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PROBABILITIES ON NON-COMMUTATIVE SEMIGROUPS

STEFAN SCHWARZ, Bratislava
(Received July 18, 1961)

Let M = M(S) be the semigroup of normalized non-negative measures on
a finite semigroup S. The purpose of this paper is the study of the structure of
M, in particular, the determination of all subgroups of M, the emphasis being
on the non-commutative case.

Let S = {x;, x5, ..., X,} be a finite semigroup. By a measure yu we shall denote a
non-negative additive set function defined on the subsets of S such that y(S) = 1. The
set of all measures on S will be denoted by M = IMN(S).

If vy, v, € M, we define the product v, * v, by the relation

vy ® vy(x) = Z vy (u) v(v) -
With this multiplication I becomes a semigroup.
Let 2(S) be the semigroup algebra of S, i.e. the set of all formal real linear forms

of theform Y 1, . x; withcoordinate-wise addition, obvious scalar multiplication and
xi€S

the multiplication defined by
(1 (Yt - x) (Xt x) =2 D th,  1LxX.
i=1 k=1 i=1 k=1

Denote by § = §(S) the subset of all elements € U(S) for which 0 < 7., < 1 and

Y t,, = 1. Itis well known and easy to prove that
x;€eS

(2) V(x) o v(xy) xg + v(x,) X, + ..+ V(x,) x, € F(S)
is an isomorphic mapping of the semigroup M onto the semigroup F(S).

Since in our case it is often convenient to deal with the elements € §(S) rather then
with the elements € M(S) we shall use the following notation: The element v(x,) x, +
+ ... + v(x,) x, € F(S) corresponding in the isomorphism (2) to the element v e M
will be denoted by the symbol v*. Hence v* € §(S) and v e M(S) & v* € F(S) is a
semigroup isomorphism.

Since there can arise no misunderstanding we shall write v . p instead of v = u (i.e.
we shall use the same symbol for multiplication in M(S) and F(S)). Further without
fear of misunderstanding we shall suppose S imbedded in §(S).
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Introduce in the set §(S) a topology by the requirement v} = &x; + ... + 1¥x, -
- V¥ =1t,X; + ...+ 1, x, ifand only if 1) > ¢, (i = 1,2, ..., n). In this topology
J(S) becomes clearly a compact Hausdorff semigroup. The same is true for IM(S) if
v, = v e M(S) is defined by v} — v* e F(S).

The purpose of this paper is to study the structure of IM(S) and its relation to the
structure of S.

In the last few years various contributions to this problem have been given in several
special cases by various authors. H. H. Bopo6bes [24] treated the case in which S is
a finite abelian group. E. HEWITT and H. S. ZUCKERMAN [9] have given a detailed
treatment of the case of a finite abelian semigroup admitting relative inverses. The case
of compact groups has been treated by B. M. Kuroce [11], [12], J. GLICKSBERG [6],
K. STROMBERG [23] and H. S. CoLLins [4]. B. M. Kuoce [12] and J. Glicksberg [6]
have also studied the case of a compact abelian semigroup. The essential novelty of
the present paper is that it goes beyond the restriction of commutativity even in the
non-group case. We restrict ourselves to the case of finite semigroups though a number
of results can be transferred to the compact case as well.

In section 1 we recall some known results concerning compact semigroups.

In section 2 we construct all idempotents € 9M(S). Every simple subsemigroup of S
is a support of idempotents and in Theorem 2,3 an explicit formula for these idempo-
tents is given.

In section 3 the primitive idempotents € 9M(S) are identified. Their union is the
kernel of 9(S). The structure of this kernel is fully described.

Then our attention is concentrated to the subgroups of M(S). First in section 5 we
deal with simple semigroups without zero. The subgroups of M(S) are studied in
detail. Theorem 5,3 gives an explicit description of any measure u contained in a
subgroup of M(S). The description of the support C(u) of such a u e M(S) leads to
a double coset decomposition of a simple subsemigroup of S modulo an other simple
subsemigroup of S. Though M(S) is infinite every group contained in M(S) is finite.
Also some information concerning the elements g which are not contained in a sub-
group of M(S) have been given (Theorem 5,2). Shortly to say the group-membership
of an element p € M(S) identifies u to a large extent.

Now if S is a general (finite) semigroup we decompose S into a union of the so
called Green’s F-classes (which are well-known in the theory of abstract semigroups,
and appear in this connection for the first time). Every F-class containing an idempo-
tent contains (in general not a unique) maximal simple subsemigroup without zero
of S. These are those simple semigroups which are in some sense decisive for the exis-
tence, location and structure of the subgroups of M(S). If x is contained in a subgroup
of M(S), Theorem 7,1 locates, so to speak, C(u). In fact, C(u) remains in the same
F-class as C(¢), ¢ being the unit element of the group containing u. If u is not contained
in a subgroup of M(S) and belongs to a given idempotent & some restriction as to the
location of C(u) with respect to C(g) is possible (see Theorem 7,3) but the extreme
complexity seems not to allow any more precise description.
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In section 9 and 10 some rather special cases of the general theory are discussed.
A limit theorem concerning the sequence u, u?, u>, ... is given in Theorem 8,1. The
existence of the limit is reduced to some algebraic properties of the semigroup S. In
n
Theorem 8,6 lim (1/n) Y p' is studied.
i=1

n=oo i

In section 11 we deal with maximal idempotents e IM(S).

In spite of the large series of theorems a number of problems remains open. Ne-
vertheless it seems that by means of the results proved below some new problems be-
come accessible, f.i. the question of infinite products (see [9], [23], [24]) which is not
considered in this paper.

1. PRELIMINARIES

For the convenience of the reader we recall in this section some known results on
compact semigroups which we shall freely use in all the paper.

1,1. Let S be a compact Hausdorff semigroup and a € S. Denote by I',(a), n = 1,

the closure of the set {a", a"*!, "2, ...}. It is known that I';(a) contains a unique
[ee}

idempotent e. In fact () I',(a) is a (closed commutative) group containing e as its unit
n=1

element. We shall say that a belongs to e. The set of all elements belonging to e will be

denoted by K(e). Since every element € S belongs exactly to one idempotent e,, the

semigroup S can be written in the form of aunion S = U K(e,), where E = {e, | a e A}
eq€E

is the set of all idempotents € S. The set K(e,) need not be a semigroup.

To every e, € E there exists a unique maximal group G(e,) such that G(e,) is the
largest subgroup of S containing e, as a unit element. Clearly G(e,) < K(e,). The
group G(e,) is closed and for e, + ¢; we have G(e,) N G(e;) = 0. The group G(e)
belonging to e can be described also by the relation G(e) = eSe n {x | e € Sx N xS}.
For every e, € E we have e, K(e,) = K(e,) e, = G(e,). An element a € S will be called

regular if a € U G(e,). An element a € K(e,) is regular if and only if ae, = e,a = a
eq€E
holds.
The proofs of these statements can be found in the papers K. NUMAKURA [16],

A. D. WALLACE [25], [26], [27], S. Scuwarz [22].

1,2. Let S be any semigroup. A subset L = S is called a left ideal of S if SL< L.
A right ideal is defined analogously. A subset which is both a left and a right ideal is
called a two-sided ideal.

An ideal (left, right, two-sided) of S is called minimal if it does not contain as a
proper subset a (left, right, two-sided) ideal of S.!)

1) If S has a zero element, minimal (left, right, two-sided) ideals are often defined as minimal
but not zero. In this paper we use the word minimal in the strict sense, i.e. if .S has a zero element,
minimal ideals reduce to the zero element itself.
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Two minimal left (right) ideals (if such exist) have an empty intersection. If the
intersection N of all two-sided ideals of a semigroup S is non-vacuous it is the unique
minimal two-sided ideal of S. N is called the kernel of S.

It is known (see A. H. CLIFFORD [3] or E. C. JIsmun [15]): If S contains at least one
minimal left and at least one minimal right ideal, then S contains a kernel. Hereby
N = U R,, where R, runs through all minimal right ideals of Sand N = (J L,, where

aeA, aedz

L, runs through all minimal left ideals of S. Further R, n L; = R,L; = G, is a group

and N = U U G,is a union of disjoint isomorphic groups. Finally for any o € A4,
aedy peds

B e A, we have LR, = N. The groups G,; will be called the group-components of N.

1,3. Let now S be a compact semigroup. K. Numakura [ 16] was the first who pro-
ved that such a semigroup contains at least one minimal left and at least one minimal
right ideal. Every minimal left ideal Lis closed and it can be written in the from L =
= Se, where e is an idempotent € L. An analogous statement holds for every minimal
right ideal. This implies that a compact Hausdorff semigroup has always a kernel N,
which is a closed subset of S. If e,, ¢; € N, we have either Se, N Se; = 0 or Se, = Se,.

The set e,Se; is one of the group-components of the decomposition N = UJ U G
aeAy Beds
The groups G, are closed, in fact all being maximal subgroups of S.

1,4. A semigroup S is called to be simple if it does not contain any two-sided ideal
+S. In this case the kernel N is identical with S.%) The semigroup S is simple if and
only if SaS = S for every a € S. The kernel of any semigroup (if it exists) is a simple
semigroup.

If, in particular, S is a compact simple semigroup it follows from 1,2 that S can be
written in the form S = U R, = U L;. Wehave L,R; = Sand R,n Ly = R,L; = G,

aedy BeAdr
is a closed group for every couplex € 4, f € A,. Clearly R, = U G4, Ly = U Gy If,
BeAz acAy
for instance, S is a finite simple semigroup having s minimal right ideals and r minimal

left ideals the situation can schematically be described by the table

L, L, ...L
Ry | Giy Gyp ... Gy,
R, | Gyy Gyy ... Gy,

Rs Gsl GsZ e Gsr

2) It should be emphasized that in sections 1—5 we use the words “‘simple semigroup” in the
sense just introduced. Beginning with section 6 we also introduce ‘‘simple semigroups with zero”
and the simple semigroups will often be called ‘‘simple semigroups without zero”. (These two
notions coincide if and only if S contains a single element.)
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Now we recall some relations which will often be used in the following. Hereby we
use the notations: g,5 denotes an element € G,p, €44 is the unit element of G,.

a) L,g, = Ly, gusR, = R,.

b) {e.s| a € A} is the set of all idempotents contained in L,. Each of these elements
is a right unit of the semigroup L,. The set {e,5 | B € A,} is the set of all idempotents
€ R,. Each of them is a left unit of R,.

c) Any two minimal left ideals L,, L; are isomorphic. The corresponding mapping
can be realised by x € L, — xe,; € Ly. The inverse mapping is y € Ly - yey, € L. 1f,
in particular, S is finite, all minimal left ideals have the same number of elements.

d) gypL; = Gayy RiGap = Gop

C) Gaﬁgyé = Gu&a gyJGaﬁ = Gyﬂ'
f) Finally G,4G,; = G,

Remark. Note that we have e,ge,; € G,; but ee,; = e,; — in general — need not
hold since the product of two idempotents need not be an idempotent. Of course it
follows from b) that we have always e,ze,; = e,; and e ge,, = e,

1,5. We have remarked above that the kernel N of a compact semigroup is a simple
semigroup. It is worthy of notice that S can contain also other subsemigroups which
themselves are simple semigroups. F.i. every subgroup of S has this property. The
“maximal” simple subsemigroups of S will play an essential role in this paper.

1,6. A semigroup T is called left simple if it does not contain any left ideal + T.
Every left simple semigroup is simple. A semigroup T is left simple if and only if
Ta = Tforeverya € T, i.e. the equation xa = b has a solution x € Tfor every couple
a,beT.

Every minimal left ideal of any semigroup S (if such exists) is a left simple semi-
group. Note again that a semigroup can contain also other left simple subsemigroups.

If Tis compact, we can use the results of 1,4 which in this case take a simple form.
Let E = {e, | « € A} be the set of all idempotents € S. Every e, € E is a right unit of T.
Further G, = ¢,T is a group and G, n G; = @ for « # . We have T = U G,. For

aed
every x € G, we have xT = G, and for every y € T we have G,y = G,. Each of the

groups G, is a minimal right ideal of T. The semigroup T is isomorphic with the
direct product G x E, where G =~ G, and E, is a semigroup in which xy = x for
every couple x, y € E,.

1,7. Finally we mention that we shall use some results proved in the paper [18]
concerning subsemigroups of a completely simple semigroup.

A semigroup is called completely simple if it contains at least one right and at
least one left minimal ideal. In this paper all simple semigroups which will occur will
be completely simple. This follows from the result mentioned above (see 1,3) since S
and IM(S) are compact, and we shall have to deal only with closed simple subsemi-
groups.
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Special cases of the results of the paper [ 18] which we shall need in the following
are:

Lemma 1,1. Let S be a compact simple semigroup and H a closed subsemigroup
of S. Then H is a completely simple semigroup. If S = | L, is the decomposition

aeA2

of S into the union of its minimal left ideals and if L, = L, " H £ 0, then L, is a
minimal left ideal of H. Conversely, every minimal left ideal Ly of H is of the form
form Ly = Ly n H with a suitably chosen minimal left ideal Ly of S.

Lemma 1,2. Let S = U L, = U R, be the decomposition of a compact simple

aed; Bedy
semigroup into the union of its minimal left and right ideals respectively. Let H be

a closed subsemigroup of S containing at least one maximal group of S. Then
H=[ U R]n[ U L;], where A}, A, are suitably chosen subsets of A, and A,

aedy’ Bedr’
respectively.

Lemma 1,3. Let H be a closed subsemigroup of a compact simple semigroup S,

which contains all idempotents € S. Then there exists a decomposition of S into pair-
wise disjoint classes of the form

S=HuHaH uHbH U ...

Some further facts concerning this decomposition proved in [18] will be mentioned
at the appropriate places below.

2. THE IDEMPOTENTS OF I(S)

Let S be finite and g € M(S). The set C(1) = {x | u(x) * 0} is called the support of
p. It is known (see [19], more generally B. M. Kuoce [12]):

Lemma 2,1. C(uv) = C(u) C(v).
For u* € §(S) we define C(u*) = C(n). If C(1) contains a single element x;, we
shall say that u is the point mass at x;. Such a measure will be denoted by ¢,,. Hence

0 for x & x;,
e(X) = < 1 for x=x;,
or otherwise &}, = x;.

Clearly &,,, = &, If ©is the set of all such measures, we have clearly € =~ S.
If, in particular, x; is an idempotent € S, we have ¢, s, = ¢,,. The semigroup IM(S)
contains therefore idempotents. Of course, these are in general not all idempotents
€ M(S).

If  is an idempotent € M, the relation p*> = p implies by Lemma 2,1 C(u) C(n) =
= C(u), i.e. C(n)is a semigroup. B. M. Knocc ([12], Theorem 14) proved the fol-
lowing essentially stronger assertion:
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Theorem 2,1. Let be pue M(S) and p* = p, then C(u) is a simple subsemigroup
of S.

We first prove that conversely every simple subsemigroup of S is the support of
some idempotent € M.

Lemma 2,2. Let P be a simple subsemigroup of a finite semigroup S. Let P =

r

= U L, be the decomposition of P into the union of its minimal left ideals. Define u
byatzhle requirements u(x) = u(y) = t, > 0 for every couplex, ye L,(x = 1,2,...,1)
andi w(L,) = 1. Then pis anidempotent € M(S) and C(n) =

Prolof. Letbe L, = {x{”, x{", ..., x{}. By supposition we have p(x{?) = u(x$) =

=...=puxP)=1,> Oandz t,p = 1.In the mapping p < u* we have

p* = Zt(x“” +x9 + L+ xP).

We wish to prove pu* = p.
Since Lx» < L, LB < Lyand L is a minimal left ideal of P, we have L,x{¥ = L, for
every fand any i (1 < i < p). Hence

L + o+ XD 1x P =y (xP 4+ L+ X))
This implies

r r
[tha(x‘f) F o+ x4 = (P + L+ xP) tha =
a= a=

;tﬂ(x(”) XDy
Further
a a 1
[Z (P + o+ X [P + ..+ xD)] = S pt(xP + .+ xP) =
= t,(xP + ... + xP).
Finally

[i t(xP + o+ X)L Z tﬂ(x(lf) o+ x(’”)] = z p(xP + .+ xﬁ,’”) ,

ie p*p* = p*and u® = p, q. e. d.

Needless to say that an analogous statement can be formulated by replacing mini-
mal left ideals by minimal right ideals.

If p is an idempotent and C(n) = L, U L, U ... U L, the decomposition of C(u)
into the union of its minimal left ideals, then pu does not necessarily take the same
values in all elements of a fixed chosen ideal L,. This is shown on the following
example.
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Example 2,1. Let S = {a,, a,, as, a4} be the simple semigroup with the following
multiplication table:

|al a, az ay

a; | a, az as a,
, | 4 Ay Ay Ay
as | a, az az ay
a, | a, a, a, a, .

