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YexocnoBaukuii MaTeMaTHYeCKHii xypHai, 1. 12 (87) 1962, Ilpara

NORMS AND THE SPECTRAL RADIUS OF MATRICES

VLASTIMIL PTAK, Praha
(Received October 25, 1960)

The following theorem is proved: If 4 is a linear operator on an n-dimen-
sional Hilbert space such that |A| = 1 and also lA"I = 1, then A has a proper
value A with w = 1. This theorem, together with a simple remark, yield the
fact that the critical exponent of a finite-dimensional Hilbert space equals
its dimension.

1. Let E be a finite-dimensional vector space and A a linear operator in E. Consider
the equation x = Ax + y and the iterative process x,,,; = Ax, + y. It is easy to see
that this procedure is convergent for each initial vector Xo and each y if and only if
the series E + 4 + A% + ... is convergent. The convergence properties of this series
are described in the following well-known result.

(1,1) Let E be a finite-dimensional vector space over the real or complex field
and let A be a linear operator in E. Then the following conditions are equivalent:
(1) the series E + 4 + A% + ... converges,

(2) the powers A" converge to the zero operator,
(3) o(4) < 1.

Here o(4), the spectral radius of 4, is defined as the maximum of all |4| where A
runs over the proper values of A.

Suppose now that a norm [x| is defined on E and let |T| be the operator norm
generated by the norm |x|. There is a simple connection between the convergence of
the series E + A + 4% + ... and the norms of the powers of A. It is not difficult
to see that the series is convergent if [4?] < 1 for a suitable p. On the other hand, if
the series converges, we have |4"| - 0 so that |4?| < 1 for large p. It follows that the
series E + A + A? + ... converges if and only if |4?| < 1 for some .

We are thus led to the following problem: Consider a matrix 4 of norm 1 and
construct the sequence |A[, [4?],.... Clearly |4| > |4?] = |4%| = ... so that the
following two cases are possible: (1) either [4"| = 1 for all r so that o(4) = 1 (2) or
|A"| - 0 and a(A) < 1.1Itis thus natural to ask how far it is necessary to go in this se-
quence to decide which of the two preceding cases takes place. This leads to the followin g

(1,2) Definition. The number q is said to be the critical exponent of the space
(E, |x|) if the following conditions are satisfied:

(1) if Tis a linear operator on E and |T| = |T9 = 1 then o(T) = 1.

(2) there exists a linear operator B on E such that |B| = |B*"'| = 1and o(B) < 1.
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Recently J. MaRfk and the author have found the critical exponent for the n-di-
mensional complex space with the norm |x| = max |x;|. It equals n*> — n + 1. In
the present remark we show that for the n-dimensional Hilbert space (norm |x| =
= (Z|x;|?)"/?) the critical exponent is n.

In the rest. of this remark, E is an n-dimensional complex Hilbert space with
norm |x| and scalar product (x, y). We shall need two simple lemmas.

(1,3) Let E be a Hilbert space, A a linear operator in E with |A| < 1. Let x,, X,,
V1, ¥z be vectors of norm 1 such that y, = Ax; for i = 1,2. Then (yy, ;) = (x4, X5).
Proof. Let «,, o, be two arbitrary complex numbers. We have the inequality

lotgyy + azy,] = |A(°‘1x1 + a2x2)| < Jogxy + 2]
and the formula
(“1}’1 + a3z, 01y + “2)’2) =
= |y |* + |a|* + “1&20’1’ J’2) + oc2&1()’2, J’1);
a similar formula holds for x, and x,. It follows that

f(ha .Vz) + E(yz, .V1) = f(xi, xz) + E(xza x1)

for every complex &. Put (x4, x,) = a + if and (yy, y;) = ¢ + it with real o, f,
o, t. Write down the preceding inequality for ¢ = 1, —1, i, —i. We obtain ¢ < o,
—06 £ —a, —1 < —fand v < B so that (yy, y2) = (x4, X2)-

(1,4) Let E be a t-dimensional Hilbert space, A a linear operator in E with
norm |A| £ 1. Suppose that there exist t linearly independent vectors yy, ..., y, such
such that |y;| = 1 and y; = Ax, for some x; with |x;| = 1. Then A is unitary.

