Czechoslovak Mathematical Journal

Jaroslav Hjek
On linear statistical problems in stochastic processes

Czechoslovak Mathematical Journal, Vol. 12 (1962), No. 3, 404-444

Persistent URL: http://dml.cz/dmlcz/100528

Terms of use:

© Institute of Mathematics AS CR, 1962

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100528
http://dml.cz

YexocoBaukHii MareMaTHHeCKHi xKypras, T. 12 (87) 1962, Ilpara

ON LINEAR STATISTICAL PROBLEMS IN STOCHASTIC PROCESSES

JArROsLAV HAJEK, Praha

(Received August 2, 1960)

A unified theoretical basis is developed for the solution of such problems
as prediction and filtration (including the unbiased ones), estimation of
regression parameters, establishing probability densities for Gaussian
processes etc. The results are applied in deriving explicit solutions for statio-
nary processes. The paper is a continuation of [17], [18], [19] and [20].

1. Introduction and summary. Linear statistical problems have been treated in
very many papers. Most of them are referred to in extensive monographies [28] and
[29]. No doubt, the topic has attracted so much attention because of its great practical
and theoretical interest. The aim of the present paper is to contribute to developing
a unified theory and to provide explicit results for some particular classes of stationary
processes.

In Section 2 we introduce closed linear manifolds generated by random variables x,
and covariances R, respectively, and study their interplay. We also discuss the
abstract feature of a linear problem and enumerate some possible applications. In
Section 4 we analyse conditions under which the solution of a linear problem may
be interpreted in terms of individual trajectories (i.e. not only as a limit in the mean).
Section 5 contains explicit solutions for a finite segment of a stationary process with
a rational spectral density. With respect to previous papers [7], [8] and [9] on this
topic, our results exhaust all possibilities, are more explicit, and we indicate when
they may be interpreted in terms of individual trajectories. The last two sections are
devoted to Gaussian processes. We define strong equivalency of normal (i.e. Gaussian)
distributions of a stochastic process and study the determinant and quadratic form
defining the probability density of a normal distribution with respect to another one,
stongly equivalent to it. In Section 7 we present explicit probability densities for
stationary processes with rational spectral densities.

2. Basic concepts and preliminary considerations. Let {x,, te T} be an arbitrary
stochastic prccess with finite second moments. Suppose that the mean value Ex,
vanishes, t € T, and that the covariances of x, and x, equal Ex, X, = R(x,, x;) = R,,,
teT, seT. Let 2 be the closed linear manifold of random variables consisting of
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finite linear combinations chx,", t,€ T, and of their limits in the mean. Obviously,
the covariance of any two random variables x, y € Z, say R(x, y), is uniquely de-
termined by R,,, te T, se T, and the mean value of any random variable x € &
equals 0. The variance of x will be denoted either by R(x, x) or by R*(x). The closed
linear manifold Z is a Hilbert space with the norm R(x) and inner product R(x, ).
As usually, random variables x, y such that R(x — y) = 0 are considered as identical.

Let U be the following mapping of % in the space of complex-valued functions,
@, teT:

(2.1) (Uv), = R(x,,v) (ve&; teT),

where R(x,, v) = @, is considered as a function of t € T. Let @ be the set of functions ¢
such that ¢ = Uv for some v € &, i.e. such that ¢, = R(x,, v). Obviously Uv; = Uv,
implies v; = v,, so that there is an inverse operator U™!, U™ o = v, o € ®. If we
introduce in @ the norm Q(¢) = R(U™'¢)-and the inner product

(22) 0¥, 9) =R(U "0, U™"Y) (9, ¥€9),
the mapping U will be unitary (i.e. isometric and one-to-one) and @ also will be

a Hilbert space.

If R® = R, is considered as a function of ¢ only, and s is fixed, we have U "R, = x_,
and

.3) O(R*,R) = R, (t,seT).
. Obviously
(2.4) ¢, = 0(p,R") (teT),

so that Q(¢") —» 0 implies ¢} — 0 in every point ¢t € T. Clearly, @ consists of finite
linear combinations Y ¢,R"™ and of their limits in the Q-norm.

Definition 2.1. We shall say that 2 and &, or, more explicitely, (%, R) and (9%, 0%),
are closed linear manifolds generated by random variables x, and covariances R,,,
respectively.

To any bounded linear operator A defined on & there corresponds a bounded linear
operator A on @ defined by the following relation:

(25) (4¢), = R(Ax,, U™ 'p) (pe®),

where U ™! is the inverse of the unitary mapping (2.1) of & on ¢. We may also write
Ap = UA*U ™' ¢, where A* is the adjoint of A. Also conversly, to any linear opera-
tor A defined on @, there corresponds an operator 4 on & defined by the relation
Ax = U~ '4*Ux. Obviously, 4B = BA. In what follows we shall omitt the bar so
that any bounded linear operator A will be considered as defined on both spaces @
and Z. We have to bear in mind, of course, that AB in & must be interpreted as BA
in @, and vice versa.

Let %, be the set of all finite linear combinations Y ¢,x, . Let Z* be the closure
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of Z, with respect to a covariance R*, and A be an operator in Z*. Let R be
another covariance. If

(2.6) R(x, y) = R*(A4x, Ay), (x,yeZ,)
then
(2.7) R(x) £ kR*(x),

where k = ||A|| and |4 is the norm of A. Conversly, (2.7) implies existence of
a bounded, positive and symmetric linear operator A in Z* such that (2.6) holds.
Actually, if y is fixed, then R(y, x) represents a linear functional in 2 *, and, con-
sequently R(y, x) = R*(z,x), xe Z*. On putting z = By and A = B'/?, we get
the needed result. Obviously
R(x x)
R*(x,x)

Definition 2.2. If (2.7) is satisfied, we say that the R-norm is dominated by the
R*-norm.

