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A CHARACTERIZATION OF TOPOLOGICALLY COMPLETE SPACES
IN THE SENSE OF E. CECH IN TERMS OF CONVERGENCE
OF FUNCTIONS

ZpeNEK FroLik, Praha

(Received February 2, 1961)

A characterization of topologically complete spaces (in the sense of
E. Cech) analogous to the well known characterization of pseudocompact
spaces in terms of convergence of continuous functions.

A space P is said to be topologically complete (in the sense of E. Cech) if P is
completely regular and P is a G; in the Cech-Stone compactification B(P) of P. In the
present note, we shall give a characterization of topologically complete spaces analo-
guous to the following characterization of pseudocompact spaces: If a decreasing
sequence {f,} of continuous functions is pointwise convergent to zero, then {f,} is
uniformly convergent.

All functions are supposed to be real-valued. If § is a family of functions on a set P,

then the symbol § | 0 will be used to express that for every f; and f, there exists an f
in § with f < min (fy, f,) and that for every x in P,

inf {f(x); feF} =0.

All spaces under consideration are supposed to be completely regular. B(P) denotes
the family of all bounded continuous functions on a space P. The symbol «(P) will be
used to denote the family of all subrings 4 of B(P) satisfying the following two con-
ditions
(1) fed=|fleA.

(2) For every x in P and every neighborhood U of x there exists an f in A such that
0sf=1fx)=1f[P-U]=0.

Definition. We shall say that a collection y = «(P) has the property (V) if the fol-
lowing condition is fulfilled:

If§ < B(P),§ | 0and § n C | 0 for every C in y, then for every ¢ > 0 there exists

an fin § such that ||| < e, i.e., there exists a sequence in § uniformly convergent to
zcro.
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We shall say that a ring A e «(P) has the property (V), if the collection (4) = y(P )
has the property (V).

Example 1. A space P is compact if and only if B(P) has the property (V)

Proof. Evidently the condition is necessary. To prove sufficiency suppose that
there exists a maximal centered family I of closed subsets with (YN = . Consider
the family § of all non-negative f € B(P) for which f = 1 on some M e M. Clearly
& 1 0and ||f|| = 1for every f in §. Thus B(P) does not have the property (V).

Theorem 1. Let m be a cardinal number. A space P is the intersection of m open
sets in the Cech-Stone compactification B(P) of P if and only if there exists a collec-
tion y < of P) with the property (V) such that the potency of y is at most m.

Proof. First let us suppose that
P =M,

where I is a family of open subsets of f(P) and the potency of M is at most m. For
every M in M let A(M) be the family consisting of restrictions to P of all f € B(B(P))
with f[B(P) — M] = (0). Clearly A(M) € y(P) for all M € M. It is easy to see that the
collection {A(M); M € M} has the property (V). Indeed, if § < B(P), 10 and
[§ N A(M)] ] 0 for all M e M, then F* | 0, where F* is the family of continuous
extensions to f(P) of all f e §. Since B(B(P)) has the property (V), for every ¢ > 0
there exists a f* in §* with | f*| < . If f is the restriction of f* to P, then f € § and
[f] < e which proves that the collection {4(M); M € M} has the property (V).
Conversely, let y = a(P) be a collection with property (V) and let the potency of y be

at most m. For every Cin y let C* be the family consisting of the continuous extensions
to B(P) of all fe C. Put

K(C) = {x; x € B(P), f* € C* = f*¥(x) = 0},
K = N{K(C); Cev},

K(C) are compact subspaces of f(P) — P, and consequently, it is sufficient to prove
©) K = p(P) = P.
Clearly K = f(P) — P. Let us suppose that there exists a point x in f(P) — (K L P).
Let §* be the family of all continuous non-negative functions f* on ﬁ(P) withf*(x) =
> 1 and let § be the family consisting of the restrictions to P of all functions from F*.
Clearly § | O and ||f| = 1 for every fin §. Let C € y. By our assumption there exists
an f in C with f*(x) % 0. Put
(4) g = max (0, f/f*(x)) .

Clearly g = 0 and g*(x) = 1. If y € P, then there exists a compact neighborhood F

of y in B(P) with x non € F. According to condition (2) there exists a h in C with
h(y) = 1, h(P — F) = (0). Consider the function

6 k = max (0,9 — gh).
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Clearly ke C, k(y) = 0 and k*(x) = L. It follows that (F n C) | 0. But this is
impossible, because y has the property (V) and | f]| 2 1 for every f in §. This contra-
diction proves (3).

