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Чехословацкий математический журнал, т. 13 (88) 1963, Прага 

SUBSEMIGROUPS OF SIMPLE SEMIGROUPS 

STEFAN SCHWARZ, Bratislava 

(Received March 13, 1961) 

The purpose of this paper is to study the structure of subsemigroups of 
a simple semigroup 5, especially in the case when S is completely simple. 
Also coset decompositions of S modulo some subsemigroups are studied. 

Let S be a semigroup. A left ideal of S is a subset Lcz S with SLcz L. A right ideal 
of S is a subset R with RS a R. A subset which is both a left and right ideal of S 
is called a two-sided ideal of S. 

The semigroup S itself and the zero element 0 (if S contains a zero element) are 
always two-sided ideals. 

A minimal left ideal of S is a left ideal of S which does not contain any proper left 
ideal of S with the eventually exception of (0) (if S contains a zero element). Minimal 
right and two-sided ideals are defined analogously. 

A semigroup S without zero and containing at least two elements is called simple 
if it does not contain any two-sided ideal ф S. 

A semigroup S with a zero element 0 containing at least two elements is said to be 
simple if it does not contain any two-sided ideal different from (0) and S itself. 

Also a semigroup consisting of a single element is called simple. Of course, in this 
case this element can be considered as a zero element of S. Hence to avoid confusion 
by a semigroup with zero we shall usually mean a semigroup containing at least two 
elements (one of them being a zero element). 

The purpose of this paper is to study subsemigroups of a simple semigroup. The 
question arises whether any subsemigroup of a simple semigroup is simple. In general 
the answer to this question is certainly negative since it is known (see R. H. BRÜCK [1], 
p. 48 and G. B. PRESTON [6]): Any semigroup Tcan be embedded in a simple semi­
group (with or without zero) containing a unit element. On the other hand every 
finite simple semigroup without zero possesses the mentioned property. 

In section 1 of this paper we show that the answer to this question is positive if S' 
is a compact simple semigroup without zero and we restrict ourselves to closed 
subsemigroups. 
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In section 2 we treat an analogous problem for simple semigroups with a zero. 

Some corollaries and special cases of these results are needed in a forthcomming 
paper on convolution semigroups of measures on non-commutative semigroups 
(see [9]). Also the results of section 3 dealing with some coset decompositions of 
completely simple semigroups are proved for this purpose. All these results seem to 
be also of an independent interest. For this reason I have found it convenient to 
publish them separately. 

A simple semigroup S is called completely simple if it contains at least one minimal 
left and at least one minimal right ideal of S. 

Recall that if S is a completely simple semigroup without zero it can be written 
in the form S = (J R^ = \J Lß, where R^ and Lß run through all minimal right and 

aeAi ßeAi 

left ideals of S respectively. Moreover, every minimal left ideal L^ is generated by an 
idempotent, i.e. there iŝ  an idempotent e e L^ such that L^ = Se = L^. e. Clearly e 
(and every idempotent G L^) is a right unit of L„. Analogously for minimal right 
ideals. Also R^Lß = R^ n Lß is a group. Denoting R^Lß = G^ß we can write S = 
= и и G^ß as a union of pairwise disjoint maximal isomorphic groups с S. The G'^ß s 

a ß 

will be called the group-components of S. 

Recall further that if S is completely simple with zero 0 (and S contains at least two 
elements) we have either S^ = 0 or S^ = S. In the first case S is of the form S — 
= {0, a} with a^ = a . 0 = 0 . fl = 0^ = 0. In the second case S contains at least 
one idempotent e Ф 0 and it can be written in the form S = [J Lß, where Lß runs 

ß 

through all minimal left ideals of S. For any two minimal left ideals L^ ф Lß we 
have L^n Lß = (0). Moreover, every minimal left ideal Lß contains at least one 
idempotent ФО and it is generated by any such idempotent. Any minimal left ideal Lß 
of S can be written as a union of disjoit sets Lß = {[J Gyß} u Pß, where Gyß are 

T 

(isomorphic) groups and Pß a semigroup with Pj = 0. Analogous statements hold 
for minimal right ideals. (The proofs of all these statements can be found f.i. in the 
recent book of E. С Пляпин [4].) 

Remark . The restriction to completely simple semigroups though an essential one 
is itself not sufficient to obtain results of the kind mentioned in the introduction. 
If S is completely simple and T a subsemigroup of S then T need not be simple even 
in the case when Thas an idempotent. Let f.i. S be the multiplicative group of real 
numbers > 0 . S is then a (trivial) completely simple semigroup. Let Tbe the subsemi­
group of real numbers ^ L Then T contains the idempotent 1 and is not simple, 
since f.i. the subsemigroup of all real numbers ^ 2 is a proper ideal of T. 
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We first prove 

Lemma 1Д. Let S be a completely simple semigroup without zero and Ta simple 
subsemigroup of S containing an idempotent. Then 

1. Tis completely simple. If T contains more then one element, Tis completely 
simple without zero. 

2. If L^ is a minimal left ideal of S, and V^ =^ T n L^ ^ Ç}, then L'^ is a minimal 
left ideal of T. 

3. Conversely, if L'^ is a minimal left ideal of T, then there exists a uniquely 
determined minimal left ideal L^ of S such that L'^ = T r\ L^. 

