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SUBSEMIGROUPS OF SIMPLE SEMIGROUPS

STEFAN SCHWARZ, Bratislava

(Received March 13, 1961)

The purpose of this paper is to study the structure of subsemigroups of
a simple semigroup S, especially in the case when S is completely simple.
Also coset decompositions of § modulo some subsemigroups are studied.

Let S be a semigroup. A left ideal of S is a subset L = S with SL < L. A right ideal
of S is a subset R with RS = R. A subset which is both a left and right ideal of S
is called a two-sided ideal of S.

The semigroup S itself and the zero element O (if S contains a zero clement) are
always two-sided ideals.

A minimal left ideal of S is a left ideal of S which does not contain any proper left
ideal of S with the eventually exception of (0) (if S contains a zero element). Minimal
right and two-sided ideals are defined analogously.

A semigroup S without zero and containing at least two elements is called simple
if it does not contain any two-sided ideal =+S.

A semigroup S with a zero element O containing at least two elements is said to be
simple if it does not contain any two-sided ideal different from (0) and S itself.

Also a semigroup consisting of a single element is called simple. Of course, in this
case this element can be considered as a zero element of S. Hence to avoid confusion
by a semigroup with zero we shall usually mean a semigroup containing at least two
elements (one of them being a zero element).

The purpose of this paper is to study subsemigroups of a simple semigroup. The
question arises whether any subsemigroup of a simple semigroup is simple. In general
the answer to this question is certainly negative since it is known (see R. H. BRuck [ 1],
p. 48 and G. B. PRESTON [6]): Any semigroup T can be embedded in a simple semi-
group (with or without zero) containing a unit element. On the other hand every
finite simple semigroup without zero possesses the mentioned property.

In section 1 of this paper we show that the answer to this question is positive if S
is a compact simple semigroup without zero and we restrict ourselves to closed
subsemigroups.

226



In section 2 we treat an analogous problem for simple semigroups with a zero.

Some ccrollaries and special cases of these results are needed in a forthcomming
paper on convolution semigroups of measures on non-commutative semigroups
(see [9]). Also the results of section 3 dealing with some coset decompositions of
completely simple semigroups are proved for this purpose. All these results seem to
be also of an independent interest. For this reason I have found it convenient to
publish them separately.

A simple semigroup S is called completely simple if it contains at least one minimal
left and at least one minimal right ideal of S.

Recall that if S is a completely simple semigroup without zero it can be written

in the form S = U R, = U L;, where R, and Ly run through all minimal right and
aedy BeAd>

left ideals of S respectively. Moreover, every minimal left ideal L, is generated by an

idempotent, i.e. there is an idempotent e € L, such that L, = Se = L, . e. Clearly e

(and every idempotent € L,) is a right unit of L, Analogously for minimal right

ideals. Also R,L; = R, n Ly is a group. Denoting R,L; = G,; we can write S =

= U U G,; asa union of pairwise disjoint maximal isomorphic groups =S. The G, s
a p

will be called the group-components of S.

Recall further that if S is completely simple with zero 0 (and S contains at least two
elements) we have either S* = 0 or S* = S. In the first case S is of the form S =
= {0, a} with a> =a.0 =0.a = 0% = 0. In the second case S contains at least
one idempotent e #+ 0 and it can be written in the form S = U L;, where L; runs

B

through all minimal left ideals of S. For any two minimal left ideals L, # L, we
have L, n L, = (0). Moreover, every minimal left ideal L, contains at least one
idempotent #0 and it is generated by any such idempotent. Any minimal left ideal L
of S can be written as a union of disjoit sets L, = {U G,;} U P;, where G,; are

Y
(isomorphic) groups and P, a semigroup with P; = 0. Analogous statements hold
for minimal right ideals. (The proofs of all these statements can be found f.i. in the
recent book of E. C. Iisinun [4].)

Remark. The restriction to completely simple semigroups though an essential one
is itself not sufficient to obtain results of the kind mentioned in the introduction.
If S is completely simple and T a subsemigroup of S then T need not be simple even
in the case when T has an idempotent. Let f.i. S be the multiplicative group of real
numbers >0. S is then a (trivial) completely simple semigroup. Let T be the subsemi-
group of real numbers =1. Then T contains the idempotent 1 and is not simple,
since f.i. the subsemigroup of all real numbers =2 is a proper ideal of T.
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We first prove

Lemma 1,1. Let S be a completely simple semigroup without zero and T a simple
subsemigroup of S containing an idempotent. Then

1. T is completely simple. If T contains more then one element, T is completely
simple without zero.

2. If L, is a minimal left ideal of S, and L, = T L, % 0, then L, is a minimal
left ideal of T.

3. Conversely, if L, is a minimal left ideal of T, then there exists a uniquely
determined minimal left ideal L, of S such that L, = T L,.