28) 18] = sup

Lemma 2.2. Let A be a bounded linear operator in the closed liner manifold &
generated by random variables z,, te T, and let X be the closed linear manifold
generated by random variables x, = Az,, t € T. Let (9%, Q%) and (9%, Q) be closed
linear manifolds generated by covariances R/ = R(z,, z,) and R, = R(x,, x,),
respectively.

Then @* < ®*. Moreover, ®* consists of functions expressible in the form ¢ = Ay,
x € @, and

(29) ' (b, 9) = (A 'Y, A '0),
where the function, A;' ¢, ¢ € &%, is uniquely determined by the conditions
(2.10) A(A7'e), = ¢, and (A7'@), = R(z,,v), veZ.

Proof. If ¢@e®*, then ¢, = R(Az,, v) = AR(z,,v) = (Ax),; and conversly
AR(z,,v) = R(x,, v) € @~. If we suppose that v € Z, then v is determined by R(x,, v)
uniquely, and (45 '), = R(z,, v) is a unique solution of (2 10). The proof is accom-
plished.

Remark 2.1. From Lemma 2.2 it follows that ®* = &* if R and R* dominate
each other.

The values ¢, of every ¢ € @ may be considered as values of a linear functional
f(x) = R(x, U™ ') in the points x = x,, t € T. On applying the well-known extension
theorem ([32], § 35), we get the following result.

Lemma 2.3. 4 function ¢, belongs to @ if and only if there exist a finite constant k
such that for any linear combination,

(2‘11) |ch(Ptv
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Example 2.1. Let the family {x,, t € T} be finite, {x,,te T} = {x,, ..., x,}, and
let the matrix (R;;), R;; = R(x;, x;), 1 < i, j < n, be regular. Then & consists of
all functions ¢ = ¢;, 1 £i < n, and

(2.12) 0¥, 0) = Y3 0:0;Qi;»
where (Q;) is the inverse of (R;;, (Q;;) = (R;;)~'. Moreover
(2.13) UTlo = Y3 xip,Qi;-

Now, consider the x;s as functions of an elementary event w € . Then, for a fixed w,
the sample sequence (trajectory) x,(w), ..., x,(w), represents a function of i, 1 < i <
< n. If we denote the latter function by x“, then (2.13) may be rewritten in a form
dual to (2.1)

(2.14) (U_l(p)m = Q(x‘”, (p) .

Proof. In view of (2.3) and (2.4), the formulas (2.12) and (2.13) are clearly true
for ¢ = R* and Y =R, 1=t s<n,and the general case may be obtained on
putting ¢ = ZCR” Y = ZdR”

The determmatlon of 45 and (¥, @), and the solution of the equation Uv = ¢
constitute what will be called a linear problem. If T'is a finite set, then, as we have
seen in Example 2.1, the linear problem is equivalent to inverting the covariance
matrix.

Remark 2.2. If Ex, does not vanish, then R(x, y) = Exy —ExEy, and, generally,
R(x) = 0 is compactible with Ex # 0. Consequently, R(x — y) = 0 does not imply
that x = y with probability 1. This difficulty does not arise, if ¢, = Ex,, te T,
belongs to @, because then Ex =+ 0 only if R(x) > 0, in view of
(2.15) Ex =,R(_x, U 'y).

So, if necessary, the above condition Ex, = 0 may be replaced by a more general
condition Ex, € @. If, and only if, Ex, € ®, Ex represents a linear functional on (33”, R).
Now, let us show in what kinds of applications the linear problems appear.

Application 2.1. Let y be a‘random variable not belonging to . The projection
of y on Z, say Proj y, is given by

(2.16) Proj y = UT'R(x,, y) -

In particular circumstances, the projection is called prediction, interpolation, fil-
tration, or a regression estimate.

Application 2.2. Let ¢, ..., ¢,, be known linearly independent functions be-
longing to @, and let the mean value of the process depend on an unknown vector
o= (ag,... ®,), where oy, ..., o, are arbitrary real or complex numbers, so that

(2.17) Baxy = 3 0 -
=
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" Let us choose linear estimates &; of the a‘s which are best according to an arbitrary
criterion with the following property: E .0 = E,®' for any « and R(@) < R(®)
imply that © is a better estimate then @’ (recall that R?(.) denotes the variance).

Then the vector & = (8, ..., 4,,), where the &,s are the best linear estimates of the
as, has the form

(2.18) & =Cv,

where v = (U™ !¢y, ..., U '¢,) and C is a matrix which depends on other properties

of the mentioned criterion. If we postulate that the estimate should be unbiassed and
of minimum variance, then C = B™', where B = (Q(¢;, ¢,)). If we postulate that
the mean value of E,|&; — o;|*> with respect to an apriori distribution of «,, ..., «,,
should be minimum, then C = (B + D™!)7!, where D = (E, ;1) and E,(.)
denotes-the apriori mean value. In the former case B~ ! also represents the covariance
matrix of the vector (&, ..., 8,,), and in the latter case (B + D~ !)™! also represents

the matrix with elements Eap E(4; — a)) (&k — o). The main idea of the proof is as
follows: From (2.15) it follows that Ex = Z a;R(x, U™"g;), so that projection of

any estimate O on the subspace %, spanned by U '¢,...,U ¢, hasthe same mean
value as @ for any a, and, if & does not belong to ,,,, has a smaller variance. See [20]
and [28].

