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AN INEQUALITY CONCERNING RANDOM LINEAR FUNCTIONALS
ON A LINEAR SPACE WITH A RANDOM NORM
AND ITS STATISTICAL APPLICATION

JAROSLAV HAJEK, Praha
(Received August 23, 1960)

It is shown that the norm of a mixed (averaged) linear functional with
respect to a mixed (averaged) norm in a linear space cannot exceed the mean
square norm of the random functional with respect to the random norm in
the linear space. Applications are given concerning projection (prediction
etc.) of random variables and linear estimation of regression coefficients in
stochastic processes.

1. THEORY

Let us have a complex linear space M = {x} and a probability space (4, %, F),
where % is a Borel field of subsets of A, and F(B), B e 4, is a probability measure.
Let s;, be a real function on A x M, representing for every fixed A a norm on M
and for every fixed x a measurable and quadratically integrable function of 1e A.

Further, let f;, be a function on A4 x M, representing for every fixed 1 a linear
functional on M, if M is normed by s,,, and for every fixed x a measurable’ function
of A. Let n,(f;) be the norm of f,,, if M is normed by s,,, 1 € A. We shall assume
that n,(f,) is a measurable and quadratically integrable function of A € A.

Put
(1) ' o, = \/(Esi,,) (xeM),
) 0. = Ef,e (xeM)

where E(.) = [(.)dF(2). Since |f,| < n,(f;) s, the integrability of f,, follows
from quadratic integrability of n,(f,) and s,,.

Theorem 1. The function o, given by (1) is a norm on M and ¢, given by (2)
is a linear functional on M, if M is normed by o,. Also

3) (o) < /[En}(f;)]

where V(@) denotes the norm of ¢, if M is normed by o,.
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If f,x = @4, A€ A, x € M, we have the following inequality

1
(4)
Proof. We have

N0 P —
BN EEN)

2 2 2
x+y = Esl,x+y é Esl,x + Esly + 2Eslxsly é

< Es?, + Es?, + 2./(Es},Es}) =

o2 + o> + 20,0, = (0, + 0,),

which shows that o, fulfills the triangle inequality. If o, = 0, then s,, = 0 for at
least one A, and hence x = 0. Finally, o,, = |a| o, follows directly from (1).

Now, additivity and homogeneity of ¢, follows from (2) and from the same
property of f,.. Boundedness of ¢ as well as (3) are implied by the following in-
equality:

9l < Elfad < Eny(f2) s £ V/[En(f3) Bsk] = o/[En3(f)] -

If f,, = o, then

62 = Es? = E—Iq)"|2 = |o,|*E
() n3(o)

which is equivalent to (4). The proof is completed.

Now we shall assume that the norms s,, are defined by an inner product s,,,
x,yeM, Ae A, i.e. that

(5) Six = /Six (XEM, LeA).
Then, provided that s;, are quadratically integrable, s,., are integrable and
(6) Oy = ESiny

is an inner product on M.
Suppose that the linear functionals f, and ¢ admit the representation
(n fax = Saxoy (XEM, 1€ A),
(8) Oy = Oy -
The elements v(4) € M, h € M, if they exist, are unique and will be called generating
elements of the linear functionals f, and ¢, respectively. For the existence of such

elements it is sufficient that M be complete with norms s,, and o,, i.e. that M be
a Hilbert space. As is well known,

(9) n(f)) = s (Ae4),
(10) V(o) = a,.

In view of (7) and (8), the relation (2) may be written thus
(11) O = ESjeory (x€M).
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Now we can improve (3) as follows:

Theorem 2. If the norms s, are defined by inner products s, and (7) and (8)
hold, then

(12) VZ((P) = E"%(fz) - Es%,h-—v().)
or, equivatently,
(13) 0;? = Esf,,u) - Esi,h—v(l) .

Proof. We have

(14) ) Esi,h—v(}.) = ES;.;(;.) + Es%h - Eslhu(),) - Eslhv(l) .

