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INTERNAL CHARACTERIZATIONS OF TOPOLOGICALLY
COMPLETE SPACES IN THE SENSE OF E. CECH

ZpENEK FRroLik, Praha

(Received August 12, 1960)

It is proved that a completely regular space P is topologically complete
(in the sense of E. Cch) if, and only if, there exists a complete diameter on
the space P, i.e. a non-negative real-valued function on subsets of P satisfying
certain axioms. Further internal characterizations are also given.

The terminology and notation of J. KeLLEy, General Topology, will be used
throughout. All topological spaces are supposed to be completely regular. For
convenience we shall use a few not quite common symbols and terms which are
listed below.

If U is a family of subsets of a space P, then the symbol U, or merely U, will be
used to denote the family of closures of all sets from % in symbols

A={4; 4eY}.
If A is a family of sets and M is a set, then the symbol & n M will be used to denote
the family {4 n M; A e U}. The union and the intersection of a family U will be
denoted by U % and N ¥, respectively. The family of all subsets of a set P will be deno-
ted by exp P. A centered family is a family U of sets having the finite intersection pro-
perty, i.e. such that the intersection of every finite sub-family is non-void.

A space R is an extension of a space P if P is a dense subspace of R; R is a proper
extension of P if R is an extension and R #+ P. The Cech-Stone compactification of
a space P will always be denoted by f(P).

1. COMPLETE DIAMETERS

Definition 1. A diameter on a space P is a non-negative mapping d of exp P into
the extended real line (i.e. the values of d are non-negative real numbers or o0) satis-
fying the following three conditions:

(dl) If M = N c P, then d(M) b d(N),
(d2) For every M < P, d(M) is the greatest lower bound of the set of all a(U)
with U open and containing M; in symbols: d(M) = inf {d(U); U open, U o M},
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(d3) d(M) = 0 for every one-point set M = (x).
Clearly, if d is a non-negative function on open sets satisfying (d1) and if we
put, for every M c P,
d(M) = inf {d(U); U open, U = M},
then we obtain a function satisfying both (d1) and (d2). From our point of view,
among these three conditions the most important one is (d3).

Note 1. If g is a non-decreasing upper-semicontinuous function defined for all
numbers x = 0 and oo and such that 9(0) = 0, then for every diameter d on a space P
the superposition g o d is a diameter on P. If d, and d, are diameters on a space P,
then d = min (d,, d,) is a diameter also. If ¢ is a pseudometric on a space P, then
the function d on exp P defined as follows is a diameter on P:

d(2) =0, d(M) = sup {o(x,y); xe M, ye M} .
This diameter will be termed generated by ¢. If f is a continuous real-valued function

on a space P, then ¢(x, y) = |f(x) — f()| is a pseudometric on P and the diameter
generated by ¢ will be termed generated by f.

Definition 2. Let d be a diameter on a space P. A d-Cauchy family is a centered
family of subsets of P for which inf {dM); MeM} =0. A diameter d on a space
P is said to be complete, if for every d-Cauchy family % we have AM + 0.
A diameter d is said to be g-complete, if for every countable d-Cauchy family M

we have M + 0.

Proposition 1. Let d be a diameter on a space P and let d(M) = 0.If d is complete,
then the closure of M is compact. If d is a-complete, then the closure of M is count-
ably compact.

Proof. The space P being completely regular and hence regular, to prove compact-
ness of M it is sufficient to show that for every centered family I of subsets of M
the intersection of N is non-void. But every centered subfamily of exp M is a d-Cauchy
family. The first assertion follows by completeness of d. The second assertion can
be proved analogously.

Clearly every complete diameter is o-complete. Of course, not every o-complete
diameter is complete. Indeed, d = 0 is a diameter on every space. It is easy to see
that the diameter d = 0 on a space P is complete if and only if P is a compact space.

. Analogously, d = 0 is g-complete if and only if P is a countably compact space.

Every diameter d generated by a pseudometric satisfies the following condition

(d4) d(M) = d(M).
If d is a diameter on a normal space P and if we define
M < P =d(M) = d(M)

then d, is a diameter on P. Since d,(M) > d(M), if d is complete then d, is complete.
On the other hand, if d, is complete, then d satisfies the following condition
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(C) If §is a d-Cauchy family consisting of closed sets, then the intersection of &
is non-void.

