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YexocoBaukuii MaTeMaTHYECKHI KypHaa, T. 12 (87) 1962, Ilpara

ITERATIONS OF LINEAR BOUNDED OPERATORS
IN NON SELF-ADJOINT EIGENVALUE PROBLEMS AND KELLOGG’S
ITERATION PROCESS

Ivo MAREK, Praha
(Received October 19, 1960)

The convergence of an iteration process which is a generalization of the
Kellogg iteration process for linear bounded operators in Banach spaces is
proved. A general formula is given for approximate calculations of the do-
minant eigenvalue and its corresponding eigenvector. Many commonly used
iteration formulas are special cases of this general formula. The results are
applied to the case of equations of the type Lx = ABx, where L, B are linear
in general unbounded operators whose domains D(L), D(B) satisfy D( L) c
< ZD(B).

1. Introduction. The purpose of this paper is to prove the convergence of Kellogg’s
iterations and of similar processes. The method of these proofs is based on an applic-
ation of the operator calculus for linear operators in Banach spaces, developed by
A. E. TAYLOR [9]. The advantage of this method is that, in contrast with [2], [3],
[7], 81, [13], [14], [16], [17] et al., one can drop the condition that the investigated
operator must be symmetrizable. .

The definitions and necessary designations are given in the second chapter, basic
auxiliary assertions on iterations of linear bounded operators (lemma 1,2, theorem 1)
in the third chapter and assertions on the convergence of iterations of the Keliogg
type (theorems 2—4) are given in the fourth chapter. If the order g of the dominant
eigenvalue y, is known, one can use theorem 5 to determine o In the fifth and sixth
chapter the results of the fourth are applied to the case of equations of type Lx = ABx
with a generally unbounded operator L and a bounded operator B. In the sixth chapter
both the operators L, B may be unbounded.

The listed iteration processes are rather general, since they contain or generalize
most of the iteration processes in specific Banach and Hilbert spaces.

2. Definitions and designations. Let X be a complex Banach space and X' its
adjoint space of continuous linear forms. We will denote elements of the space X
by small Roman characters, elements of the space X’ by the same characters with
the primes. The symbol o will mean the zero — vector in the space X. Let T bé a linear
bounded operator which maps X into itself. The set of such operators forms a Banach
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space which we will denote by X; or (X — X). We will distinguish norms in the spa-
ces X, X', X, by the corresponding index next to the norm sign, i.e. for x e X, x" € X":
Ixllx> X"l and for Te X,:
(1 ITlx, = sup [Txlx.

lxlix=1
We will drop the indices in cases when no misunderstanding can arise. We denote the
zero and identity operators by the symbols O and I. Let IT be the open complex plane.
We denote the spectrum of the operator T by the symbol o(T).

Let Te X, and let R(4, T) = (Al — T)™' be the resolvent of the operator T'in the
point A el1. Let I' be an open set in the complex plane /1. Let the boundary of the
set I' be the disjoint union of a finite number of rectifiable Jordan curves and let
I'  oT). Then we have for every polynomial f [9],

) (T) = i f FO) R, T) 4,

where C is the boundary of the set I', oriented in the evident way.

We will say that the operator T has the property R, in the point u, € o(T) if po is
an isolated pole of order g of the resolvent R(1, T).

If the operator T has the property R, in the point p,, the resolvent R(4, T) can be
developed into a Laurent series [9],

@ q
(3) R(Z, T) =3 (1 - #o)k T + Y (A — no) ™" By,
k=0 k=1
where
@  Bi=—|[ RAT)AA, By =(T— o) Ber k=1..ig — 1
27i J ¢,

and C, is a positively oriented circle with center at u,, and such that no points of the
spectrum o(T) except y, lie on or inside the circle C,.
If f is a polynomial and the operator T has the property R, in the point u,, we put

() Hlpo, T, f(1)] = 5‘; L F(A) R(2, T) dA ii _(;)%?_) B,

where C, has the mentioned meaning.
Specifically we define

Hm[ﬂ()o T]=H[#037;<i>]7 ”’léo_
Ho

Further we will call the point po € o(T) the dominant point of the spectrum of the
operator T if

(6) 14 < ol
holds for every point 1€ o(T), 4 = uo.
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3. Iterations of linear bounded operators. Let the following assumptions be satis-
fied in all the statements of this chapter if nothing else is asserted:

Assumptions. (a) Operator T is a linear bounded operator mapping the space X
into itself.

(b) The value pq is a pole of order q of the resolvent R(A, T).

(¢) The value pq is the dominant point of the spectrum of the operator T.

Let us prove several auxiliary statements which are important for further consi-
derations.