Now, in view of (1) and (11), Es}, = o7 and Es,,, = 0, = 62, and therefore,
also Es,,;y = 07 So (14) is equivalent to (13), which is equivalent to (12). The theo-
rem is proved.

2. APPLICATIONS

In what follows, the space M will consists of all finite linear combinations Yeux,,,
t, € T, of values of a stochastic process x,, t € T. We shall consider a system of second
moments

Sixy = '(xj/ dP, (e 4)

generated by a system of probability measures P,, Ae A, and assume that
fxdP, = 0, xe M, 1€ A. The inner product s,,, will be defined on the set K cons-
isting of all random variables having finite second moments with respect to all
measures P;, 1€ A. We suppose that M < K. We shall not complete the space M
by adding limit points, because the set of limit points may depend on 1 € A, which
causes complications unnecessary in this context.

Now we shall apply the derived inequalities in three situations:

2.1. Projections. If z € K, then

(15) f/lx = Sixz
is a linear functional on M normed by s,,, and d,, given by
(16) diz = S%z - ni(f}.)

represents the distance of z from M. If M is complete, then d,, is the distance of z
from its projection onto M.

Now consider a probability space (4, 4, F), suppose that all required measurability
and integrability conditions are satisfied, and put
(17) 62 = o7 — v¥(o)
where ¢ and ¢ are given by (1) and (2). Thus §, represents the distance of z from M,
when K is normed by o,. From (3) it follows that

(18) & 2 Edj, .
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If the operation of taking means with respect to dF is called mixing, then (18) may
be expressed thus: the square distance of z from M normed by mixed second moments
is not less than the mixed square distance.

Example 1. If M consist of all linear combinations of past values of a stationary
process {x,, t £ 0} and z = x,, © > 0, then (17) determines the minimum square
error of prediction. If we have

(19) Sixexs — b2r (t ; s) 0<i<

where b? denotes the variance, and

(20) r(w) =1 —jul, if |ul 1,
=0 otherwise ,

then (see [2]) we have
(21) di.. = b*(1 — r(z/2)).

To any distribution function F(A) with F(0) = 0 there corresponds a mixed correlation
function

22) R(u) = j:r G) dF(A)

for which the inequality (18) takes on the following form:
(23 2 2 b(1 - R(T).

As any convex correlation function with R(c0) = 0 may be represented in the form
(22), the inequality (23) remains true for any convex correlation function. This is
shown in the paper [2].

Example 2. If in (19) we take, instead of (20),
(24) ) = e
then, as is well-known,
(25) dy.. = b*(1 — e *%).

To any distribution function F(1) with F(0) = 0 there corresponds a mixed correlation
function

(26) R(u) = f "ol g (2)

0

for which the inequality (18) takes on the form
(27) 52 = b¥(1 — R(0)).

Thus (27) holds for any correlation function which is obtained by mixing exponential
correlation functions e~ "/,
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2.2. Linear estimation of regression coefficients. As is shown in [3], 1/n%(f) is
the variance of the best unbiased linear estimate & of the parameter « in a linear
model, where covariance of x, and x, is (independently of «) S¢,x, and the mean value
of x, is af,,. So, adjoining an index A, we have

1

(28) var (8;) = ——
where var (. ) denotes the variance, var (8;) = S5 I faxe = fo = @, the inequality (4)
yields
(29) var & > E var @,
where & corresponds to o, given by 1. 1t fix, = @,, = 1, t€ T, then a denotes the
mean value.

Example 3. The inequality (5.10) in [1].