From the proof of the preceding Theorem 1 there follows at once theorem:

Theorem 2. A space P is topologically complete in the sense of E. Cech if and only
if there exists a decreasing sequence {A,} in a(P) with the property (V)

Theorem 3. A Lindeldf space P is topologically complete if and only if there
exists a decreasing sequence {A,} in a(P) such that

(6) fre A, (f3L0=1lm|f,] =0,

(7) feA, geAy . 20, g2z 0=min(fg)ed,,.

Proof. From the proof of Theorem 1 it follows at once that the condition is neces-
sary. Conversely, let us suppose that there exists a sequence {4, } in «(P) satisfying (6).
Let A be the family consisting of the continuous extensions of all f € 4, to f(P). Put

(8) K, = {x;xepB(P).f*e A, = f*(x) = 0},

(9) K=UK,.

n=1
The subspaces K, of B(P) being compact, it is sufficient to prove (3) Clearly K <
< B(P) — P. Suppose that there exists a point x in f(P) — (P U K). First we shall
construct sequences {fy}r=; such that

(10) fied,, {10 (n=1,2,..).

Let n be a fixed positive integer. There exists an f in A4, such that f*(x) + 1. Let g be
the function defined by (4). For every y in P choose a compact neighborhood F(y) of y
in B(P) with x non e F. There exists a h, € A, such that h(y) = 1, h[P — F(y)] =
= (0). Put

r, = max (0,9 — gh,).
Clearly ry(x) = 1, r,(y) = 0 and r, € 4,. Since P is a Lindel6f space, there exists, for
every ¢ > 0, a countable set Y(g) = P such that for any y e P there is a point z € Y(¢)
with r(y) < e. Let every Y(1/)),j = 1, 2,.... be arranged in a sequence {z}7 ,; for
z = zJ, denote r, by 4, and put

w=min r} (k=12..).

i,p=K
Clearly fl,cl € Am {f;:}l?;l l 0.
We have proved that for every n = 1,2, ... there exists a sequence {fy};=, in A4,
with {f;}r=; | 0. Now put
fo=minfl (n=1,2..).

ij=n ’
According to (7), f, € A,, and by construction {f,} | Oand | f,| = 1, which contradicts
(6). Thus (3) holds and P is topologically complete.
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Pe3iome

XAPAKTEPU3AL WA TONOJOIMYECKHU MOJIHBIX MPOCTPAHCTB
MPU MOMOIU CXOANUMOCTU ®YHKLUN

3NEHEK ®POJIMK (Zdenék Frolik), IIpara

Ecimn § — MHOXeCTBO HENpepHIBHbIX BEIIECTBEHHBIX (YHKIMH Ha TNpoCTpaH-
ctBe P, To cumBon § 4 0 0603HauaeT, uTo

(1) Ecaufy, f> € §, To cywectsyert f € § Tak, 4to

S/ = min (f1, /2) -
(2) Hns Besikoi Touku x € P
inf {f(x); fe&} =0.
Yepe3z B(P) 0603HaYaeTCsi MHOXKECTBO BCEX OTPAaHMYEHHBIX HENPEPBIBHBIX BELIECT-

BEHHBIX QyHKLMIT Ha P; a(P) 0603HaAYaeT MHOXECTBO BCex moukostell A konsua B(P),
MMEIOIMX CJIEYIOLLKE JIBa CBOMCTBA:

(@) fed=|f|e4;

(6) Hdxns Besixoit okpectHocT U BesikoW TOYKM X € P cyuwiecTByeT f€ A Tak, 4To
0=/ 1 /lx)=1/[P—U]=(0).

Onpenenenune. CemeiictBo y < a(P) umeer cBoiicTBo (V), €CIIM BBIIOJIHSETCS
cllelyIolIee yCIOBUE:

Eciu § < B(P), § | 0 utakxe (§ n C) | 0 nns Beskoro C ey, TO ais BCAKOIO
¢ > 0 cymectsyet f€ § Tak, uto || f]| < &

Jloka3bIBalOTCS CJICAYIOUINE TEOPEMBbI:

Teopema 1. Bnoane pecyaapnoe npocmpancmeo P agisemca nepeceueruem m
OMKPLIMBIX MHONCECME 6 YEXOBCKOM KOMNAKMHOM pacwiupenuu nio20a, u moabKo

moz2oa, ecau cywecmeyem cemeiicmgo y < oP) co ceoiicmeom (V), umerowee mouwy-
Hocme < m.

Teopema 2. Jlundeaedposckoe npocmparncmeo P seasemes monosocuuecku noaHsim
6 cmoicae D. Yexa mozda, u moabko moz2oa, ecau Cywecmeyem Hego3pacmarowas
nocaedosameviiocms {A,} ¢ a(P) mak, umo

M) fyed,, {fi} + 0= lim [£] = o0,
(2) fEAn’ gEA'nLl! /Z 0~ g g 0 = n]in (f;g)GA,,+1-
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