If (P, ¢) is a complete metric space and if (R, y) is a metric space containing P
as a dense subspace and P + R, then @ is not a restriction of ¥, i.e. ¢ has no exten-
sion over any proper metrizable extension of P. Conversely, if (P, @) is a metric
space, and ¢ has no extension over any proper metrizable extension of P, then (P, 9)
is a complete metric space. Now we shall investigate relations between complete
diameters, “non-extensible” diameters and diameters satisfying condition (C).

Definition 3. Let R be an extension of a space P and let d be a diameter on P.
A diameter D on R will be called an extension of d if d is the restriction of D to exp P,
i.e.if D(M) = d(M) for every M < P. A diameter d on a space P will be called non-
extensible if there exists no extension of d over any proper extension of P,

Proposition 2. If a diameter d on a space P satisfies the condition (C), in particular,
if d is complete, then d is non-extensible.

Proof. Let D be an extension of a diameter d on a space P onto a proper exten-
sion R of P. We have to prove that d does not satisfy condition (C). Forevery M = R
let us define

D((M) = inf {d(U n P); U openin R, U > M} .

Evidently D, satisfies the conditions (d1) and (d2) of Definition 1. Clearly D\(M) =
< D(M) for every M < R. It follows at once that D, satisfies the condition (d3) also.
Thus D, is an extension of d. Let U be the family of all closed neighborhoods of
a point x € R — P. By (d2) and (d3) U is a D,-Cauchy family. According to the de-
finition of D, the family 2 N P is a d-Cauchy family. But

N¥=()=R-P,
and consequently, the intersection of 9 N P is empty. Thus d does not satisfy con-
dition (C).
The following example shows that a non-extensible diameter may fail to be com-
plete.

Example 1. Let P be the space of all countable ordinals and let J be the set of all
isolated points of P. For every M — P put d(M) = 0 if M — J is countable and
d(M) = 1in the other case. It is easy to see that d is a diameter on P. The diameter d
is not complete, because if we put J, = {&¢€ed, &> a), ae P, then d(J,) = 0 for
every « in P and

' N{J; aeP}=0.
On the other hand the diameter d is non-extensible. Indeed, the only proper extension
of P is the space R of all ordinals « < ;. Now if D is a diameter on R, then

D{& a<é<w))=0

for all sufficiently large « € P. Thus D is not an extension of d.
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Proposition 3. If d is a non-extensible diameter on a space P and if S is an
extension of P, then P is a Gs-subset of S.

Proof. For every positive integer n let U, be the union of all open subsets U of S
for which d(U n P) < 1/n. The sets U, are open and (| U, = P. Indeed, clearly d
) n=1

has an extension over R = N U, (consider the diameter D, from the proof of Pro-
n=1 .

position 2).

Proposition 4. Let P be a Gs-subset of a space R. If there exists a complete dia-
meter on R, then there exists a complete diameter on P.

Proof. Let D be a complete diameter on a space R. Let d, be the restriction of D
to exp P. There exists a sequence {U,} of open subsets of R such that

P=NU,.
n=1

For every open subset U of P let

d,(U) = inf {l ; UR < U,,} ,

n

and for every M < P put
d(M) = inf {d(U); U openin P, U > M},
d(M) = max [d,(M), dy(M)].
Evidently d is a diameter on the space P. We shall prove that d is complete. Let I
be a d-Cauchy family. By definition of d, M is a d;-Cauchy family, and consequent-
ly M is a D-Cauchy family. D being a complete diameter, the intersection of MR is
non-void. Since M < exp P, to.prove \ M” =+ 0 it is sufficient to show that
AMR <P

But this is a consequence of the fact that I is always a d,-Cauchy family. Indeed, for
every positive integer n there exists an M, in I with

dy(M,) £ d(M,) ]-,
n
i.e., by definition of d,, MX < U,. Thus

NMi=NU,=P,
n=1 n=1

which completes the proof of proposition 4.

It as easy to prove the following.

Proposition 5. If d is a complete diameter on a space P and if F is a closed subset
of P, then the restriction of d to exp F is a complete diameter on F.

As an immediate consequence of the preceding theorems and_propositions we
have the following theorem:
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Theorem 2. The following conditions on a space P are equivalent:

(1) There exists a complete diameter on P.
(2) There exists a non-extensible diameter on P.
(3) P is Gy in every extension.

(4) P is Gy in some space on which there exists a complete diameter.
(5) Pis G, in B(P).