Proof. We are going to show that |4x| = |x| for each x € E. To see that, take
an x € E; the y; being linearly independent, the x; are linearly independent as well so
that x may be expressed in the form x = oyx; + ... + o,x,. Since [x;| =|y| =1,
we have (y;, y;) = (x;, x;) for each pair of indices accordlng to the preceding lemma.

It follows that
(A)” Ax) (Z %Y Z %;Y; ) Z x “J(yv y,) =

*Zaa,(xnxj) —(Zaxuzax) = (% x)

and the lemma is establlshed.
2. The critical exponent. We are now able to formulate the main result.

(2,1) Theorem. Let E be an n-dimensional Hilbert space, A a linear operator
of norm 1 in E. If |A"| = 1, then the spectral radius of A equals 1.

Proof. Let us denote by V the set of all y € E such that y = Ax and |y| = x|
for a suitable x. Let k be the maximal number of linearly independent vectors in V,
so that 1 £ k < n. If k = n, the operator A is unitary according to (1,4) so that
o(4) = 1. If k < n, take some k linearly independent vectors yy, ..., y, € V and
denote by W the linear subspace of E spanned by yy, ..., y. It follows from the
maximality of k that V < W.

556



Since |4"| = 1, there exists a vector x, such that [xXo] = |A"Xo| = 1. Put z; = A'x,
for i =1,2,...,n. Clearly z,,...,z, belong to V so that Z4, Zgy ..., 2, € W. The
dimension of Wbeing k < n, it follows that z,, ..., z, cannot be linearly independent.
Let z, be the first of the z; which may be expressed as a linear combination of the
preceding ones, z, = oyz; + ... + Og-1Z4-1-

The vectors zy, ..., z,_; are linearly independent because of the minimality’ of q.
Take now a p < g such that «, + 0 and let us show that the vectors Zptis oo Z4
are linearly independent as well. To see that, suppose that there is a relation
Bo+1r Zpr1t + ... + Bz, = 0 with at least one f different from zero; it follows
from the minimality of ¢ that , + O and p + 1 < g. We obtain thus a relation

Zg = Vp+1Zp+t T oo F Vg1Z4o1 = 42 + 0+ Oy—1Z4—1
which is a contradiction since o, # 0 and z;, ..., z,-1 are linearly independent.

Now let p be the smallest index with a, + 0 and let us denote by H the (9 — p)-
dimensional subspace spanned by z,, ..., z,_;. The space A(H) being generated by
Zp+1s--- Zg We have A(H) = H so that we may consider the partial operator A,,
restricted to H. Now there are g — p linearly independent vectors Zptis e Zg i H
such that |z;| = 1 and z; = Ax; for some x; € H with |x,| = 1. Indeed, it is sufficient
to take x; = z;_;. It follows from lemma (1,4) that A, is an unitary operator on H.
Clearly 1 = o(A4y) < 0(A4) < 1 whence 6(4) = 1 and the theorem is established.

The preceding theorem shows that the critical exponent for n-dimensional Hilbert
space is at most n. The following simple example shows that it is exactly ».

(2,2) Let E be an n-dimensional Hilbert space; then there exists a linear oper-
ator A on E such that |A| = |A"™"| = 1 and o(A) = 0.

Proof. Let ey, ..., e, be an orthonormal system in E and let A be defined by the
relations Ae; = ¢;,; for i =1,2,...,n — 1 and Ae, = 0. Clearly |4| < 1. Since
A" le, = e, we have [4"7!| = 1. At the same time A" = 0 so that o(A) = 0.
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HOPMBbI U CHEKTPAJIbHBINM PAIUYC MATPULJ
BJIACTUMMII TITAK (Vlastimil Ptak), ITpara

Hoxasbisaerca cnemyromas Teopema: Ecmu A — nuHeiiHbli onepatop B n-mMep-
HOM npocTpancTBe I'mnbbepTa Takoi, uto |A| = 1 a Taxxe |4"| = 1, To cymecTyer
cobcTBeHHOE 3HaueHMe A MaTpuubl A ¢ aGconioTHOM BemmumHOU 1. DTa TeopeMma
BMeECTE C TPOCTHIM NMOCTPOEHMEM HEKOTOPOH MATPHIBI JAeT TOT PEe3yJbTAT, YTO
KPUTHYECKUN TOKa3aTejb KOHEYHOMEPHOTO TNpOCTpaHCTBa [ mibbepra paBeH ero
Pa3MEPHOCTH.
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