Proof. 1. An idempotent e ф 0 of any semigroup is called primitive if there does 
not exist an idempotent x ф e and x ф 0 such that xe = ел = x. 

It is known that all non-zero idempotents of a completely simple semigroup (with 
zero or without zero) are primitive. Further it is known (see D. REES [7]): If a simple 
semigroup T contains a non-zero primitive idempotent, then T is completely simple. 
In our case: Since Tis simple and it contains an idempotent eeS, Tis completely 
simple if e is not a zero element of Tor if Treduces to e. 

Suppose that T contains more then one element and e = z is a zero of T. We 
show that this case is impossible. Let be a e T, a ф z. By definition of a zero element 
we have az ^ za = z. The idempotent z G Tis contained in a group-component G„̂  
of S. The element a cannot be contained in G^ß since otherwise az = z^ (in G^ß) 
would imply a = z. Hence a e Gy^ for some y, ô and G^ß n Gy^ = 0. Denote by e' 
the unit element of G^̂ , hence e' ф z. The relation az = z implies e'az = e z, 
az = e z, z = e z', analogously za = z implies zae = ze , za = ze , z = ze . 
Hence z = e'z = ze . But this contradicts to the fact that e is a primitive idempotent 
of S. 

2. Let L^ be a minimal left ideal of S and suppose L^ n T == L^ Ф 0. Then for 
a el and xeL'^ we have ax e ah'^ с ah^ a L^r further ax e T. T a T, hence 
ax e T n L^ = L'^. Therefore L'̂  is a left ideal of T. 

We next prove that L'̂  is a min ima l left ideal of T. Since Tis completely simple, 
it is the union of its minimal left ideals. Hence L'̂  is either a minimal left ideal of T 
or there is a minimal left ideal L of T such that L Ç L'̂ . Suppose this second case. 
Let e be the idempotent contained in L/We have L^e с LJ. с L. On the other hand 
every idempotent e L^ is a right unit of the semigroup L^, hence L^e =-- L^. Therefore 
L^ d L, i.e. /4 = L, contrary to the supposition. 

3. Write S = {J Lß 3.S the decomposition of S into the union of its minimal left 
ßeA2 

ideals. Let L^ be a minimal left ideal of T. We have (1) L; = L; n S = L; n { и £̂ ,} = и {L; n L,} . 
ßeAj ßGÄz 
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If L^ n Lß =^- 0, then T{L^ n Lp) a L^ n L^, hence L^ n Lß is a left ideal of T. Since L^ 
is minimal, there is exactly one non-empty summand on the right hand side of (1). 
Hence there is a unique minimal left ideal of 5 — say L^, a e /I2, — such that L'„ = 
= L^ n L^. We have L^ с T, L^ a L„, hence L'̂  ci T n L^. On the other hand it has 
been proved above that T n L̂ , is a minimal left ideal of T, therefore 14 = T n L ,̂ 
q.e.d. 

R e m a r k . The following problem arises. Does there exist a completely simple 
semigroup S containing a simple subsemigroup T without idempotents (hence T 
simple but not completely simple)? 

Write S = и (J Gy^ and suppose that T с S is simple. Then there is at least one 
y e / l i ОЕЛ2 

couple a G /tjL, ß ^ Л2 such that Tn Ĝ =̂= P^ß^ Ç». We show that the semigroup P^ß 
itself must be a simple semigroup. Choose a, b e P^p. We then also have a^ e P^ß с T. 
Since T is simple, there exist x,y еТ such that xa^y = b. If x e Ry for some y, we 
have b = xa^yeR^a^y a Я^, therefore у = a; hence x e R^ and x e T n R^. 
Analogously у e T r\ Lß. Further we have ^ = xa e Rfi^ß = R^RJLß = RJ^ß = G^ß, 
and С = xa e T. T = T, hence ^ E T n G^ß = P^ß. Analogously rj = ay e P^ß. Since 
{xa) a{ay) = ^аг] = Ь, this implies: To every couple a,b e P^ß there exist elements 
(̂ , ?/ e P^ß such that ^ a ц = b. Hence P^ß is simple. (Note also that P^ß being a subset 
of Ĝ^̂  satisfies the left and right cancellation lav/.) 

