x_2 + g_0x_3) = 0,$$

et les courbes focales ne sont indéterminées que si l'on a

$$a_3 = b_3 = c_3 = 0$$
,

ce qui donne

$$\omega_{13} = 0$$
, $\omega_{23} = 0$, $\omega_{10} = 0$, $\omega_{20} = 0$.

C'est un cas banal, car les deux V_3^2 du couple sont des faisceaux de plans, puisque la droite $[A_1, A_2]$ est fixe, en vertu de la relation

$$\mathbf{d}\big[A_1,A_2\big] = \left(\omega_{11} + \omega_{22}\right)\big[A_1,A_2\big].$$

En prenant $\varrho_1 = \varrho_2 = \varrho_3 (= \varrho)$ et en supposant que la V_3^2 de base (A_0) n'est pas une variété polaire, on a

(129)
$$\omega_{10} = \varrho \omega_{13}, \quad \omega_{20} = \varrho \omega_{23}$$

d'où l'on déduit

$$[\Delta \varrho, \omega_{13}] = 0, \quad [\Delta \varrho, \omega_{23}] = 0$$

οù

$$\Delta \varrho = d\varrho + \varrho(\omega_{00} - \omega_{33}) + (v_3 - \varrho^2) \omega_{03}$$
.

Il en résulte l'équation de Pfaff

(131)
$$d\varrho + \varrho(\omega_{00} - \omega_{33}) + (v_3 - \varrho^2) \omega_{03} = 0,$$

puisque les formes ω_{13} , ω_{23} , ω_{03} sont linéairement indépendantes en vertu de l'hypothèse concernant la nature de la V_3^2 de base.

La différentiation extérieure de l'équation (131) donne un résultat nul si l'on tient compte des équations (81) et (82).

Les droites de la variété V_3^1 tangentielle sont situées dans le plan

$$\pi = \varrho \alpha_3 - \alpha_0$$

qui est fixe, comme on le déduit de la relation

$$d\pi = (\varrho \omega_{03} - \omega_{00}) \pi.$$

La figure a le même degré de généralité que la figure précédente. Ce fait s'établit facilement en considérant le couple de V_3^2 au point de vue corrélatif dans l'espace dual associé Σ_3 , où la correspondance la plus générale entre les plans de cet espace est définie par des équations ayant la forme

$$(132) U_i' = F_i(U_1, U_2, U_3)$$

les U_i , U'_i étant les coordonnées absolues non-homogènes des plans de Σ_3 .

En tenant compte de (129), les relations (86) et (86₁) deviennent respectivement:

(133)
$$a_3(\varrho\lambda_1 - v_3) = v_{11}$$
, $b_3(\varrho\lambda_1 - v_3) = v_{12}$, $c_3(\varrho\lambda_1 - v_3) = v_{13}$, $e_3(\varrho\mu_2 - v_3) = v_{12}$, $f_3(\varrho\mu_2 - v_3) = v_{22}$, $g_3(\varrho\mu_2 - v_3) = v_{23}$, (134) $b_3(\varrho\lambda_1 - v_3) = e_3(\varrho\mu_2 - v_3)$,

et, par suite, les lignes asymptotiques de la variété $V_3^{2'}$ qui correspond à la variété de base V_3^2 sont représentées par le système:

(135)
$$a_3 \lambda_1 \omega_{01}^2 + (b_3 \lambda_1 + e_3 \mu_2) \omega_{01} \omega_{02} + f_3 \mu_2 \omega_{02}^2 = 0, \quad \omega_{03} = 0.$$

Si la variété de base est un système nul, donc si l'on a

$$(136) a_3 = 0, b_3 + e_3 = 0, f_3 = 0,$$

le système (135) devient

(137)
$$b_3(\lambda_1 - \mu_2) \omega_{01} \omega_{02} = 0, \quad \omega_{03} = 0 \quad (b_3 \neq 0).$$

Par conséquent, si l'on a

$$\lambda_1 - \mu_2 \neq 0$$
,

la variété correspondante $V_3^{2\prime}$ n'est pas un système nul et ses lignes asymptotiques coïncident avec les courbes fondamentales de la correspondance qui sont des courbes déterminées puisque l'homographie fondamentale de la correspondance ne se réduit pas à l'identité.

Dans le cas contraire

$$\lambda_1 - \mu_2 = 0$$

la variété (A_3) est aussi un système nul.

D'une manière plus générale, considérons un couple en correspondance transversale rapporté à une famille de repère (R_5) et ayant pour variété de base (A_0) une V_3^2 propre à lignes asymptotiques indéterminées, c'est-à-dire un système nul, variété qui est caractérisée par les relations (136).