Proof. 1. An idempotent e # 0 of any semigroup is called primitive if there does
not exist an idempotent x # e and x % 0 such that xe = e = x.

It is known that all non-zero idempotents of a completely simple semigroup (with
zero or without zero) are primitive. Further it is known (see D. Regs [7]): If a simple
semigroup T contains a non-zero primitive idempotent, then T is completely simple.
In our case: Since T is simple and it contains an idempotent e € S, T is completely
simple if e is not a zero element of T or if T reduces to e.

Suppose that T contains more then one element and e = z is a zero of T. We
show that this case is impossible. Let be a € T, a + z. By definition of a zero element
we have az = za = z. The idempotent z € T is contained in a group-component G,
of S. The element a cannot be contained in G,; since otherwise az = z* (in G,y)
would imply a = z. Hence a € G,; for some 7, 0 and G,; n G5 = 0. Denote by ¢
the unit element of G,; hence ¢ # z. The relation az = z implics ¢'az = e'z,
az = €'z, z = ¢'z; analogously za = z implies zae' = ze', za = ze', z = ze'.
Hence z = ¢’z = ze'. But this contradicts to the fact that ¢’ is a primitive idempotent
of S.

2. Let L, be a minimal left ideal of S and suppose L, n T = L, & 0. Then for
ael and xeL, we have axeal, < aL, < L, further axeT.T < T, hence
axeTn L, = L,. Therefore L, is a left ideal of T.

We next prove that L, is a minimal-left ideal of 7. Since T is completely simple,
it is the union of its minimal left ideais. Hence L, is either a minimal left ideal of T
or there is a minimal left ideal L of T such that L ¢ L,. Suppose this second case.
Let e be the idempotent contained in L. We have Le < L,L. = L. On the other hand
every idempotent € L, is a right unit of the semigroup L,, hence L,e = L,. Therefore
L

a

< L, ie. L, = L, contrary to the supposition.
3. Write S = U L; as the decomposition of S into the union of its minimal left
BeA; ~

ideals. Let L, be a minimal left ideal of T. We have

(1) L,=L,nS=Ln{UL}=UI{LnL;.

BeA, ped:
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If L, 0 Ly % 0, then T(L, n L;) = L, n Ly, hence L, n Ly is a left ideal of T. Since L,
is minimal, there is exactly one non-empty summand on the right hand side of (1).
Hence there is a unique minimal left ideal of S — say L,, « € A4,, — such that L, =
=L,nL, Wehave L, T, L, = L,, hence L, = T n L,. On the other hand it has
been proved above that Tn L, is a minimal left ideal of T, therefore L, = T L,,
g.e.d.

Remark. The following problem arises. Does therc exist a completely simple
semigroup S containing a simple subsemigroup T without idempotents (hence T
simple but not completely simple)?

Write S = U U G,; and suppose that T < S is simple. Then there is at least one
yedy deAdy

couple w € A, f € A, such that T G,4= P,y 6. We show that the semigroup P,,
itself must be a simple semigroup. Choose a, b € P,;,. We then also have a*e PycT
Since T is simple, ‘there exist x, y € T such that xa’y = b. If x € R, for some y, we
have b = xa’yeR,a’y = R,, therefore y = o; hence xeR, and xeTn R,
Analogously y € T n L. Further we have ¢ = xa € R,G,; = R,R,L; = R,L; = G,
and { =xaeT.T =T, hence (€ Tn G,y = P,y Analogously n = ay € P,4. Since
(xa) a(ay) = Ean = b, this implies: To every couple a, b € P, there exist elements
& neP,gsuchthat & a n = b. Hence P, is simple. (Note also that P, being a subset
of G, satisfies the left and right cancellation law.)

We have proved: If there is a completely simple semigroup containing a simple
subsemigroup without idempotents, there must exist a group G such that G contains
a simple subsemigroup H without idempotents. Conversely, the existence of such
a group G would give a positive answer to our question, since G is itself a (trivial)
completely simple semigroup.