Lemma 1. In the norm of the space X, we have

(7 lim m™*'H, [po, T] =

Proof. According to definition (5) we have

q
H,[po, T] =By + Yy mm —1)...(m — k + 2 )H0 ,
k=2

(k 1)'
mm —1)...(m — k +2) _ 1+0(1)

k—1 m
—q+1 |

m
L Bq <0 _1_ .
(¢ — 1) m
Lemma 2. There exists a constant ¢, > 0 independent of m such that for all
positive integral m we have

®) ' 1H,[po, T] — ug™T"| < ¢y &
’ Ho

where p is the radius of the smallest circle with center in the origin which contains
the whole spectrum o(T) except .

and since

holds for k = 2, k £ m + 1, we obtain

m " H, g, T] -

>

Proof. Let us choose a number p,; so that y < u; < |u,|. Then we have
—merm 1 A\"
B "T™ = H,[po, T] + — —) R(A, T)da
2ni J ¢, \ Mo

where C; is a positively oriented circle with center in the origin and radius p,. On
this circle | R(4, T)|| is bounded function of the argument 4, so that

sup [|[R(4, T)|| = ¢, < + 0.
i€ Cy

1 f (i) R(, T) dA
2ni )¢, \ Mo

and from here our assertion follows directly.

Thus
lug™T™ — H,[po, T]Il < e}

Ho

m
"
Ho

= coy
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The following theorem is a consequence of the preceding lemmas.

Theorem 1. I'n the norm of the space X; we have
—q+1
(9) lim m=e+ g = Lo p

m-» o (q - 1)‘

4. Iteration processes and eigenvalue problems. We will prove the convergence of
the Kellogg iteration process for the class of all bounded linear operators satisfying
the assumptions (a)—(c) of the third chapter. With the help of these results we
will prove the convergence of other iteration processes.

Let {x,.}, {¥m}> {zn} be sequences of linear forms mapping X into IT. Let there
exist forms x" € X', 3" € X’ such that '
(10) X'(x) = lim x,,(x), y'(x) = lim y,(x) = lim z},(x)
m= o0 m=— oo m— o
for every vector x € X.
Let x(°) € X be a definite fixed vector for which B,x(®) # o, so that there is an index
s (1 £ s £ g) such that

(11) Bx® 0, B x9 =0
where B ., = O.
Further let
12 x'(Bx®) %+ 0, y'(Bx®) %0
§
hold and let us put
(0)
(13) Xo = 'BLO .
¥(Bx®)
Kellogg’s iterations are constructed according to the following formulas
(14) XM — Tym—1) s Xomy = x(m ,
()
Z,',, X (m+ 1))
(15) Hamy = —“(,ﬁ‘}-
ulx™)

Lemma 3. Let (11) hold for the vector x'. Then we have, in the norm of the
space X
u—s 1
lim m™s* g™ Tmx©@ = 20 B x(©
m-—» oo (S - 1)'
and the estimate
—s+1
m=s L mmy0) _ Ho Bx©

(s — 1)

S o [x O m7h,

where c3 does not depend on m.

The proof of this lemma is similar to that of theorem 1 and will therefore be
omitted.
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Lemma 4. If v, e X, ve X; v,,e X', v' e X’ and if v),(x) — v/(x) for every x € X,
then v,,(v,) - v'(v).

Proof. The assertion follows directly from the Banach theorem ([12] p. 204).

Theorem 2. Let (10) hold for the forms x,,, y., z., x, ¥'. Let xX® € X be a vector
such that (11) and (12) hold. Then
(16) lim x,, = x,
holds for the sequence (14) in the norm of the space X and
(17) lim py = #o
holds for the numerical sequence (15). The vector x, is the eigenvector of the
operator T corresponding to the value p,.

Proof. According to lemma 3 there exist numbers «,, such that

lim a,,x™ = Bx(© .

According to lemma 4 we have

o, X ™
Xy = ——— > x
(m) X0 ™) o
20, TX™) Y (TBx©®)  y'(Tx,)
Hmy = - =

Yn(@nx™) Y (BX®)  y(xo)
It follows from (11) that

1 0 1 0
(T = pol) xo°= W(T— tol) Bx'®) = mBsﬂx( ) =0
so that the vector x, is the eigenvector of the operator corresponding to the eigen-
value yo. Thus the theorem is proved. )
The rate with which the sequence {x,,} converges to y, depends on the rate with
which the sequences of forms {y, } and {z,,} converge to y’ and on the rate with which
the sequence {x,,} converges to the vector x,.

Remark 1. Let the operator T have the property R, in the point p,. Then
H,[1o, T] = By and, according to lemma 2,

| m
e A

| Ho
and hence
g™ — BxO| < ¢ 5@ | 24"
) Ho
Let 6 > 0. Suppose that there exists for every x€ X a c4(X) such that
(18) [Xm(x) = X' ()| + [ym(x) — y'(x)] +

IA

+ |zn(x) — V' (x)] < ca(x) m™27°
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holds for all x € X. According to the Banach theorem we have
(g "5 ™) = X (BXO) + |y ™x™) — y'(Bix )| +
+ 1zn(o "x™) — y'(Bx)| £ es(x@)m™'

and from this we obtain easily the following estimates
(19) ”x(m) - Xl £ Cs(x(o)) m~=° s |N(m) — kol = c7(x(°)) m'7l

Remark 2. Assume that the operator T has a positive dominant eigenvalue;
take sequences of functionals {X,,}, {m}, {Zm} such that x,(Ax) = [A] X(x), Yu(Ax) =
= |4l YulX), Zw(Ax) = |A| z,(x) instead of the sequences of linear forms {x.}, {y.},
{zm} in formula (15) and such that there is a cg independent of m and with