To get some material for further purposes we shall find all idempotents € . Write
4
p* = tiay + tya, + tzas + t4a,, 0 <1, <1, Y t; = 1. Elementary calculations
i=1
show that p*? = p* holds if and only if

3 L+ )t +t)=t, (L+16)(t+1)=1t,
(1 + 1)t + 1) =15, (+ 1)t +12) =1,

Put t, +ty=¢, ty + 1ty =&, 1) + 1, =1y, t, + t3 =n,. We then have &; +
+ & =1y + 1, =1 and the relations (3) imply t; = &1y, 1, = &y, 13 = &Ml
t, = &my. Conversely: Choose four real non-negative numbers such that &; +
+ & =mn; + n, = 1. Construct the numbers t; = &1y, t, = &1y, t3 = &4y,
t, = &,n4, then the quadruple (1, t,, t5, t,) clearly satisfies the relations (3).

Hence: We obtain all idempotents p* € §(S) if in

&i(may + myas) + Ex(niaq + n50,)

the numbers &;, &5, 11, 1, Tun through all non-negative real numbers satisfying
L+l =n +n=1

Now S = L, U L, = {a;, a,} U {a,, a,} is the decomposition of S into the union
of its minimal left ideals. On L, = {ay, a,} we have pu(a,) = &1, u(as) = &y,
hence certainly p(a,) * p(a,) if & + &, and 7, + 0.

Our semigroup is an idempotent semigroup (i.e. every element is an idempotent).
Every maximal group is therefore a one point group and the example shows at the
same time that an idempotent measure may assume different values on different
maximal groups of S.

Our next goal is the proof of the very important assertion that an idempotent
measure takes the same values in the points of a fixed group.

We recall first a formula which we shall use for this purpose. Let u be an idempo-
tent € M(S). Let F be a real-valued function on S = {x;, x,, ..., x,}. We then have

3 FGe) () = ¥ Fe) [ )] = 3 FGx) ) o) =
=Y Y F(uv) p(u) u(v) .

ueS vesS
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This can be reformulated as follows: If p* =t x; + ... + t, x, is an idempotent
€ §(S) and F(x) a real-valued function defined on S, we have

4) 2 F(xi)t Z z F(x:y) Lty -

xi€S xieS yxeS

We now prove:

Lemma 2,3. Let S be a semigroup, peM(S) an idempotent and P = C(u) =
= {xl, X35 .05 X} Denote p* =t, x; 4+ ... + t, x,, where t,, >0 (i =1,2,...,9)

and Zt 1. Let L be an arbitrary fixed chosen minimal left ideal of P. Let f
denote any real-valued function defined on P. Then Zf(xkﬁ) t.. has the same value
for every £€L.

Proof. Let e be an idempotent € L. Denote ¢(y) = if(xkye) t,. For ye P we
have x,ye ¢ PPL = L; hence ¢(») is a real-valued func:izoln defined for every y € P.
Put in (4) F(x;) = f(x;ye). We have?)

ZF(x)t Zf(x,ye) =3 Y Flxiz) tt,, =

x;€S ,ES zeS

q
= z F(kai) txitzk = Z Zf(zkxiye) tx,-tz,< =

k= 1 i=1 k=1

= {kizlf(zkxlye) L)ty + {é:lf(z,‘x;ye) T N S {kilf(zkque) ) S

il M

-

i

Hence
o(y) = o(x19) te, + @(x29) te, + ... + @(x ) 1, -
Suppose that ¢(y) takes its greatest value in the point y, € P. Then

@(yo) = @(x1Y0) tx, + - + @(x¥0) Ly,
and, since 1, + ... + 1, =1,

{0(yo) = @(x1y0)} tx, + {@(yo) — @(x2¥0)} e, + ... +
+ {o(vo) — @(x,y0)} 1, = 0.
Since each of the brackets is =0, we have
@(yo) = ¢(x1¥0) = ... = @(x4¥0) -
This means: Zf(xkye) t.. takes the same values for y = yo, VY =X1Yos .- ¥ = XgVo,
in other words the same value for every y € Py,. Hence Z f(x8) t,, takes the same

value for every ¢ € Py,e. Now Py,e = Py,L < Land since LlS a minimal left ideal of
P, we have Pyoe = L. This proves Lemma 2,3.

3) Hereby the set {z4s .., zq} is identical with {xy, ..., x,}-
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Remark 1. The “dual’’ edition of Lemma 2,3 is as follows. Suppose that the suppo-
sitions of Lemma 2,3 are satisfied and let R be a minimal right ideal of P. If f is any

fixed chosen real-valued function defined on P, then Zf(ka)t assumes the same
value for every ¢ € R.

Remark 2. Example 2,1 shows that for &’s chosen from different minimal left
ideals I = Zf(xkf) t.. can assume different values. In fact, for £ € L, = {a,, a,} we
k=

have [ —f(al) (ty + t3) + flag) (t; + ty) = & f(ay) + &, f(ay). For E(elL, =
= {ay, a3} we have I = f(as) (11 + t3) + f(ay) (t2 + t3) = & f(as) + &, f(a,)- By
choosing suitably f and &,, £, these numbers can be made different.

Theorem 2,2. If u e M(S) is an idempotent and G any fixed chosen group-compo-
nent of C(u), then u(x) = u(y) for every couple x, y € G.

Proof. Letbe C(n) = P = {x;, x,,...,x,}and P = U L, = U Rk (in the meaning
i=1
introduced above). Write u* =1, x; + ... + 1, x,, where t,,i > 0(i=12..9)
q
and ) t,, = 1. By (4) we have for any real valued function f defined on P (with
i=1

{X1, .0, X} = (V15> Vo))
6 TS G b+ e LTI 1) b, = TS

Without loss of generality we shall consider the group G;; = R; n L,. Let hereby
be Gy = {X1, X350y X}
Take for f(x) the function @, (x) defined by @, (x) = 1 forx = x; and &, (x) =0

q q
for x # x;. By Lemma 2,3 Y f(xy) t,, = Y. @, (X)) I, assumes for every y e L,
k=1 k=1

the same value. If y ¢ Ly (hence y e L; for a suitably chosen i % 1), we have x,y €
ePL;, = L;, hence ®,(x,y) =0 for every x, (k=1,2,...,q9) and therefore

k}ijlf(xky) t, = 0.

The left ideal L, can be written in the form L; = U [L; N R] =G uGyu
k=1

U ... U G . It contains v = ms different elements. Let us denote them by yy, y,, ...,
y,- Hence Ly = {y, V25 -o0r o} @and {X1, X5y ooty X} < {15 V2o oo 5 Voo

Write in (5) f(x) = &, (x). On the left hand side only those brackets can be diffe-
rent from zero in which y is equal to one of the elements yy, y,, ..., y,. Hereby all
these brackets are equal one to the other. On the right hand side there is only one
member different from zero, namely @, (x;)t,, = t,,. Hence

q
(6) {k_Zl D () 1) (b, + 1, + o+ 1) =1, VEL.
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Introducing the functions @,,(x), ..., &, (x) defined by

1 for x = x;

P, (x) = \0 for x # x;

(i=23..m,

and repeating the same argument as with @, (x), we obtain the following m — 1
equations

q
@) {k;@i(xky) L, +t,+ ...+t )=t,, yeL (i=23,...,m).

To prove now thatt, =t, = ... =t, (i.e. to prove our theorem) it is sufficient

2
to prove
q

q
(pxl(xky) txk = Z (px;(xky) txk = W2 (]5 (xky) txk .

= e

Denote I, = z tbn(xky) teols = Z D, (xxy) t,. Weshow I, = I,. Smce I, takes the
same value for every yeGy = {xl, ..., X,,} we have in particular I, = Z dSX‘(xkxz)

.- Analogously there holds I, = Z d>x2(xkz) t,, for every z e Gy;. Our assertion

will be proved if we can show that Z D, (x3x,) t,, is equal to Z D, (x,2) t,, for a
k=1 k=1

suitably chosen z € G, ;.

Construct in the group G,; the element z = x,x; 'x,. We show that

q q
Z D, (xpx,) 1, = Z D, (X - XoX7 'X0) by -

To this end it is sufficient to prove that x,x, = x; ho]ds in P for those and only those
x; for which x,(x,x7 'x,) = x,.

a) Let be x;x, = x,. Multiply both sides by x; 'x, € G,;. We have xx,x 'x,=
= x,x7 'x,. Now since x,x; ! is the unit element of the group G, the right hand side
is equal to x,. Hence x,(x,x; 'x,) = x,.

b) Let be conversely x,(x,x;'x,) = x,. Multiply to the right by the element
(x7'x3)" € Gyy. We have x,x,(x7 " x,) (x7 'x,) 7! = x,(x7 'x,) 7", Since (x7'x,) .
. (x7*x,)” ! is the unit element of the group G,, and x, is contained in G, we get on
the left hand side x;x,. On the right hand side (since we are dealing with elements of
the group G,,) we get x,. Hence x;x, = x;.

This completes the proof of Theorem 2,2.

In what follows we shall consequently use the following notations. If P is a simple

subsemigroup of S, then P = U R, = U L, denotes its decomposition into the union
i=1 k=1

of minimal left and right ideals respectively. Further G,, = R,L,;, and P = U U G

i=1k=1
is the decomposition of P into the union of groups. The number of different elements
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of G will be denoted by m. The elements of the group G will be denoted by 9%,

(2) (m)
gik seesGik -
By [G,k] we shall denote the following element € §(S):

= (gD gD 4 gim
[Ga] = (a - )

The support of [G;] is G;. The following relations will be useful:

a) If ¢'P € G;;, we know that G,¢%? = G,. This implies [G,] ¢ = [Gu] for
every i, k, j, L.

b) The relation G,G;; = G, implies
[Gul[Gu] =[Gl ~(9“) S+ i) = — {[Gu] + ..+ [Gal}-
N e e e

m times
Hence [G;][G;] = [Gul-

Let now be ¢ an idempotent € M. Denote C(e) = P and write P = J U Gu- BY
i=1k=1
Theorem 2,2 ¢* is necessarily of the form

s

=Y Y tu[Gu] with 2
i=1 k=1 k=
(t being positive numbers). Now &* is an idempotent if and only if

> Tiul6ul- 3 TalGal = %, ¥ 1alGul.

i=1 k=1

||[\4M

i

-

This implies

S r s r s r
Z Y Z 2 tutj[Gul =2, X tu[Gul
i=1 k=1 j=11=1 i=1 1=1
and
r S
D tutin = ty,
k=1 j=1
i.e.

®) (k;rltik) : (Zs:ltﬂ) =1.

These are rs relations for rs ,,unknowns™ t;.%)

Put vtk—i,, Zt,_n, (i=1,2..s I=12..,r). Then Y ¢ =
k= i=1

lzln 1 and (8) 1mp11es ta = Em.

s r
4) Also the relation & X t;, = 1 is a consequence of (8). For summing through i we have
i=1k=1
r s r
(2 Ztk)(Zt ) = Etl and since for at least one / Etl + 0, wehave ¥ Xt = 1.
i=1k=1 i=1k=1
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Consider conversely the element gt = Z Z Em[G.] € §(S), where &;, 1, are posi-

tive numbers satisfying Z &= Z n = 1 We then have

MM-

(5*)2 =i§l lgléi’h[cn] g fj’?k[ij] = IZIZZ Z fsﬂlfj'lk[Gik] =

ik
= (121'71)('2151' Z Z EmdGu] = &*.
= ji= i=1 k=
We have proved:

Theorem 2,3. Let P be a simple subsemigroup of a finite semigroup S. Let P =
s r
= U U Gy be its decomposition into the union of disjoint groups. Then every
i=1k=1
idempotent ¢* € §(S) whose support is P is of the form

(9) e* =i2::1 k‘;léink[cik] s

s

1,...,r) are positive numbers satisfying Y &, =
i=1

where & m (i=1,..,s; k
= Ym=

Conversely if &,n, are positive numbers satisfying Zﬁ -—an =1, then

r i=1

z Z Em Gu] is an idempotent e §(S) whose support is exactly P.

Remark. If in (9) we admit some &; or #, to be zero, the formula (9) gives again
idempotents but the corresponding support is not the whole set P, in fact it is a proper
subset of P. Since the support of any idempotent is a simple semigroup, C(g) is then
also a simple semigroup. The group-components of C(¢) are identical with some of the
groups Gy. (This is being emphasized since P can contain also simple subsemigroups
the group-components of which are isomorphic with proper subgroups of the
group Gy.)

More precisely we have

Theorem 2,4. Let P satisfy the supposrtzons of Theorem 2,3. If the numbers é,, M

r

are non-negative real numbers satisfying Zé =31 =1, then e* = Z Zé
i=1 k=1 =1 k=1

.M Gy is an idempotent whose support is cither P or such a simple subsemigroup
of P whose group-components are isomorphic with G .

Conversely: If Q is a subsemigroup of P, the group-components of which are iso-
morphic with the maximal groups of P,then every idempotent e* € §(S) having Q for
its support is obtained by putting in (9) suitably chosen &; and n, equal to zero.
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Proof. a) Suppose — without loss of generality — that &, ,, = ... =
a [
=...=1,=0 (s <s,0 < r). The support of the idempotent ¢* =) Y EmdGaul
i=1 k=1
is the set
o e a e L4 e
0=U UGy=U URL=U UR nLy
i=1 k=1 i=1 k=1 i=1 k=1

={Rju...URJn{Liu...UL}.

This is clearly a subsemigroup of P, the group-components of which are isomorphic
with the group-components of P.

b) Let conversely Q be a subsemigroup of P having the property mentioned in the
formulation of our theorem. Then by Lemma 1,2 Q can be written in the form

(10) Q={R,UR,u...UR Jn{L,vL,v..uL,},

where {i, i,,...,1,} is a subset of the set of indices {1, 2, ..., s} and analogously
{kis kyy ...y ky} = {1,2,...,r}. By rearranging the relation (10) we have Q =

o

e L
=U ﬁUIGiakﬁ‘ Choose positive real numbers &;,, ..., &;_, My, -+, Mk, such that Z &=

a=1 a=1
[4 g [4
=Y M, =1 Then e* =Y 3 & n,[G,,,] is an idempotent whose support is Q.
B=1 a=18=1
But this idempotent can be obtained from the formulae (9) by choosing & , ..., ¢, ,

T ]
k> - --» M, different from zero while the other ¢, 7, are zeros and Z &= Z My = 1.
=1 g=1

This proves our assertion.

3. PRIMITIVE IDEMPOTENTS € M(S) 3%)

An idempotent 7 of a semigroup T'is said to be primitive if there does not exist an
idempotent u e T, u #+ = such that ny = un = p holds.

It is known that every idempotent of a compact simple semigroup is primitive (see
K. Numakura [16]).

More generally:

Lemma 3,1. Let T be a compact semigroup and K its kernel. Then those and only
those idempotents € T which are contained in K are primitive idempotents of T.

3a) (Added March 20, 1962.) Some results of this section have been published in the meantime
in the paper H. S. CoLLiNs, The kernel of a semigroup of measures, Duke Math. J. 28 (1961},
381-—392 (September 1961).

(Added in proofs, June 1963.) The actual interest in the subject is reflected by the fact that
during the last year further papers concerning this matter have been published. (See H. S.
Coruins [30], [31], H. S. Corrins - R. J. KocH [32], J. S. Pym [33].) A generalization of some
results of this paper to the compact case has been announced by the author in the preliminary
report [34].
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Remark. This lemma is in one or other form known. More detailed information
concerning this object can be found in R. J. KocH [13]. I find it convenient to give
a proof, since R. J. Koch is treating the case of a semigroup with zero, where the pri-
mitive idempotents are defined in a slightly other form.

Proof. a) Let n be an idempotent € T contained in K. Since K is a simple semigroup
there is no idempotent u € K, p & = for which nu = pun = p holds. At the same time
there cannot exist an idempotent ue T — K for which nu = p holds, since np e
€ Ku = K, a contradiction to pe T — K.

b) Let be n, € T — K. We prove that n; cannot be a primitive idempotent of T.
Since K is closed in T, K7, is a closed subset of T. At the same time K7, is a sub-
semigroup since Kn; . Kn;, « KTKn, < K=n,. Analogously n,K is a closed subsemi-
group of T. The intersection D = Kn; n n,K is non-vacuous since n;K . Kn, < D.
D is a closed subsemigroup of T. Hence it is compact and it contains therefore an
idempotent ¢. Since ¢ € K7y, ¢ € m, K, there exist elements s,, 5, € K with ¢ = s;71; =
= 7,5,. We have

& = my(mys,) = mys, = ¢,
eny, = (s;7y) My = s;my = €.