We have proved: / / there is a completely simple semigroup containing a simple 
subsemigroup without idempotents, there must exist a group G such that G contains 
a simple subsemigroup H without idempotents. Conversely, the existence of such 
a group G would give a positive answer to our question, since G is itself a (trivial) 
completely simple semigroup. 

l^ow such groups really exist. Consider f.i. the set G of all couples (a, b) of real 
numbers with a ф 0 and introduce in G a multiplication by (a, b) © (c, d) = 
= (ac, be + d). Then G is a group with (1, 0) as unit element. Next let S be the 

subset of all couples (a, b) with a > 0, b > 0. Then S is easily seen to be a simple 
semigroup (without idempotents). This shows that the assumption in Lemma 1,1 
that T contains an idempotent is an essential one. {Analogous examples due to O. 
ANDERSEN can be found in the recent book [3], p. 51.} 

If G^ß is commutative (and hence all G, ,5 commutative), then P^ß is commutative and 
since a simple commutative semigroup without zero is a group, P^ß is a group. 
This implies: 

Corollary 1,1. Let S be completely simple without zero and let the group-com­
ponents of S be commutative. Then every simple subsemigroup of S is completely 
simple. 

The following lemma is well known. We prove it only for the sake of completeness 
(since we shall use it several times). 
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Lemma 1,2. Let S he a semigroup without zero containing a minimal left ideal 
and suppose that S is the union of its minimal left ideals. Then S is a simple 
semigroup. 

Proof. Write S = \J L^^ where L^ runs through all minimal left ideals of S. 
аеЛ2 

Suppose that AT is a two-sided ideal of S, N cz S. Then NS cz N. On the other hand 
NS ^ N{[J L^} = и NL^, and since (with respect to the minimality of L^) NL^ = L^, 

a a 
we have NS = (J L^ = S, i.e. S cz N, therefore S = N. This proves our lemma. 

a 

Now we introduce a topological restriction. If 5 is a semigroup and at the same 
time a topological space, and the multiplication is continuous, S is called a topological 
semigroup. Supposing that S is a Hausdorif compact space the corresponding semi­
group will be called a c o m p a c t s e m i g r o u p . It is known that any compact semigroup 
contains always at least one idempotent. Moreover if S has not a zero, there exists at 
least one (non-zero) minimal left ideal and at least one (non-zero) minimal right 
ideal, and the minimal ideals are closed. This implies (see K. NUMAKURA [5], p. 103): 
A compact simple semigroup without zero is completely simple. 

We now prove: 

Theorem 1.1. Let S be a compact simple seniigroup without zero. Then every 
closed subsemigroup T of S is a completely simple semigroup. 

Remark . In the finite case this was proved by A. K. Сушкевич ([10], p. 59). 

Proof. Let S = \J L^ho; the decomposition of S into the union of its minimal left 

ideals. Consider the set of all left ideals L^ for which L^ n T ф 0. Let this set be 
{Ly, у e A'2}. For every у e Л2 denote Ly n T = Ly. 

The closed subset Ly Ф 0 is a left ideal of T. In fact, for every a ET and every 
X e Ly we have ax e aLy cz SLy ~ Ly, further ax e Т. Т cz T, hence ax e Т n Ly = Ly. 

We next show that L^ is a min ima l left ideal of T. Let L be a left ideal of Tand 
suppose that L с Ly. Since T is closed and hence compact (in the relative topology), 
T is a compact semigroup and there is necessarily a minimal left ideal L* of T with 
L* cz L. Again L* is closed (hence compact), therefore it contains an idempotent e. 
We have e E L^^ a L cz Ly c: Ly. In particular LyC cz LyL^ cz TIJ^ с L*. On the 
other hand every idempotent e ELyis a right unit of the semigroup L^, hence LyC — 
= L'y. Therefore Ly cz L* and L"^ = E = Ly. This proves that Ly is a minimal left 
ideal of T. 

It follows from T=TnS=\JLy that T is the union of its minimal left ideals. 
уеЛ'г 

By Lemma 1,2 we conclude that Tis a simple semigroup. Since we can prove by the 
same argument that Г contains also a minimal right ideal of T, Tis completely simple. 

Remark . The following (trivial) example shows that the supposition that T i s 
closed cannot be — in general — dropped. Let G be the group of complex numbers 
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{z I \z\ = 1} in the obvious topology, ZQ = e^""^ with an irrational i9 and T = 
= {ZQ I n ^ 1, 2, . . . } . The sub-semigroup Tis clearly not simple, since f.i. T^ ф T. 
Also the subsemigroup To = T u {1} (containing an idempotent) is not simple 
since it contains an infinity of ideals of TQ. 

Lemma 1,3. Let S he a completely simple semigroup without zero and Ta simple 
subsemigroup of S containing an idempotent. Then there exists a unique greatest 
simple subsemigroup T^ •=> T of S having the same idempotents as T. The semi-
group Ti can be written in the form Ti = { \J i^J n { (J Lß} with suitably chosen 

minimal right and left ideals R^, Lß of S respectively. 