Definition 4. Every space satisfying the equivalent conditions (1)—(5) of Theorem 2
is said to be topologically complete in the sense of E. Cech,

Note 3. Topologically complete spaces were introduced by E. Cech in [1]. E.
Cech defined these spaces by condition (5). The first internal characterization of
topologically complete spaces (i.e. without reference to extensions) was given in [2]
in terms of complete sequences of open coverings. (In [2] topologically complete
spaces are called Gy-spaces.) In [3] an internal characterization using relations
of completeness is given. The equivalence of both characterizations will be proved
in section 2. For further properties of topologically complete spaces see [4].

The remainder of this section is devoted to the proofs of some assertions concerning
diameters. First we shall prove an analogue of Cantor’s theorem concerning complete
metric spaces.

Proposition 6. Let d be a complete diameter on a space P. Let M be a centred
family of sets such that for every ¢ > 0 there exists an M in M and a finite subfa-
mily M of P with

* M c UM, d(N) <e forevery Ne9.
Then the intersection of M is non-void.

Proof. Let § be a maximal centered subfamily of exp P containing M. It is suffi-
cient to prove that § is a d-Cauchy family. Given an ¢ > 0, we have to find an M
in § with d(M) < &. There exists a finite subfamily N of exp P with (*). § being
a maximal centered family, for every M < P either M or (P — M) belong to &.
It follows that some N € M belongs to §. Indeed, in the other case (P — N)e§ for
every N € N, and consequently, since () N belongs to 5,

M=[UNAN{P —-N); NeN}]eF;
this is impossible, since § is a centered family and the set M is empty. The proof is
complete.

As an immediate consequence of the preceding proposition we deduce at once the
following

Theorem 3. Let d be a complete diameter on a space P. For every M < P let d(M)
be the greatest lower bound of the set of all ¢ > O for which there exists a finite
subfamily N of exp P such that M = (N and d(N) < & for every N e W. Then d
is a complete diameter on the space P.
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Theorem 4. A o-complete diameter on a space P satisfies the condition (C) if and
only if the following condition is fulfilled:

(K) If F is a closed subset of P and d(F) = 0, then F is a compact subspace of P.

Proof. Clearly the conditioff"f(K) is necessary. Conversely, suppose (K). Let §
be a d-Cauchy family consisting of closed sets. Without loss of generality we may
assume that § is a maximal centered family of closed sets. To prove NG+ 0itis

sufficient to show that § contains a compact set. Choose F,e§, n = 1,2, ..., such
that d(F,) < 1/n

Put F = ) F,. From (d1) we have d(F) = 0. According to (K), the subspace F is
n=1
compact. It remains to prove that F € §. But if M e &, then from the g-completeness

of d it follows at once that ) (F, n M) % 0, which completes the proof.
n=1

Theorem 5. A diameter on a space P is complete if and only if the following
condition is fulfilled:

(L) If {M,} is a sequence of non-void subsets of P such that M, > M, ., n =

=1,2,....andlim d(M,) = 0, then K = (\ M,, is a non-void compact subspace of P.

Proof. Let us suppose that the condition is fulfilled.

Let M be a d-Cauchy family. To prove NM + 0 it is sufficient to find a com-
pact subspace K of P such that I N K is a centered family. Choose M, in M with

lim d(M,) = O and put K = () M,. According to (L), the subspace K of P is compact.
n=1

n—= oo

If M is a finite subfamily of M, then lim d(M, n N N) = 0 and hence

n— oo
C=NM, 0N
n=1
is a non-void (compact) subspace of P. But
CcKnnM.

Thus M A K has the finite intersection property. The proof is complete.

A centered family M of subsets of a space P will be called completely regular, if
for every M in 9 there exists an N in I such that N and P — M are completely
separated.

Theorem 6. A diameter d on a space P is non-extensible if and only if the inter-
section of every d-Cauchy completely regular family is non-void.

The proof is quite standard (see the proof of proposition 2) and may be left to
the reader.
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2. COMPLETE SEQUENCES OF OPEN COVERINGS AND RELATIONS
OF COMPLETENESS

For convenience we shall recall definitions of complete sequences of open coverings
(see [2]) and relations of completeness (see [3]).

Definition 5. A sequence {¥,} of open coverings of a space P is said to be complete
if the following condition is fulfilled:

(cl) If A is a centered family of open subsets of P such that 4 ~ A, + 0 for every
n =1,2,..., then the intersection of ¥ is non-void.

It is easy to see that this condition is equivalent to the following condition:

If M is a centered family of subsets of P such that M A A, == 0 for every n =
= 1,2,..., then the intersection of M is non-void.

Indeed, if 9 is the family of all open sets A containingan M € M, then N ¥ = M,
because in every space any closed set is the intersection of all its closed neighbour-
hoods.