Now such groups really exist. Consider f.i. the set G of all couples (a, b) of real
numbers with @ # 0 and introduce in G a multiplication by (a,b)® (c,d) =
= (ac, bc + d). Then G is a group with (1, 0) as unit element. Next let S be the
subset of all couples (a, b) with a > 0, b > 0. Then S is easily seen to be a simple
semigroup (without idempotents). This shows that the assumption in Lemma 1,1
that T contains an idempotent is an essential one. {Analogous examples due to O.
ANDERSEN can be found in the recent book [3], p. 51.}

If G, is commutative (and hence all G, commutative), then P,; is commutative and
since a simple commutative semigroup without zero is a group, P,; is a group.
This implies:

Corollary 1,1. Let S be completely simple without zero and let the group-com-
ponents of S be commutative. Then every simple subsemigroup of S is completely
simple.

The following lemma is well known. We prove it only for the sake of comfsleteness
(since we shall use it several times).



Lemma 1,2. Let S be a semigroup without zero containing a minimal left ideal
and suppose that S is the union of its minimal left ideals. Then S is a simple
semigroup. .

Proof. Write S = U L,, where L, runs through all minimal left ideals of S.

aedz

Suppose that N js a two-sided ideal of S, N = S. Then NS <= N. On the other hand
NS = N{U L,} = U NL,, and since (with respect to the minimality of L,) NL, = L,,

we have NS = Y L, = S, i.e. S = N, therefore S = N. This proves our lemma.

Now we introduce a topological restriction. If S is a semigroup and at the same
time a topological space, and the multiplication is continuous, S is called a topological
semigroup. Supposing that S is a Hausdorff compact space the corresponding semi-
group will be called acompactsemigroup. It is known that any compact semigroup
contains always at least one idempotent. Moreover if S has not a zero, there exists at
least one (non-zero) minimal left ideal and at least one (non-zero) minimal right
ideal, and the minimal ideals are closed. This implies (see K. NUMAKURA [5], p. 103):
A compact simple semigroup without zero is completely simple.

We now prove:

Theorem 1.1. Let S be a compact simple semigroup without zero. Then every
closed subsemigroup T of S is a completely simple semigroup.

Remark. In the finite case this was proved by A. K. Cymxkesuu ([10], p. 59).

Proof. Let S = |J L, be the decomposition of S into the union of its minimal left
aeA2

ideals. Consider the set of all left ideals L, for which L, n T =% 0. Let this set be
{L,, y € A3}. For every y € A, denote L, n T = L,.

The closed subset L, & 0 is a left ideal of T. In fact, for every a € T and every
xeL,wehaveaxeal, « SL, = L, furtheraxe T.T < T,henceaxe Tn L, = L,.

We next show that L is a minimal left ideal of T. Let L be a left ideal of T and
suppose that L' = L. Since T'is closed and hence compact (in the relative topology),
T is a compact semigroup and there is necessarily a minimal left ideal L* of T with
L* < L. Again L* is closed (hence compact), therefore it contains an idempotent e.
We have ee L* « L' « L, c L,. In particular L < L,L* =« TL* < L*. On the
other hand every idempotent e € L, is a right unit of the semigroup L,, hence Lie =
= L', Therefore L, ¢ L* and L* = L' = L,. This proves that L, is a minimal left
ideal of T.

It follows from T= Tn S = U L, that T is the union of its minimal left ideals.
yeAd’:
By Lemma 1,2 we conclude that T is a simple semigroup. Since we can prove by the

same argument that T contains also a minimal right ideal of T, T'is completely simple.

Remark. The following (trivial) example shows that the supposition that T is
closed cannot be — in general — dropped. Let G be the group of complex numbers
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{z|]z] = 1} in the obvious topology, zo = €™ with an irrational § and T =

= {z} | n = 1,2,...}. The sub-semigroup T is clearly not simple, since f.i. T? # T.
Also the subsemigroup T, = Tu {1} (containing an idempotent) is not simple
since it contains an infinity of ideals of Tj,.

Lemma 1,3. Let S be a completely simple semigroup without zero and T a simple
subsemigroup of S containing an idempotent. Then there exists a unique greatest
simple subsemigroup T, > T of S having the same idempotents as T. The semi-

group Ty can be written in the form Ty = { U R} n { U Lg} with suitably chosen
aedy’ Bedr’
minimal right and left ideals R,, Ly of S respectively.