Proof. By Lemma 1,1 T i s completely simple. Therefore we may write T = 
= и ^a = и ^'ßy where R'^, Lß run through all minimal left and right ideals of T 

aeA'i ßeA'x 

respectively. 
Choose — in the sense of Lemma 1,1 — Ra^Lß such that R'^ = R^r\ T, Lß = 

= LßnT We have 

T== T^ = { и i^;} • { и ЬУ; = и и {K^ß} с: и и {KLß} = 
(xeA'i ßeA'z OL ß aeA'i ßeA'2 

= { и i?a}n{ и -̂/,1= и и G^i,= T,, 
aeA'i ßeA'2 aeA'i ßeA'2 

and Ti is a semigroup which contains exactly the same idempotents as T. 

For ß e A'2 denote L'ß = Lß n T^. We prove that Üß is a minimal left ideal of Tj. 
If X e L'ß, a e T^, we have ax e aÜß с: aLß a Lß, further ax e Т^ . Т^ a T ,̂ hence 
ax e T^ n Lß = Üß. This proves that Up is a left ideal of T .̂ Now 

Üß = LßnT,=Lßn{{\J R^jniU Lß)} ^Lßn{[J Ra} -= 
aeA'i ßeA'2 aeA'i 

ae A' I aeA'i 

Suppose that Lis a left ideal of T̂  and L с Üß. Then there is at least one summand 
G^^ß, ŒQE Л[ with G^^ß n L Ф 0. Now а left ideal of any semigroup which has a non­
empty intersection with a subgroup contains the whole subgroup. Therefore G^^ß cz L. 
In particular Lcontains the idempotent e^^ß. We have e^^ß e L cz Üß с Lß and ÜßC^^ß с 
e ÜßL с: L. On the other hand every idempotent G L^ is a right unit of L^, in particular 
üßC^^ß = Üß. Therefore Üß a L, i.e. L = Üß. This proves that Üß is a minimal left 
ideal of T .̂ Analogously we prove that for oc e Л[ R^ n T^ = R'^ is a minimal right 
ideal of T^. 

Since Ti = { и /̂ a} n { и Lß] ^ Ti n { и Lß] = \J {Lß n T,] = \J Üß and T, 
aeA'i ßeA'2 ßeA'2 ßeA'2 ßeA'2 

contains also a minimal right ideal, it follows by Lemma 1,2 that T̂  is a completely 
simple semigroup. 

Let now finally T2 be a simple subsemigroup of S with T2 з T. Т̂  is a union of 
disjoint maximal groups of S. Since also T2 is completely simple, it is also a union 
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of groups. The maximal groups belonging to different idempotents are disjoints. 
If there were T2 — T̂  =j= 0, T2 would contain at least one group-component, and 
hence at least one idempotent, not contained in T .̂ This contradiction proves the 
maximality of Tj and completes the proof of our theorem. 

The suppositions of Lemma 1,3 hold if, in p a r t i c u l a r , S is compact and simple, 
and Tis any closed subsemigroup of S. In this case T^ is c losed. To prove this denote 
Ä = \J R^, В = (J Lß. Then Ti = A n В and is it sufficient to prove that A and В 

are closed. Since iS is the union of all minimal right ideals of S, S —Л is clearly the 
largest right ideal of S that does not meet T, hence the largest right ideal contained 
in the open set S ~ T. Therefore it is sufficient to prove that the largest right ideal JR* 
of S contained in 5 — T is open. Let be x G R*. Since R* is a right ideal, we have 
jc u xS cz Я* с S — T. Since S — T is open, we may apply a lemma of A. D. 
WALLACE ([11], Lemma 1) which says that there is an open set F about x such that 
Vu VS cz S — T. Now since Vu VS is SL right ideal, we have Vu VS cz R*, hence 
F с i^*. This proves the following 

Corollary 1,3. / / S is compact simple, T a S closed, then the maximal subsemi­
group Ti of S having the same idempotents as Tis closed. 

If in Lemma 1,3 the subsemigroup T contains a maximal group of S, then all 
group-components of Tare maximal groups of S and T — T^. 

This combined with Theorem 1,1, Lemma 1,3 and Corollary 1,3 gives 

Theorem 1,2. / / S is a compact simple semigroup without zero and T a closed 
subsemigroup of S, then there exists a unique greatest subsemigroup T^ ZD T 
having the same idempotents as T. The semigroup T^ is closed and completely 
simple and it can be written in the form T^ = {(J R^} n {(J Lß} with suitably 

a ß 

chosen minimal right and left ideals R^ and Lß of S respectively. If, moreover, 
Tcontains a maximal group of S, then T — T^. 

In this section we shall try to find analogous results for completely simple semi­
groups wi th zero . 