If there exists a complete sequence {%®,} of open coverings it is easy to construct
a complete sequence {,} of open coverings such that

(2 Y >U, > ...

(c3) If an open set B is contained in some A e, then B belongs to 9,

Now let o = {2,} be a sequence of open coverings satisfying (c1) and (2). For
every open set U put d(U) = 1if U ¢ U,; in the other case put

d(U) = inf{l—; Ue m} .

n
Now for every M < P put

d(M) = inf {d(U); U open, U > M} .

It is easy to see that d is a diameter on the space P. This diameter will be denoted
by d,.

Proposition 6. A sequence o = {,} that satisfies (c1) and (c2) is complete if and
only if the diameter d, is complete.

The proofis quite straightforward and may be left to the reader.

Now let d be a diameter on a space P. For every positive integer n let U, be the
family -of all open sets 4 for which d(A) < 1/n. Tt is easy to see that o = {W,} is
a sequence of open coverings. This sequence will be denoted by a,. It is easy to prove
the following proposition:

Proposition 7. The sequence oy is complete if and only if d is a complete diameter.

Using propositions 6 and 7 it is easy to deduce properties of complete sequences
of open coverings from the corresponding properties of complete diameters, and
conversely.
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Definition 6. A relation of completeness on a space P is a binary relation r defined
for open subsets of P such that

(r1) (A, B) implies 4 > B,

(r2) If (A, B), C and D are open, C > A4 and B o D, then r(C, D),

(r3) If A4 is a non-void open set, then the family {B; (A4, B)} is a base for open
subsets of A4.

(r4) If M is a centered family of sets such that for every positive integer n there
exist Ay, ..., A,4y with r(4;, A;,,) for all i = 1,2,...,n and A,,, e M, then the
intersection of M is non-void.

Now let r be a relation of completeness on a space P. For M < P let d(M) be the
greatest lower bound of the set of all 1/n for which there exist Ay, ..., A,4q, such
that A,,; > M and r(4;, 4;4,), i = 1,..., n. If no such n exists, let dM) = 1. It
is easy to see that d is a complete diameter on the space P.

Conversely, let d be a complete diameter on a space P. For every pair of open sets U
and Vlet r(U, V) if and only if U > Vand

2d(V) < min (1, d(U)) .
It is easy to see that r is a relation of completeness on the space P.
Using the preceding two facts it is easy to deduce properties of relations of comple-

teness from corresponding properties of complete diameters. Combining the above
results we obtain the following theorem

Theorem 6. The following conditions on a space P are equivalent:
(1) P is topologically complete.

(2) There exists a complete sequence of coverings of P.

(3) There exists a relation of completeness of P.

3. DIAMETERS GENERATED BY PSEUDOMETRICS

Let f be a continous mapping of a space P onto a metric space (R, ). If for every x
and y in P we put

(*) o(x, y) = ¥(f(x), £(¥)),
we obtain a pseudometric ¢ on P. Conversely, if ¢ is a pseudometric on a space P,
then there exists a continuous mapping f of P onto a metric space (R, ¥) such that (*)
. holds.

A mapping of a space P onto a space Q is said to be closed if the images of closed
subsets of P are closed subsets of Q. We shall prove the following proposition:

Proposition 8. Let f be a continuous mapping of a space P onto a space (R, y)
and let ¢ be the pseudometric on P defined by (*). If the diameter d on P defined
by ¢ (see Note 1) is c-complete, then the metric space (R, ¥) is complete, f is a closed
mapping and the inverses of points are countably compact. Moreover, if dis comple-
te, then the inverse inverses of points are compact.
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Proof. First let us suppose that the diameter d is complete. Evidently (R, Y) is
a complete metric space. Now let us suppose that F is a closed subset of P and that
there exists a point y in & — @, where @ = f[F]. Let % be a countable base at the
point y. Denote by M the family of all f7'[N], NeM. Evidently 9 is a d-Cauchy
family. Since ye & — &, M A Fis a d-Cauchy family. According to the g-complete-
ness of d we have

FanNM+0.
But N N = (y), and by continuity of f
InM = nn
which is a contradiction. Thus fis a closed mapping. The countable compacteness of

inverses of points is a consequence of proposition 1. If d is complete, then the com-
pacteness of inverse of points also follows from Proposition 1.

Proposition 9. Let f bea closed and contiunous mapping of a space P onto a metric
space (R, ) such that the inverses of points are compact. If (R, ¥) is a complete
metric space, and if ¢ is defined by (*), then the diameter d generated by ¢ is
complete.