Supposons que toute courbe de la variété (A_0) est une courbe focale de la variété V_3^1 des droites $[A_1, A_2]$, ce qui se traduit par les relations

(138)
$$b_3 a_0 = 0$$
, $b_3 (b_0 + e_0) = 0$, $b_3 f_0 = 0$

déduites de (86) et (136).

Puisque la variété (A_0) est une V_3^2 propre, on doit avoir

$$b_3 \neq 0$$
,

car autrement elle serait holonome, donc il résulte de (138)

(139)
$$a_0 = 0, b_0 + e_0 = 0, f_0 = 0,$$

et les équations du système (97₁) deviennent

(140)
$$b_0 \mu_1 \omega_{01}^2 - b_0 (\lambda_1 - \mu_2) \omega_{01} \omega_{02} - b_0 \lambda_2 \omega_{02}^2 = 0, \quad \omega_{03} = 0.$$

Le coefficient b_0 n'est pas nul si l'on ne considère que le cas des variétés (A_3) non-holonomes propres.

Il s'ensuit que les courbes (140) sont les courbes fondamentales de la correspondance.

Par conséquent, si la variété (A_0) d'un couple transversal est un système nul et si la correspondance Γ associe au couple une V_3^1 tangentielle pour laquelle toute courbe de la variété A_0 est une courbe focale, c'est-à-dire qu'elle associe au point A_0 un cône de

Malus formé par deux plans, l'un d'eux étant le plan tangent $[A_0, A_1, A_2]$ à la V_3^2 de base, les lignes asymptotiques de la variété correspondante (A_3) se confondent avec les courbes fondamentales de la correspondance.

13. Si la droite $[A_0, A_3]$, déterminée par deux points homologues d'un couple de V_3^2 en correspondance transversale, est une génératrice du cône de Malus associé au point A_0 par la V_3^1 des droites $[A_0, A_3]$, ce cône se décompose en deux plans qui contiennent cette droite.

Cette correspondance est caractérisée par les relations

$$\lambda_3 = \mu_3 = 0,$$

donc les équations qui la définissent, en supposant que la figure est rapportée à un repère (R_3) , sont

(142)
$$\omega_{31} = \lambda_1 \omega_{01}, \quad \omega_{32} = \mu_2 \omega_{02}, \quad \omega_{30} = \nu_3 \omega_{03},$$

le système extérieur associé étant

(143)
$$\left[\Delta \lambda_{1}, \omega_{01} \right] + (\mu_{2} - \lambda_{1}) \left[\omega_{21}, \omega_{02} \right] = 0,$$

$$(\lambda_{1} - \mu_{2}) \left[\omega_{12}, \omega_{01} \right] + \left[\Delta \mu_{2}, \omega_{02} \right] = 0,$$

$$\left[\Delta \nu_{1}, \omega_{01} \right] + \left[\Delta \nu_{2}, \omega_{02} \right] + \left[\Delta \nu_{3}, \omega_{03} \right) = 0$$

οù

(144)
$$\Delta\lambda_{1} = d\lambda_{1} + \lambda_{1}(\omega_{00} - \omega_{33}) + (\lambda_{1}^{2} - v_{3})\omega_{03},$$

$$\Delta\mu_{2} = d\mu_{2} + \mu_{2}(\omega_{00} - \omega_{33}) + (\mu_{2}^{2} - v_{3})\omega_{03},$$

$$\Delta v_{1} = \lambda_{1}\omega_{10} - v_{3}\omega_{13},$$

$$\Delta v_{2} = \mu_{2}\omega_{20} - v_{3}\omega_{23},$$

$$\Delta v_{3} = dv_{3} + v_{3}(2\omega_{00} - 2\omega_{33}).$$

Les équations du système (143) contiennent 7 formes de Pfaff indépendantes, les nombres caractéristiques étant

$$s_1 = 3$$
, $s_2 = 3$, $s_3 = 1$.

En résolvant le système (143) on obtient les équations

(145)
$$\Delta \lambda_{1} = \lambda_{11} \omega_{01} + (\mu_{2} - \lambda_{1}) \omega_{02}, \quad \omega_{21} = \lambda_{12} \omega_{01} + \lambda_{22} \omega_{02},$$

$$\omega_{12} = \mu_{11} \omega_{01} + \mu_{12} \omega_{02}, \qquad \Delta \mu_{2} = (\lambda_{1} - \mu_{2}) \mu_{12} \omega_{01} + \mu_{22} \omega_{02},$$

$$\Delta v_{i} = \sum_{h} v_{ih} \omega_{0h} \quad (i, h = 1, 2, 3) \quad (v_{ih} = v_{hi})$$

qui prolongent le système (142) et qui introduisent 12 coefficients arbitraires.

Le système est, par suite, en involution et sa solution générale dépend d'une fonction arbitraire de trois arguments.