1%n(%) = XDl + 19m(x) = Iu) + 120(X) = Zu(¥)] £ esllx =yl

for arbitrary vectors x € X, y € X. Let there exist functionals x, y such that

X(6) = lim (). 3(3) = lim 3,(x) = im 3,

m-—» oo

hold for all vectors x € X. Then under the assumptions of theorem 2 we obtain

(m) . % (x(m+1)
im Xy, tim G
m= oo ym(x(”‘))

Specifically for X,,(x) = y,(x) = z,(x) = ||x||, we obtain Kellogg’s classical iteration
sequence {||x™*D|/||x™|} and the formula

Ho -

X p
LI T
mow x|

If we choose the sequences of forms {x,,}, {y.}, {z,,} or functionals {X,}, {Vm}s
{Z,.} in some specific way we obtain other well known iteration processes.

Proof. The assertion in remark 2 can be proved as follows. If y,(x) - y(x),
Zn(x) = y(x) hold for every vector x € X, then for v,, —» v, v, € X, ve X we have
Vo Om) = Y(©), Zp(vm) = ¥(v), since

I;’m(vm) - }(U)I + lém(vm) - 5/(1))] =
< collvm = oll + 1ym(v) = Y(O)] + |za(v) — H(o)l
and
x(m) Bx©

= 1)m - D = _—.

X(x™) x(Bx©)
The rest of the proof is the same as in the case of sequences of forms.
Corollary 1. Let X = C(0, 1) be the Banach space of functions, continuous on the

interval <0, 1. Let T be an integral operator defined by the kernel (s, s") con-
tinuous in the square {0,1) x 0, 1),

¥(s) = th(s, s') x(s') ds’ .

(]
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Let po be the dominant eigenvalue of the operator T. Let x,,(x) = y(x) = Zn(X) =
= X(so) where x € C(0, 1) and the point s, € €0, 1> has the property that x(so) + 0
(%o is defined by formula (13)). Thus we obtain the iteration process

x (m) x(m+ 1)( so)
Xmy = m s Hemy = :;(j”‘)‘(s—o)- = o

where
1
x('")(s) = J‘ t(S, SI) x(m—l)(sl) dsl .
' 0
According to theorem 2 we have uniformly in <0, 1)
(m+1)
lim x(m)(s) = xo(S) and lim _Jf__“(so_)

m— oo x("‘)(so)

The convergence of this method was proved by H. WIELANDT [15].

In Hilbert spaces iteration methods, in which Schwarz constants [3] figure, are
used to determine eigenvalues of symmetric compact operators. The iterations given
in [2] and [7] are analogous to this method. It will be shown that the convergence
of these processes is a consequence of the assertions proved here.

= Ho -

Corollary 2. Let X be a Hilbert space with the scalar product (%, y). Let the
assumptions of theorem 2 be fulfiled, where {x,} is an arbitrary sequence for

which equations (10) holds. Let the sequences {y,}, {z.,} be defined by one of the
formulas

(20) (%) = z0(x) = (x, Xqmy) »

(21) yr’n(x) = Z,’,,(x) = (x, Tx('n)) :
Then according to theorem 2 [2], [7],

im (xm* D, xmy

moo (X0, x(m) — o

holds for the case (20) and
(x(m+ 1)’ x(m+ l))

lim X ) _
m—» o (x""), x('"“))

for the case (21).

In [2] and [7] formulas are given for constructing eigenvectors besides those for
constructing eigenvalues. These formulas differ from Kellogg’s original formula (14).
J. KoLomy [7] proves the convergence of the mentioned sequence for the case of
a compact symmetrizable linear operator mapping Hilbert space into itself. Both
of these iteration processes can be summed up in a general one, ;

1
(22) Yim+1) = — TJ’(m), Yoy = x(© 5
Hmy
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where p,,, is defined by (15) i.e.
(23) Z'ln(Ty(m))

How yr’n(y(m))
Theorem 3. Let the operator T have the property R, in the point lo. Let the in-
equalities (18) hold for the forms x.,, .., Zn, X', ¥" which also satisfy the conditions
of theorem 2. Let (11) and (12) hold for the vector x'©. Let

(24) Hemy F 0
for u.yy defined by (23) for all m. Then in the norm of the space X we have
(25) lim y,, = yo

{m— o0

where y, is the eigenvector of the operator T corresponding to the eigenvalue u,,
and for this p, (17) holds. ‘
Proof. We know that
lim pg™T"x©) = B,;x9 .

m=— oo

If we take
B=[]-t>
m=0 Uimy *
(the convergence of the product follows from (19)), then we have

1 12 g
Yomy = = T"x(V = — ] =2 T  pB,x(® = y,.
Heoy -+ Hem-1) Ho k=0 [y

Further
H(;IT)’O = lim .u(;lT,V(m) = lim “‘1* TYmy = Yo
mo e m= @ Him)
as was to be proved.