Proof. By Lemma 1,1 T is completely simple. Therefore we may write T =
= U R, = U Lj, where R;, L; run through all minimal left and right ideals of T

aeA 1 PeA’s
respectively.

Choose — in the sense of Lemma 1,1 — R,, L; such that R, = R, N T, Ly =
= Ly n T. We have

T=T"={UR,}. {UL}‘UU{RL}CU U {RLy} =

aeAd’y aed’y fed’,
= { U Ra} g} { U Lﬁ} = U U Gaﬁ= Tl )
aed’y PeA’z acA’y BeA’>

and T, is a semigroup which contains exactly the same idempotents as T.

For ff € A, denote Ly = L, n Ty. We prove that L} is a minimal left ideal of T;.
If xeLj, aeT,, we have axealy < aly = L;, further axe T, . Ty, = T, hence
ax € Ty n Ly = L. This proves that L is a left ideal of T;. Now

Ly=Ly,nT,=L,n{( U R)n( U L,,)}_L,,n{ U R} =

aed’y aeAd’y

={ U {LnR}= U Gy.
aeAd’y aeAd’y

Suppose that Lis a left ideal of T, and L = Lj. Then there is at least’ one summand
G,op» % € Aj With G,y 0 L & 0. Now a left ideal of any semigroup which has a non-
empty intersection with a subgroup contains the whole subgroup. Therefore G, = L.
In particular Lcontains the idempotent e,z We have e, 5 € L < L <« Lyand Lje, ;<
< LjL < L. On the other hand every idempotent € Ly is a right unit of Ly, in particular
Lye,p = Lj. Therefore Ly = L, i.e. L= Lj. This proves that L is a minimal left
ideal of T;. Analogously we prove that for o € A7 R, n T} = R; is a minimal right
ideal of T;.

Since T, = { U R}m{ UL}=Tin{UL}=U{LnT}=ULjand T

aeAd’y Ped’s BeA’s BeAd’> BeAd’>

contains also a minimal right ideal, it follows by Lemma 1,2 that T, is a completely
simple semigroup.

Let now finally T, be a simple subsemigroup of S with T, > T. T, is a union of
disjoint maximal groups of S. Since also T, is completely simple, it is also a union
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of groups. The maximal groups belonging to different idempotents are disjoints.
If there were T, — Ty + 0, T, would contain at least one group-component, and
hence at least one idempotent, not contained in T,. This contradiction proves the
maximality of T; and completes the proof of our theorem.

The suppositions of Lemma 1,3 hold if, in particular, S is compact and simple,
and Tis any closed subsemigroup of S. In this case T; is closed. To prove this denote
A= U R, B= U L; Then T, = A n B and is it sufficient to prove that A and B

aeAd’y Bed’

are closed. Since S is the union of all minimal right ideals of S, S— A is clearly the
largest right ideal of S that does not meet T, hence the largest right ideal contained
in the open set S — T. Therefore it is sufficient to prove that the largest right ideal R*
of S contained in S — Tis open. Let be x € R*. Since R* is a right ideal, we have
xuxScR¥<c S —T. Since S — T is open, we may apply a lemma of A. D.
WALLACE ([ 11], Lemma 1) which says that there is an open set V about x such that
Vu VS « S — T. Now since VU VS is a right ideal, we have VU VS < R*, hence
V = R*. This proves the following

Corollary 1,3. If S is compact simple, T = S closed, then the maximal subsemi-
group T, of S having the same idempotents as T is closed.

If in Lemma 1,3 the subsemigroup T contains a maximal group of S, then all
group-components of T are maximal groups of S and T = T;.

This combined with Theorem 1,1, Lemma 1,3 and Corollary 1,3 gives

Theorem 1,2. If S is a compact simple semigroup without zero and T a closed
subsemigroup of S, then there exists a unique greatest subsemigroup Ty > T
having the same idempotents as T. The semigroup T, is closed and completely
simple and it can be written in the form T, = {U R,} n {U L;} with suitably

a B

chosen minimal right and left ideals R, and Ly of S respectively. If, moreover,
T contains a maximal group of S, then T = T,.
2

In this section we shall try to find analogous results for completely simple semi-
groups with zero. ‘

If S is compact simple with zero, and T a closed subsemigroup of S, T need not
be simple even in the case when T contains an idempotent 0. This can be shown on
the example S = {0, a;, a,, a3, a,} with the multiplication table
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The subsemigroup T = {0, a,, a,} contains the idempotent a, # 0 but T is not
a simple semigroup since {0, a,} is clearly a proper two-sided ideal of T different
from (0) and T.