Application 2.3. Suppose that (2. 17) still holds and that y is a random variable
not belonging to & such that E y = Z ajcj where ¢; are known constants. Let us

choose an estimate § € & of y accordmg to a criterion with the following property:

E,9 = E,9" for any a-and R($ — y) < R($’ — y) implies that § is a better estimate

then §’. (Obviously, this situation is a generalisation of one considered in Application
~2.2.) Then the best linear estimate of y equals

(2.19) 9= Yo +~:le&;‘(0;‘ - (¢ 90)) >

where the &’js have been defined in Application 2.2, and y, = U~ '¢,, where ¢,, =
= R(x,, y), t e T. If we postulate that E,§ = E,y for any « and that R($ — y) should
be minimum, then the best unbiassed linear estimate (2.19) has the following pro-
perty:
(2.20) R¥9 — y) = R*(yo — y) + R¥( Zlaj(cj = 0(¢5 o))
i=

(see [20] and [28]).

Application 2.4. Let P and P* be two normal distributions of a real stochastic
process {x,, t € T} defined by a common covariance R,; = R;; and mean values ¢,

and ¢; = 0, respectively. If ¢ € @, then P is absolutely continuous with respect
to P* and

dp -
(2:21) 7 = P U0 —30(0 0}
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If ¢ does not belong to @, then P and P* are perpendicular (mutually singulay).
The proof follows from the fact that U~ "¢ is a sufficient statistic for the pair (P, P*),
as is shown in [19]. The variance of U~ !¢ equals Q(¢p, ¢) with respect to both P
and P™. In view of (2.16), the mean value of U ™! ¢ equals RU 9, U '9) = Q(o, ¢),
if P holds true, and, obviously, equals 0, if P* holds true. Now,

—3[U™"0 = (9, 9)11Q(¢, @) + H[U1012/Q(0, ) = U ' — 20(0, ¢),

which proves (2.21). The case of different covariances will be treated in Sections 6
and 7.

Application 2.5. A somewhat different application is given by the following
Lemma: A difference of two covariances R;; — R, represents again a covariance,
ifand only if R* dominates R and the operator B determined by R(x, ) = R*(Bx, )
has the norm smaller or equal 1.

Proof: If |B| £ 1, then I — B is a positive operator, so that R}, — R, =
= R((I — B) x,, x,) is a covariance. Conversly, if R}, — R,, is a covariance, then
R™(x,x) 2 R(x, x) i.e. R* dominates R, and the norm of the operator B defined
by R(x, y) = R(Bx, y) is smaller or equal 1, in view of (2.8). Especielly, R,, — ¢,p,
is a covariance, if and only if ¢ € @ and Q(¢) < 1. This corollary generalizes a result
by A. V. Balakrishnan [21].

3. Stochastic integrals. Let ¢ be a Borel field of measurable subsets A of T, and
= u(A) be a o-finite measure on 4. Let Y, = Y(A), be an additive random set
function defined on subsets of finite measure and such that EY, = 0 and
(3.1) R(Yy, Yo) = (A n A') (A, A" €9).

The closed linear manifold % generated by random variables Y, consits of random
variables expresible in the form

(32) . b= [h, ¥(di),

where h, is a quadratically integrable function, h € #?(u). The stochastic integral
- (3.2) is defined as a limit in the mean (see J. L. Doos [33]).
The closed linear manifold generated by covariances (3.1) consists of all g-additive
set functions v(A) such that v(2) = [,fdu and

(3.3) Jr|fl?du < 0.
We put f = dv/du and denote p(df) briefly by du. Moreover, we have

o ()

and the equation v(4) = R(Y, v) is solved by (3.2), where h = dv/dpu.

It often is preferable to introduce the formal derivative y, = (dY/dp), (so calied
white noise) and to write [h,y,u(d?) and R(y,, v) instead of [h, ¥(dt) and [(d/dy)
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R(Y,, v)], respectively. Unless the point ¢ has a positive measure, y, itself has no
meaning, but the integrals [hy du, he #*(u), and covariances R(y,, v),te T, are
well-defined in the above sense. We confine ourselves to this remark without entering
into the theory of random distributions [12].

£*(u), with the usual inner product (h, g) = [hg du, may be considered as the
closed linear manifold generated by the covariance function of the white noise y,
(formally, R(y,, y;) = 0if t + s, and R(y,, y,) = 1/u(dt)). The relations

(3.5) R(y,v) =h, and v= fﬁ,y, u(d?)

define a unitary transformation Uv = h (U™ 'h = v) of & on #*(u) (of £*(1) on ).

Now consider an operator K in #*(u), generated by a kernel K(t,s), which is
measurable on ¥ x ¥ and quadratically integrable w. r. t. g x u. We have

(3.6) (Kh), = J K(t, s) hy u(ds) .

This operator may be carried over to % according to the formula Kv = U~ 'K*Up,
where K* is generated by K*(t, s) = K(s, t). So, if v = [hy dp, then

3.7 Kv = j(K*h) ydp.

The domain of definition of the operator K in % may be extended to include the
white noise y, by puting

(3.8) x, =Ky, = JK(t, s) v, p(ds) .