Remark. The condition (24) is not restrictive at all, since we can choose the
vector TMx(®, where M is such that (X)) £ 0, z,(x™) % 0 for m = M, as the
initial vector of the iterations (22) and omit those terms of the sequences {y,},
{z,} for which m < M.

Corollary 3. [7] Let X be a Hilbert space with the scalar product (x,y). Let T
be a compact symmetric definite operator ma pping the space X into itself. Let
{x1.} be a sequence of linear forms for which a form x' exists such that (10) holds
and for every xe X

[Xm(%) = X'(x)| < cro(x)m™172, §>0. .
Let y,, z,, be defined by one of the formulas (20), (21) and let (xm+ D) xm) & 0
for m = 0,1, ....Then (25) holds in the norm of the space X, where Ym) are defined

by formula (22). The vector y, is the eigenvector of the operator corresponding to
the value o and (17) holds. . BRI
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For specific choice of the sequences { Ym}s {Zn} the iteration process (22) reduces
to the process (14) with

, 1 -
X(x) = W V) -

Theorem 4. Let z,(x) = y;,.1(x) for m = 0,1, ... and let y,(x) - y'(x) hold for
every x € X. Let y,(x™) % 0 hold for m = 0,1.... Let (11) and (12) hold for the
vector x(©. Then (25) holds for the sequence (22) where Wemy are defined by formula
(23) and y, is the eigenvector of the operator T corresponding to the value Ho-
For the eigenvalue po (17) holds.

Proof. Because of the special choice of the forms {y.,}, {z,,} we have
I e B
’ + l(x(m+ l)) y;n(x(m)) (x(l))

yé(x‘o)) Tm+1500)
v 1(x(m+ D)

Yim+1) =

According to theorem 2

Jo = lim Ym)

m= o
and it can be easily proved that y, is the eigevector of the operator T corresponding
to the value p,. (14) and (15) are sufficient for the applicability of Kellogg’s iterations
if we know that the multiplicity g of the value p, is finite. Thus it is not necessary

to know the value g explicitely. But if we do know g we can use this in the calcu-
lations.

Lemma S. In the norm of the space X, we have

(26) lim u3™T™(T — pol)? = O

m—* 00

Proof. According to [9], for m = 0

oer(Ee- ]

o "T™(T — pol)® = L (—i) (A — o) R(4, T) dA
2mi J ¢, \ Ho

so that

where C, is a circle with radius u, < |uo| and center in the origin, in which the set
o(T) — {uo} lies. Consequently we have

g ™" T™(T — pol)|l < ¢yy |24

0j

and this implies (26).
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Theorem 5. If the conditions of theorem 2 are satisfied then
(27)  lim " {y,’n(X"”“‘)).— (‘D HoVu(x™ D) 4 (—1) u‘(‘,y,’,,(x('”))} =0.
m= o0

Proof. Lemma 5 states that for any & > 0 there exists an index M such that for
m>M

1 < elug|

xmta) _ (q) PoxX™ D 4 (—1)8 pdx™

holds. Using the Banach theorem we obtain

Im(x" D) — (q) Hoym(xF97D) + o+ (= 1) pudyn(x™)

<
1

= lymllx < cpaluol™ e

X

xm+a) _ <‘11> Rox™HaTD 4 (= 1)1

where ¢y, = sup ||y, |l x-

Corollary 4. [4], [5] Let X be an arithmetic I-dimensional vector-space with
some Banach norm. Let vectors x € X have coordinates X4, ..., x,. Let the operator T
be determined in a fixed basis by a matrix which we will also denote by the symbol T.
Let the operator T have the dominant eigenvalue p,. The preceding gives

lim p5™ {xﬁ-’"”’ - (q) Hox T 4 L+ (—l)qy‘{,x§m)} =0

m=> o0 1

so that if for instance |py| < 1 we obtain the algebraic equation

1

for the approximate determination of the eigenvalue .
A similar assertion is correct if X is a Banach space of functions defined in the
subset G of Euclidean space E,, such that the additive functional defined by the

formula
x'(x) = x(so)

is continuous. As to the operator T we assume that it is an integral operator, map-
ping X into itself and that it has a dominant eigenvalue u,. Then we have

lim pg™ {x("‘“)(so) - (q) Hox ™™ D(s0) + ... + (—1) u‘},x"")(so)} =0

X — <q) XL 44 (—1)xmAT =0

m—*w 1

where s, € G is chosen so that xo(so) #+ 0, and where x, is the eigenfunction of the
operator T corresponding to the value y,.

5. Modified iteration processes. The iterations invéstigated in the previous para-
graph can also be applied to the construction of characteristic values and eigen-
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vectors of equations of the type
(28) Lx = ABx

where Land B are linear operators mapping domains 9(L) and @(B) into X. Just
as in the third chapter, we will list the assumptions about the operators L and B
separately, so as not to repeat their formulations in most of the statements.

Assumptions. (A) The operator B is a bounded linear operator mapping X into
itself.

(B) There exists a bounded inverse operator L™* mapping X into 9(L), where 9(L)
is the domain of the operator L.

(C) The operator T = L"'B satisfies the assumptions (a)—(c) of the third
chapter. Let us put 1y = pg .