Proof. Let M be a maximal d-Cauchy family. The family of all fIM], MeMm,
will be denoted by N. From (*) it follows that N is a Cauchy family in (R, ). Thus
NN = (»), when y is a point of R. Consider the compact subspace Kf=y]
of P. To prove that the intersection of M is non-void, it is sufficient to show that
M N K is a centered family. M being a maximal centered family, it is sufficient to
show that M n K + @ for every M in M. Since f is a closed mapping, we have
fIM] = f_[—J\T] Thus M n K + 0, since f[K] = f[M]. The proof is complete.

As a consequence of the preceding two Propositions we have the following
theorem:

Theorem 7. Given q space P, there exists a complete diameter generated by
a pseudometric if and only if there exists a continuous and closed mapping of P
onto a metrizable topologically complete space such that the inverses of points are
compact.

Let us recall that a Hausdorff space P is said to be paracompact if every open
cover of P is refined by and open locally-finite cover. It is easy to see that a Hausdorff
space P is paracompact if and only if every finitely additive open cover of P is refined
by an open locally-finite cover. From this note there follows at once the following
well-known '

Proposition 10. Let f be a continuous and closed mapping of a Hausdorff space P
onto a space Q such that the inverses of points are compact. If Q isa paracompact
space, then P is a paracompact space.

Proof. Let U be a finitely additive open cover of P. Let B be the family of all
subsets of Q of the form B(4) = Q — f[P - A] for all A in . The mapping f being
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closed, the sets B(A) are open. Since U is additive and the inverses of points are com-
pact, the family B covers Q. Since Q is paracompact, a locally-finite open covering %
of Q refines B. The family of all sets of the form S7UC], Ce%, is a locally-finite
open covering of P refining 2. According to the above note the space P is para-
compact.

Since every metrizable space is paracompact, from the preceding Proposition and
the Theorem 7 it follows at once that if there exists a complete diameter generated
by a pseudometric on a space P, then P is a paracompact space.

Conversely, let P be a topologically complete paracompact space. We shall prove
that on P there exists a complete diameter generated by a pseudometric. P being
complete, there exists a complete sequence {2} of open covering of P. Since P is
paracompact, every covering U, is normal, i.e., there exist sequences {Bx(n)}z,
of open coverings of P such that %B,(n) refines I, and By 1(n)is a star-refinement
of By(n). Let us define by induction: B, = B,(1), B, is the family of all sets of
the form B n A, with Be B, and 4 €D, 4(n + 1). Evidently {®,} is a normal
sequence of open covering, i.e., ¥,,, is a star-refinement of ®B,. Since every B,
refines 3, the sequence {B,} is complete. The sequence {®B,} being normal, according
to Frink’s lemma there exists a pseudometric @ in P such that for every n there is
an ¢ > 0 such that the covering consisting of all @-spheres of the diameter less than ¢
refines B, and for every ¢ > 0 there is an 1 such that B, refines the covering consisting
of all ¢-spheres of diameter less than . Since {®,} is a complete sequence, it follows
at once that the diameter generated by ¢ is complete; this ends the proof.

Combining the the preceding result with Theorem 7 we obtain:

Theorem 8.") The following conditions on a space P are equivalent:

(1) On P there exists a éomplete diameter generated by a pseudometric.
(2) P is topologically complete and paracompact.

(3) There exists a closed and continuous mapping of P onto a complete metrizable
space such that the inverses of points are compact.

4. FURTHER SPECIAL TYPES OF DIAMETERS

It is easy to see that a space P is compact if and only if the constant function d = 0
on exp P is a complete diameter. It is easy to prove that a space P is locally compact
if and only if there exists a complete diameter on P such that d(M) is either 0 or 1.
Indeed, if we put .

0 if M is a compact,
d(M) = 1 in the other case,

1) Added in proof: For further information see Zp. FroLik, On the Topological Product of
Paracompact Spaces. Bull. Acad. Pol. Sci. 1960, 747 —750.
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then P is locally compact if and only if d is a complete diameter on P (if d is a dia-
meter, then d is a complete diameter).

Now we shall investigate diameters generated by continuous real-valued functions.
Let d be the diameter on a space P generated by a continuous real-valued function f
(See Note 1). Let d be the diameter defined in Theorem 5. If d(M) is finite, then d(M)=
= 0. Indeed, let ¢ > 0. If d(M) is finite, then the set f[M] is bounded, and conse-
quently there exists a finite covering N of f[M] consisting of intervals with length
less than e. Clearly

TeN=d(f'[I]) <e
and

Men{f 1] 1en}.