Example 4. If x,, 0 <t < T,, is a stationary process with correlation function
b%e™ "% and « denotes the mean value, then, as is well-known,

2
(30) varg, =~ (0 < 2 < o).
2+ T,
Thus (29) gives
(31) var & > b? %
o 22+ T,

for any correlation function of form (26).

dF(2)

2.3. The general case. Let us have m linear functionals P15 ..., @, 0n M, and denote
by M,, the subset of M consisting of those elements for which

By P=c¢, (v=1,...,m)

where ¢y, ..., ¢, are fixed constants. Now let M,, — x, consist of elements x’ =
= X — Xo, Where x, is a fixed element from M,, and x is any element of M,,. Then,
clearly, M,, — x, is a linear space, and the distance of any element z € K from M,,
equals the distance of z — x, from M,, — x,. Thus the inequality (18) is applicable
in this general case also.

The scheme just described has the following statistical interpretation: We have
a process {x,, t € T} with a class of covariance functions s 1xxw A € 4, and a class of
m

mean values Zcxv(pm, where —o0 < ay,...,®, < co are unknown constants and
v=1

Pvt = @y, 1 = v £ m, are known functions. Observe that covariances do not depend

of ay, ..., o, and mean values do not depend of A€ A. Let us assume that the func-

tions ¢,,, can be extended to the whole space as linear functionals, which we denote

by ¢y, XeM,1 < v<m (then none of the «}s can be linearly estimated with zero

variance). Now, let us have a random variable z such that its mean value equals
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m

Y a,c, and that the covariances s,,,, do not depend on ay, ..., &,. Then M,, defined
v=1

by (31) consists of unbiased linear estimates of z (i.e. of elements of M having the
same mean value as z for any «ay, ..., «,) and the square distance of z from M,,
denotes the minimum possible residual variance in linear unbiased estimation of z
by elements from M, or from the closure of M. Especially, if z is a constant, z =

m
= Y a,c,, then the square distance denotes the minimum possible variance of linear
v=1 m
unbiased estimates of ) a,c,. In all such cases the residual variance (or simply vari-
v=1

ance, if z is a constant) satisfies the relation (18). For details see [4].
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Pe3rome

OB OJHOM HEPABEHCTBE, KACAIOIIEMCS CJIYUAMHBIX
JIMHEMHBIX ®YHKLIWOHAJIOB HA JIMHEMHOM ITPOCTPAHCTBE
CO CJIIVUAMHOM HOPMOU, U O ET'O IMTPUMEHEHUAX
B CTATUCTUKE

SPOCJIAB I'AEK (Jaroslav Héjek), Iipara

PaccMaTpuBaeTcsi CHCTeMa HOPM S;, M JIMHEHHBIX Qynknuonanos f;[(Ae A),
ONpe/IeNieHHbIX Ha JMHeHHOM mpocrparcTBe M = {x}. Vpasuenmsimu (1) u (2)
ONPEEIIACTCS. CPEHSSL HOPMA 0, U CPEJHMH JIMHEWHBIA (PYHKIHOHAI @,. IJokasbl-
BaeTcst HepaBeHCTBO (3), rae v(¢) — HopMma ¢, eciv B M BBesieHa HOpMA 0, a n,(f;)
03HaYaeT HOpMYy f;, eciiu B M BBefeHa Hopma s,. Ecnu f,, = ¢, He 3aBUCHT OT 4,
TO CIIPaBEUIMBO GoJlee CHIBHOE HepaBeHCTBO (4). Eciu HopMa s,, HaHA CKAJISPHBIM
NPOM3BEJCHAEM S, TO cHpaBe;uBbl cooTHoweHus (12) i (13). DTi pesymbTaTsl
NPUMEHAIOTCS K MPEIUKIUE CTAllHOHAPHOIO mpouecca, GYHKIUS KOPPEeSSIIUA KOTO-
pOro SsBJISIETCSI CMEChIO (DYHKIMHA KOPPEISIUn Rl(u) =max[0,1 — [ul/}_] H, Co-
OTBETCTBEHHO, R(u) = e 1"/ a satem Kk omenke Ko3UIMEHTOB perpeccHit
B JIMHEHHBIX MOJEISX.
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