We search for the characteristic values of the equation and corresponding eigen-
vectors with the help of the modified Kellogg iterations

(29) o™ — Bym , Lum*th — pm , u® = x©® , !
R . y u(m) .
30 Umy = ———=»
(30) (m) (™)
r(,,(m)
. Vm\ Y
(31) Amy = ( )

Z'In(u(m+1)) ’
where {x,,}, {¥n}, {zn} are sequences of linear forms which, together with the forms
x’, y', appear in theorem 2.

Theorem 6. Let the forms x,,, y,,, zm, X', y' and vector x© satisfy the conditions
of theorem 2. We then have in the norm of space X

(32) ’ lim U(m) = Uy,
and
(33) lim gy = Ao

where uq is the eigenvector of equation (28) corresponding to the characteristic
value A.

Proof. We will prove that the iterations (30) and (31) are Kellogg iterations for the
operator L™ 'B, which satisfies the conditions of theorem 2. From (29) we obtain

UmHD = [l PRIyt e m — Tmy(0) o (m)
According to (15),

yalu™)
z,',,(u('"+ 1)) Fomy

and using theorem 2 we obtain directly the formulas (32) and (33).

A(m) =
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The iterations

0
(34) W = BWiyy Wiy = W™, Wit 1) = AWt 15 Weo) = x©

are analogous to the iteration process (22), where Aemy are given by the formula (31)
i.e.
A _ J;I(W(m))
(m) — 7, .
zm(wm+ 1)
As a special case, when X is a Hilbert space with the scalar product (x, y), then

by convenient choice of the forms x/,, y,,, z,, we obtain some known modified iteration
processes, among them the Schwarz-Collatz iterations [3].

Theorem 7. Let the operator T = L™'B have the property R, in the point u, = A5 *.
Let the forms x,,, y,, z,,, X', y' satisfy the conditions of theorem 3. Let (11) and (12)
hold for the vector x'©. Let y, (W) * 0, zp(Wim) + 0 hold for m =0,1,....
Then the following holds in the norm of space X

(35) lim w,,, = wy’

m—» o

where wq is the eigenvector of equation (28) corresponding to the characteristic
value 2.

Proof. The sequence of vectors {w,,} is an iteration sequence of the process (22)
for the operator L™'B, since

' -1 -1
Wint 1) = AL W™ = A, L7 'Bw,, .

The statement is thus a consequence of theorem 3.

If we know the multiplicity g of the value u, = 15!, we can use an analogy of
theorem 5.

Theorem 8. Let the forms y,,, y' and the vector x'°) satisfy the conditions of theo-
rem 2. Then we have

lim Ay {X’(‘)y,’,,(u("””“) - <;1> Ay (umr D) L (= 1) y,',,(u('”’)} =0.
The proof is evident.

6. Modified iterations in a reduced part of the space. Let the condition (B) of the
chapter 5 hold, and in place of (A) and (C) assume

(A") For the domains 9(L), 2(B) of linear (in general unbounded) operators L,
B there holds 9(L) = %(B), and

(C') The operator T = BL™" satisfies the conditions (a)—(c) of chapter 3.
It follows from (B) that the equation (28) is equivalent to the equation
(36) X = AL 'Bx .

From (36) applying the map B we obtain Bx = ABL™'Bx, so that if we put y = Bx,
we obtain the equation y = ABL™1y.
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We can now use the above proved statements about the convergence of iteration
processes to determine the characteristic values of the operator BL™!. We will prove
that an eigenvector of equation (28) corresponds to each eigenvector y of the operator
T= BL'.

Lemma 6. Let y'e X be the eigenvector of the operator BL™' corresponding to
the characteristic value X,. Then the vector x = L™ 'y is an eigenvector of the equa-
tion (28) corresponding to the same value A,.

Proof. According to our assumption we have

Lx =y = JoBL ™'y = A,Bx
and the condition y # o, according to (B), gives x # o.

We will form Kellogg’s iterations for the operator BL™! directly for the equation
(28), so as to avoid having to construct the operator BL™* and its powers. Thus we _
obtain the following iteration process

(37) Lu(m+1) — u(m) s U(m+1) = Bu(m+1) , U(O) — Bx(O) ,

(38) u("')
Umy = x’,"_l(v(m—l)) ’
™)
(39) Amy = 2 (D)

where {x,,}, {y,}, {z} are the sequences of linear forms which, together with the
forms x’, y’, appear in theorem 2.

’

Theorem 9. Let the forms x,,, y,., z,, X', ¥ satisfy the conditions of theorem 2
for the operator T = BL™'. Let B;y® + o hold for the vector y© = Bx©®, so
that there exists such an index s, 1 < s < q that

(40) By® +0, B, y®=o0.
Further let
(41) x'(By @) £0, y(By®) +0.
Then
(42) lim u,,, = u,

m-o

holds for the sequence (40) in the norm of the space X, where u, is the eigenvector
of equation (28) corresponding to the characteristic value A, and this value is the
limit of the sequence (39),
jm-
Proof. The sequence {v™/x;,(v™)} is the Kellogg iteration sequence for the ope-
rator BL™!, since ‘
v(m+1) — Bu(m+1) — BL—lv(m) .
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According to theorem 2 there exists a vector v, such that
pm
m — =
m—» oo x,’n(v("'))
holds in the norm of space X and v, is the eigenvector of the operator BL™! corres-

ponding to the characteristic value 4,. According to the same theorem A, is the limit
of the sequence (39) and thus (43) is correct. Further we have

Vo

MCESY) L o™ )
Um+1) = -—-—x""(v(m)) =L (x————-'ln(v(m))> - L Vg
so that (42) holds, where u, = L™ v,. According to lemma 6 u, is the eigenvector
of equation (28) corresponding to the value 1.