Thus d(M) < &, which completes the proof. From this fact and Theorem 5 we deduce
at once the following

Theorem 9. A space is compact if and only if there exists a complete diameter
generated by a bounded continuous real-valued function. A space is locally compact
and o-compact (the union of a countable number of compact subsets) if and only
if there exists a complete diameter generated by a continuous real-valued function.

If {f,} is a sequence of continuous functions and if we define a pseudometric ¢ as
follows, ‘

o v 115 = £,
o, y) P L+ 1Ax) = £

then the diameter d generated by ¢ is said to be generated by the sequence { fu}-
The following theorem may then be proved (see [4]).

Theorem 10. A space P is the intersection of a countable number of N-sets in
the Cech-Stone compactification B(P) of P if and only if there exists a complete
diameter d generated by a sequence of continuous Sfunctions.

Note. A subset M of a space P is said to be a N-set of P if there exists a continuous
real-valued continuous function f on P with

M = {x; xeP, f(x) + 0}.
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Pe3rome

BHYTPEHHUE XAPAKTEPU3ALIMU TOTIOJIOTMUECKU IMOJIHBIX
IMPOCTPAHCTB B CMBICJIE 3. YEXA

3JEHEK ®POJIUK (Zden&k Frolik), IIpara

BriosiHe pery/isipHoe TOMOJOrHYeCKOe NPOCTPAHCTBO P HAa3bIBAIOT TOMOJOrMYECKH
TIOJIHBIM B cMbIciie J. Uexa, ecn P sBiisieTcst G;~MHOXECTBOM B CBOEM YEXOBCKOM
pacumpenud B(P). B HacTosumelt paGoTe TOMOJOTHYECKH MOJIHBIE NMPOCTPAHCTBA
XapaKTepU3ylOTCsSL NpU MOMOLIM TaK Ha3. MOJIHOro auamerpa. IuamMeTpoM Ha
MpPOCTPaHCTBe P Ha3biBacTCA TakKas HEOTpPHILATENIbHASL BelUECTBeHHas (GyHKuus d,
omnpeneneHHas js Bcex M < P, 4ro

(1 M c N =d(M) < d(N),
(2 d(M) = inf {d(U); U > M, U otkpsiTo} ,
(3) d((x)) =0 pmnst Bcex xeP.

Lientpuposannas cucrema U MOIMHOXECTB NPOCTPAHCTBA P HA3bIBAETCS CHCTEMOI
Kommu oTHOCUTENBHO AnameTpa d, eciu

inf {d(A4); Ae¥U} =0,

auaMeTp d Ha TPOCTPAaHCTBE P HAa30BEM MOJHBIM, €CJIM IS BCSKOM CHCTEMbI
Ko A
N{4; AeU} + 0.

Oxa3pIBaeTcs, YTO BIIOJIHE PETYJISPHOE MPOCTPAHCTBO P ABJISAETCA TOMOJIOIMYECKH
NOJHBIM B cMbIciie D. Yexa Toraa u TOJBKO TOTAQ, €CJIM CYIIECTBYET HEKOTOPBIi
NOJHBIA quaMeTp Ha P. [lanee B paboTe paccMaTpUBalOTCS HEKOTODbIE ApYrue
BHYTPEHHHE XapaKTepH3alUH TOIOJOrMYECKH IOJHBIX MPOCTPAHCTB U HEKOTOPBIC
CreLHabHbIC THITbI muaMeTpoB. Hamp, ecin st HEKOTOPO# MCEBIOMETPHKA ¢
B npoctpaHcTBe P mosioxum miuss M < P

d(M) = sup {¢(x, y); xeM, ye M},
d@) =0,

To d Oyner guamMeTpoM Ha P, KOTOPBIA MBI HA30BEM JMAMETPOM, MOPOXKIEHHBIM
NCEBOOMETPUKOH (. OKa3bIBaETCS, UTO IJISI CYILECTBOBAHMUS HA BIIOJIHE PETYJIAPHOM
NPOCTPAaHCTBE P MOJHOTO JUaMeTpa, MOPOXAEHHOTO MCEBAOMETPHKOM, HE06X0au-
MO M JOCTaTOYHO, YTOOBI P OBLIO TOMOJIOTMYECKH MOJHBIM TAPAKOMIAKTHBIM NPO-
CTpaHCTBOM; ‘
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