Puisque l'équation (105) se réduit dans ce cas à

$$(146) (\mu_2 - \lambda_1) \, \omega_{01} \omega_{02} = 0 \,,$$

il en résulte que les plans qui composent le cône de Malus relatif à la V_3^1 des droites $[A_0, A_3]$ sont justement les faces du repère $[A_0, A_1, A_3]$, $[A_0, A_2, A_3]$.

La figure formée par le point A_0 et le plan $\alpha_2 = [A_0, A_1, A_3]$ est un élément d'une variété non-holonome (A_0, α_2) associée à la V_3^2 donnée par la correspondance (142) l'équation locale de cette variété étant

(147)
$$\omega_{02} = 0.$$

De la relation extérieure

$$D\omega_{02} = \left[\omega_{00} - \omega_{22} + \mu_{12}\omega_{01} + \mu_{2}\omega_{03}, \omega_{02}\right]$$

on déduit

$$\left[\omega_{02}, D\omega_{02}\right] = 0,$$

donc l'équation (147) est complètement intégrable. Par conséquent, la variété (A_0, α_2) est holonome.

Les équations de ses lignes asymptotiques sont

$$\left[dA_0, d\alpha_2 \right] = 0, \quad \omega_{02} = 0,$$

c'est-à-dire

$$\omega_{01}\omega_{12} + \omega_{03}\omega_{32} = 0$$
, $\omega_{03} = 0$

ou

(148)
$$\mu_{11}\omega_{01}^2 = 0, \quad \omega_{02} = 0.$$

Il s'ensuit que si l'on a

$$\mu_{11} \neq 0$$

les surfaces qui composent la variété (A_0, α_2) sont des surfaces réglées développables.

Des résultats analogues existent pour la variété (A_0, α_1) .

Les relations focales (104) deviennent

$$(x_0 + \lambda_1 x_3) \omega_{01} = 0$$
, $(x_0 + \mu_2 x_3) \omega_{02} = 0$,

donc, si A_0 varie sur une courbe de la variété (A_0, α_2) , la droit e $[A_0, A_3]$ touche l'arête de rebroussement respective au point

$$(149) M_1 = \lambda_1 A_0 - A_3,$$

et lorsqu'il varie sur une courbe de l'autre variété (A_0, α_1) , on trouve que le point de contact avec l'arête de rebroussement de la développable respective est

$$(150) M_2 = \mu_2 A_0 - A_3.$$

Les arêtes de rebroussement des surfaces développables de la première famille (A_0, α_2) sont situées sur la surface décrite par le point (149) dont les coordonnées admettent les variations

(151)
$$dM_1 = (\omega_{33} - \lambda_1 \omega_{03}) M_1 + \{\lambda_{11} \omega_{01} + (\mu_2 - \lambda_1) \lambda_{12} \omega_{02}\} A_0 + (\lambda_1 - \mu_2) \omega_{02} A_2.$$

On en déduit que le plan

$$[M_1, A_0, A_2] = [A_0, A_2, A_3] = -\alpha_1$$

est le plan tangent en M_1 à la surface (M_1) .

En annulant le produit extérieur $[dM_1, d\alpha_1]$, on trouve l'équation des lignes asymptotiques de cette surface

(152)
$$\lambda_{11}\omega_{01}^2 + (\lambda_1 - \mu_2)\lambda_{22}\omega_{02}^2 = 0.$$

Les formes ω_{01} , ω_{02} dépendent des différentielles dt_1 , dt_2 , dt_3 des paramètres de position t_1 , t_2 , t_3 du point A_0 . Mais, puisque chacune des équations

$$\omega_{01} = 0$$
, $\omega_{02} = 0$

est complètement intégrable, on a des relations de la forme

$$\omega_{01} = \beta_1 \, dv_1$$
, $\omega_{02} = \beta_2 \, dv_2$,

 v_1 , v_2 étant des fonctions des paramètres principaux et β_1 , β_2 étant des fonctions des mêmes arguments mais pouvant contenir les paramètres secondaires.

L'équation (152) s'écrit sous la forme

(153)
$$\beta_1 \lambda_{11} \, dv_1^2 + \beta_2 (\lambda_1 - \mu_2) \, \lambda_{22} \, dv_2^2 = 0.$$

Par des calculs semblables on trouve que le plan tangent en M_2 à la surface (M_2) est le plan

$$[M_2, A_0, A_1] = [A_0, A_1, A_3] = \alpha_2$$

et que les lignes asymptotiques de la surface (M_2) sont données par l'équation

(154)
$$\beta_1(\mu_2 - \lambda_1) \,\mu_{11} \,\mathrm{d} v_1^2 + \beta_2 \mu_{22} \,\mathrm{d} v_2^2 = 0 \,.$$

De ces résultats on conclut qu'on peut construire la figure en termes finis.