The following iterations are analoguous to iterations (34)

(44) Lzgyy = 2, 2,4y = Bz(yy, 2D = AmyZm+ 1, 2@ = Bx®
where 1, are defined by the formula
! (7 (m)
(45) Amy = __ym_(z_)
Zm(zm+ 1)

Theorem 10. Let the forms x,,, vy, zy, X', ' satisfy the conditions of theorem 3.
Let the operator T = BL™' have the property R, in the point p, = Ay . Let (40)
and (41) hold for the vector y© = z(® = Bx©®). Let y,(z™) # 0, z.,(z™) + 0
hold for m = 0,1, ... . Then
(46) lim z,y = 2o
holds in the norm of the space X. The vector z, is the eigenvector of equation (28)
corresponding to the characteristic value Ay and lim A,y = 1.

m-> o0
Proof. The sequence {z™} is the iteration sequence (22) for the operator T =
= BL™1, since
2" = A Ziys = AmyBZmy = AmyBL 1z .
According to theorem 3 the vector w = lim z™ is the eigenvector of the operator BL™*

corresponding to the characteristic value 4y, which is the limit of the sequence (45).
According to lemma 6 the vector z, = L™'w is an eigenvector of the equation (28),
and (46) holds for z,, = L™'z™.

Corollary 5. Let X be a Hilbert space with the scalar product (x, y). Let T = BL™!
be a compact operator mapping X into itself, symmetrizable by a positively -
definite operator H, so that

(47) (HBL™ 'x,x) > 0 for xeX, x 0.

Let (40) and (41) hold for the vector y© = Bx(®). Let the forms Xy, Vb, Zs X'y '
satisfy the conditions of theorem 3. Then (42) and (46) hold for the sequences (38)
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and (44). The limits of sequences (38) and (46) are the eigenvectors of the equation
(28) corresponding to the characteristic value i and (39) and (45) hold.

Proof. Let us investigate whether the conditions of theorems 2 and 3 are satisfied
for the operator T = BL™! and for the inital vector y(® of the iterations. The operator
T = BL™! is symmetrizable and compact, so that according to [6] its spectrum lies
on the real axis and every non-zero point of the spectrum of the operator T'is a simple
pole of the resolvent R(4, T). It follows from (47) that the spectrum lies on the positive
semi-axis and hence a dominant eigenvalue of the operator T exists. Thus the ope-
rator T satisfies the conditions of theorems 2 and 3. The conditions (40) and (41)
are analogous to (11) and (12) in theorems 2 and 3. Since the conditions of the menti-
oned theorems are satisfied, the assertion of theorem 10 is proved.

It can be seen from the remark to theorem 2 that corollary 5 is a generalization of
the results of V. S. ViLAaDpmMIROV [10], [11] relating to successive approximations.

Theorem 11. Let the conditions of theorem 9 be fulfilled for the operator T =
= BL™'. Then the following holds for the sequence defined by (37)

lim A% {l‘(’,y,’"(u('”“)) — (‘i) AT yn(u™m*aY) 4 (1) y,’,,(u("‘))} =0.

m— oo

Proof. According to lemma 5 the vector
o(m) = A3 [/1‘{,1;("'*‘” — (‘f) A7t (=) v‘"”:l

converges in the norm of the space X to the zero-vector. The vector L™ 'v(m) conver-

ges to the zero-vector together with v(m) and thus the sequence {y,(L *v(m))}
converges to zero.

7. Concluding remarks. Let us recapitulate in short the obtained results. The
conditions necessary for the convergence of Kellogg processes can be divided into
several groups. The first group of conditions refers to the space in which the interations
are investigated, the second one concerns the spectral properties of the investigated
operator. In the third group are conditions concerning the iteration formulas and the
choice of the initial element. As to the space in which the iterations are constructed,
we have shown that most of the results hold in general Banach spaces. We have found
it possible to carry over into Banach spaces some of the iteration processes, originally
introduced in Hilbert spaces and to prove their convergence. Let us make a simple
remark about the second group of conditions. The condition that the value u, be
dominant can be replaced by a somewhat weaker condition.

Remark. Let the conditions (a) and (b) of the third chapter be fulfilled for the
operator T. Let p eigenvalues y,, ..., u, exist, for which the inequalities |A| < || =
= |uy| = ... = |u,| hold for all points A€ o(T), 2 * p;, j = 1, ..., p. Let us choose
a fixed index j. If a v;ell exists such that p; — v; is the dominant point of the
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spectrum of the operator T — v,I, then the following equation holds under the
assumptions of theorem 2:

’ m+ 1 0
#; =v; + lim uﬁ,{,’) where ,ug,)) = za(T = v, x¢ )).
m-> o0 V(T = v;I)™ x©)

Thus by translating the operator T, all p values on the boundary of the spectral
circle can be determined.