Further we certainly have ¢ # =, since ¢ € K, n, € T — K. There exists therefore an
idempotent ¢ #+ 7, such that n,¢ = en, = ¢, i.e. 7, is not a primitive idempotent
€ T. This proves Lemma 3,1.

Consider the semigroup IMM(S). Since it is compact, it contains a kernel 9 and the
idempotents € N (and only these idempotents of M) are primitive idempotents of IM.

The purpose of this section is to characterize these primitive idempotents. In the
papers [19] and [20] I have shown that primitive idempotents play an important role
in studying right invariant measures on a semigroup. Every right invariant measure
on a semigroup S (if such exists!) is a primitive idempotent € 9M: The converse is not
true. The relation between the structure of I and the existence of right invariant
measures will be studied elsewhere.

Theorem 3,1. Let S be a semigroup and N its kernel. Let P = N be a subsemigroup
of N the group-compotents of P being maximal groups of N. Then there exists a
primitive idempotent € M(S) the support of which is exactly P.

More precisely: Every idempotent the support of which is equal to P is a primitive
idemponent € M(S).

Proof. Write (in the sense agreed above) N = U R; = U L,. Note also that every

i=1 k=1
minimal left ideal of N is at the same time a minimal left ideal of S and that G, =
= R,L, are maximal groups of S (and hence maximal groups of N).
By Lemma 1,2 the supposition concerning P implies that P can be written in the

f
orm P={R,UR,U...UR}{L,UL,uU...UL},

where {iy, iy, ...,1,} = {1,2,..,s}, {ky, ko, ..., k) = {1,2,...,7}.
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Without loss of generality suppose that {i, ..., i,}
k,} = {1,2,...,0}. We then have

{1,2,...,0},and {ky, k,, ...,

a e a e
P = {_(:JIR,-} N {kngk} and N=U UGy.

i=1 k=1

Choose positive real numbers &y, ..., &g, 1y, --., 1, such that & + ... + &, =
=1; + ... + 1, = 1 and construct the idempotent n with

s e
n* = z Z éir[k[Gik] .
i=1 k=1
We then have C(n) = P.(Weknow that every idempotent = with C(n) = P is obtained
in this manner.)
Let ¢ be an idempotent € M(S) for which ¢ = ne = en holds. To prove our theorem
it is sufficient to show that this relation implies 7= = e.

Ce)=C(n)C(e) =P C(s)c {Ryu...UR,}C(e) = Ry u...UR,,
C(e)=C(e) C(m) = Ce) P= C(e) {Ly v...u L} Liu...uL,.
[Hereby we are using the fact that L,(R,) are minimal left (right) ideals of the whole

semigroup S.] Hence

Cle)ce{Ryu...URIN{Lyju...uUL}=P.

The relation C(e) = P C(e) = C(e) P implies C(¢) = P C(¢) P. Choose any element
x € C(¢) = P. Since P is simple, we have PxP = P. Therefore C(¢) = P C(e) P o
> PxP = P, whence C(¢) = P. We proved: If there is an idempotent ¢ with & =
= e = ¢n, we necessarily have C(¢) = P, hence ¢* can be written in the form

L4 [4

e* = z z f;’hlc[Gik] >

i=1k=1
where &4, ..., &, 1}, ..., n, are positive numbers satisfying &} + ... + & =n} +
+ .o+ n=1

The relation ne = ¢ implies

i§1 é:léi'lk[Gik] i i

1

a

f}’?;[Gjt] = Z lglﬁgﬂ;[Giz] s

1 =1

j=11=
4 4 4 e 4 e
(Tm)(Xepy Yem[Gul =Y Y &m[Ga],
k=1 j=1"i=11=1 i=11=1

hence &np = Emy, ie. &, =& (i =1,2,...,0). Analogously the relation en = ¢
implies &y, = &), therefore n, = (I = 1,2, ..., 0). Hence ¢ = 7, which completes
the proof of Theorem 3,1. '

Corollary 3,1. Let S be a semigroup with the kernel N. Then there exists a primi-
tive idempotent € (S) the support of which is exactly N.
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Lemma 3,2. Let P be a simple subsemigroup of the semigroup S. Let N be the
kernel of S. Then either P< N or PN N = 0.

Proof. Let be a e P n N. Since P is simple, PaP = P. Now PaP =« PNP c N,
hence P < N, q. e. d.

Theorem 3,2. If n is a primitive idempotent € IN(S), then C(n) = N.

Proof. Since C(r) is a simple semigroup, we have (by Lemma 3,2) either C(n) = N
or C(n) n N = Q. Suppose C(n) n N = 0; we prove that = cannot be a primitive
idempotent.

By Corollary 3,1 there is a primitive idempotent v with C(v) = N. Consider the
measure nvn (which need not be an idempotent). If N is the kernel of M, the sets
Nnvre and nvaN are left and right ideals of M respectively. These sets are closed and
their intersection ® = Nave N zvaN is non-empty, since @ F+ 7vaN . Nnve = D. The
set © is compact, hence it contains an idempotent ¢. This element can be written in
both forms ¢ = g,nvn = nvno,, oy, 0, €N. Clearly en = ne¢ = &. Hereby ¢ + =,
since C(e) = C(o,) C(n) C(v) C(n) = C(g,) C(n) N C(n) = N (while C(n) = S — N).
7 is not a primitive idempotent. This contradiction proves Theorem 3,2.

We now prove that the idempotents mentioned in Theorem 3,1 are exactly all pri-
mitive idempotents € IM(S).

Theorem 3,3. Let n be a primitive idempotent € MY(S). Then C(xn) is a union of
some maximal groups contained in the kernel N.

Proof. Denote C(n) = P’. Then P’ is a simple subsemigroup contained in N.
Suppose that the group-components of P’ are not maximal groups of N. We show that
7 cannot be a primitive idempotent.

Let P’ =Ly u...uL,=RjU... U R, be the decomposition of P’ into the union
of minimal left and right ideals of P’ respectively and N =L, u...UL, = R, U
U ... U R, the corresponding decomposition of N. By Lemma 1,1 to every L, there is
an L; (1 £ j < r) such that L'; = P’ n L;. Analogously for minimal right ideals R;.
Without loss of generality let be L; = PPnL; (i=1,2,...,0) and R; = R; n P’
(i=12,...,0).

Consider the semigroup

P=R,UR,U...UR)N(LiuL,U...UL).
4 e o ]
Denoting Gy = R,L;, RIL, = G}, we have P"=U UG}, P=U UG, and
i=1k=1 i=1 k=1
according to the supposition we have Gj, = G, and G, + G.
By Theorem 2,3 7* can be written in the form

G 4 4 [4
n*=zlk25i’7k[(;§k], 0<¢ =1, 0<y =1, 25i=2’7k=1-
=1 =4 i=1 k=1

To prove that n is not a primitive idempotent € M it is sufficient to find an idempotent
esuch that m #+ ¢and ne = en = ¢.
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[ e
Construct the measure ¢ with e* = 3’ kZlé MGy ]- Then ¢ is an idempotent and
i=1 k=
¢ + m, since C(s) = P 2 C(n) =
If Gy = {gg;), ...,g(,-;(")} Gy = {9221), e gli;:"l)}, m’ < m, m'[m, denote
[ka] = ”*(g(l) -+ g [G k] = —(g'“) 4 giimy.
For g;l € G;l < Gﬂ we have [Gik] g;l = [G“] and g_,il[Gik] = [ij]_ Therefore

[Gul [Gi] = [Gul - ~(g’“’ ot O) = = {[G,,] + ..+ [Gul},

i.e. [G4] [G)] = [G:] and analogously [G}i] [G,] = [G;.]- Now we have
et =% Senl6a] 3 S el = (S ($6)3, S enl6al =

Analogously n*e* = ¢*. Hence = is not a primitive idempotent. This proves Theorem
3,3.

Summarily we have proved:

5 r
Theorem 3,4. Let S be a finite semigroup, N = \J U G the decomposition of its
i=1 k=1
kernel into the union of maximal groups. An idempotent = € M(S) is primitive if and

only if C(n) is the union of some maximal groups G,,, ofN

For every primitive idempotent n we have n* = Z Z Emd G, where &, n, are

i=1k=1
s

non-negative numbers with Zé

= 1. Conversely: If the non-negative

s

numbers &, n, are such that Y &, =1, then Z Z Em Gul is a primitive

i=1k=1

idempotent € §(S).

We are now able to clarify the structure of the kernel N. Since N is a compact
simple semigroup, N is a union of isomorphic groups. By Lemma 3,1 0N contains those
and only those idempotents € M(S) which are primitive idempotents € M. If &(x) is

the maximal group having = as its unit element we may write = (J (=) the sum
neRN
running through all primitive idempotents € M. We show that &(r) reduces to a single

element (i.e. &(n) = n).
Theorem 3,5. The kernel N of the semigroup IMN(S) is identical with the set of all
primitive idempotents € M(S).

Proof. It is known (see f.i. [16]) that &(r) is given by the formula G(n) = 2Nx.
If p is any element eMN it is contained in some group &(n"), hence un’ = u. This
implies C(u) = C(1) C(n") = C(1) N = N, hence the support of any peN is con-
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tained in N. With the same notations as above for any p e N the corresponding p*
may therefore be written in the form

=Y Y YPg®, where 0=t <1 and Z Z Zt‘“)-—l

a=1i=1 k=1 a=1 i=1 k=1

If the primitive idempotent n* is written in the form of Theorem 3,4, we have

wwwt =3 YenlGa-3, 3 Sutp-3 ¥ enl6nl =
=(k§rlm)-(i ; ; ))(Zé ; g Em[Gu]=1.1.1.7*%.

a=1 j=11=1 u=1
Hence nun = = for every u e N, i.e. &(n) = nNn = 7, q.e.d.
Our next goal is to describe a natural isomorphic representation of the kernel N.

Every element 7€M, n* =Y. Y &n,[G,] is uniquely determined by the ordered
i=1 k=1
set of s + r non-negative numbers {¢,, ..., &, 11y, ..., n,} satisfying the conditions
Z &= Z m=1
i=1 k=1

If
(71? )* = Z z 6 nl,c[le] - {éla AR é;’ '7’1’ s ’7.1-} >

(n”)*—Z Zé” WG] = &0 - Ents oo my}
Then

() =3 Sl 3 ¥ Eml6,] -

s r
= '21 Izlélirl,l’[GiI] - {C’l, LR 6;’ ”’;, LRRE) ’1;"} .
Therefore we can state:

Theorem 3,6. Let S be a finite semigroup with the kernel N containing s minimal
right and r minimal left ideals respectively. Let ¥ be the set of all (s + r)-tuples
of non-negative real numbers {&,, ..., Ny, ..., n,} satisfying the conditions &; +

.+ & =1y + ... +n,= 1. Define in T a multiplication © by the relation

L ontamp o {8 L Emy, o = {8 L ot o)
Then T is isomorphic with the kernel N of the semigroup EW(S)
Remark. Let 7, be a fixed chosen element €N, ng = Z Z EOO[G ] The

i=1k=
minimal left ideal of M generated by 7, can be written in the form L, = Nmo. If

n e, we have

=Y YemlGul . X XEMO[G] =Y ¥ E”[Gul -
i=1 k=1 j=11=1 i=1 k=1
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Analogously for the minimal right ideal generated by n, we have R,, = n,J and for
any element mom e R, we have ngn* = Y Y &,[G,]. Moreover Bt = £,,R,, and
i=1 k=1
mnogno = {7[0}.
If
o = {&7 s &0, 1)

then
gﬂc g {61’ soey ﬁsi '1(10)’ s rll('O)}

(where &4, ..., & run through all non-negative numbers with Z ¢ =1),and
i=1

0 0
sRn,;, - {é(l )3 eeey (s )’ r’ly [EXE] nr}

r

(n, running through all non-negative numbers satisfying 3 7, = 1).
k=1

We know that all minimal left ideals of 9 are isomorphic. Taking account of the
multiplication introduced in Theorem 3,6 we obtain:

Every minimal left ideal of W is isomorphic with the set of all s-tuples {{,, ..., &}
the multiplication being defined by

{6, &, & o {8 &, ., & = {8, &, .0 &

Appendix. Put the question whether there exists a semigroup S such that IM(S) is
a simple semigroup.

In this case we necessarily have IM(S) = N and every p e M(S) is an idempotent.
Also every subset A = S must be a semigroup. Let N be the kernel of S. a) If S+ N,
then there is a u such that C(u) ¢ N. Therefore u ¢ N (see Theorem 3,2). Hence
M(S) + N. b) Suppose S = N. Since every subset of S must be a semigroup, every

s r

element € S is an idempotent. We may write S = (J U g each g, beingan idempo-
tent. i=1 k=1

Let be s > 1. We assert that then we necessarily have r = 1. Suppose, for anindi-
rect proof, r > 1 and consider the subset {g,;, g1,}. Since this must be a semigroup
g1 - 912 would be either g,, or g,,. But this is certainly false since g,;91, =

s
= g,,. Therefore r = 1 and S is of the form S = U g,;. Since g;19x1 = g1, €VETY
i=1
element of this semigroup is a right unit of S. Analogously if s = 1 the semigroup S is
r
of the form S = U g and for any two elements € S we have g, = g1;» S0 that
k=1

every element € S is a left unit of S.

Conversely: If S is a semigroup of one of the two types just described, it is easily
seen that every p € M(S) is an idempotent € M(S) and since the support of every p
contains whole groups € S it is a primitive idempotent € M(S), hence M(S) = N.
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We have proved:

Theorem 3,7. Let S be a finite semigroup. IN(S) is a simple semigroup if and only
if S belongs to one of the following iwo classes of semigroups:

a) S = {e, e5,..., ¢}, where e;e, = e, for every couple i, k;

b) S = {ey, ey, ..., e}, where e,e, = e; for every couple i, k.

4. A FURTHER LEMMA

Let S be a finite semigroup, p € M(S) and C(n) = A = S. The closure of the se-
quence g, p?, p3, ... contains an idempotent e&. What can be said about the set C(e)?

If P, is the subsemigroup generated by 4, we have C(u) = A = P, and C(i*) = P,
holds for every integer k > 0.

Lemma 4,1. Suppose that p e M belongs to the idempotent ¢ and C(u) = A. If P,
is the subsemigroup generated by A, then C(¢) = P,.

Proof. Suppose for an indirect proof that ® = C(e) — P; % 0, and P, n C(e) =
= {xg, s %4}, D = {yy, ..., ¥,}- Then &* can be written in the form &* = t;x, +

+ ...+ tx, + tiyy + ... + t}y,, where .iti + it,; =1 and min(t},....1,) =

= ¢ > 0. Consider the neighbourhood o(:e;‘; of ;’; 1containing all elements t,;x; +

to X, F Gy Ey, With 38 <E <1, .., 20 <&, <1 and iéi =

=1- iti. Since &€ {u, %, ...}, there is an integer k > O such that u*"’; :)(e*).
i=1

This is impossible since for every integer k > 0 the coefficients of y,, ..., y, in u** are
zeros. This contradiction proves our assertion.

Remark 1. It follows from our proof that also for any v € {u, p?, p°, ...} we have
C(v) < P,.

Remark 2. Even in the case that A itself is a semigroup and C(u*) = A for every k
we cannot conclude C(g) = 4 but merely C(¢) = A. This can be shown on the
simplest two-element semigroup S = {z, a} with a* = a, z* = az = za = z. Put
u* =tz + tya, where 0 < t, < 1. We have

(w*)* = (tyz + tya) =tz + (l;) Mz o+ (Ilc) 1,057z 4+ tka =
=z(ty + ) —zth + tha=(1 -8z + tha.
Clearly ¢* = z. Hence C(i*) = S = {z, a} for every k = 1, while C(¢) = z.
Remark 3. We shall show later (see Theorem 7,5 below) that C(g) is contained in

the minimal two-sided ideal of P;.
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In what follows we shall primarily be interested in the converse question: If u
belongs to a given ¢ what can be said about the set C(p).

We shall first treat the case of a simple semigroup without zero, then the case of
a simple smigroup with zero and finally the general case. It will turn out that this
proceeding is a natural one.

5. THE CASE OF A SIMPLE SEMIGROUP (WITHOUT ZERO)

In this section we shall study a simple semigroup S. The following notations will

consequently be used throughout the whole section: S = |J R; = U L, denotes the
i=1 k=1
decomposition of S into the union of its minimal right and left ideals respectively.

s r

Further S = U U Gy is the decomposition of S into its group-components.
i=1k=1

If ¢ is an idempotent € MY(S), then C(¢) = H is a subsemigroup of S which is itself

simple. H = R} u...UR, = L u... U L, will denote the decomposition of H into
s e

the union of its minimal right and left ideals respectively and H = U U G}, G =
i=1 k=1

= R!L,, the decomposition of H into the union of group-components.