If S is compact simple with zero, and T a closed subsemigroup of 5, T need not 
be simple even in the case when T contains an idempotent ФО. This can be shown on 
the example S = {0, ai, a2, a^, a4] with the multiplication table 

0 

« 1 

« 2 

« 3 

Ö 4 

0 «1 

0 0 
0 ai 
0 0 
0 a. 
0 0 

« 2 ^3 ^4 

0 0 0 
02 0 0 
0 0 1 ^ 2 
fl4 0 0 
0 «3 04 
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The subsemigroup T = {0,^1,02} contains the idempotent ÖJ Ф 0 but T i s not 
a simple semigroup since {0, Ö2} is clearly a proper two-sided ideal of T different 
from (0) and T. 

Lemma 2,1. Le^ S be a completely simple semigroup with zero Ofor which S^' Ф 0. 
Let T be a simple subsemigroup of S containing an idempotent but not containing 
the zero element 0. Then 

1. T is a completely simple semigroup. If card T > 1, T is a completely simple 
semigroup without zero. 

2. If L^ is a minimal left ideal of S and T n L^ = L^ ф 0, then L^ is a minimal 
left ideal of T. 

3. Conversely, if L'̂  is a minimal left ideal of T, then there exists a uniquely 
determined minimal left ideal L^ of S such that L^ = T n L^. 

Proof. 1. If Treduces to a single element, Tis completely simple. If Thas more 
than one element, then since Tis simple and contains an idempotent e, Tis completely 
simple if e is not a zero element of T. For in this case e (being a primitive idempo­
tent of S) is also a primitive idempotent of T and we may use the known result 
mentioned at the beginning of the proof of Lemma 1,L 

We show that the case that T contains at least two elements and e = z is the zero 
element of Tis impossible. Let Ы a e T, a Ф z. Write S as the union of minimal left 
ideals S = \J Lß and suppose a e Lß. As remarked above, Lß can be written in the 

ß 

form Lß = {\J G^ß} u Pß, where G^ß are maximal groups of S and Pß is a semigroup 
a 

with P^ß = 0. The element a is not contained in Pß since otherwise we would have 
a^ = 0, z = az = a^z = 0, which contradicts to z ф 0. Therefore there is a group 
G^^ß with a G G^^ß. Analogously z is contained in a minimal left ideal L^ = {(J G^^} u 

y 

\j P^ and z cannot be contained in P^ since otherwise we would have z = z^' = 0, 
contrary to the assumption. Hence there is a group G^^^ with z e G^̂ .̂ We have 
Gy^s n G^^ß = 0 since Gy^^ = G^^ß and z^ = az{ = z) would imply a = z. If e' is the 
unit element of the group G^^ß, az = z implies eaz = ez, az = ez, z = ez and 
za = z implies zae' = ze\ za = ze\ z = ze\ hence e'z = ze == z. Since z Ф 0 
and e' Ф z, this contradicts to the fact that e' is a primitive idempotent of S. 

2. The proofs of the second and third assertions follow in the same lines as in 
Lemma 1,1. 

Theorem 2,1. Let S be a compact simple semigroup with zero 0 satisfying S'^ Ф 0. 
Let T be a closed subsemigroup of S which contains more then one element and 
which does not contain 0. Then T is a completely simple semigroup without zero. 

Remark . The case Thas one element is trivial. 
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Proof. Write S = (J L^, L^ running through all minimal left ideals of S}) Let 
(xe Л2 

{Ly \y e Л2 c: Л2} be the set of all minimal left ideals of S for which Ly == Ly n T ф 
Ф 0. Since 0 non e T, L^ Ф (0) for every y e Л2 and T = S n T = { U L^} n T = 
= и Ly. Clearly the closed subset Ly is again a left ideal of T. '^^'^^ 

уел'2 
We prove that Ly is a minimal left ideal of T. Suppose that there is a left ideal L 

of T with L с Ly. Since T is closed (hence compact), there is a minimal left ideal L* 
of T with L* cz L cz L^ and L* is closed. L* contains an idempotent ^ ф 0. The 
relation e e L* cz L cz Ly cz Ly implies L^e с L^ L^ = ZJ .̂ Since L'̂ ^ Ф (0) and 
Ly cz Ly, we have l}y Ф (0), and with respect to the minimality of Ly we have L^ = Ly 
and L^e = Ly. Hence e is a right unit of Ly, therefore Lye = Ly. Since L* is a left 
ideal of T, we have Ly = LyC cz LyL"^ a L*, i.e. Ly cz L*, whence L^ = L*. This 
proves that Ly is a minimal left ideal of T. 

Now Lemma 1,2 implies that T = U '̂y i s ^ simple semigroup and hence — by 
уеЛ'2 

Lemma 2,1 — Tis a completely simple semigroup without zero. 

Lemma 2,2. Let S be a completely simple semigroup with zero 0 satisfying 
S^ Ф (0) and T a simple, subsemigroup of S containing an idempotent but not 
containing the zero element 0. Then there exists a unique greatest simple subsemi­
group Ti ZD T of S having (exactly) the same idempotents as T. The semigroup T^ 
can be written in the form 

Ti = [{ и /?Л П { n h}-\ - {0} 
абЛ'1 ßeÄ'i 

M'ith suitably chosen minimal right and left ideals R^, Lp of S respectively. 