Lemma 2,1. Let S be a completely simple semigroup with zero 0 for which S* # 0.
Let T be a simple subsemigroup of S containing an idempotent but not containing
the zero element 0. Then

1. T is a completely simple semigroup. If card T > 1, T is a completely simple
semigroup without zero.

2. If L, is a minimal left ideal of S and Tn L, = L, + 0, then L, is a minimal
left ideal of T.

3. Conversely, if L, is a minimal left ideal of T, then there exists a uniquely
determined minimal left ideal L, of S such that L, = T n L,.

Proof. 1. If T reduces to a single element, T is completely simple. If T has more
than one element, then since 7T'is simple and contains an idempotent e, T'is completely
simple if e is not a zero element of T. For in this case e (being a primitive idempo-
tent of S) is also a primitive idempotent of T and we may use the known result
mentioned at the beginning of the proof of Lemma 1,1.

We show that the case that T contains at least two elements and e = z is the zero
element of Tis impossible. Let be a € T, a + z. Write S as the union of minimal left
ideals S = U L; and suppose a € L;. As remarked above, Ly can be written in the

B

form L, = {U G,4} U Py, where G,; are maximal groups of S and Py is a semigroup

a
with P2 = 0. The element a is not contained in Py since otherwise we would have
a* =0, z = az = a’z = 0, which contradicts to z # 0. Therefore there is a group
Goop With a € G,,5. Analogously z is contained in a minimal left ideal L, = {U G,;} L
Y

U P; and z cannot be contained in P, since otherwise we would have z = z* = 0,
contrary to the assumption. Hence there is a group G, with z € G,.s- We have
G,o5 0 Goop = 0 since G, 5 = G, 5 and z? = az(=z) would imply a = z. If ¢ is the
unit element of the group G, az = z implies e'az = €'z, az = €'z, z = €'z and
za = z implies zae' = ze', za = ze’, z = ze’; hence ¢’z = z¢’ = z. Since z % 0
and e’ # z, this contradicts to the fact that ¢’ is a primitive idempotent of S.

2. The proois of the second and third assertions follow in the same lines as in
Lemma 1,1.

Theorem 2,1. Let S be a compact simple semigroup with zero 0 satisfying S? =+ 0.
Let T be a closed subsemigroup of S which contains more then one element and
which does not contain 0. Then T is a completely simple semigroup without zero.

Remark. The case T has one element is trivial.
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Proof. Write S = U L,, L, running through all minimal left ideals of S.") Let

aedz

{L,|ye A, = A,} be the set of all minimal left ideals of S for which L, = L, 0 T #
+ 0. Since Onone T, L? + (0) forevery ye Ay and T=SnT={ U LJnT=
= U L,. Clearly the closed subset L, is again a left ideal of T. weds

veAd’2

We prove that L, is a minimal left ideal of T. Suppose that there is a left ideal L
of Twith L = L. Since Tis closed (hence compact), there is a minimal left ideal L*
of T with L* =« L < L, and L* is closed. L* contains an idempotent e # 0. The
relation ee L* < L< L, < L, implies Lje = L,L, = I2. Since L} # (0) and
L} < I2, we have I, + (0), and with respect to the minimality of L, we have L2 = L,
and L,e = L,. Hence e is a right unit of L,, therefore Lie = L,. Since L* is a left
ideal of T, we have L, = Lie < L, L* < L*, ie. L, ¢ L*, whence L, = L*. This
proves that L is a minimal left ideal of T.

Now Lemma 1,2 implies that T = {J L, is a simple semigroup and hence — by
yeAd’2
Lemma 2 1 — Tis a completely simple semigroup without zero.

Lemma 2,2. Let S be a completely simple semigroup with zero 0 satisfying
S? % (0) and T a simple subsemigroup of S containing an idempotent but not
containing the zero element 0. Then there exists a unique greatest simple subsemi-
group Ty > T of S having (exactly) the same idempotents as T. The semigroup T,
can be written in the form

T=[LU R} (N L] - 0}

with suitably chosen minimal right and left ideals R,, L; of S respectively.