As to the choice of the initial element of the iterations it is evident that if B,x(® = o,
then (11) does not hold for any index s and the sequence {x,,} generally does not
converge. The situation is analoguous in the case of modified iterations in a reduced
part of the space, i.e. if (40) does not hold for any index s.

We have actually given two iteration formulas for the construction of the eigen-
vector of the operator T — the original Kellogg one (14) and the generalized Schwarz-
Collatz formula. We have proved that this iteration process converges for general
forms y,, and z,, if y, is a simple dominant eigenvalue. On the other hand, we have
proved that the iterations (23) converge for specifically chosen forms Vs Zm €Ven if
the eigenvalues are higher order poles of the resolvent R(A, T) (theorem 4). We did
not give similar assertions for modified iterations explicitely, because it is quite evident
how theorem 4 can be extended to this case. ,

Estimates of errors are not performed explicitely. It is clear, however, that these
estimates can be obtained according to lemmas 1, 2, 3 and the corresponding proofs
in which errors are estimated.

Some of the iteration processes cannot be used for practical calculations in the
form given in this paper, especially if the order g of the dominant value Uo 1s much
greater than 1. In such a case it is necessary to use methods that increase the rate of
convergence of the iteration sequence.

The proved assertions concerning the convergence of iterative processes can be
used to prove the convergence of some numerical methods of solving linear equations
of type (28). One such example is the Boltzmann equation in the kinetic theory of
neutron transport in the multigroup energetic approximation. There are of course
many other similar applications.

Acknowledgments. The author thanks J. MaRik for helpful comments on
this paper and for kind advice.
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Peszrome

UTEPALIMM OI'PAHMYEHHBIX JIMHEWMHbBIX OIIEPATOPOB
B HECAMOCOIIPSIXKEHHBIX ITPOBJIEMAX COBCTBEHHBIX
3HAUEHU Y UTEPALIMOHHBIN TTPOLIECC KEJIJIOTA

MBO MAPEK (Ivo Marek), IIpara

B cTaThe JOKA3aHO, YTO JOCTATOYHBIM YCIOBUEM I CXOMUMOCTH UTEPAUOHHOT O
npornecca Kesutora st OTBICKaHUSA COOCTBEHHBIX BEKTOPOB U COBCTBEHHBIX 3HAYCHHIT
JIAHEHHBIX OTIEpPaTOpOB 0TOOpaXkaromux 6aHAXOBO HPOCTPAHCTBO B cebs, ABJIAETCA
CyIIECTBOBAHME HENOJBIDKHBIX TOUEK CIENMANBHOIO THIA JJIL 3THX OTOOpaXeHHH.

MeTox moKa3aTebCTB OCHOBAH Ha HCIOJL30BAHMH ONCPAHOHHOIO UCYHUCIICHUS
IUISL, TMHEHHBIX ONepaTopoB B mpocTpaHcTBe bamaxa [9]. IIpemmyInecTso 3TOTO
METO/A 3aKJIF0YaeTCsl B TOM, YTO IPU JOKAa3aTENbCTBAX CXOJMMOCTH MTEPAIMOHHBIX
MPOIIECCOB MOXHO OCBOOOMUTHCA OT NPEIIOJIOKEHUS CHMMETPU3YEeMOCTH pac-
CMAaTpPUBAaEMBIX OIIEPATOPOB.

VTepauoHHBIA MPOIIECC IPUBEACHHBINA B (14) " (15) ABJIseTCA 10 HOpME JOBOJIBHO
o0ImMM, Tak Kak OH 0000IIaeT OJHOBPEMEHHO DPsI YaCTHBIX MHTEPAIMOHHBIX MPO-
meccos [2], [3], [7], [8] [13], [14], [15], [16].

CX0qMMOCTh WTEPAMHAOHHBIX IPOLIECCOB SBIIAETCS CIEACTBHEM HEKOTOPBIX CIEK-
TPaJIbHBIX CBOMCTB pacCMaTPHBaeMBIX OHEPATOPOB.
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Bynem paccmaTpuBath omepatop T M OyaeM NMpeAnonaraTh CJACHYIOLIEE:

Ipennenoxenns. (a) OnepaTop T — JHHEHHBIN OrpaHIYEHHBIM ONlepaTop 0To6pa-
JKarouwmii 6aHaxoso npocTpancTtso X B cebs.

(b) 3HayeHme p, SABJIAETCS MOJIIOCOM ¢-HOM CTEHEHH pe30JibBeHTHl R(A, T).

(c) HepaBeHcTBO

©) ol > 121
cripaseuso s Beex A € o(T), 4 # po, rue oT) cuextp onepatopa T.