Without loss of generality we may suppose that R; is the minimal right ideal of S
containing R; (i = 1, ..., 0) and L, the minimal left ideal of S containing L (k =
=1,...,0).

Denote

H =R;UR,U...UR)N(LyuL,u...uL).

Then H, is the largest simple subsemigroup of S containing the same idempotents as
H. 1t has been proved in [18] that H, can be decomposed modulo (H, H) into the
union of pairwise disjoint classes of the form

(11) Hy=HuUHaHUHbHuU ...,

where a, b, ... are suitably chosen elements € H,. Note — in particular — that
HaH = H if and only if a € H.

5,1. We first prove:
Theorem 5,1. Let S be a (finite) simple semigroup. Suppose that p € M(S) belongs
to the idempotent ¢ and p is a regular element € MM(S). Put C(¢) = H. Let H, denote

the largest subsemigroup of S containing the same idempotents as H. Then C(y) is
identical with a unique class of the decomposition (11).

Proof. Since p is regular, we have u = pe = gu. Hence C(u) = H C(p) = C(u) H
and C(x) = H C(p) H. With the notations introduced above we have

Clp)=CwH =CW{Liv..vL}c C(W{L,u...uL}cLiu...UL,,
C(p)=HC(p)={Rju...UR}C(wc={RyU...0UR}C() = Ry U...UR,.
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Hence
Cwec{R,u...UR}IN{Lyu...uUL}=H,.

If C(u) = {xy, x5, ..., X,}, then
Cp) =xHUux,Hu...ux,H=Hx; uHx,u...u Hx,

and
(12) C(p) = Hx;H v Hx,H U ... U Hx,H .
Our theorem will be proved if we can show that Hx;H = Hx,H = ... = Hx H.

Obviously it is sufficient to show that Hx;H = Hx,H.

Since p is a regular element € M(S), there exists a regular element u’ € M(S) such
that u'u = ¢, hence C(¢') C(1) = H. Also the element u’ satisfies C(1) = H, and if
C(u) = {91, y2, ..., yu} We have

CW)=yHuy,Hu...vyH=Hy OHy,u...UHy,.

Since
{Hy, v...0Hy} . {xyHu...UxH} = H,

we have Hyx,H < H, i.e. Hy,x,H = H, hence y;x,€ H for every couple i,k
(1£igu, 1 £kZ0).

Denote y,;x, = h’ € H. The element y, is contained in some minimal left ideal L,
hence y, € L; n H,. Analogously there is a right ideal R, such that x; e R, n H;.
Let e,; be the idempotent e R, N L;, e,; € H = H,. The set R, n H, is a minimal right
ideal of H,. Hence x,(R, n H,) = R, n H,. There exists therefore an element
x7 € Ry n Hy such that x;x] = ¢,;. Hereby ¢,; is a right unit for L,. Therefore the
relation y;x, = h’ implies successively y,x,x{ = h'xy, ye,; = h'x}, y, = h'x}.
Hence Hy, = Hh'x] < Hxj. Since two classes in the decomposition of H; modulo H
are either disjoint or identical (see [ 18], Theorem 3,1), we have Hy, = Hx}.

Consider now the relation Hy x,H = H. It implies Hx{x,H = H, hence x{x, =
= h" € H. Multiplying to the left by x; we get x,x}x, = x,h”, e;;x, = x,h". Further
we have e,x,H = x;h"H < x;H, hence e,;x,H = x;H, Hx,H = Hey;x,H <
< Hx,H, therefore Hx;H = Hx,H, q.e.d.

The following theorem is a consequencé of Theorem 5,1:

Theorem 5,2. Let the suppositions of Theorem 5,1 be satisfied. Let u be any (non-
necessarily regular) element € M(S) belonging to the idempotent ¢. Then C(u) is
contained in a unique class Hx,H of the decomposition (11).

Proof. The suppositions imply that eu = e is a regular element € M(S). Hence,
by Theorem 5,1, C(ue) = Hx,H with a suitably chosen element x, € H;. This is
equivalent to C(u) H = HxoH. Analogously we have H C(u) = HxoH.

We now prove that C(i) = H,. Let be b e C(i). If b were contained in a minimal
right ideal of S and different from R,,..., R, say in the right ideal R, . ;, we would have
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bH < bS = R,+1S = R,+;- At the same time we have bH < Hx,H < H,. This is
impossible since Hy N R,41 = 0. Analogously we prove that be{L, u... U Lg},
hence be {R; U ... UR,} n{Ly U...U L} = H,. Therefore C(u) = H;.

Let now be b e C(y). Forevery b e H; we have b e HbH, hence be H C(u) H, i.e.
b e (HxoH).H = Hx,H. Therefore C(1) = HxoH, q.e.d.

Example 5,1. The following example will be useful also later on. Consider the
semigroup S = {ay, a,, 43, a4} with the multiplication table

as, | a, ay a, as

In our notation we have Gy, = {ay, a,}, G,, = {a;,a,} and S = G,; U Gy,. The
idempotents € M(S) are of the form: a) Either t,a, + tya; with t; + t; = 1, or
b) t;.5a, + ay) + t3.5(as + a,) with t; + t; = 1. (These later are primitive
idempotents € M(S).)

Choose f.i. the idempotent e* = ta; + (1 — t)a;, 0 <t < 1, with ¢ fixed. Then
H = C(¢) = {ay, a3}, H; = S and the decomposition (11) takes the form S = H, =
= H U Ha,H = {ay, a3} U {a,, a,}. If p is a regular element € M(S), we have by
Theorem 5,1 either C(u) = {a;, a3} or C(u) = {a,, a,}. We shall show that both
cases may take place.

Let us find more generally all elements 1 € IM(S) belonging to the idempotent &. By
Theorem 5,2 we have either C(i) < {ay, a3} or C(1) = {a,, a,}. Write u = t;a, +
+ tzas, ty + t3 = 1. Now (u})* = t;a, + tza; = p, for every integer k > 0; there-
fore u; belongs to ¢if and only if u; = ¢,i.e. t, = t,t3 = 1 — t. Write p} = tya, +
+ t4ay, t, + ty = 1. An elementary calculation shows that (u})* = t,a, + t,a,.
Since t,a; + t4a; is an idempotent, we then necessarily have t,a, + t,a; = ta, +
+ (1 —t)as,i.e.ty =t t, =1 — t, hence u = ta, + (1 — t) a,. This element p
is regular since besides of u3? = &* we can verify that u%e* = ¢*u% = p,. Thus we
have proved: All elements belonging to ¢* are regular; in fact they form the two-
element group {e*, p, = ta, + (1 — 1) a,}. ‘

All maximal subgroups of IM(S) are either the two-element groups just considered,
or one-point groups (namely the primitive idempotents). If u is any element e M(S)
for which neither C(u) < {ay, as}, C(u) = {a,, a,}, then p belongs to a primitive
idempotent ¢, and, moreover, it can be proved that lim u" exists and = ¢, (see
Theorem 8,3 below). n=®

We show on this example that — in general — it is not true that for a regular p the
set C(n) can be written as a (simple) left class of the form C(u) = Ha. For, uj =
=ta, + (1 —t)a,, 0 <t <1, is a regular element belonging to the idempotent
¢* = ta; + (1 — t) a;, but {a,, a4} cannot be written in the form Hx, = {a,, a3} x,
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with an x, € S. (Hence, in contrary to the case when S is a group, to get reasonable
results we are compelled to deal with double coset decompositions and not merely
with simple left or right coset decompositions.)

Theorem 5,1 and 5,2 imply also the following

Corollary 5,1. Let S be a simple semigroup and ¢ the point mass at the idempotent
ey. The set of all elements € M(S) belonging to ¢ forms a group isomorphic with
G (the maximal group of S containing ey as its unit element).

Proof. Inourcase H = C(¢) = e;. The set H, is the group G;;. The decomposition
(11) is the trivial decomposition of Hy: H; = Gy = {g'} v {g} v ... U {g}P}.
Theorem 5,1 implies that for regular elements p € M(S) we have necessarily C(u) =
=gV, 1 £ 1 £ m. Conversely every u € M(S) with u* = g¢7 is regular and belongs
to ¢, with ¢* = e,,. Further Theorem 5,2 implies that also for any u* € §(S) belonging
to e, (a priori non-necessarily regular) C(u) is a one point set. In other words: Every u
belonging to such an idempotent is regular. This proves our assertion.

Remark. Suppose on the other hand that (¢ being an idempotent) C(e) = H is
a semigroup which is maximal in the sense that there does not exist a larger simple
subsemigroup of S having the same idempotents as H. Then the decomposition (11)
reduces to the trivial decomposition H, = H. In this case there is a unique regular
element belonging to ¢ (namely ¢ itself). Now the idempotents having supports of the
form described and contained in the kernel 9t are primitive idempotents (see Theorem
3,4). Our result gives in the case of a simple semigroup a new proof of the assertion
that the maximal group € M(S) belonging to a primitive idempotent € M(S) is a one
point group.

5,2. In what follows we need the following elementary group considerations.

Let G be a finite group containing m elements and G’ = {g4, g5, ..., g, } @ subgroup
of G containing m, elements. Consider the double coset decomposition G = G' U
U G'aG’ U G'bG’ U ... We ask: How many different elements are contained in a class
G'aG'.

The classes G'ag,, G'ag,, ..., G'ag,, are either disjoint or identical. If G'ag; =
= G'ag,, then agg;'a™'eG’, gyg;'€a 'Ga, ie gg;'eD =G na'Ga.
Conversely letbe ke D = G' na~'G'aand k = a”'g’a, then G'ak = G'aa " 'g'a =
= G'a. Let us put G’ = Dk, U Dk, U Dks U ... U Dk, with disjoint summands
(k, being the unit element of G’). Clearly p|m,. Let be x e Dk;, y e Dk;, x =
= a'giak, y = a 'gjak, Then G'ax = G'aa”'giak; = G'ak; and similarly
G'ay = G'ak;. For x € Dk;, y € Dk;, i & j, we have G'ax = G'ak;, G'ay = G'ak;
and since G'ak; + G'ak;, we have finally G'ax # G’ay. Hence among the classes
G'ag,, G'ag,, ..., G'ag,, there are exactly p different classes. Each of them occurs
exactly m,/p times. We have proved: If we consider formally all m? products xay,
x € G, y € G' we get m, p different elements each of which occurs m,/p times.
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The following is the consequence of this fact. Denote T,=G’aG’ in the set — theore-
tical sense (i.e. we take different elements just one times). Let be T, = {1y, 1, ...,
Tpypy- Denote [T,] = 1/(myp) . (ty + 15 + ... + Tpyp)-

We then have

Lemma 5,1. [T,] = [G'aG'] = [G']a[G'].
Proof. By definition
’ 4 1
[G]a[G] = ;r?(gl + .o+ gn)algy g2 + .o+ gn)-
1

As we have just seen among the summands on the right hand side there are exactly
m,p different elements (namely 7, 7,, ..., 7,,,); each of them occurs m,/p times.
Hence

, , my[p(ty + 75 + ..o + Ty, 1
[67la[67] = Milp (Tt 2 Do b 41, = [T,
mi myp
q.e.d.
5,3. We shall now try to identify the regular elements u belonging to a given idem-
potent ¢.
s e
Letbe ¢* = z Z EmGi]and H = C(e) = U U G Letfurther Hy = U U Gy
i=1k=1 i=1k=1 i=1k=1
be the maximal subsemigroup of S containing the same idempotents as H. Since p is
regular we have u = eu = pe and C(u) = HaH with a suitably chosen a € C(1) < H,.
By Theorem 3,2 of the paper [ 18] we have HaH N Gy = GiaGy. Denote GjaGl, =

= Ty < Gy;then C(p) = HaH n Hy = U U - The set T, is one of the classes of

i=1k=1
the decomposition of G,, modulo (G}, G%). Since all groups G, and Gj, respectively
are isomorphic, every Ty (i = 1,...,0; k=1,..., 0) contains the same number of
elements. Denote Ty, = {a{), ..., a'P}. The element p* can be written in the form

~Y 3 Yigay with ¥ Y Y =1

a=1f=1 y=1 a=1 p=1y=1
The relation u = gue implies

a

1) w=3 SlGl L Y e Y ¥ enlol.

Let us first consider [G}]a[Gi]- If e,p is the unit element of G,y we have
Ghal)Gly = Gienae, Gy = GigayGyy. Since Giag) Gy does not depend on k and j,
we have in particular G},a{)G}, = = Gjay G,

We next show: If b is any element € HaH = C(u), we have G;;bG;, = G,,aG},. If
be HaH, we may write b = x50V X35 € G5, Vs € Gy, with suitably chosen y, 9,
%, A. Hence G{bG}; = G}x,;ay,,Giy = GisaGyy. Analogously as above we prove that
the product G;;aGL, is independent of & and x, and hence, in particular, it is equal to
G}aGj, ie. G;,bG;, = G,aG,.
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Since a{y e HaH = C(n), we have G},al)G}, = G;,aG}, = T, and by Lemma 5,1
[T.] = [G,,aﬂ,)G,,] [Gi]ali[Gi] for every o, f,y. Therefore [GyalRG)] =

[G,,aﬁ}’,’G,,] [Ttl] Le. [le]a(”[Gﬂ] = [ l] for every «, f, 9, k, J.

The relation (13) implies

W= (I (56X X )3 Y ealnd,

Jj=1 a=1 p=1y=1

=

i.e.

*

an
n[\q,°

Em[ T -

We have proved the following interesting theorem:

u

i

Theorem 53. Let p be a regular element € M(S) belonging to ¢ with ¢* =

= Z Z Em Gix)- Let Gy be the maximal group containing the group G. Denote
Gy n C(u) Ty. We then have pu* = Z Z f,nk[ wl-

Let ¢ be an idempotent, C(e) = H, and consider again the decomposition

(14) Hi =HuUHaHvy...uHwH.

Theorem 5,3 implies that a class HaH = U U i« 1S the support of at most one
i=1 k=1

regular measure belonging to &. Theorem 5,1 asserts conversely that the support of
every regular measure belonging to ¢ is one class of the decomposition (14). Since (14)
contains only a finite number of classes we get

Corollary 5,2. Let ¢ be a fixed chosen idempotent € M(S). The set of regular ele-
ments belonging to ¢ forms a finite group.

If S is any semigroup and I' a subset of I(S), we shall denote J C(u) by C(I') and

pel
refer to it as the support of I'. If I' is a semigroup, C(I) is clearly a subsemigroup of S.

[For py, p, € I' implies pyp, € I' and C(,ul) C(uz) = C(uyp,) = C(I').] We may also
prove that C(I') = C(I).

If S is finite simple and &(¢) the group of regular elements belonging to ¢, then
C(®(¢)) is a subsemigroup of S and since any subsemigroup of S is a simple semi-
group, we have:

Corollary 5,3. If S is finite simple, then C(&(e¢)) is a simple subsemigroup of S.
Clearly C(G(e)) = H,.

5,4. The question arises whether each of the classes in the decomposition (14) is
a support of some regular measure belonging to ¢. The answer to this question is
negative. This can be shown on the simplest case of a non-commutative group, i.e.
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the symetric group of three elements. Let S = {a,, a,, .-+ ae} be the group with the

multiplication table
ap Az dz a4 4s Ag

ay | Gy Az a3 A, as ag
a, | a, az a; as ag a,
az | az ay a, ag a, as
Ay | A4 dg as ay ajz a,
ds | s 44 Ag Ay ay ag
ag | dg as ay ay a, ay .

Choose f. i. the idempotent e* = J(a; + a,). Then H = {ay, a4} and the decompo-
sition (14) takes the form

S =HuvHa,H = {a;,a,} U {a,, a, as, a¢} .

If Ha, H were the support of a regular measure y, then by Theorem 5,3 pu* would have
the form p* = %(az + a3 + as + ag). Since there exist at most two regular measures
belonging to & (namely ¢ and p) and the set of the regular measures (belonging to &) is
a group, there would hold necessarily u? = . But this is not true, since a simple
calculation shows that p*? = 3(e* + p*) and e* = J(¢* + p*) implies &* = p*,
contrary to the supposition. Hence Ha,H is not the support of a regular measure be-
longing to &.%)

Now the natural problem arises: We have to find the classes in the decomposition
(14) that are supports of some regular element € MM (belonging to ).

If S is a group B. M. Kutocc ([12]) has proved that HaH is the support of a regular
measure if and only if HaH = Ha = aH, i.e. Ha is a two-sided class of the decom-
position of the group S modulo the subgroup H. In other words Ha is contained in the
normalizer of the subgroup H in the group S. Example 5,1 shows that in the case of
a semigroup (which is not a group) this condition is not necessary. For in this example
Ha,H = {a,, a,} is the support of a regular measure u, with u3 = ta, + (1 — ) a,,
though Ha, = {a,} and a,H = {a,, a,}, hence Ha, =+ a,H.