Then we also may write,
(3.9)  Kv= fﬁ(Ky) du = jﬁ,x, du,

where the integral is defined in the weak sense (see [3]), i.e. as a random variable ¢
belonging to the closed linear manifold & spanned by random variables x, = Ky,,
teT, and spch that

R(y.. €) = j R(y., %) hydu
Actually, we have R(y,, x,) = K(t, ©) = K*(x, ), so that
[0 1 = () = R ).

where the last equality follows from (3.7).
The equality

(3.10) [ »au - [ an,
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obtained from (3.7) and (3.9), will now be generalized for arbitrary bounded opera-
tors. Let X(A) = AY(A4), A€ %, where Y(A) is an additive random set function
satisfying (3.1) and 4 is a bounded operator defined in the closed linear manifold %
generated by {Y(4), 4 € 4}. Put, by definition,

(3.11) J o(t) X(df) = 4 f o(i) Y(dr)

for any g € Z,(u). Then
(3.12) j o(i) AY(di) = j(A*g), ¥(di).

In fact, (3.12) is a direct consequence of the identity 4 = U~ 'A*U, where U and U ™!
are unitary operators defined by (2.5).

Application 3.1. Let {x,, te T} be the process expressed by (3.8). Then 1° the
closed linear manifold ®* generated by covariances R(x,, x;) = R(Ky,, Ky;), teT,
se T, consists of functions expressible in the form ¢, = (Kh),, h e £*(u), 2° the
inner product in @*, say QF, is given by

(.13) 0, 0) =J(K;u/,), (K= "), du
and 3° the equation ¢, = R(x,, v) is solved by
(3.14) o = f(K;up), ¥(di).

, . J

The formula (3.14) is l‘f;sed on Lemma 2.2, where K; ! ¢ is defined as a function such
that KK;'¢ = ¢ and (K;'¢), = R(y,, x), where x belongs to the closed linear
manifold & generated by random variables x,, t€ T. If Z = % then K;' = K™ is
an ordinary inverse of K. Actually, then 0 = ¢, = R(x,, v) implies v = 0, and hence
(Kh), = 0if and only if h, = 0.

Application 3.2. The operator K* is generated by the kernel K*(1, s) = K(s, 1),
and the operator KK* by the kernel

(3.15) R(xy %) = j K(t, ©) K(5, 7) u(de) -

The equality of both sides in (3.15) follows from (3.8). If the function ¢ is expressible
in the form ¢ = KK*h, h e £*(u), i.e.

(3.16) 0 = f R(xe, %) h, u(ds)
then the equatlon ¢, = R(x,, v) is solved by
(3.17) v = jh— x, dp = j((KK*) Lo), x,dp.

Actually, ve & and ¢, = R(x,, v) follows directly from (3 16) and the week definition
of the integral [h,x, du.
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Example 3.1. Let {x,, t < 1o} be a semi-infinite segment of a regular stationary
process. As is well-known (J. L. Doob [30], Chap. XII, § 5), there exist a uniquely
determined quadratically integrable function ¢(r) vanishing for ¢ < 0, and a process
with uncorrelated increments Y,, E [dY,|* = dt, such that x, = [* c(t — s5)dY,
and the closed linear manifolds 2 and % spanned by

{xt’ t = IO} and {yt = dd_Yta t to}
t

IIA

respectively, coincide, = #%. So we may apply the preceeding results with K(t, s) =
= ¢(t — s), u(dr) = dr and T = (—o0, t,]. In the present case equation (3.16) is
called the Wiener-Hopf equation. The functions given by (3,16), however, do not
exhaust the whole set @* of functions ¢, for which the linerar problem ¢, = R(x,, v)
may be solved.

For a moment, let us consider the whole process x,, —o0 < t < o0, and denote
the usual Fourier-Plancherel transform by F. We know that F* = F~! which
implies, in view of (3.12), that x, = [[Fe(t — .)], d(FY),, where, as is well-known,
[Fe(t — .)], = e*a(2). On puting dZ, = a(2) d(FY),, we get the well-known
spectral representation x, = [e'* dZ,, where E |dZ,|* = |a()|* dA, |a(2)|? being the
spectral density.

Example3.2. Let Y, be a process with uncorrelated increments such that E ]d Y,|2 =
=dt, —1 =t =<t, We are interested in x, =Y, — Y,_;, 0 <t < t,, which is
a stationary process with correlation function R(x,, x,_.) = max (0,1 — [q]). If we
add the random variables x, = Y, — Y,_;, —1 <t £ 0, we obtain & = #. The
kernel K(t, s) is apparent from relations

t
(3.18) x,=J yeds, if —1<Zt=<0,

-1

t
=J y,ds, if 0
t—1

Let Ko ' ¢ be a function such that (KKg '), = @,, 0 < t < t,, and that (K, '¢), =
= R(y,, v), where v belongs to the closed linear manifold %, generated by random
variables {x,, 0'< t < t,}. We may find, after some computations, that

(3.19) (Ko'@)e= o1+ @iy + 05 + ...,

where the sum stops when the index falls into the interval [ —1, 0) and ¢} has been
extended so that

I\

t

IIA

to -

(3.20)
(p;=N+1(c——N<p;+1—(N—l)(p;“—...—(p;M) for t—N—-1<1t<0,
1 ’ ’ ’
= N+ 2(6_(N+ 1) Qer1 — Ny — oo — ‘Pz+N+1)
. for -1<t<ty—N-1,
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where N is the greatest integer not exceeding ¢, and

(3.21) e VA1 (00 + 91 + oo + (on + Piy-n)
2N — 15 + 2 )

For ¢, = 1 we could obtain the best linear-estimate [15] of a constant mean value.
For ¢, = R(Xy4+: X;) = max (0,1 — |t + 7 —¢|) and 1, =N,
we would obtain the best predictor [16].
The same method could be applied to processes expressed generally by x, =

m
= me_k}’,_k. In all cases @* consists of absolutely continuous functions with
k=0

a quadratically integrable derivative.