Proof. By Lemma 2,1 Tis completely simple (without zero if card T > l) and we 
may write T = \J R'^ = \J L^, where R'^, Lß run through all minimal left and right 

aeA'i ßeA'2 

ideals of T respectively. Choose — in the sense of Lemma 2,1 — R^ and Lß such that 
R'^ = R^n T, Lß = LßnT. We have 

T=T^=={ и K}.{ и i^ß}= и и {R'A)' 
aeA'i ßeA'2 аеЛ'1 ßeA'2 

Each of the R'^. L^'s is a group and LßR'^ = T. Denote R'^Lß = G^̂  and let be e^p 
the unit element of G'^ß. 

We have 0 non e LßR'^ and L'̂ JR̂  cz L^K„, and since LpR^ is a two-sided ideal of S, 
we have LßR^ = S. Further 0 non G R'^Lß and R'^Lß cz R^Lß, hence R^Lß Ф {0}. It is 
known (A. H. CLIFFORD [2], R. P. RICH [8]) that if R, L are two minimal right and 
left ideals of S respectively and LR = S, RL Ф {0}, then RL = R n Lis a group 

^) We use the following result: A compact simple semigroup with zero is completely simple 
(see f.i. [12]). 
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with zero. Hence for a e A[, ß ç ^2, KLß = R^ n Lß is ei group with zero (having e^ß 
as unity element). Write R^Lß == G^ß u {0}. We then have 

T= и и {KL'ß} c= и и 1̂ Л = и и {К п L,} = { и i^J п { и L,}. 
аеЛ'1 ßeA'z аеЛ'1 /^еЛ'г аеЛ'] реЛ'г aeÄ't ßeA'z 

Since Tdoes not contain 0 we may write 

T c z T , = [ { U R j n ( и L , } ] - { 0 } , 
asA'i ae/1'2 

and Ti contains clearly the same idempotents as T. Moreover, T̂  is a union of maxi­
mal groups of S. 

To prove that T^ is a semigroup it is sufficient to show that a, b e Ti imply ab Ф 0, 
Let ho a e R^ n Lß, b e R^n L^. Denote by ä the element of \R^ n L ĵ] - {0} = G^ß 
for which äa = e^ß, by Б the element of \Ry n L j - {0} = G^^ for which bb = 
= ê .̂ If there were ab = 0, we would have äabb = 0, i.e. e^ßCy^ = 0. But e^ß, e^^ are 
contained in the semigroup T which does not contain 0. Hence ab Ф 0. 

The proof that T̂  is simple follows by the same argument as in Lemma 1,3. 
It rests to prove the maximality property of T .̂ Suppose that T^ is a simple subsemi-

group of S with T2 ^ T^. If T2 contains the zero element, T2 has an idempotent not 
contained in T .̂ We may suppose therefore that T2 does not contain 0, The proof 
then follows in the same way as in the proof of Lemma 1,3. 

Lemma 2,2 together with Theorem 2,1 implies 

Theorem 2,2. / / S is a compact simple semigroup with zero satisfying 5^ Ф 0 
and T a closed subsemigroup of S which does not contain 0, then there exists 
a unique greatest simple subsemigroup T^ => T of S having exactly the same idem­
potents as T. The semigroup T^ can be written in the form T^ = [{(J R^} n {(J L^}] — 

a ß 

— {0} with suitably chosen minimal right and left ideals R^, Lß of S. If, moreover, 
Tcontains a maximal group of S, then T = T^, 

Remark . The largest right and left ideals contained in Ŝ — T are open and 
Л = { и R^ — {0}, В = { \j Lß] — {0} respectively are their complements in S. 

(xeA'x ßeA'2 

Hence Ti = Л n Б is again closed. 

Let S be a completely simple semigroup without zero and H a simple subsemigroup 
of S containing all idempotents E S. By Lemma 1,1 H is then completely simple. 

We shall study coset d e c o m p o s i t i o n s ofS" modulo H. The possibillity of such 
decompositions is a priori not evident. 

We shall write S = \J L^, where L^ runs through all minimal left ideals of S and 
аеАг 

H = \J L!^, where L^ runs through all minimal left ideals of Я. By Lemma 1,1 there 
aeAz 
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is a one-to-one correspondence between L^ and L^ such that L^ = L^n H, The 
decompositions S = (J Rß, H ^ \J R'ß have an analogous meaning. 

ßeAi ßeAi 

Denote further R^Lß = R^ r^ Lß = G^ß, R'^Ilß = R'a, n Lß = G^^. We then have 
S = \J и G^ß, H = (J и G'^ßi the groups G^ß are pairwisé disjoints; further 

^aß ^ ^aß' The unit element of G^ß will be denoted by e^ß. 

Lemma 3,1. If a e S, then a e Ha. 

Proof. Since a e S, there is a group G^^ with a e Ĝ ^̂ . Hence a = e^^a e Ha. 