To clarify the situation we shall give further necessary conditions that a regular u

s ¢
with p* =3 Y &n,[T,] must satisfy in order to belong to the idempotent ¢ with
i=1 k=1

g @
e* = Z Z fmk[G’ik]-
i=1 k=1

If u is regular, there exists a regular measure u(® such that ppu'® = p@u = ¢.
Denote C(u'”) = HbH. We have HbH n G;; = G},bG),. Denote further T{) =

5) The group belonging to ¢ contains a single element, namely ¢ itself. It is also possible to show
(f.i. by direct calculations) that u* belongs to the idempotent ¢§ = 4(a; + a, + a3 + a4 + )
+ a5 + ag). p is, of course, not a regular element € M(S). For, since it belongs to &y and C(ey) =
=S, & is clearly a primitive idempotent € IM(S) (see Theorem 3,4). ¢, itself is the unique regular
element € M(S) belonging to &, (see Theorem 3,5).
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s o
= G;bG); = G;,. By Theorem 5,3 we have (u@)* = 3" Y &1, [T{{’] and the relation
j=1Kk=1
@ = ¢ implies
(15)
We have

s e

o ] a e
fi'lk[Tik] ‘-;1 kglfﬂl[T;?) = .;1 Iglfint[clit] .

i=1 k=1

[Tik] [T}?)] = [Glik]a[G;k] [G}t]b[G}t] = [G;k]a[Glil]b[G;l] .

By the proof of Theorem 5,3 we have further [G}]Ja[G}] = [G}]a[G}], hence
[Tu][T] = [Gia[ G, ]b[G1), and since also [G},]b[G},] = [G},]b[G}], we have
finally [Ty ] [T] = [Gi]a[Gi]b[ G-

The relation (15) implies

[4 a 4 4 a o
(kzlnk)(‘zl fj).zl 'ZI[G:'I]a[G,il]b[G:'l]éir’l = 'Zi 121 fiﬂz[Gi'z] »
i.e. %%
[G;,]a[G;,]b[G'u] = [G'u] >
[G;l]a[G:‘l] . [Gi‘z}b[G,u] = [Gix] s
[Tu] [Ti(lO)] = [G;l] >

for every couple i, I. Analogously u?u = ¢ implies [T] [T:,] = [G}] for every
couple i, L.

Introducing (in the set-theoretical sense) T;, = G;,aG}, T = G;,bG’; we have also
(16) TilTi(lO) = G}, and Ti(IO)TiI = Gj;.

The expression T;; = G},aG}; shows that T;, can be written as a union of disjoint
left classes in the form

Ty = a,Gyua,Gyu... (a;,a,,...€Gy).
Analogously we may write
T = Gyby U Gyby U ... (by, by, ...€Gy).
We now prove that T;, contains a uniqué left class of the decomposition of G,
modulo G};. We prove it indirectly. Suppose that this is not the case. The relation (16)
implies
{Gyby U Gyyby U ...} . {a, Gy U a,Gy U .} = Gy,

i.e. Gybya,G, = Gy, Giybya,Giy = G, This implies bya, = g;; € Gy, by = guai?’,
i.e. Gi)b, = Gyg,a7* = Ga;*. But then G)b,a,G) = G}a; 'a,G; < G}, implies
aila, = g0 e Gy, a, = ag'V’ and a,G}, = a,g'V’G}, = a,G};, which is a contra-
diction.

52) Hereby we use the fact that G;,(aG},b) G}, = G;(S) G;; = R,SL; = R,.L; = G,
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Hence Ty, is really of the form T;; = a,Gj},. Analogously we prove that T}, is a uni-
que right class of the decomposition of G;, modulo G, i.e. T;, = G},a,, a, € G;;. We
have T;, = a,G}, = G;,a,. Now a, € a,G};,, hence a; = g;a, with g;, € G};. Therefore
a,Gy = Gy(gu)~" ay = Gja,. Moreover (Gjya,) G} = (a,G}) G}, = a,G}; = Gjja,.
The class a,G7,; is a two-sided class. We have proved

Theorem 54 If w is a regular element € M(S) belonging to the idempotent e,
C(e)=H = U U G, Gy the maximal group containing Gj, and C(u) = HaH,

i=1k=1
then G; n HaH = T;; is exactly one two-sided class in the decomposition of the

group G;; modulo the subgroup G}, (for all i, I).

Remark. Let &(e) be the set of all regular elements belonging to e. Denote
C(®(e)) = H,. Clearly H « Hy = H,;. Theorem 5,4 implies that (for every couple
i, k) G} is a normal subgroup of H, n G, = G'P.

Now we are able to find an answer to our question and to prove a theorem analo-
gous to that of b. M. Kiocc.

Recall a somewhat other characterisation of a regular element € IM(S). If ¢ is an
idempotent € M(S), then p is a regular element belonging to ¢ if and only if: 1) pe =
= gu = p, 2) there is a p, € M(S) such that pu, = pou = ¢, and 3) poe = epy =
= #0'6)

We first prove

s 0
Lemma 5,2. Let ¢ be an idempotent € WM(S) with e* =Y, > Em[Gi) and C(e) =
i=1k=1
= H. Let HbH be any class of the decomposition (14). Denote G, N HbH = V; and

construct the measure v with v* = Z Z Emd Vil Then ev = ve = v holds.
i=1k=1

Proof. Note first that Theorem 3,2 of the paper [18] implies that Vy, = G4 bG.
Since by Lemma 5,1 [V, ] = [G]b[G], we have

S*V*_Z Zf’?k[Gk] z Zf’h[ l]‘

i=1k=1
- g:l kgl Z=1 21[ k] [G;l]b[Gﬂ] 6;’7k€ =

s 0 o ]
= Z Z Z Z [G;.,]b[G},] S -
According to the proof of Theorem 5,3 we have [G},]b[G},] = [V;;]. Hence
s e
e*v = ( Z M) ( Z éj) Z Z ‘fi’?z[Viz] = v*.
k=1  j=1 i=1l=1

We prove analogously v¥e* = v*. Therefore ev = ve = v, q. e. d.

6) For then the semigroup generated by u, kg, ¢ is a group with ¢ as unit element, hence u is
contained in a subgroup of IMN(S).
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Theorem 5 5. Let ¢ 69'.7‘(5) be an idempotent with e* = Z z é,r/k[G,k] C(e) =
=H = U U Gypand H, = U U G the largest subsengroup ofS containing the

i=1k=1 i=1k=1
same idempotents as H. Consider the decomposition

H, = HuvHaH v HbH L ...

Let HaH be such a class that for every couple i, k the set G, " HaH = V, is exactly
one two-sided class in the decomposition of the group G, modulo G,. Then the mea-

sure v with v¥ = Z z Em Vi) is a regular element € M(S) belonging to e.
i=1 k=1

Remark. Theorem 5,5 implies that G'Y = Hy n G, = C(B(e)) n G, is exactly
the whole normalizer of the group Gj, in G, so that the harmony of our result is
really a complete one.

Proof. With respect to Lemma 5,2 it is sufficient to prove that there is a v, € M(S)
such that vy = vov = ¢ and voe = evg = V.

The element a is contained in a group, say G4, G,; = H;. Denote by a the element
€ G,y such that ad = aa = e,5(e,4 the unit element of the group G,;). Denote HaH N

N Gy = V) and construct the element vy = Z Z EmVP]. Since Vi = G},aG,
j=1i=1
and [V[] = [G},]a[G/,], we have
[Val (Vi 1 = [GilalGi] [G5]alGh] = [Gia[GiiJalG).] =
= [Gi] (ae,p[Gilewd) [G1] = [Giu] (a[ Gop] @]) [GT] -

Now, with respect to our (very essential) supposition, we have

a[Gypl @ =[Gyl aa =[Gyl exp = [Gop] -

[Val [ViP] = [Ga] [Gap] [GF] = [Gl] -

Hence

Therefore

V*V)‘(; = él kizléi']k[Vik] ’_,21 éléjﬂz[V}IO) = (Z f,) ( Z '1k) Z Z éuﬂl[G ] =¢&*.

Analogously we prove vgv* = g*.
Further we have

-3 Senlvipl ¥ Senloid = 3 enenlGalc;] (6] -
= ,;k ¢me i'h[Gjl]a[ij] :

Now [G}] @ = [G},] e,pa = [G';s] a shows that [G,] a is independent of I, hence —
in particular — equal to [G%] a. Therefore [Gl,]a[ij] = [G}Ja[Gy] = [VR]:
This implies vge* = v§. Analogously e*vi = vg, which completes the proof of Theo-
rem 5,5.
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6. THE CASE OF A SIMPLE SEMIGROUP WITH ZERO

A semigroup S with zero z is called to be simple if it does not contain any two-sided
ideal different from z and S itself. In this section we shall study such semigroups using
hereby essentially the results of section 5.

Let S be a simple semigroup with zero z and ¢ an idempotent € M(S) with e* * z.
Denote again H = C(g). Since H is a simple semigroup without zero [or a one point
group’)] we have either H = {z} or H does not contain z. (We are using hereby the
results of the paper [18].) The first case being excluded by supposition, H does not
contain z.

Let H = R = C} L, be the decomposition of the semigroup H into its minimal

i=1 k=1
right and left ideals respectively. Inthe paper [18] (Lemma 2,2) we have proved that
there exist minimal left and right ideals of S respectively such that

Hy={R,U...UR}n{Lyu...0L} — {z}

is the (unique) maximal simple subsemigroup of S containing the same idempotents
as H. (Hereby R, n H, is a minimal right ideal of H; and L; n H, is a minimal left
ideal of H,.)

By Lemma 1,3 we decompose H,; modulo (H, H) into the union of disjoint classes

H, =HvuHx;HuHx,Hvu ...,
where x,, X,, ... are suitably chosen elements € H,.

6,1. Let now be p a regular element € M(S) belonging to the idempotent ¢, with
g% %+ z. Then p = pe = gnand C(u) = C(p) H = H C(u) = H C(u) H. Analogously
as in the proof of Theorem 5,1 we have C(u) = H C(u) = {R{ U ... UR;} C(n) =
c{R,U...UR,}C() = {R; U...UR,}, and by the same argument C(u) <
c{Liu...uL,}. Hence C(p) = {R; u...U R} n{L u...UL,}.

We prove that C(u) cannot contain z, hence C(u) = H,. Suppose that S contains v
elements, S = {z, g5, g3, ..., g,}. Write p* = t,z + t,9, + ... + t,g, with ) ¢, = 1.
i=1

Since u is regular, there is an element p' with (u')* =tz + 139, + ... + t,g,,
v

Y t; =1, such that

i=1

(tlz + t2g2 + ...+ tvgv)(t'lz + t’2g2 + ...+ tu’)gv) = 8* .

If there were z € C(p), i. e. t; > 0, the coefficient of z in the product on the left hand
side would be a positive number = than t,(t; + ¢, + ... + ;) = t;. Thus we would
have z e C(up') = C(e) = H contrary to the assumption. This proves C(u) = H,.

7) To avoid confusions we shall mean by a semigroup with zero a semigroup containing at least
two elements and so we shall not consider the case of a one point group separately.
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Now we may consider u as a regular measure defined on the simple subsemigroup
H, with C(1) = H < H, and we may apply Theorem 5,1 and Theorem 5,3. We thus
obtain the following result:

c 0
Theorem 6,1. Let S be a finite simple semigroup with zero z. Let e* = z Y&
i=1 k=1
s e
.m[G] be an idempotent € M(S), ¢* + z. Let C(e) = H= U Gy and p bea
i=1 k=1

s e

regular element € M(S) belonging to €. Denote by H; = \J U G the largest sub-
i=1k=1

semigroup of S containing the same idempotents as H. Then C(y) = HxyH for a

a [4
suitably chosen xoeH, and p* =Y Y Em[Ty], where Ty = Gy C(p) =
i=1 k=1
= GxoGi
Analogously as in Theorem 5,2 we may prove

Theorem 6,2. Let the suppositions of Theorem 6,1 be satisfied. If u is any (non-
necessarily regular) element belonging to the idempotent g, we have C(1) = HxoH
with a suitably chosen x, € H,.

The following Corollary is analogous to Corollaries 5,1 and 5,2:

Corollary 6,1. Suppose that the suppositions of Theorem 6,1 are satisfied. Then
the set of regular elements belonging to € is a finite group. If moreover € is a point
mass at the idempotent e € S, e #+ z, then the set of all elements € M(S) belonging
to € forms a group which is isomorphic with the maximal group G(e) = S belonging
to e.

6,2. The natural question arises to find the elements which belong to ¢ with ¢* = z.
This question is solved by

Theorem 6,3. Let S be a finite simple semigroup with zero z. The element pe
€ M(S) belongs to € with ¢* = z if and only if the subsemigroup P, generated by
C(u) contains z.

Proof. 1. Let be A = C(p). Consider the sequence of sets
17) A, A% A3, . AT AR L

Since S is finite, the sequence (17) contains only a finite number of different members.
Let k be the first exponent such that 4* = A’ for some I < k. We then have 4**! =
= A" A2 = 412 The set P, = Au A% U ... U A" is a semigroup since

(Auvdtu..udH(Auva?u...udh)YcAuvAdiu...u 4.

Moreover P, is the least semigroup containing A since every semigroup containing 4
necessarily contains P;.
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Suppose that z € P;. Then there is an integer h (1 £ h £ k) such that z € 4% i.e.
ze[C(W]" = C(W"). If P, = {z, g5, ..., g,}, the element (u")* can be written in the
form

u
W)=tz + g, + ...+ 14,, ,>0, Y1;=1.
i=1

For any integer j > 0 put
u
Wy =19z + 19, + ... + 1¥,, Y1 =1.

i=1

We have
(WY = (tz + tag, + ... + 1,9,) (192 +19g, + ... + 10g,)

and the coefficient of zis > t,(t¥? + ... + 1) = ¢, independently of the numbers ¢{.

This means that in every member of the sequence

(18) (W%, (" )% (2,
the coefficient of z is > t,. This implies that every element of the closure of the se-
quence (18) and also the idempotent &* to which u* belongs has the coefficient of z
greater or equal t; > 0. Therefore u belongs to such an idempotent ¢ for which &¢* =
= tyz + T,9, + ... + I,g,and i, = i,. Now since C(¢)is a simple semigroup without
zero and since such a semigroup if it contains more than one element cannot contain z,
we have necessarily C(¢) = z. This proves our assertion.

2. Suppose conversely that P, does not contain z. By [18] (Theorem 2,1) P is
a simple semigroup without zero. If u belongs to the idempotent ¢ we have H =
= C(¢) © P,. Hence ¢* # z. This completes the proof of Theorem 6,3.

Remark. Theorem 6,3 can be considered as a special case of a more general theorem
which will be proved below (see Theorem 7,5).

7. THE GENERAL CASE

Now we shall treat the case of a general finite semigroup. We are led to a de-
composition of S into the union of some disjoint subsets which turn out to be the
known Green’s F-classes. (See J. A. GREEN [8], or R. H. BRuck [1] and E. C. JIsnux
[15].

We are starting from a simple subsemigroup of S and obtain a somewhat modi-
fied treatment convenient for our purposes.

7,1. Let H be a simple subsemigroup of S. The least two-sided ideal of S containing
H is clearly the set J; = HuU SH U HS U SHS. Since H = H> = SH, HS c
< H.HS < SHS, and SH = SHH < SHS, we have clearly J; = SHS.

If he H, we have HhH = H, hence J; = SHhHS < ShS. On the other hand we
have, of course, ShS = SHS. Hence Jy; = ShS for every h € H.

Notation. In what follows, for brevity, we shall denote the principal ideal of S
generated by x, i.e. the set x U Sx U xS U SxS, by the symbol {x).
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Definition. If H is a simple subsemigroup of S, then by H* we shall denote the set
H* = {x|xeS, (x) = SHS}.

Clearly H =« H* and H* ¢ SHS = Jg. (In the sense of J. A. Green ([8]) the set
H* is the F-class containing H.)

Every simple subsemigroup H of S is contained in some maximal simple subsemi-
group H® < S. But we shall show below (see Example 7,2) that such a maximal
simple subsemigroup H® is — in general — not uniquely determined.

Lemma 7,1. If H and H' are simple subsemigroups of S and H = H', then
H' < H*.

Proof. For any he H =« H' we have H'hH' = H’', hence SH'S = SH'hH'S <
< ShS = SHS; conversely H = H’ implies SHS < SH'S, hence SH'S = SHS.