4. Solutions expressed in terms of individual trajectories. In what follows we
shall assume that the random variables x, = x(w) are defined on a probability space
(@, #, P). The covariances and finite-dimensional distributions of random variables
x(w) are not influenced by any adjustment (modification) of every x(w) on a w-subset

having probability 0. The properties of individual trajectories x” = x(w), te T,
however, may be changed very substantially.

Theorem 4.1. The process x, = x(w) defined by (3.8) may be adjusted on o-
subsets having probability zero, so that the solution of the equation @, = R(x,, v),
@, expressible as ¢, = [R(x,, x,) hydp, h e L*(p), is given by

(@.1) o) = f o) d,

where for almost every  the integral on the right side is to be understood in the
usual Lebesgue-Stieltjes sense.

Proof. The compactness of KK* in #?(u) follows from (3.6) by standard argu-
ments. Let ,(f) and ,(n = 1) be the eigen-elements and corresponding eigen-values
of KK*, respectively. The equality of some «/;s is not excluded. We first show that
Yk, < oo. As the system {y,(t), n = 1} is complete and orthonormal, we have

(4.2) ik = iﬁK*xulz dp = j ‘;EJK*(% $)xa(s) u(ds)|? u(dt) =
- j j IK(s, D)2 u(ds) u(d),

where the last expression is finite according to our assumptions.

Introduce the unitary transforms U and U~' defined by (Uv), = R(y,, v). Ob-
viously, the random variables v, = U~ 'y, form a complete orthonormal system in %.
Moreover,

R(Kv,, Kv,) = R(vn, K*Kv,) = Q(KK* 1, %) = 1,Q(2s 2m) »
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so that {Kv,, n = 1} is a orthogonal system with R(Kuv,, Kv,) = K,,n = 1. In view
of (3.9), Kv, € &, where % is the closed linear manifold spanned by random variables

= Ky, te T.If R(y, Kv,) = 0,n = 1, then R(K*y, v,) = 0, n = 1, so that K*y = 0
and (KUy), = (UK*y), = 0. Consequently,

R(xs, y) = J K(t, $) (Uy), dp = (KUy), = 0,

te T, which shows that y 1 Kv,,n = 1, onlyif y L &. We conclude that {Kv,, n 2 1},
where Kv, with x, = 0 may be omitted, forms complete system in Z.
Consequently, for every t € T, we have

43) zK R(x;, Kv,) ik M:ikvn.xn@),

n n

where the sum converges in the mean. Further, the sequence {an(t) Kv,(w), N
converges in the (u x P) — mean on T x Q because

(84) [ 18520 kol ap ou = 5,

v

1}

and )k, < oo. Consequently, we may draw a subsequence such that
1

(43) lim 3 0) Keo) = (o)

exist for almost all (£, @) with respect to pu x P. Let T, o be a subset of T such that
#(T — Ty) = 0 and that for te T, the limit (4.5) exists with probability one. On
puting

(4.6) x(w) = %(w), for teT,,
= x(w), for teT-T,,

and recalling that the limits (4.3) and (4.5) coincide with probability 1 for 1 € T, we
conclude that {x,(w), t € T} is an equivalent modification of the process {x,(w), t € T}.

Now j(z |Kv,|?) dP = ZK < o0, so that
@7 S |Kof0)? < o
- 1
with probability one. Without any loss of generality, we may assume that (4.7)

holds true for any w € Q. Then Y y,(1) Kv,(w) for every fixed w represents an ortho-
1

normal expansion of x,(w) in £2(u). So, if v(w) is given by (4.1), where x{w) = x (),
we get

(48) o) = ilKv,,(w) f o) an = zjx,,—lKv,,(w) .
[ e an = S ko) [ Bk
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and, in view of (4.3),

(49) Reco ) = S0 [ il dn = o,
T
which concludes the proof.

Remark 4.1. Let x, , t; € Ty, be arbitrary random variables from the closed linear
manifold % spanned by random variables x,, t € T. Clearly, the extended process
{x,,te TU T} spans the same closed linear manifold as the process {x,,te T}.
However, the class of random variables v expressible in the form

v = J\ hox, du
TuT,

never is smaller that the class of random variables v = [; h,x, du, and usually will
be larger. By this device, we may enlarge considerably the class of functions ¢
expressibles as ¢, = [R(x,, x,) p(ds), permitting the solution to be written in the
form (4.1) For example, if the process is originaly defined on a segment 0 < t < T,
the added random variables may be derivatives in the endpoints (see the next section).
In the extreme case we could include in the set {x,, t € TU T,} every random variable
from &, i.e. put {x,,te Tu Ty} = .

Another way to enlarge the class of functions ¢ for which the solution is expressible
in terms of individual trajectories consists in replacing the white noise y, by an ordinary
random process z,, t € T. We shall suppose that z is the closed linear manofold span-
ned by the z,s and K is a compact linear operator in %. Let &%, * and @° be closed
linear manifolds generated by covariances R(z,, z,), R(Kz,, Kz,) and R(K*Kz,,
K*Kz,), respectively. From Lemma 2.2. it follows that

(4.10) P° < ¥ < P*.
Let Q7 and Q be the inner product in ®#* and @%, respectively.
Lemma 4.1. If ¢ € ° and \ € ®*, then

(4.11) (¥, 9) = Q°(¥, (KK*) ™' 9),
where (KK*)™'¢ is any function such that KK¥(KK*)™'¢ = ¢.