Lemma 3,2. If L^ Ф Lß and a e L^, b e L^, then Ha n Hb = 0. 

Proof. Ha c: SL^ c: L^, ЯЬ ci 5L^ cz Lß and since L̂^ n Lß = 0, we have Ha n 
nHb = 0. 

Lemma 3,3. If a e L^, t/ie« /o r any Я e yl2 w^ /zare L'̂ a = L^a and L^a = Ha. 

Proof. The element a is contained in a minimal right ideal of S, say Rß. Then 
a eRß n L^= Gß^ and a = e^^a. We have L;^a = L^eß^a. The set I^x^ßa ŝ contained 
in Я and by a known theorem it is also a minimal left ideal of Я. But I^x^ßa ^ ^я^я ^ 
c: L^. Hence L^̂ «̂ cz L^ n H = L'̂ , and with respect to the minimality of L^ we have 
L'^eß^ = L ; . Hence L^a = (L>^^) a = L^a. Moreover, Ha = {\J L;) a = \J {L;,a) -
= L^a. This proves our assertion. ^̂ "̂ ^ ^̂ "̂ ^ 

Lemma 3,4. If a, b e L^, Г/г̂ п eü/ier На n Hb == 0 or На = Hb. 

Proof. Since Яа = L^a, Hb = L'̂ b, it is sufficient to show that L^a n L^b ф 0 
imphes L^a = L'̂ b. 

Suppose L^a n LJ) ф 0. Then there exist u, v e L^ such that ua ~ vb. The relation 
и e La = Loc^ ^ ^ ^a ^ { и ^ ^ = и (^a '^ ^/?) = и Gßa implies that there is a 

ßeAi ßeAi ßeAi 

У e Al with и e Gy^. Find the element и' e Gy^ with K'W = ву^еЕ^. We then have 
u'ua = uvb, i.e. ê â = uvb. Hence L^a = (La^yo) <^ = (L'̂ ^w't;) Ь cz EJlJl^b = L^b, 
i.e. L'̂ a cz L'̂ b. By the same argument we prove L^b cz L'̂ a, hence L'̂ a = LJy, q.e.d. 

Since (by Lemma 3,1) a e Ha, we have S = [J Hrj and omitting equal summands 
ties 

we get a decomposition (2) S = \J Ha, with pairwise disjoint summands, where ц 

runs through a subset Л cz 5. 
If Let is fixed chosen, then for any ^ e L^WQ have L'̂ (̂  cz L^L^ cz L^, and since L^^ = 

= Я(^, we conclude that L^ can be covered by cosets of the form L'„ ,̂ ^ e L^. Again 
omitting equal terms we may write L^ = (J L^^, where Л^ is a suitably chosen subset 
of L^ and the summands are disjoints. 

It is easy to find a complete system of the ^'s which are sufficient for the construction 
of such a decomposition. Write L^ = \J Gß^ and choose a fixed summand, say G^^, 

ßeAi 
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ô e Л^. Construct the right coset decomposition of the group G^^ modulo the sub­
group G'ö^ of the form G^^ = (J Ĝ ^ . rj^/J. We then have 

vel 

b . = и G,a = и e,fi,, = и e,^{ и GU:'} = U { U e.^G'.Al'} = 
ßeAi ßeAi ßeAi vel vel ßeAi 

= и { и G,J;j} = и i^Al' • 
vel ßeAi vel 

Note further that since G'^^rj^'J Ф G',^^^ for /< Ф v, we have П,г]Ц^ n ll^nfj = 0. 
Finally, since S = (J ^^ = (J U ь;^<^' = U U H>l^öa, we see that the <̂ 's in (2) 

аеАг aeAz vel cueAz vel 

can be chosen in an arbitrary — but fixed - minimal right ideal R^ of S. 

Summarily we proved: 

Theorem 3,1. If S = (J [J G^ß is a completely simple semigroup without zero 
aeAi ßeAz 

and H = \J и Gaß ^ simple subsemigroup of S containing all idempotents e S, 
aeAi ßeAi 

then: 

1. There exists a coset decomposition S — (J H^^^^ into pairwise disjoin 

classes, A being a suitably chosen subset of S. 

2. A can be chosen as a subset of an arbitrary fixed chosen minimal right ideal 
ofS. 

3. / / L^ is a minimal left ideal of S and 11^ = L^ n H, then there exists a coset 
decomposition of L^ of the form L^ = U '̂â ^̂ ^ ^^^^ pairwise disjoint summands, 

4. / / G^^ = и G'^^rj^l^ [Ô e A^ fixed) is the coset decomposition of the group G^^ 
vel 

with respect to the subgroup G'^^, we may choose A^ — {rf^a^ ^ ^ ^ } -

In some applications (see the forthcomming paper [9]) double coset decompositions 
mod (Я, K) are needed. We end therefore our investigations with the proof of the 
following theorem: 

Theorem 3,2. Let S = \j \j G^ß be a completely simple semigroup without zero 
(xeAi ßeAx 

and H, К two simple subsemigroups of S both containing all idempotents e S. Then 
there exists a double coset decomposition of S into pairwise disjoint classes of the 
form S = [J H^,^^^K, В cz S. Denoting G'^ß = H n G^ß, G'^ß = К гл G^ß, we have 

НаК n G^ß = G'^ßüG^ß for any a e S. Further G'^ßaG^ß is exactly one class of the 
double coset decomposition of the group G^ß modulo {G'^ß, G'^ß). 