For ' € H we have SH'S = SH'W'H’'S = Sh’S, on the other hand Sh'S < SH'S,
hence SH'S = Sh’S. Further we have

SH'S<= h" USh UKSuUSH'S =
=<(hYycH USH UH'SUSH'S c HH'H' v SH'H' W H'H'S u
U SH'S « SH'S,
hence <h') = SHS, i.e. h' € H*; therefore H' < H*.

Lemma 7.2, If H', H" are two simple subsemigroups of S, then either (H')* n
A (H")* =0 or (H')* = (H")*

Proof. Let be (H')* n (H")* % 0. Then there is a w € S such that {w) = SH'S
and at the same time {(w) = SH"S. Hence SH'S = SH”"S. This implies that for every y
for which {y)> = SH’'S we have also {y) = SH"S and conversely. Hence (H')* =
= (H")*.

In particular we have

Corollary 7,1. If H', H" are two simple subsemigroups of S for which H' n H" + 0,
then (H')* = (H")*.

The following two examples (both being simple semigroups with zero) serve to
clarify somewhat the possible situations.

Example 7,1. Let S = {z, a, a,, as, a,} be a semigroup with the multiplication
table:
| z ay a, a; a,

z lzz z z z

a, |zay z ayz
a, | zz a, z ay
ay | zz az;z a
as | zagz z z .

This semigroup contains three disjoint maximal simple subsemigroups. These are
H' ={a,}, H" ={a,}, H" = {z}. We have (H')* = {a,, a,,as, a,} = (H")*,
(H")* = {z}.
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Example 7,2. Let S = {z, a,, a,, a3, a,} be the semigroup with the multiplication
table

| Z ay a, as dg

z |zz z z z
a, | zz a; z a,
a, | zz a, z a,
as | z ay ay az a,
ag | zZ Ay a; a4 a4

This semigroup contains again three maximal simple subsemigroups. These are H' =
= {a,, a4}, H" = {as,a,}, H" = {z}. We have again (H')* = (H")* = {ay, a,, as, a,},
(H")* = {z}. Note that in this example there are two maximal simple subsemigroups
H', H" which are not disjoint, since H' n H” = {a,} # 0. This example gives at the
same time a negative answer to a question raised by R. Croisot (see [5], p. 369,
footnote 7).

Let H, J; and H* have the sense introduced above. Consider the set Ky = Jy —
— H*(i. e. the set of elements € J; which do not generate the ideal J). It is known —
and easy to prove — that Ky is a two-sided ideal of S.®) Consider now the difference
semigroup Jy/Ky in the sense of D. Rees ([17]). The elements of this semigroup are
the elements € J; — Ky = H* together with an adjoint zero element Oy.. In the set
Hy = H* U {Oy.} the product is defined as follows: If x, y € H* and xy € H* the
product denotes the same element as in S; if xy € K we define xy = Oy.; further
X.Ops = Ogs . x = Oy for every x € Hg. It is known (see J. A. Green [8]) that H
is a simple semigroup with zero for which (H§)? = H§. If H* itself is a semigroup,
H* is a simple semigroup without zero. For every a + Oy, a € Hi, we have HoaHy =
= H}E.

Summarily we have

Lemma 7,3. Let H be a simple subsemigroup of S. Then there exists a uniquely
determined subset H* of S with the following properties: a) H* > H; b) H* contains
every maximal simple subsemigroup H' for which H' = H holds; ¢) H* is either a
simple semigroup without zero or by adjoining a zero element Oy, and defining a
natural multiplication the set H* U {Og.} becomes a simple semigroup with zero.
For two simple subsemigroups H', H" we have either (H')* = (H")* or (H')* n
A (H)* = 0.

8) To prove this we show first that y e Kj; implies Sy e K. Suppose indirectly that this is not
the case and that there is an xe Sy N H* (i. e. x generates J). Write x = uy, u€ S. We then have
Jg=<x> =uy U Suy UuyS U SuyS < SyuSyu SySuSySc > cJguSiguJgSu
U 8JyS < Jy. Hence {y> = Jy, which contradicts y € Ky. Therefore Sye Ky and analogously
ySe Ky, which proves that K is a two-sided ideal of S.
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7,2. We return to the study of I(S) and we prove

Theorem 7,1. Let S be a finite semigroup and ¢ an idempotent € M(S). Denote
C(e) = H. If u belongs to the idempotent ¢ and p is a regular element € IM(S), then
C(n) = H*.

Proof. a) If p is regular, we have ep = pe = p, hence C(u) = C(u) H = H C(p) =
= HC(n) H.

b) We first show that S C(u) S = SHS. We have C(u) = C(u)H = SH = SH.H <
< SHS, hence S C(u) S = SHS. Since pu is regular, there is a regular element p, €
€ M(S) such that ppo = &. Therefore C(u) C(uo) = H. Now we have SHS = S C(u) .
.C(uo) S = S C(p) S. This implies SHS = S C(y) S.

c) We next prove that for every ¢ € C(n) we have ScS = SHS. If ¢ is any element
¢ € C(p) the relation C(u) C(uo) = H implies the existence of an element ¢, € C(u,)
such that cc, = h € H. Further C(p) = H C(p) implies the existence of two elements
hye€H, ¢, e C(n) such that ¢ = hjc;. We now have SHS = ShS = Scc,S =
= Sc(coS) = ScS = Shyc,S = Shy(cyS) = ShyS = SHS, whence ScS = SHS.

d) Finally we have

ceClu)=HCuHcSC()S =SHS = ScS,
cSeC(W)S=HCWS<SC(u)S = ScS,
SceSC()=SCWH<SC(u)S = ScS.

Hence for every ¢ € C(u) we have (¢} = ¢ U Sc U ¢S U ScS = ScS = SHS. There-
fore every ¢ € C(u) is contained in H*. This proves our theorem.

Remark. Roughly to say the foregoing theorem locates, so to speak, C(u) for a
regular u. C(p) does not lie “far away”” from the set C(e) = H. It remains in H* which
itself is uniquely determined by H.

The location of the set C(u) is also more precisely described by the following essen-
tially sharper

s @
Theorem 7,2. Let S be a finite semigroup, ¢* =Y > &m[Gy] an idempotent
i=1k=1

L4 e . a e
€q(S), and H=C(e) =U U Glj. Let H. = U U Gy be the largest simple sub-

i=1 k=1 i=1 k=1
semigroup of S containing the same idempotents as H. Suppose that u belongs to ¢
and p is a regular element € M(S). We then have:

a) C(u) = Hx,H, where x, is a suitably chosen element € H,
s ¢

b) u* = Z Z éink[Tik]’ where Ty, = C(ﬂ) N Gy = GyxoGi.
i=1k=1

Proof. Let J,, Ky and H* have the same meaning as introduced above. Consider
the difference semigroup Hjy = Jy/Ky. The elements of this semigroup are the ele-
ments € H* together with the zero adjoint Oy..
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The semigroup Hj is a simple semigroup with zero. We have H =« H* = H¥. Since
C(n) = H*, we may consider y as a regular measure defined on H§ and belonging to
the idempotent ¢. Since C(¢) = H, and H does not contain Oy., we can apply Theorem
6,1. Let H, be the greatest subsemigroup of S containing the same idempotents as H.
We know that H; =« H*. By Theorem 6,1 we have C(u) = HxoH with a suitably
chosen element x, € H; and we get the explicit expression of u* in the form given
above. This proves Theorem 7,2.

Analogously as in Corollaries 5,1 and 6,1 we get a Corollary which (in contradis-
tinction to the case of simple semigroups) is dealing only with regular elements € J(S).

Corollary 7,2. Let S be a finite semigroup and ¢ an idempotent € M(S). Then the
set of all regular elements € M(S) belonging to ¢ is a finite group. If ¢ is a point mass
at the idempotent e € S, then the group of regular elements € M(S) belonging to ¢ is
isomorphic with the maximal group G(e). If ¢ is such that C(g) is a maximal group
of S, then the set of regular elements belonging to ¢ reduces to a single element
(namely ¢ itself).

7,3. Now we shall try to locate C(u) for a non-necessarily regular u € M(S). The
result we obtain is of course not so simple as the result formulated in the correspond-
ing Theorems 5,2 and 6.2.

Let S be a semigroup and x € S. Denote F, = {y | y e S, {y> = {x)}. Two sets
F,, F, are either identical or disjoint. The semigroup S can be written as a union of
pairwise disjoint classes S = {J F,. These are the F-classes of J. A. Green ([8]). Each

xeS

of our sets H* is an F-class, but there may exist also F-classes without idempotents,
i.e. F-classes that do not contain simple subsemigroups.

Introduce in the set of F-classes a partial ordering by the statement F, < F, if
{x) < {y>. Every F-class F, consists of the generators of a certain principal ideal J,
whereby J itself is the union of all F-classes F’ with F' < F_.

Consider two classes F,, F, generating the principal ideals J,, J, and let u, v be any
elements € J, and € J, respectively. What can be said about the product uv? Clearly
weF/F,c JJ,c J,n J,. If uv is contained in the class F,, we have necessarily
F,n[J,nJ,] * 0. Now

J, = F, U {union of classes F, U F; U ... which are < F.},
J, = F, U {union of classes F,, U F;, U ... which are < F,} .

If F,, has a non-empty intersection with some class it is identical with it. Therefore
F, = F, = F,. for suitably chosen « and «'. Hence certainly F,, < F,, F,, £ F,. We
have proved:

Lemma 7,4.If ue F,, v e F,, then uv is contained in such a class F,, that F,, < F,,
F,<F,

Remark. In general it is not true that the product F,F, is contained in some class
F,. Simple examples show that this product can be scattered throughout several
F-classes.
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Theorem 7,3. Let ue M(S) belong to the idempotent ¢. Denote C(¢) = H. Then

C(u) = U F, where the union runs through all F-classes which are = as the F-class
FzH*

H*.

Proof. ue is a regular element € IM(S). By Theorem 7,1 we have C(uc) = H*, i.e.
C(p) H = H*. Let be ce C(i) and h e H. Since ch e H*, we have by Lemma 7,4
F, = H*. Hence C(u) = U F, q.e.d.

FezH*
7,4. The relation between u and ¢ is also clarified by Theorems 7,4 and 7,5 formul-
ated below.

Let I' be any group having ¢ as its unit element, I' = &(¢) (the maximal group of M
belonging to ¢). By Theorem 7,2 we have C(u) = H, for any peI'. Now C(I') =

= U C(p)is a semigroup (contained in H,), hence a simple subsemigroup of H,. This
pel

implies the following slight generalization of Corollary 5,3:

Lemma 7,5. If T is any subgroup of MM(S), then C(I') is a simple subsemigroup
of S.

We next prove

Theorem 7,4. Let S be finite and I' the maximal group contained in {u, u*, 1i*, ...}.
Let further be P the subsemigroup of S generated by C(). If J is the minimal two-
sided ideal of P, we have C(I') = J.

Proof. Analogously as in Theorem 6,3 we may write P = C(u) u C(p*) U ... U
U C(u), where k is an integer. Denote C(I') = K = P, and suppose that u belongs to
eel.

If x € P, then x € C(u') with an | < k. We have C(¢) x C(e) = C(e) C(u') C(e) =
= C(ep'e) and since ep'e € I', we have C(e) x C(¢) = K. This implies PxP n K + 0
for every x € P. Now the set J = (| PxP = 0 is the minimal two-sided ideal of P. If

xeP

yeJ < P, we have PyP <« PJP < J, hence J = PyP. Since y € P, we have also
JnK =PyPnK =+ 0 and since K is a simple subsemigroup of P, we have (by
Lemma 3,2) K < J.

Let again be x € P and x € C(u'), with an integer I. Let further v be any element
€ I'. We then have x C(v) = C(u') C(v) = C(u'v) and since p'v e I', x C(v) = K. This
implies x U C(v) = K, i.e. xXK = K. Analogously Kx = K for every x € P. Hence K

vel'

is a two-sided ideal of P. Since K = J and J is minimal, we have K = J, which
completes the proof of our theorem.

In particular, we have C(¢) = C(I') « J = K, hence we can strengthen Lemma 4,1
as follows:

Theorem 7,5. If S is finite, u belongs to ¢, and P is the subsemigroup generated
by C(u), then C(¢) is contained in the minimal two-sided ideal of P.
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8. SOME LIMIT THEOREMS

Let u belong to the idempotent ¢. Consider the sequence

(19) TRy TR A

One of the fundamental questions is as follows: Under what conditions does the
sequence (19) converge?
If (19) converges we have necessarily lim " = .

n=oo

It is known and easy to prove that lim p" exists if and only if pe = eu = . In other
words this is the case if and only if the maximal group contained in the closure of
{u, 4%, 13, ...} is a one point group. (See 5. M. Kuocc [12], also E. Hewitt, H. S.

Zuckerman [9].) An alternative answer to this question is given by:

Theorem 8,1. Let pe M(S) belong to the idempotent ¢. Denote C(e) = H. Then
lim p" exists if and only if H C(p) H = H.

Proof. 1. The condition is necessary. If lim u" exists, we have ey = ¢, i.e. H C(y) =
= H, whence H C(u) H = H. n=e

2. The condition is sufficient. Write H in the form H = U U G and &* =

i=1 k=1

= Z Z { M Gy]- Let further be Gj, = {g%}, g2, ..., g%} Consider the measure

o

suse9)?(S) Since H C(u) H = H we may write (epe)* = ) Z Z 1Pglp, where

a=1pg=1y=1
Z(Y) 1.
a=1 =1 y=1

Further we have

4 [4
8* (7)8* —_ Z Z 51’1k[G k] g(” Zl Zlgu”v[Gl’w] .

Since
[Gile$[Gh] = [Gu] [Gu] =[Gl
we have
*gPe* = (an)(Z C)Z Z Em[Gi] = &*.
Therefore
(s* *g*) — s*(sue*)* e* = g* Z Z Z t”)g("‘)s* — (z Z Z l(v)) e* = g¥ |

a=1f=1y=1 a=1p=1y=1

The relation (eue)* = &* implies (¢u)® = ep. Since ep is an idempotent and at the
same time an element belonging to ¢, we have eu = ¢. Analogously ue = ¢. This pro-
ves our theorem.

411



For simple semigroups without zero this condition takes a much simpler form:

Theorem 8,2. Let S be a simple semigroup without zero, p € M(S), u belongs to &
and C(g) = H. Then lim p" exists if and only if C(u) = H.

Proof. In the foregoing theorem we have proved that lim u* exists if and only if
HC(u)H = H. ree

a) Suppose that H C(u) H = H is satisfied. By Theorem 5,2 C(u) is necessarily
contained in H, (the largest simple subsemigroup of S containing the same idempo-
tents as H). Now for x € H; we have HxH = H if and only if x € H, hence C(i) = H.

b) Suppose conversely that C(u) = H. We then have H C(u) H = H. Now, since H
is a simple semigroup without zero, its two-sided ideal H C(u) H is identical with H,
hence H C(u) H = H. This proves our assertion.

Other formulations of Theorems 8,1 and 8,2 can be obtained by means of Theo-
rem 7,4.

Theorem 8,3. Suppose that the suppositions of Theorem 8,1 are satisfied. Then
lim p" exists if and only if H is the minimal two-sided ideal of the semigroup P

n=oo

generated by C(p).

Proof. lim u” exists if and only if the group I' (considered in Theorem 7,4) reduces
to I' = {¢}.

If I = {e}, then (by Theorem 7,4) C(I') = C(¢) = H is the minimal two-sided ideal
of P.If conversely C(¢) = H is the minimal two-sided ideal of P, then by Theorem 7,2
and 7,4 T contains a single element, i.e. &.

Theorem 8,4. Suppose that the suppositions of Theorem 8,2 are satisfied. Then
lim p" exists if and only if H is identical with the subsemigroup generated by C(u).

Proof. This follows from Theorem 8,3 since P being a simple semigroup cannot
contain a proper subsemigroup H =+ P.

Remark. Theorems 8,3 and 8,4 are related to the results of K. URBANIK [29], who
considered the case of compact groups.

We mention two special results which can easily be proved directly. Suppose that S
is a simple semigroup with zero z. If p belongs to the point mass at z, we have [with
respectto H = C(e) = z| z C(u) z = z,i.e. H C(p) H = H. Hence:

Corollary 8,1. If S is a simple semigroup with zero z and p belongs to € with ¢* =
= z, then lim p" exists (and is equal to ¢).

n=oo

More generally:

Theorem 8,5. If S is any semigroup, ueM(S), and u belongs to a primitive
idempotent ¢, then lim p" exists (and is equal to ¢).

n=oo
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Proof. By Theorem 3,5 the maximal group belonging to a primitive idempotent ¢ is
a one point group, hence ei = pe = ¢, q.e.d.