Proof. Clearly, Q*(¢, (KK*)™'¢) = Q(K~ 'y, K*(KK*)™'¢), where K~ 'y is any
solution if the equation Ky = . In particular, we may take the solution K; 'y
considered in Lemma 2.2. Now if (KK*)™'¢ = R(z,,v), then K*(KK*) ‘¢ =
= R(z,, Kv), where Kv belongs to the closed linear manifold 2 spanned by the random
variables x, = Kz, te T. Consequently, K*(KK*)™'¢ = K;'¢ where K;' is
defined by (2.10). So, we have Q*(y, (KK*)™'¢) = Q*(K; 'y, K;'¢), which gives
(4.11), in accordance with (2.9). The proof is finished.

Note that the right side of (4.11) is an extention of Q% originally defined on
®* x @~ on ®* x P°. Also observe that in Lemma 2.2. we need a particular choice
of K™', K™! = K ', whereas (KK*)™! may be chosen in any way, if non-unique.
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Now we shall extend the formula (4.1) to the case when the white noise ¥, is replaced
by an ordinary process z,,te T.

Theorem 4.2. Suppose that the above-considered compact operator K in & is

0

such that the eigen-values «, of K*K form a convergent series, Yk, < . Then the
1

process x, = Kz,, te T, may be adjusted so that almost every trajectory x© =
= x[(w) belongs to ®*, and the solution of the equation ¢, = R(x,,v), ¢ € ®°,
equals

(4.12) o0) = 0°(x, (KK*)1g).

Proof. We may proceed quite similarly as in proving Theorem 4.1, with the only
exception that the limit

(4.13) ;T;Kv,,(w) (i) = ;iKv,,(co) R(z0,) = R(z,, ivnKv,,(w)) - %)

exist for every  and each w satisfying (4.7). Other arguments need no changes.

The formula (4.12) presumes that almost every trajectory x° = x,(w) belongs to &-.
The following theorem shows that in the Gaussian case x° cannot belong to &°
almost surely, unless the operator K has the property assumed in Theorem 4.2, so
that this theorem cannot be strengthened.

Theorem 4.3. Let x(w) and z (w) be Gaussian processes related by a bounded
linear operator K, x, = kz,, te T, and ®* be the closed linear manifold generated
by covariances R(z,, z,). Then, for an equivalent modification of the process x,(w),

(4.14) P(x"ed’) =1,

if and only if the operator K*K is compact and the series of its eigen-values k, is

0

convergent, Y k, < oo.
1

Proof. Sufficiency follows from Theorem 4.2. Necessity. If (4.14) holds true, then
there exist a function w(w, ®’) representing a random variable from 2 for o fixed,
and such that

(4.15) xw) = J 2(0") w(, o) P(do) = Kz (o).

If {z,} converges weakly to 0, then

lim x,() = lim j 2(@') W(0, ") P(da) = 0
for almost every w, and, concequently, x, — 0 in probability. If the x/s are Gaussian,
then

P(|x,| = ) = ZJ (2n)~ 124 g,
&/R(xn)
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so that convergence in probability implies convergence in the mean, R(x,) = 0.
It means that operator K transforms weakly convergent sequences in strongly
convergent ones, and consequently is compact (see [32], § 85). Obviously, the opera-
tor K*K also is compact. Let «, be the non-zero eigen-values of K*K, and let v,(w)
be the corresponding eigen-elements. We have

(4.16) Y = SR(Ko,, Ko,) = E( [Ko (o)

and, for almost all w,
(4.17) Y |Kv ()] =Y [R(v,, w*)|> = R(w”, w*) < o0,
1 1

where w” = w(w, .). The random variables Kv, are uncorrelated, because R(Kuv,,
Kv,) = R(K*Kv,, v,) = ,R(v,, v,,). If we suppose that they are Gaussian, then they
are independent. It remains to show that finiteness of (4.17) for almost all @ implies
finiteness of (4.16), or, equivalently, that infiniteness of (4.16) would imply infiniteness

of (4.17) with positive probability. If Y, = oo, we may form an infinite sequence
1

of partial sums

N+ 1

ék = z Kvn

net+ 1

such that each partial sum consist either (i) of a unique elements Kuv, such that «, > 1,

N
or (ii) of several elements such that k, < 1 and Y «, > 4. The &,s have mean values

net+ 1
M+ 1 et g

E{, = ) «, and variances R*(&,) = 2 Y «2 so that
ne+1 ne+1

P&, > 1) = 2J (2n) 124" dr > 1
1/2
in the case (i) and

2
Pl >3 21— 235 21— 22K =21 (m<n< g
K'l

z - B

kU Y A
in the case (ii). So Y P(&, > 1) = oo where the &s are independent. On applying
- .

to the wellknown lemma (Borel-Cantelli), we get that with probability 1 the event
& > % takes place for an infinite number of indices k. It means that Y& = ZKU,, = o
with probability one. So (4.17) cannot hold unless Yk, < oo. The proof is finished.