Proof. By Lemma 2,1 Tis completely simple (without zero if card T > 1) and we

may write T = U R, = U Lj;, where R;, L; run through all minimal left and right
aed’y Bed’s
ideals of T respectively. Choose — in the sense of Lemma 2,1 — R, and L; such that

R,=R,nT, Ly=Ly;nT. We have

T=T"={U R;}. {U E/z}— U U {RL;}.
aeAd’y aeAd’y Ped’y
Each of the R, . Ly’s is a group and LyR; = T. Denote R,L; = G,; and let be e,
the unit element of Ggp.

We have 0 non € LyR; and LyR; = L4R,, and since I4R, is a two-sided ideal of S,
we have L;R, = S. Further 0 non € R;L; and R,L; = R,L, hence R,L; + {0}. It is
known (A. H. CuiFrorp [2], R. P. RicH [8]) that if R, L are two minimal right and
left 1deals of S respectively and LR = S, RL = {0}, then RL= RN Lis a group

) We use the following result: A compact simple semigroup with zero is completely simple
(see f.i. [12]).
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with zero. Hence for a € A7, B & A, R,L; = R, n L, is a group with zero (having e,
as unity element). Write R,L; = G .5 U {0}. We then have
T=U U{RLﬂ}CU URL;;—U U{RmLﬁ}—{UR}(‘\{UL,,}

aed’y Bed’ acd’y Bed’y acd’y fed’; aeA’y

Since T does not contain 0 we may write

Te T =[{UR}n{U L]~ (0},
aeAd’y
and T, contains clearly the same idempotents as T. Moreover, T, is a union of maxi-
mal groups of S.

To prove that T, is a semigroup it is sufficient to show that a, b e T, imply ab # 0. .
Let be a € R, n Ly, be R, L, Denote by a the element of [R, n Ly] — {0} = G,
for which @a = e,, by b the element of [R, n L;] — {0} = G,; for which bb =
= e, If there were ab = 0, we would have aabb = 0, i.e. e,4e,5 = 0. But ¢,4, e,; are
contained in the semigroup T which does not contain 0. Hence ab + 0.

The proof that T, is simple follows by the same argument as in Lemma 1,3.

It rests to prove the maximality property of T;. Suppose that T, is a simple subsemi-
group of S with T, 2 T,. If T, contains the zero element, T, has an idempotent not
contained in T;. We may suppose therefore that T, does not contain 0. The proof
then follows in the same way as in the proof of Lemma 1,3.

Lemma 2,2 together with Theorem 2,1 implies

Theorem 2,2. If S is a compact simple semigroup with zero satisfying S* # 0
and T a closed subsemigroup of S which does not contain 0, then there exists
a unique greatest simple subsemigroup T, > T of S having exactly the same idem-
potents as T. The semigroup Ty can be written in the form Ty = [{U R} n{U Lg}] —

a B

— {0} with suitably chosen minimal right and left ideals R,, Ly of S. If, moreover,
T contains a maximal group of S, then T = Tj.

Remark. The largest right and left ideals contained in S — T are open and
A={U R} —-{0}, B= { U L} — {0} respectively are their complements in S.

aeA’y peA’s
Hence T; = A n B is again closed.

3

Let S be a completely simple semigroup without zero and H a simple subsemigroup
of S containing all idempotents € S. By Lemma 1,1 H is then completely simple.

We shall study coset decompositions of S modulo H. The possibillity of such
decompositions is a priori not evident.

We shall write S = () L,, where L, runs through all minimal left ideals of S and

acAz

H = U L,, where L, runs through all minimal left ideals of H. By Lemma 1,1 there

aeAdz
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is a one-to-one correspondence between L, and L, such that L, = L, n H. The

decompositions S = U Rz, H = U R; have an analogous meaning.
Bedy Be 4,

Denote further R,L; = R, N Ly = Gup R.Ly; = R, "L, = G,;. We then have
S=U UGyH=U U Gy the groups G,; are pairwis¢ disjoints; further

aed; Ppeds aeAy Pedz
Gy = G, The unit element of G, will be denoted by e,p.

Lemma 3,1. If a€ S, then a € Ha.

Proof. Since a € S, there is a group G,, with a € G,,,. Hence a = e,,a € Ha.

Lemma 3,2. If L, + Ly and ae L,, be Ly, then Ha n Hb = 0.

Proof. Ha = SL, = L,, Hb = SL; = L; and since L, n Ly = @, we have Ha n
N Hb = 0.

Lemma 3,3. If a € L,, then for any . € A, we have La = L,a and L,a = Ha.