The following can be considered as an extension of the Weyl’s equidistribution
theorem:

Theorem 8,6. Let S be finite and p € M(S). Denote 6 = 1/n. (u* + p** + ... +
+ p*"). Then lim o, exists and is equal to an idempotent ¢ € M(S). If P is the sub-

semigroup of S generated by C(1) and J the minimal two-sided ideal of P, then
C(o) = J.

Proof. Denote by &, the closed convex hull of the subsemigroup {u*, u*?,
=3, ...} = §(S). Clearly C(§,) = P. (See the proof of Theorem 7,4.) Let 6* be any
cluster point of the sequence o7, 03, 0%, ... Clearly o* € §,. Since u*o) — of =
= 1/n.(u*"*! — p*), it is easily seen that u*¢* = ¢*. Since this relation implies
o* = p*o* = p*?o* = p*3¢* = ..., we have also o* = (t,u* + t,u*? + typ*3 +
+ ...)o* for any ¢; 2 0 with ) t; = 1, consequently (with respect to the continuity)

o* = J*g* for every A* € §),. This means that §), being considered as an abelian sub-
semigroup of §(S) contains o* as its zero element. Since any semigroup contains
at most one zero element, there is a unique cluster point of the sequence 6%, 63, 03, ...
and lim ¢F = ¢* follows by compactness. Moreover ¢* is an idempotent and at the

n=oo

same time the minimal (two-sided) ideal of §,.

The relation ¢*$, = §,0* = o* implies C(0) C(H,) = C(H,) C(o) = C(o0), i.e.
P C(0) = C(o) P = C(0). Since C(c) = P, C(0) is a two-sided ideal of P. We have
J C(o) = J n C(0), hence J n C(o) *+ 0, and since C(o) is a simple semigroup, we
have by Lemma 3,2 C(¢) < J. Since finally J is the minimal two-sided ideal of P, we
have C(¢) = J. This completes the proof of Theorem 8,6.

9. THE CASE OF SEMIGROUPS ADMITTING RELATIVE INVERSES

The fact that the support of an idempotent ¢ € M(S) is a simple semigroup has led
us to consider the relations between the simple subsemigroups of S. We now proceed
in this direction.

Recall first the fact we have used several times, namely that any subgroup of any
semigroup S is contained in a maximal subgroup of S and the maximal subgroups are
pairwise disjoint.

Analogously it is possible to prove (see R. CroisoT [5]) that every left simple sub-
semigroup of S is contained in a uniquely determined maximal left simple sub-
semigroup and two maximal left simple subsemigroups are disjoint.

Also every simple subsemigroup of a finite semigroup S is contained in a maximal
simple subsemigroup of S, but Example 7,2 shows that two maximal simple sub-
semigroups may have a non-empty intersection (which itself is simple).
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However, there exist important classes of semigroups in which two maximal simple
subsemigroups are disjoint. To such classes belong f.i. the semigroups which can be
written as a union of (disjoint) groups (“semigroups admitting relative inverses”).

9,1. We adopt the terminology introduced by A. H. Clifford in [2]. Let be S any
(non-necessarily finite) semigroup which can be written as a union of disjoint sub-
semigroups S = {J S,. Suppose that S,S; and S;S, («, p € A) are contained in the

ae A
same semigroup S,, ¥ € A. Then we shall say that S is a semilattice of semigroups

(S,lwe Al
A. H. Clifford proved (see [2]):

A semigroup is a union of groups if and only if it is a semilattice of completely
simple semigroups.

R. Croisot (see [5]) generalized this result as follows:

A semigroup S is a union of simple semigroups if and only if for every two-sided
ideal J of S we have: x? € J if and only it x € J.

Further it is proved in the same paper:

If S is the union of simple semigroups S = U S,, then S is a semilattice of simple
semigroups. acd

If S is a union of simple semigroups then every simple subsemigroup of S is con-
tained in a maximal simple subsemigroup and any two maximal simple subsemigroups
are disjoint.

Remark 1. If S is an idempotent semigroup, S is a union of one point groups. The
decomposition of such a semigroup into a semilattice of simple semigroups has also
been described by E. Hewitt and H. S. Zuckerman ([10]) and D. McLean ([ 14]).

Remark 2. If S is commutative every simple subsemigroup of S is a group and the
maximal simple subsemigroups are disjoint. Again S is a union of simple semigroups
if and only if S is a union of disjoint groups. Hereby S is a semilattice of groups. Mea-
sures on such finite semigroups have been studied in great detail by E. Hewitt and
H. S. Zuckerman in the paper [9].

9,2. In what follows we shall apply our results to a finite semigroup S which is a
union of groups. We write in the above sense S = {J S,, so that each S, is a maximal
simple subsemigroup of S. aed

We introduce a partial ordering into the set of indices A by writtinga < fif S,S; =
< S,. The set of indices forms then clearly a semilattice.

If ¢ is an idempotent € M(S), H = C(¢) is a simple subsemigroup of S and it is
contained in a maximal simple subsemigroup S,. In this case the set S, is identical
with the set H* introduced in section 7.
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Theorem 7,3 and 7,1 imply the following

Theorem 9,1. Let S be finite and let S = \J S, be a semilattice of simple semi-
yeAdA

groups. Let ¢ € M(S) be an idempotent for which C(e) = H < S,. If u belongs to &,
we have C(i) = U S,. If p is regular, we have moreover C(y) = S,.

yza

For a regular x4 we may use Theorem 7,2 and we have

Theorem 9,2. Let the suppositions of Theorem 9,1 be satisfied. If p is a regular
element € M(S) belonging to ¢, then C(n) = HxoH with a suitably chosen x, € S,.

Theorem 9,1 can be strengthned as follows:

Theorem 9,3. Let S be finite and S = ) S, be a semilattice of simple semigroups.
yeA

Let be p e M(S) and suppose that C(u) has a non-empty intersection with the sub-
semigroups S,, Sy, ..., S,. Let 1, be the least element of the semilattice generated by
a, B, ..., 7. Then u belongs to an idempotent ¢ for which C(¢) = H = S, holds.

Proof. Let be C(¢) = H = S;, 6 € A. The element ey is a regular element belon-
ging to ¢, hence C(ep) = S;, i.e. H C(p) = S;. By supposition C(u) n' S, = D, + 0,
ey C(W NS, =D, %0 and C(u) = D,u...u D, hence HD,u ... u D) = S;.
Since every element € S;S, is contained in the same semigroup S, and HD, = S;, we
have necessarily S; = S;, hence S;S, © S;,i.e. § < o Analogously § < f,...,0 < 1.
This implies d < 7,. By Lemma 4,1 C(¢) = P, where P, is the least semigroup
containing C(u) = D, U ... U D,. Consider the semilattice J = A generated by the

elements a, f, ..., T € A. 1, is the least element of J. Since U S, is a semigroup, we
éeJ

certainly have P; < U S,. Since C(e) = H < P, = U S, and C(¢) = S;, we have
Eel velJ

Ss = US,, hence § € J and 6 = 1, therefore 6 = 1, g.e.d.

veJ

10. THE CASE OF IDEMPOTENT SIMPLE SEMIGROUPS

In this section we return to a more detailed study of simple semigroups without zero

supposing moreover that each element € S is idempotent.
s r
With the same notations as in section 5 we may write S = (J U {g}, where every
i=1 k=1 s r
g is an idempotent. By Theorem 2,4 for every ¢ € M(S) we have e* = ) > Emd e
s r i=1 k=1
where 0 < ¢, 51,0, =<1, Y ¢ = an = 1 and every idempotent € IM(S) is
i=1 k=1

obtained in this manner. By Theorem 3,4 every idempotent € M(S) is a primitive
idempotent € M(S). By Theorem 3,5 the kernel N of M(S) is identical with the set of

all idempotents € M(S) and the structure of N is described by Theorem 3,6.
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10,1. The following theorem gives further information about the structure of IM(S)

Theorem 10,1. Let S be an idempotent simple semigroup. Then
a) For any pue M(S) the element p* is an idempotent (hence M(S) is a torsion

semigroup).
b) The product of any two idempotents € MM(S) is an idempotent

c) If p’ belongs to &', u” belongs to &”, then p'p" = &'e”.
d) The set of all elements belonging to ¢ is a subsemigroup §(g)
s r s r
ztik =1, tik = 0.

Proof. a) Let u be any element with p* = Z z a9 and Y,
k= i=1 k=1

r s r

(T Z Z Gk - Z Z ign = Z kZl le zlt wlijgir»

We have

= Z ttktjltuvgw =

s r s r
(”3)* =Z z Z z lktjlgll Z Z tuuguv
i=1k=1j=11= u= ikjluy

S r s r s r
= (Z z Z Z Z Z 1ktuugiv = (Hz)* .
j=11=1 i=1k=1u=1v=
The relation u® = p? implies u* = p?, hence p? is an idempotent
is an

b) Since ¢ e N, &” €N, we have also ¢'¢” e N and since every element € N

idempotent, &’¢” is an idempotent.

c) Let be
2 0.

(#,)*':_Z Zt: ik » (ﬂ )*hz Ztlkglk$ ztlk—ztk—l tlk—O t’l’k

By supposition
r
Y tatigu = ¢,

11=1

Mm
Mﬂ
Mm

)

W)y =

i

(W)*? = Z

a=1p

1j

I

1k

r

r S
Y2 X tuplysdes = €
=19y=16=1

On the other hand we have

l ”)* = Z tlktﬂtaﬂ y&glé - (Z tyl) (Z’ )Z tzktybgui -

aﬂy&

= (X tugu) (Z 136938) = (W't ”)* ;

which proves our assertion.

d) This follows directly from c).
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Remark. M(S) can be written as a union of disjoint subsemigroups m = US(e),

where ¢ runs through all idempotents € M(S). Every semigroup £(¢) contains a unique
idempotent and for any two elements v, € §(¢) we have uv = ¢. Further f(g,) .
. 8(ey) = g, e.ﬁ(alaz) and also — since M? = [Uﬁ(s)]2 cNand N* =N — we
have [M(S)]* =
While the structure of N is sufficiently described by Theorem 3,6, the decomposition
M = URK(e) does not enable a sufficiently clear insight into the structure of M. This

is due also to the fact that the sets £(¢) need not be isomorphic. This will be shown on
the Example 10,1 below.

10,2. We shall try to find all elements € S.W(S) belonging to the idempotent ¢ with
Z Z Mg k> 0 é éia ’1]( = 1 26 - zr’k =

Write pi* = Z Z tind ik Z Z tx = 1, t; = 0. Since the square of any element is an
i=1 k=1

idempotent, there must hold.

s

Z Ztikgik.z ;tjtgﬂ:z: Zéinkgik9

i=1k=1
Z tlktjlgll = zélr’lgll ]

ikjl

2 Ztiktﬂ=fi7ll (Igigs, 1Z17).
k=1 j=1

-

The summation through all i gives

(Z Zt.k)Zt,z— ’1125.,

) i=1 k=1 j=1

ie.

(20) jgltj,=n, (I=12,..,r).
Analogously by summing through I we get

(21 kiltik =& (i=1,2..,5).

The relations (20) and (21) give necessary conditions for the validity of ;4 = ¢ Con-
versely, if 1, satisfy (20) and (21) (and 0 £ 1, < 1) it is easily seen that u? = ¢ holds.
We have proved:

Theorem 10,2. The measure p with p* =Y > t,g, belongs to the idempotent &
i=1 k=1
with g* = z Z Emgu if and only if the (linear) conditions (20) and (21) hold.

i=1k=1

%) The semigroup M(S) is a totally non-commutative semigroup in the sense introduced in the
paper [21].
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Remark. With fixed chosen &4, ---, & 1y, ..., 7, the relations (20) and (21) give
r + s equations for rs “unknowns’ fy:

(22) t11+t12+"‘+t1r=61:

tsl +ts2 +"'+tsr =€x’
tll +t21 +“'+ts1 ='11,

tyy 1t + oo =1,

These equations are not independent since f.i. the sum of the first s equations is
identical with the sum of the remaining r equations. But if we drop f.i. the last equa-
tion the linear forms (in t;) on the left hand sides of the remaining equations are
linearly independent. For if there existed real numbers A, ..., A, Ay ooy Agiroy
such that

s r—1
Zlﬂ.,(ta, + ot t,) +pzlis+,,(zl,, + .+t =0

we would first have 4, = 1, = ... = A, = 0, since t,,, t,, ..., t, do not occur in the
remaining forms. Next a relation of the form

Aty + oo t) + oo+ Aty py + oo+ 1,2) =0

is possible only if 4, ; = ... = A,,_; = 0 since every variable t;, occurs exactly
once. Hence the rank of the system (22) is r + s — 1. a) If r = 1, the system (22) is of
the form t;, =&y, .., tyq =&, tyy + 1, + ... + t, =1y, and it has a unique
solution for t,4, ..., t,,. Analogously for the case s = 1. b) Hence we may suppose
thats > 1,r > 1. Thenrs — (r + s — 1) = (r — 1) (s — 1) > 0. Now we may calcu-
late from (22) some r + s — 1 “unknowns” t;, as polynomial of the remaining
quantities t;. Unfortunately this does not yet solve our problem. To find all measures
1 belonging to ¢ it is necessary to find those solutions for which 0 < #; < 1. One such
solution always exists. It is namely sufficient to put ¢, = £x,. We then have 0 <
< ty = &M = 1 and the equations (22) are clearly satisfied. (Of course, from our
point of view, this solution is trivial, since it leads to u = &.)

10,3. Example 10,1. Let S = {g11, 912, 921> 922} be the semigroup with the multi-

plication g4, = g;;- This semigroup is isomorphic with the semigroup of Example
2 2 2 2

2,1. If a measure p with p* = )" > 1,9, belongs to e with e* = Y Y Emga, there
i=1 k=1 i=1k=1
must hold
tytty=C8, ty+tha=8, iy +tyy=n, tia+t=1,.

The “general” solution of this system is given by
(t“, 112) _ (tu » &1 =ty >
tr1s tas M=ty & —ny +tyy)

418



The condition 0 < t;, < 1issatisfied if and only if ¢, is such that max (0, 1, — &,) <
< tyy £ min (¢4, 5). The corresponding measure g is of the form

pr= g+ G =) g+ (1 — 41) 92 + (& =y + 111) 922 -

To prove our statement concerning the semigroup £(¢) mentioned above choose
first f.i. ef = g4, (i.e. & =, = 1, &, = 7, = 0). We then have necessarily t;; = 1,
ti, = t; = t,, = 0. Hence the semigroup f(g;) corresponding to ¢, is the one point
group {gy}. Choose next f.i. €5 = 3(gyy + g12 + g1 + ga2), ie. & =1y = & =
=¢, = % The measures u belonging to this idempotent are given by the formula

p* = t1(g911 + g22) + (% = t11) (912 + 921) »

where 4, runs through all real numbers satisfying 0 < t,, < 1. Hence f(¢,) is an
infinite semigroup which is clearly not isomorphic with f(e,).

10,4. 1t is possible to find also a — rather trivial — representation of IMM(S) by
means of some ““matrices” of real numbers. Consider the set of all s x r “matrices” M
of the form

t119 cees tlr

(23) M=

whose elements are non-negative numbers. For two s X r “matrices” M, = (¢},) and
M, = (17,) we define the product by

(24) M, 0 M, = (t,),
where

(25) ty = (21121) (j}::f'f{"

This is an associative operation, so that the set of these “matrices” forms a semigroup.
If we restrict ourselves to the matrices of the form (23) in which ) 1, = 1, we get
ik

again a semlgroup, since the relations Z th=1,% 15 =1in (25)imply 3 t; = 1.
Jk ik
Letnowbe S = U U {gu}- To every p with p = Z adi 0 <t < 1 letusassign

i=1k=1

the “matrix”
tigs -oes By

= Mly) =

| ST

If (@) = Z UG (W)* = z 1},9;, we have (u'p")* = Z tq9:-'°) Hence if ' —

- M(y), ,u” - M(y"), we have clearly p'p” —» M(p'p") = M(,u) © M(p"). Since this
correspondence is a one-to-one we have proved:

10y Explicitly: (u'u")* = Z Zk: L 8k - Zj: ; 18 = %: (% 1) (g 1) & = Z‘ 18-
13 12
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If T is the set of all “matrices” of the form (23) in which Y t, = 1,0 < t, < 1,
ik

and we define in T a multiplication by the relations (24) and (25), then IM(S) is iso-
morphic to .

11. MAXIMAL IDEMPOTENTS OF R(S)

As a counterpart to the investigations of section 3 we prove some results concerning
maximal idempotents.

Definition. An idempotent ¢ of any semigroup T is said to be a maximal idempotent
of Tif ¢ = gp = pe and p an idempotent implies u = e.