S. Application to stationary processes with rational spectral density. Let us con-
sider a finite segment {x,,0 <t £ T} of a second-order stationary process with
spectral density of form

(5.1) £(2) = ;—n]kiioa,,_k(il)"[‘z (w0 < 1 < ),
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where the constants a,_, are real and chosen so that all roots of Ya, A =0 have
negative real parts. Put

t
(52) X,=stds O<isT),
1]
and
(53) V=Y aX® 05i57T),
k=0

where X = (d*/d#) X,. Of course, X = x*~V for k > 0.

Lemma 5.1. The process Y,, defined by (5.3), has uncorrelated increments and
E|dY,|* = dt. Y, — Y, is uncorrelated with random variables x,, x), O
and the closed linear manifold % generated by {Y, - Y,0<t £ T, xq, .., x07 D
equals the closed linear manifold & generated by {x,0<t < T}, ¥ = Z.

s

Proof. On making use of the well-known unitary mapping W, defined by Wx, =
= ¢'"*, and remembering that R(x, y) = [Wx Wy f(2) dA we get from (5.2) and (5.3)
that

ith __ n
(5.4) WY, — vy = =1

Y a,i(iA)F

iA k=0

and Wx{’ = (i1)’, 0 £ j £ n — 1. Consequently,
w  (ith _ —ish _
(55 R(Y, - Yo Y, — Y= - [ (=Dl D 42 = min (t,5),
2n A?

which proves that Y, has uncorrelated increments and E]<’1Y,|2 = dt. Further, we
have

-0

. 1 0 (eitl _ 1)(___1)')1—1
5.6 R(Y, — Yy, x§) = —
( ) (¥ oo 21 ) _ o Yag-n(—id)

because, according to our assumption, the function under the integral sign is analytic
in the upper hyperplane, including the real line, and is of order ]AI" ~1-n Finally, if
veZ and v Ly, 0<t=<T and v 1x§’, 0<j<n—1, then the function
@, = R(x,, v) satisfies the relations (Lp), = 0,0 <t < T, 9§ =0,0<j<n -1,
i.e. 9, = 0,0 <t < Tand v = 0. The proof is concluded.

Let £} denote the set of complex-value functions of ¢ € [0, T] possessing quadra-
tically integrable derivatives up to the order n. Introduce in %2 the linear operators

di=0,

(5.7) (Lo), = Zoa,.—krpi"’,
k=
(5.8) (L* @), =kZO(— 1*a, 0",

where a,_, are taken from (5.1). Introduce in #3, the operator
(59) (L) =3 X (=11, 100 = (= 1Yo + T (=1} 4,00
=0 j=0 =
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Theorem 5.1. Let {x,, t € T} be a finite segment of stationary process with spectral

density (5.1). Let (®% Q) be closed linear manifold generated by covariances
R(x;, x,),0 <t,s < T

Then, in above notation, ®* = %2 and

(5.10) (v ¢) - :
T B = min(j k) o
= j (L‘/’)z (L¢:) dr + Z Z 21 ‘PE) 2_ z (—1)1—'0n—ian+i—j—k—1 s
0 O%i;‘:"éc:—l i=max(0,j+k+1-n)

or, equivalently,

T n T
(1) 0W.e) = f WO+ 3 A [ WO
0 k=1 0
. o min (j,k) .
+ Z Z [‘//(TJ)(P(TI‘) + l//g”(Pg() Z ("l)l Ay iy im -1 -

0=j, k=n—1 i=max(0,j+k+1—n)

If ¢ € £2%,, we may write

(5.12) (W, 9) =

T n—1 .n—l—j
- f VAL L) dt + YU Y (= DM (Lo)Pay o, +
0 ji=o k=0

n—1—j

n—1
+ .ZO‘I’BJ) kZO (= D)(L*0)e k-1 -
i= =

The solution v* = U~ '¢ of the equation ¢, = R(x,, v), ¢ € &%, is given by (5.10)
or (5.11) on substituting dX® for Yy®dt, 0 < k < n, and defining the integrals in
the sense of Section 3.1. Random variables x(w) may be adjusted on zero-proba-
bality w-subsets so that the trajectories x° = x(w) belong to #*_, with proba-
lity 1 and for ¢ € 3, ,, v"(0) is given by (5.10) or (5.11) on substituting x*(w)
for y®, 0k <n -1, and

T T
X (w) o — x§ (o) 9§ — J x""Nw) @U* P dt  for J xM D dt .
0 0
If ¢ e £3,, v*(w) is given by

n—1-

T n—1 J
(5.13) v7(0) = j () (LL5), di + T xP(0) Y. (~DHLe)Pa, 0y +
o ji=0 k=0
n—1 n—1-—j
=0

+ 2 x5(@) ¥ (=1)(Lp) e,y -
j=0 k
Proof. From Lemma 5.1 it follows that every element v € & is of form

n—1 T
(5.14) v=v, + 0, = c;x§ +f g(7) dY,
/=0

0
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where [ |g(t)]* df < oo, and the random variable v, = Yc,x§” is uncorrelated with
dY,, 0<t=<T and v, = [g,dY, is uncorrelated with x§’, 0 <j<n — 1. If

= R(x,, v), then
(5.15) 0§ = R(x{,v) = R(x§’,v,) (0<j<n-1),
and, in view of (5.3),

, d

(5.15") (Lo), = y R(Y,v) = R(y,v,) (0<t<T),
where y, = dY,/dt is the white noise and Lo € 2. Consequently, if ¢ € &, then
@ € L2 Now, let ¢ € £2, and chose the constants ¢, ..., ¢,_, and the function g,
such that (5.15) and (5.15") hold true for v given by (5.14). A direct determination
of ¢, ..., ¢, would insolve cumbersomie inversion of the matrix (R(x§”, x{O)); .