Proof. 1. If a e S, there is a group G^ß with a e G^ß. If e^ß is the unit element of G^ 
we have a = e^ßüe^ß с: НаК. Hence S = (J НхК. 

xeS 
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We show that if a, be S, then either HaK == HhK or HaK n HbK = 0. Suppose 
HaK n HbK Ф 0. Then there exist elements u, w e H,v, z e К such that 

(3) uav = wbz . 

Suppose a e R^, и e Lß for some a and ß (Lß being a minimal left ideal of Я). e^ß e 
e R^ n Lß is a right unit for every element e Lß and a left unit for every element e R^. 
Since Lß is a minimal left ideal of H, we have Lßii = Lß, hence there exists an w* G 
eLß d H with w*w = е̂ д. Let analogously be a e L^, v e R'^ for some у and (5 (î '̂ 
being a minimal right ideal of K). The idempotent ê ,̂ G i? '̂ n L̂  is a left unit for every 
element G î '̂ and a right unit for every element G L^. Since i? '̂ is a minimal right ideal 
of K, we have i;jR̂ ' = Щ, hence there is an element г̂ * G î '̂ <= i^ such that vv"^ = ê .̂ 
The relation (3) implies 

u^uavv'^ = u'^wbzv^ , 

eaß^e^y = (w*w) b{zv^) , 

a = (w*w) b(zi;*) . 

We have therefore HaK = H{u^w) b(zi?*) X c: HbK. Analogously we prove HbK с 
с ЯаХ, hence HaK = HbK. 

Omitting in S = и НхК the classes which occur more times, we get a decompo-
xeS 

sition of the required form. This proves the first statement of our theorem. 

2. Consider next the set G'^^aG'^^. We prove that this product is independent of cr 
and T (i.e. we have the same set for every couple cr, т). Let f.i. be a G G^^; then e^^ae^^, = 
= a and 

and this is clearly independent of a and т. Further 

(4) яак = [ и и G'j 4 и и GL] = и и и и G;,«G;; 
ee/li аеЛг xeAi ыеЛг Q <т т со 

and 
G'^a^G!,^ с G^ f̂lG,̂  = RJ^^aR^L^ ^ Rg (^ L^ = G^„ . 

Now a, ^ being fixed G^ß contains those and only those summands of (4) which are 
of the form G'^^aG'^ß- Since all these summands are identical we may choose (т = ß, 
т = a. Thus we have HaK n G^ß = G'^ßaG^ß. This proves the second assertion. 

3. It is possible to caractérise the set T^ß — G'^ßüG^ß in terms of the elements of the 
group G^ß. Clearly T,ß - {G'^ße^ß) a{e^ßG'^ß). Further e^ßae^ß с R^LßaR^Lß а R^Lß = 
= G^ß. Hence, denoting a^ß = e^pae^ß G G^ß, we have T^ß = G'^ßa^ßG^ß and a^p G Т^р 
since e^ßa^ße^ß = a^ß- This says that Т̂у̂  is a class of the double coset decomposition 
of G^ß modulo the subgroups (G^ ,̂ G^ß^. Our theorem is completely proved. 
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Резюме 

ПОДПОЛУГРУППЫ ПРОСТЫХ ПОЛУГРУПП 
ШТЕФАН ШВАРЦ (Stefan Schwarz), Братислава 

Целью настоящей работы является исследование строения подполугрупп 
простых (в особенности вполне простых) полугрупп. Приведем некоторые 
р е з у л ь т а т ы : 

Если S — вполне простая полугруппа без нуля и Я — простая подполугруппа, 
обладающая идемпотентом, то H вполне проста. Если S — простая быкомпакт-
ная полугруппа, то всякая замкнутая подполугруппа вполне проста. 

Аналогичные результаты имеют место и для вполне простых полугрупп 
с нулем, если в качестве H рассмотриваются подполугруппы, несодержащие 
нуля полугруппы S. 

Существует тесная связь между односторонними идеалами полугрупп S к Н. 
Исследуется строение максимальных подполугрупп из S, имеющие в точ­

ности все идемпотенты данной подполугруппы Н. 
Пусть S — вполне проста и Я, К — две подполугруппы из S, содержащие все 

идемпотенты е S. В одделе 3 исследуется разложение полугруппы S по двойно­
му модулю ( я , к). 
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