The following theorem holds for any finite semigroup.

Theorem 11,1. Let S be a finite semigroup and ¢ a maximal idempotent € IM(S).

Then C(¢) does not contain a proper subsemigroup having the same idempotents as
C(e).

s ¢
Proof. Let be C(e) = U U G the decomposition of C(¢) into the union of groups

i=1k=1

and ¢* = Z Z Em Gii]- Suppose for an indirect proof that there is a subsemlgroup
i=1 k=1
P < C(e), where P contains the same xdempotents as C(g), hence P = U U G, where

i=1 k=1

% S G Construct the measure p, p* =~Z1 kzléjm[Gj,] (with the same &;, 7).
=
Clearly ¢ + pu. Further

[

SnTe L Senleul[Gl -3 $enlei] = o

||[\/j:=

and analogously pu*e* = ¢*. Hence ¢ is not a maximal idempotent, contrary to the
assumption.

In the case of a simple semigroup without zero the converse statement is also true:

Theorem 11,2. Let S be a simple semigroup, H = S and suppose that H does not
contain a proper subsemigroup containing the same idempotents as H. Let ¢ be an
idempotent with C(e) = H. Then ¢ is a maximal idempotent € M(S).

s r

Proof. Write in our usual notations S = U R; = U L, = U U G ;- Suppose that

i=1 k=1 i=1k=1
u is an idempotent for which ¢ = pe = eu holds.

C(p) is a simple semigroup. Without loss of generality let R;, R,, ..., R, (L, L,,
L,) be exactly all minimal right (left) ideals of S having a non-empty 1ntersect10n
w1th C(1). We then have

CWe{Ryu..UR}IN{L,u...UL}=H,.
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By Theorem 1,2 of the paper [18] C(u) contains exactly all idempotents € H,. The

relations
Ce)=Ce)C(pw) = Ce){Lyv...uL} =L u...UL,

and
Cle)=C(p)C(e)c {R,v...UR,}C(e) = Ry U...UR,

imply
Cle)c{Ryu...UR,}Nn{Lyu...uUL}=H,.

Since C(e) is a simple semigroup, it necessarily contains an idempotent. Since further
all idempotents € H; are contained in C(u) we have C(u) n C(e) # 0. Let be a €
€ C(e) n C(p). Then

C(e) = C(e) C(n) = C(u) Ce) C(w) = C(n) . a . C(u) = C(u) .
Hence C(e) o C(p). Therefore C(e) contains all idempotents € H,. Now since C(¢) =
= H does not contain a proper subsemigroup containing the same idempotents as H,
we have necessarily C(g) = C(p).
ne = 1. By

e

g e [ 4 a

If C(e) =U U Gy, we may write e* =3 ) Em[Gi], p* =)
i=1k=1 i=1 k=1 i=1k
where &;, 1y, &i, 113, are positive numbers satisfying Y &, = Yy, = Y& =
i k

i

g

supposition we have

MQ

eZémk[Gﬁk] =ii iii’?k[ng] -ji lzglf}”l;[c}z] =

i=1 k=1 =1 k=1

L4

= Z ;lé}’?;[Gﬁ] -.;1 kgléink[G;k] .

ji=11
Hence

Z ;firlk[G’ik] = Z zk:fi’h'c[G:'k] = Z Zé:’ﬂk[G;k] .
i i i k
Therefore &, = Emp = Emp, 1. €. & = &,y = 1. The relation ¢ = pue = ep is satis-
fied if and only if 4 = ¢, hence ¢ is a maximal idempotent € M(S), q. e. d.
Theorems 11,1 and 11,2 imply:

Corollary 11,1. Let S be a simple semigroup. An idempotent ¢ € M(S) is a maximal
idempotent € M(S) if and only if C(e) does not contain a proper subsemigroup
containing the same idempotents as C(g).

In particular:

Corollary 11,2. Let S be a simple semigroup in which the product of two idem-
potents is an idempotent. Then ¢ is a maximal idempotent € M(S) if and only if C(¢)
is an idempotent semigroup.
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Example 11,1. We show on a simple example that Theorem 11,2 and Corollary 11,1
need not hold if S is not simple. Consider the semigroup S = {ay, 4, a,} with the
multiplication table

do ay 4,
ag | ag ay ag
ag | Ao Ay a;
a; | Ao a; a,

The one point group {a,} does not contain a proper subsemigroup, while ¢ with
e* = a, is not a maximal idempotent € M(S) since we have ¢* = ¢*a, = a,e*.

By an analogous argument as in Theorem 11,2 (and using Theorem 2,2 of [18]) we
may prove also

Theorem 11,3. Let S be a simple semigroup with zero z in which S* % z. Let
further be H = S a subsemigroup not containing the zero element and H not con-
taining a proper subsemigroup with the same idempotents as H. If ¢ is any idem-
potent € M(S) for which C(e) = H holds, then ¢ is a maximal idempotent € M(S).

Remark. It follows from Theorem 11,1 that if S is a simple semigroup, ¢ a point
mass at the idempotent e, € S, then ¢ is a maximal idempotent € I(S). From Corol-
lary 5,1 we know that the set of all elements belonging to this idempotent is a group.
The question arises whether also in general the set of all elements belonging to any
other maximal idempotent € M(S) is a group. Example 10,1 shows that this is not the
case. For the idempotent ¢, considered in this example is a maximal idempotent, but
R(e,) is clearly not a group, since ¢, is at the same time a primitive idempotent and the
set of regular elements belonging to &, reduces to {¢,}.

Let S be again a finite semigroup. Decompose S into the union of F-classes (see
section 7,3). Denote (in accordance with 7,1) by H*-classes those F-classes that contain
idempotents and define Hy < H) if (x) = {y>. A H}-class is said to be a maximal
H*-class if there is no H*-class that is strictly greater than HZ.

Theorem 11,4. Let H* be a maximal H*-class of S and H a simple subsemigroup
of S contained in H*. Suppose that H does not contain a proper subsemigroup con-
taining the same idempotents as H. If ¢ is an idempotent with C(¢) = H, then ¢ is
a maximal idempotent € M(S).

Proof. Let u be any idempotent € I(S) with ue = eu = &. We have to show that
u=e.

The set C(1) = H, is a simple subsemigroup contained in a H*-class, say Hy. We
first show that Hy = H*. By supposition we have HH, = HoH = H. If upe H,
< H%, ue H < H* Lemma 7,4 implies that the product u,u is contained in such a
F-class F,, that F,, < Hi. But ugu € H = H*, hence F,, = H* and therefore H* <
< Hj. Since H* is a maximal H*-class we have H* = Hj. Hence C(u) = Hy, = H*.
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Consider now the class H*, adjoin a zero element Oy., and define in S| = H* U Oy
a natural multiplication (see Lemma 7,3). Then S, is a simple semigroup with zero and
S} # Oy (since H* contains idempotents). Now ¢ and u may be considered as meas-
ures defined on S satisfying pe = eu = ¢. Since H considered as a subsemigroup of S,
satisfies the suppositions of Theorem 11,3, the relation ue = eu = ¢ implies p = e.
Hence ¢ is a maximal idempotent of S. This proves our theorem.

I am unable to prove the converse of Theorem 11,4 namely that the support of
a maximal idempotent ¢ € I(S) is contained in a maximal H*-class. It is possible that
in general this conjecture does not hold but at this writing I cannot find an example
to prove this.

However in the commutative case the conjecture holds.

If S is commutative, every H*-class is a maximal group of S. The idempotents ¢
satisfying the condition mentioned in Theorem 11,1 are point masses at some idem-
potents of S. An idempotent e contained in a maximal H*-class is a maximal idem-
potent of S. For if e were not a maximal idempotent € S there would exist an idem-
potent f with ef = e. We have Sf = (Se) f = S(ef) = Se. f is not contained in Se, since
otherwise we would have ef = f, hence e = f. Therefore Sf ¥ Se, a contradiction
with the maximality of the H*-class containing e. Conversely if e is an idempotent
which is contained in a non-maximal H*-class, say Hj, then there is a H*-class, say
Hg,, such that Hy < Hg,. If f is the idempotent € Hg,, we have Se & Sf. Now f is
clearly a unit element for every element € Se, in particular ef = e. Hence e is not a
maximal idempotent € S. Summarily: The idempotents contained in maximal H*-
classes are exactly the maximal idempotents € S.

Let now ¢ be a maximal idempotent e SN(S). By Theorem 11,1 we have necessarily
&* = e, where e is an idempotent € S. If e were not a maximal idempotent € S there
would exist an idempotent f, f = e, such that ef = e. If u is the idempotent € I(S)
with p* = f we would have eu = ¢, u* #+ e, hence ¢ is not a maximal idempotent
€ M(S), contrary to the assumption.

This implies:

Theorem 11,5. If S is commutative, the maximal idempotents € IM(S) are the point
masses at the maximal idempotents of S.
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Pe3ome

O BEPOSATHOCTHBIX PACIPEAEJEHUAX
HA HEKOMMYTATUBHBIX INOJVYIPVIIIIAX

IITE®AH UIBAPILI (Stefan Schwarz), Bparucnasa

Ha npoTsbxeHnn Beeil paGoThl S — KoHeuHas nodyrpynna. Mepoii p HasbiBaeM
HEOTPULATEIBHYIO AJUINTHBHYIO MHOXECTBEHHYIO (YHKIMIO, ONPEJETEHHYIO Ha
IOJIMHOXECTBAX S, st KoTopoit u(S) = 1. HocuTeneM Mepbl j Ha3bIBACTCS MHO-
iectBo C(1) = {x € S/u(x) # 0}. O6o3nauum cumsosom M(S) MHOKECTBO Beex Mep
MOJIyrpynmsl S.

Tycts vy, v, € M(S). TpoussenenneM v, v, GyfeM Ha3bIBATH MePY, ONPEACICHHYIO
COOTHOIIEHUEM vyv,(x) = Y v(u) v5(v) (x € S).

v=

Ecnu A(S) — nonyrpynnosas anre6pa nonyrpynnsl S = {x,, ..., X,} Ha/ nojiem
neucrsnrenbnmx ancent u F(S) = U(S) — HO}IMHO)KCCTBO BCEX DIEMEHTOB BUIA
th,, roe t; =0, Zt =1, 1o v(x) e M(S) & Zv(x)x eF(S) — 1/130M0p(1)143M
i=1

B nanbheiimem OTO)K}ICCTBI/IM M(S)uF(S) n 6yneM MepHI UCATh B BULIE [l = Z tix;
i=1

Kpome Toro, Gyaem cuntath, uro S BiaoxeHo B IM(S) (kak MHOKECTBO TOYECYHBIX
macc).

Eco Beectu B 9(S) npousBeJeHHe Mep M TOMOJNOTHIO €CTECTBEHHBIM 06pa3oM,
To M(S) npespauaercs B GukomnaxTHyIo (xaycnopdosy) nomyrpynmy. Lensio pa-
GOTHI ABJISAETCS M3ydeHKe cTpoeHust moayrpynmsl M(S).

B pas3pgene 1 IIPUBOAATCA BCOOMOTATEJIbHBIE PE3YJIbTATEHI, KaCAKIIHUECA OHKOM-
MaKTHBIX IMOJYrpynrm, KOTOpbIC HCOGXO)J,I/[MBI B JaJIbHEHILIEM.

B pasneie 2 nonyuens! Bee ugemnotentsl € M(S). Ecmu pp = p?, to S(p) — Bron-

s

He mpocras monyrpyma. Iycrs C(p) = U U Gy — pasnoxenne C(p) B (au3n-
i=1 k=1

IOHKTHBIC H30MOP(HBIE) IPYNIOBbIC KOMIOHEHTHL. Tor/a 11 X, y € G, HMeET MeCTo
s
u(x) = u(y). Hycrs, vaobopor, P = U U G — mobast BiiosHe npocTast IOANOILy-
i=1k=1
rpynna nosyrpymnet S. Ecn Gy = {g, ..., g°}, T0 06Gosnaunm [G,] = (1/m).

g+ o+ 9 (Mepa Xaapa rpynnst G ). HyCTb é,, N — TOJOXHUTEIbHBIE

YUCHIa, U KOTOPBIX Zé = Z n, = 1. Torma ¢ = z Zé 1l Gi] — MaemnoTeHT
i=1 i=1k=1

€ M(S), u Kaxmblit HI[CMHOTCHT 6973(5), HOCHUTEJIEM KOTOPOro sBjseTcs P, mouy-
yaercst Takum o6pasom. (B wacTHocTH, J106asi BIOJNHE MPOCTas MOAMOIYTPYMIa
SIBJISICTCSL HOCHTEJIEM HEKOTOPOH MIEMIIOTERTHOMN MepHI).
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B pasjeie 3 xapakTepu3yrOTCsl MPUMHTHBHBIE HaemrnoTeHTHl € IM(S). Oxasbi-
BAETCSI, YTO COBOKYMHOCTbH BCEX NPHMHTHBHBIX MAEMIIOTEHTOB €cTh siApo N moury-
rpymst M(S). MonydeHo oxHo u3oMopHOe npeacTabieHue sapa N.

CkaxeM, 4TO [ € 9??(5) MPUHAJICXKHUT K UJICMIIOTEHTY &, €CJIM € — (e,Z(PIHCTBeHHLIﬁ)
MIEMITOTEHT, JIOKALMA B 3aMbIKAHUH ITOCIIEOBATEILHOCTH { L, uz, w3, ...}. Dnement
peém(S) Ha3bIBAETCSL PETYJISIPHBIM, €CJM OH JIEKMT B HEKOTOpPOW MOArpynme u3
m(s).

Mycre p — peryn;{pm,m 3JIEMEHT, NMPUHAJICKALLIMNA K UIEMIIOTEHTY € = z Z

i=1 k=1

EmlGix]. Oycts Hy = U U G, — (cnuMHCTBeHHAs) MakcHMMalbHas BIOJHE MpPOC-
i=1 k=1 4 e

Tas MOJIyrpynmna, umerolnas Te xe uaemnorentol kak H = J U G},
i=1 k=1

PaccMoTpM pasjiokeHue B AN3BIOHKTHBIC kiaccel: H, = (J HaH (*) Oxka3sl-
aeH;

BAa€TCsl, YTO C(u) = HaH c HEKOTOpBIM ymoGHO BbIGpaHHbIM a € H,;. O603na4um
C(p) N Gy = HaH n Gy = G},aGy, = Ty. Hanee, e Ty, = {140, ..., 1}, nycts
[Tu] = (1/p) (1% + ... + £D). OKa3mBaeT05{ YTO JUISL AHHBIX & C(u), K omHO-

3HAYHO ONpPEACJIEHO, & UMEHHO U = z Z é;rlk[ k] Orot pe3yabTaT AOKA3bIBACTCA
i=1k=1

B pasjeJie 5 [Ulst BIONHE MPOCThIX moutyrpymn (Ge3 Hyss) u 06o6waercs B pasie-
gax 6 u 7.

Ioxa3aHbl TOXe HEOOXOAMMBIE U JOCTATOYHbIC YCIOBHS ISl TOTO, YTOOBI Kjiacc
HbH u3 pasinoxenus (*) GbUI HOCHTeJIEM HeKOTOPOH peryssipHoii Mepsl . B paspe-
Jlax 5—7 noka3aHbl TOXE TEOPEMBI, KacalolIHecsl HeHeOOX0JMMO PEryJIIPHBIX Mep.
B pasneste 7 pa3bupaeTcsi, KpOMe TOr0, BOIIPOC O HAXOXKIECHHU BCEX BITOJIHE MPOCTHIX
NOAMOJYTPYNI B 0011IeM CIlydae.

B pa3geinie 8 mokazaHbl HEKOTOPbIE HEOOXOMMBIE M JOCTATOYHBIE YCIIOBHS [IJIS
cywiectBoBaHus lim p". Jloxazana Toxe cieayrouast Teopema: O003HAYUM 0, =

n=oo
= (1/n)(u + p* + ... + "). Torma lim o, cywecTByeT W paBHSETCS HEKOTOPOMY

n=o
ugemnotenty o € M(S). Ecim P — nosyrpynma, nopoxaennas MaoxectBoM C(p),
u ] — MHHAMAJBHBIT ABYCTOPOHHMIA upeal u3 P, to C(o) = I.

B paspenax 9 u 10 uccnepyercst M(S) I HEKOTOPHIX CHEHUATBHBIX THIIOB
MOJIYrpyMNII.

B pa3mese 11 uccnenyloTcs MaKCMMabHbIe MaeMIoTeHTHEL € M(S).

O6061IeHe HEKOTOPBIX Pe3yJbTaTOB Ha Cilydail OMKOMMakTHOTO S Oyner mpen-
METOM APYroi paboThl.
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