Mycte X’ compsbkennoe k X mpocTpancTBo ymHeHHBIX dopMm u X; = (X — X)
NIPOCTPAHCTBO JHHEHHBIX OrpaHHYeHHBIX oToOpaxenuit X B X. Hopmsl B X’ u B X,
orTpeiesieHbl OOBIYHBIM CIIOCO0OM.

OCHOBHBIM YTBEPXKICHUEM TIPH T0KA3aTEJILCTBE CXOJUMOCTH HTEPAOHHBIX MTPO-
LECCOB SABJISIETCS CIIEAYIOIIAS TEOpeMa :

Teopema 1. B nopme npocmparcmea X | umeem mecmo gopmyia
—q+1
9) limm-t+Hipgmm = Ko pg
m-> o0 (q - 1)'
20e B, onpedeasemcs ¢ nomowwio pada Jlopana pesoaveenmoi R(A, T) [9] 6 oxpecm-
HOCMU MOYKU [Ly:

R(A, T) =§;}(& — o) Ty, +él(x — Ho)* By

Iycrs mMeroTes nocuegoBatesibHocTh hopM {x,,}, {yn}, {2z} 13 mpocrparcrea X’
Takue, 4To B X’ CYyLIECTBYIOT X', ¥’ IJist KOTOPBIX
(10) x(x) = lim x,(x), y/(x) = lim y,(x) = lim z,,(x)
m-> oo m= o0 nm-=» oo
Ui Beex BEKTOpoB x € X.
Hycrs st x©© € X, Byx® = o (o HyzneBoii BeKTOp), TAaK 4TO CYIIECTBYET TAKOE S,
(1 <5< q)uro

(11) Bx® %0, B, xY=o0.
ITpenonaras, uro

(12) x(Bx®) £ 0, y(Bx?)*o,
TIOJIOXKAM

Bx®
13 Xo = e
03 o

Toraa urepaloHBBle mociemoBaTeabHocTH Kennora crposrca no ¢opmynam

(14) x("') = Tx("'”l) N X(m) = "'x—("")—‘ ’
)
ZI (x(m+ 1))
(15) o = )
( V(x™)
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Teopema 2. Ecau 0as gopm X, Yy, Zm, X', ¥' cnpasedausvr gopmyavt (10) u dan
sexmopa x'° cnpasedauser ycaoeus (11) u (12), mo 6 nopme npocmpancmea X

(16) lim X, = xo
u oaa (15)
(17) lim ”’(m) = Ho -

Bexmop x, onpedenennviii 6 (13) aganemea cobcmeennvim eexmopom onepamopa T,
COOMEEMCmMEYIOWUM COOCIMBEHHOMY SHAYEHUIO .

Kpowme nponecca (14), (15) paccMaTpuBaeTcs ATepAUMORHAS TIOCTEI0BATENLHOCTS,
YJICHBI KOTOPO# CTposATCs no hopMmyte

1
(22) Ym+1y = — Ty(m) 5
Hm)
rue
(23 Hemy = 2l D) ;
yrln(y(m))

TO €CTb /i,y OTIPE/IENeHHbIE GopMy.TOit (23) Te-xe cambie Kak B (15).

Teopema 3. ITycmv po npocmoii noaioc pezoaveenmst R(A, T) u nycmo svinoauens:
yeaogus meopemut 2. Kpome mozo nyemo 041 x € X

(18)  Ixp(x) — x'(X)] + ym(x) = Y3 + |zi(x) — y'(X)] £ ea(x)m™ 7%, 5>0.
Ilomom 6 nopme npocmpancmea X umeem (ecau koneuno Yo (Vimy) * 0, zp(Ymy) + 0)
(25) - hm y(m) =JYo>

m=* o0
20e yo cobcmeennbiii sekmop onepamopa T coomsemcmeyrouuii cobcmeenHoOMY 3Ha-
YeHuro, o u cnpagedauso pagercmeo (17).

Ecmu w3BecTHA KpaTHOCTb ¢ HOJIOCA Uy, MOXKHO HMCHOJIB30BATh 3TOT (baKT npu
BBITUCJICHHMSAX.

Teopema 5. Ecau d4s y,, u y’ cnpasedauso pasencmeo (10) das écex x € X, mo
lim pg™ {y,’,,(x("'*")) - (3) HoYm(x"+47D) L (= 1) u%y,’,,(x‘"")} =0.

B nsroif 1 mwecTo# 4acTAX pe3yNbTATHI YETBEPTON YACTH TEPEHECEHBI HA CIIyyail
XapaKTepUCTUYECKUX 3HAUYCHHI YpaBHEHMI THIIA

(28) Lx = ABx,
rae LB o0lLieM HeorpaHU4EHHBIH ONepaTop O0TOGpax)arolmit 061acTh ONpeae/ICHus
2(L)B X uBeX,.

B wactu wecroit MoryT GeiTh 06a omepatopa L, B B 0611eM HeOrpaHHYCHHBIMIU.
[penmonaraem ToJbKO, 4TO s obnactelt onpexenenns stux omepatopos P(L),

D(B) mmeer mectro 9(L) = D(B). B naroit wactm T = L'B (teopembi 6—8)
u B wectoit T = BL™* (teopemsr 9—11).
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