On considère deux surfaces non-développables arbitraires (S_1) , (S_2) et une variété V_3^2 également arbitraire. Par un point A_0 de V_3^2 on mène une droite qui est tangente aux deux surfaces (S_1) , (S_2) et sur cette droite on prend un point A_3 qui est associé au point A_0 suivant une loi arbitraire et c'est cet élément de la construction qui dépend d'une fonction arbitraire de trois arguments qui sont les paramètres de position du point A_0 . On établit de cette manière entre les deux surfaces (S_1) , (S_2) une correspon-

dance ponctuelle et les droites $[A_0, A_3]$ déterminent une congruence qui admet les deux surfaces données comme nappes focales. Au point A_0 , le cône de Malus que lui associe cette congruence se réduit à la figure formée par les plans tangents aux surfaces (S_1) , (S_2) qui passent par la droite $[A_0, A_3]$.

Bibliographie

- [1] Čech Eduard: Sur la correspondance générale de deux surfaces. Bulletin international, Classe des sciences mathématiques, naturelles et de médecine, Académie Tchèque des Sciences, Prague 1922.
- [2] *Bompiani Enrico*: Proprietà generali della rappresentazione puntuale fra due superficie. Annali di Matematica pura ed applicata, ser. 4, I, 259, 1923.
- [3] Mihăilescu, Tiberiu: Geometrie diferențială proiectivă. Ed. Acad. R. P. R. 1958.
- [4] *Mihăilescu, Tiberiu*: Sur les variétés non-holonomes paraboliques. Bull. Math. de la Soc. Roumaine des Sciences, T. 45 (1-2), 1943, 139-155.
- [5] Mihăilescu, Tiberiu: Varietăți neolonome parabolice cu asimptotice curbilinii. Bul. Univ. ,,V. Babes" și ,,Bolyai". Seria: St. Naturii, vol. I, Nr. 1–2, 1957, 23–29.
- [6] Mihăilescu Tiberiu: Systèmes triples de variétés non-holonomes linéaires de l'espace projectif ordinaire. Annali di Matematica pura ed applicata (IV), vol. LIII, 231-300.

Резюме

ТЕОРИЯ СООТВЕТСТВИЙ МЕЖДУ ДВУМЯ ЛИНЕЙНЫМИ НЕГОЛОНОМНЫМИ МНОГООБРАЗИЯМИ В ОБЫКНОВЕННОМ ПРОЕКТИВНОМ ПРОСТРАНСТВЕ

ТИБЕРИО МИХАЙЛЕСКУ, Бухарест (Румыния)

Анголономному многообразию V_3^2 в проективном пространстве S_3 поставлены в соответствие реперы, для которых выполняется соотношение (1); основной инвариант дан в таком случае выражением (3), и мы получаем формы Бомпиани (4). К многообразию V_3^2 строится двойственное многообразие \overline{V}_3^2 .

Затем изучается соответствие $T: S_3 \to S_3'$, которое переводит многообразие V_3^2 на многообразие V_3^2 . Если же два многообразия V_3^2 , $V_3^{2\prime}$ находятся в соответствии, в котором соответствует сама себе одна система их асимптотических линий, то не существуют сопряженные касательные, которым соответствовали бы в основном проективном соответствии опять-таки сопряженные касательные. В случае же асимптотического соответствия сопряженным касательным всегда соответствуют сопряженные касательные. В общем случае существует только одна пара сопряженных касательных, которая переходит в пару касательных, обладающих тем же свойством.

Дается определение *тансверсальной оси* (50) соответствия и в двойственном случае — *тансенциальной оси* (64). Подобно тому, как в случае голономных поверхностей, вводится понятие осевой и двойственно осевой гипергеодезической системы. Изучаются условия для сохранения этих систем в соответствии.

Асимптотическое соответствие, которое сохраняет все осевые системы, называется *проективным изгибанием*. Оно характерно тем, что сохраняет формы Бомпиани. Дается и другая характеризация проективных изгибаний при помощи т. наз. главных кривых соответствия, и проведены двойственные рассуждения.

Соответствие $T: S_3 \to S_3$ называется *трансверсальным* по отношению к данному многообразию V_3^2 , если прямая, соединяющая соответствующие друг другу точки M, M' не пересекается с прямой пересечения касательных плоскостей π, π' многообразий $V_3^2, V_3^{2'}$ в точках M, M'. Основными кривыми соответствия являются те (в общем случае две) кривые, касательная к которым в точке M пересекается с касательной к соответствующей кривой, построенной в точке M', на прямой $\pi \cap \pi'$. На $\pi \cap \pi'$ возникает очевидным образом определенное проективное соответствие; если оно является инволюцией, то мы говорим о гармоническом соответствии. Изучаются некоторые свойства трансверсальных соответствий и двойственный случай.