Proof. The element a is contained in a minimal right ideal of S, say R, Then
aeRy;n L, = Gg, and a = eg,a. We have Lya = Ljez,a. The set Lep, is contained
in H and by a known theorem it is also a minimal left ideal of H. But L;¢y, = L,L, <
< L,. Hence Ljep, =« L, n H = L,, and with respect to the minimality of L, we have
L'eg, = L,. Hence Lia = (L,e;,) a = L,a. Moreover, Ha = ( U L’,) a= U (L’Aa)
= L,a. This proves our assertion.

Lemma 3,4. If a, b € L,, then either Ha n Hb = () or Ha = Hb.

Proof. Since Ha = L,a, Hb = L,b, it is sufficient to show that La n L,b + 0
implies L,a = L,b.

Suppose L,a n L,b % 0. Then there exist u, v € L, such that ua = vb. The relation
ueLl,=L,nH=Ln{UR;} =U (LR} = U G, implies that there is a
Bedy Bedy Be Ay
ye A; with ue G),. Find the element u’ € G, with u'u = e, € L, We then have
u'ua = u'vh, ie. e, ,a = u'vh. Hence La = (L,e,,) a = (Lu'v)b = L,L,L,b = L,b,
i.e. L,a < L,b. By the same argument we prove L,b < L,a, hence L,a = L,b, q.e.d.

Since (by Lemma 3,1) a € Ha, we have S = U Hpn and omitting equal summands
nes
we get a decomposition (2) S = U H¢ with pairwise disjoint summands, where &
¢ed
runs through a subset 4 = S.
If L, is fixed chosen, then for any & € L, we have L ,¢ < L,L, = L,, and since L ;¢ =
= H¢, we conclude that L, can be covered by cosets of the form L,¢, & € L,. Again

omitting equal terms we may write L, = {J L,&, where A, is a suitably chosen subset
edy
of L, and the summands are disjoints.

It is easy to find a complete system of the £’s which are sufficient for the construction

of such a decomposition. Write L, = U Gy, and choose a fixed summand, say G,
Bed,
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d € A;. Construct the right coset decomposition of the group G4, modulo the sub-
group G}, of the form G;, = U Gj, . #5. We then have

vel
)
L,=U G[}a U eﬂacéa U "/}a{ U Géa'lfs; } =U { U eﬁaGaaﬂaz)} =
PeAy BeAy BeAy vel vel Ped;
=U{ U G} = U Laig,) .
vel PeA, vel

Note further that since Gj 42 + Gjn{” for p + v, we have Ly n Ly = 0.
Finally, since S=U L, = U U Lz = U U HyS), we see that the &s in (2)

acdA2 aedr vel aedr vel
can be chosen in an arbitrary — but fixed — minimal right ideal R; of S.

Summarily we proved:

Theorem 3,1. If S = U U G, is a completely simple semigroup without zero
acAdy fedz

and H= U U Gy a simple subsemigroup of S containing all idempotents € S,
acAy Bed;
then:

1. There exists a coset decomposition S = ) HEY into pairwise disjoin
EWed
classes, A being a suitably chosen subset of S.
2. A can be chosen as a subset of an arbitrary fixed chosen minimal right ideal
of S.

3. If L, is a minimal left ideal of S and L, = L, n H, then there exists a coset

decomposition of L, of the form L, = U L, &® with pairwise disjoint summands.
& CA,

4. If G5, = U Gsnse (6 € Ay fixed) is the coset decomposition of the group G,
with respect to the subgroup Gy, we may choose A, = {n2, vel}.

In some applications (see the forthcomming paper [9]) double coset decompositions
mod (H, K) are needed. We end therefore our investigations with the proof of the
following theorem:

Theorem 3,2, Let S = U U G, be a completely simple semigroup without zero
acAy fedr
and H, K two simple subsemigroups of S both containing all idempotents € S. Then

there exists a double coset decomposition of S into pairwise disjoint classes of the
form S = U HEVK, B = S. Denoting G,y = H "\ G, Gug = K 0 G,y we have

EMeB
HaK n Gy = GpaGyy for any aeS. Further GopaGyy is exactly one class of the

double coset decomposition of the group G,z modulo (G, )

Proof. 1. If a € S, there is a group G,z with a € G,. If e, is the unit element of G,g,
we have a = e, ae,; = HaK. Hence S = | HxK.

xeS
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We show that if a, b € S, then either HaK = HbK or HaK n HbK = . Suppose
HaK n HbK &+ 0. Then there exist elements_ u,we H, v, ze K such that

(3) uav = wbz .

Suppose a € R,, u € L for some « and f (L, being a minimal left ideal of H). e,; €
€ R, n Ly is a right unit for every element € L; and a left unit for every element € R,.
Since Lj is a minimal left ideal of H, we have Liyu = Lj, hence there exists an u* €
€ Ly = H with u*u = e,;. Let analogously be a € L,, ve Rj; for some y and é (Rj
being a minimal right ideal of K). The idempotent e;, € Ry n L, is a left unit for every
element € Rj and a right unit for every element € L,. Since R} is a minimal right ideal
of K, we have vR; = Rj, hence there is an element v* € Ry = K such that vo* = ¢;,.
The relation (3) implies

u*uavv¥ = u*whzo*

egpaes, = (u*w) b(zv¥),
a = (u*w) b(zv*) .

We have therefore HaK = H(u*w) b(zv*) K = HbK. Analogously we prove HbK <
< HaK, hence HaK = HbK.
Omitting in S = {J HxK the classes which occur more times, we get a decompo-

xeS

sition of the required form. This proves the first statement of our theorem.

2. Consider next the set G,,aGy,. We prove that this product is independent of o
and 7 (i.e. we have the same set for every couple o, 7). Let f.i. be a e G,; then e, ae,, =

= a and
G,.,aGr, = (G.e,,) ale,,Gr,) = G,,aG,,

oo w T

and this is clearly independent of ¢ and t. Further

(4) HaK=[U U G,la[ U U G,]=UUUU GyaGCl,

€Ay geAr 1e€d; weAy
and
G,s0GYy © GpoaGy, = R,L,aR. L, = R, N L, = G, .

Now a, 8 being fixed G,, contains those and only those summands of (4) which are
of the form G,,aG},. Since all these summands are identical we may choose ¢ = f,
© = o. Thus we have HaK n G,; = G,3aG,,. This proves the second assertion.

3. It is possible to caracterise the set T,; = G,zaG,; in terms of the elements of the
group G,y Clearly T,; = (Gypeny) a(eyGrp). Further eae,, = R,LyaR L, « R, L, =
= G,p. Hence, denoting a,, = e,pae,5€ G,p, We have T,y = GopanpGoy and agp€ T,y
since e,pdqpe,y = dqp- This says that T, is a class of the double coset decomposition
of G,; modulo the subgroups (G, G,s). Our theorem is completely proved.
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Pe3omMme
NOAITOJYTPYIIIIBI MPOCTHIX MMOJYIPVIII

IITE®AH IIBAPLL {Stefan Schwarz), Bparucnasa

Lenpto HacToseH paboOTHL SIBJISETCS MCCIEJOBAHME CTPOCHUS IMOJIMOJYrpyni
npocThiX (B OCOGEHHOCTH BIIOJIHE NPOCTBIX) MNOJyrpyni. IpuBeeM HeKOTOpBIC
pe3yabTaThl:

Ecau S — BroJine npocTas NoJIyrpynna 6e3 HyJs u H — mpocTas NoAnoyrpynna,
obusrafaronast LAEMNOTeHTOM, To H BriojsHe npocra. Ecin S — npocrtast GpikoMnakT-
Hasi MOJIyrpynna, TO BCsKas 3aMKHYTast NOAIOJIYyrpynna BIOJIHE MPocTa.

AHAJIOTHYHBIC DPE3YJbTaThl MMEKT MECTO M JUJIA BIOJIHE TPOCTBIX ITOJIYIPYyMNIl
C HyJIeM, eCiy B KauyecTBe H paccMOTPHMBAIOTCS MOAMOJIYTPYINIBI, HECOACPXKALIUE
HYJISL TOJIYTPYITIBL S.

Cyl1ecTBYeT TeCHast CBSI3b MEXy OJIHOCTOPOHHUMHU uacaslamMu nojyrpynn S u H.

ViccaenyeTcst cTpoeHMe MakCHMMaJIbHBIX MOANOJYrpynn u3 S, MMerliWe B TOd-
HOCTH BCE MIEMIOTEHTHI JaHHOUW moanoyrpynnsl H.

ITycts S — Brnonre npocta u H, K — ABe noAnoJyrpynnsl u3 S, cojepialiye Bce
UIeMIoTeHTHl € S. B opzene 3 vceaeayeTcs pa3iokeHUe MOJLyrpynnbl S o ABOHHO-
My moaymo (H, K).
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