For this reason, we first establish g, and, subsequently, we find c, ..
indirect method. In accordance with (3.5), (5.15') is solved by

T T
(5.16) 0, = j (L), dY, = j (L), d(LX),.
0 0
The last form is based on (5.3). On inserting (5.16) in (5.14), we obtain
T
(5.17) v = Z eix§) + f (Lo), d(LX), .
0

Now consider a unitary and selfadjoint operator V defined in & by Vx, = x1_,.
On carrying over V to &%, we obtain (Vo), = R(Vx,, v*) = R(xy_,, 1) = @r_,.
If o7_,= ¢, 0t <T, we have Vo = ¢ and v = V¥p = Vo for v = U_'¢
(i.e. for v such that ¢, = R(x,, v)). Consequently, if ¢;_, = ¢,, the formula (5.17)
must be invariant with respect to the substitution of x;_, for x,, i.e. of (L*X);_,
for (LX), and (—1)/x$’ for x§. This means that, for ¢,_, = ¢@,, we have

(5.18) |
T n—1 o T n-1 L
b= j (L) d(L*X )y + 3 e~ 1Yx§) = f (L*), d(L*X), + ¥ ¢~ 1)x,
0 i=0 0 j=0

where the last expression is obtained from the preceeding one on substituting (L¢), =
= (L*@)r—,, which is justified because ¢p_, = ¢,. If is easy to show that

(5.19) jT(La)t d(LX,) =

., €, by an

n—1n-1
o R B A SR

J+kod
k>J
L* d(L*X ] +n = x(/) (k)
Ph +k
J even
— x5 (k)) mmz(:j'k) (—1)~ia
b n+l Jj—k—1-*

i=max(0,j+k+1—n)
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On comparing (5.17), (5.18) and (5.19), we can easily see that

n—1 " n—1n-1 min (j,k)
. - .
(5'20) Uy = Z Xy’ = Z ng’)(pf) 2 z (_1)J Ay ilyyiojor-1,
ji=0 J+k even i=max(0,j+k+1-n)
which inserted in (5.17) gives the needed result. Since the condition. Pr—y = @,
imposes no restrictions on @, ..., §'~", (5.20) represents a general solution of

(5.15).

As we know, f(x) = R(x, v°) is linear functional attaining the value ¢, at the
point x = x,. Consequently, Q(¥, ) = R(+%,v¥) is obtained from (5.17) simply
by replacing x, by . Bearing in mind (5.20), we thus obtain (5.10). Formulas (5.11)
and (5.12) are obtained from (5.10) simply by integration per partes, the details of
which we shall not reproduce here. In deriving (5.12) we may apply Green’s formula
and the principle of symetry, assuming that ¢;_, = ¢,.

In order to show that (5.13) may be considered as a special case of (4.1), let us
extend the parameter set by adding parameter-values 01, ..., On and T1, ..., Tn, and
putting xo; = x§ ™" and x5, = x{{ ™", 1 < i < n. The white noise y, will be extended
so that y,; are any orthonormal linear combinations of x; = x5V, and y,, ..., yr,
are any orthonormal random variables uncorrelated with x,, 0 <t < T (or with
Vo 02t =T and yy,..., yo,). Defining the linear operator K by x, = Ky,
0<t<T t=01,...,0n, Tl,..., Tn, we can see that for 0 < t < T, L coincides
with K* defined by (2.10). In our case K ¢ simply is such a solution of K()=o
that vanishes for t = T1, ..., Tn. After this extention of the set of parameter-values,
(5.13) is equivalent to (3.17), where y is defined as Lebesque measure for 0 < t < T,
and p(0i) = p(Ti) = 1, 1 £ i £ n. Moreover, (5.13) is equivalent (4.1). The only
purpose of adding points T1, ..., Tn was to enlarge the range of the operator KK*
so that it contains all functions from #3, (see Remark 4.1).

Finally, if n > 1 then the derivative x|, = z, exist. Considering the operator K
defined by

t
x, = Kz, = xq +fzsds,
0
and applying Theorem 4.2, we readily see that x/(w) may be adjusted so that x° € £7_,
with probability 1, and that, for ¢ € #7, ,, the solution of ¢, = R(x,, v) has the form
mentioned in the theorem. The proof is finished.

Remark 5.1. From (5.20)it follows that the inverse of (R(x§”, x))i %L, consists
of elements

min (j,k) .
(521) Dy =2 y (=1Y"'a,_ia,4;—j-y-1 for j+ k even,
i=max(0,j+k+1—n)
=0 for j+ k odd.
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Now, we shall consider a general rational spectral density

| Z bu- k(li)"

(5.22) g(2) = = (—0<i<o0; m<n),

Z a, - (iA) ‘

=0

x

|

where the a’s and b’s are real and all roots of equations Y a,_,A* = 0 and ¥ b,,_,A* =
= 0 have negative real parts. As is well-known, if x, is a process with spectral density
(5:1), then the process

(5.23) Z by_ix® (m < n)
has the spectral density the (5.22).

Let us add 2in parameter-values 01, ..., 0m, T1, ..., Tm and define zy; = xo; =
= x4, zp; = xpy = x¥71, 1 £ i £ m. Then the operator H defined by x, = Hz,,

0<t<T,t=01,...,0m, T1, ..., Tm is bounded and may be expressed by

m T
(5:24) x, =y x6 Vhyt) +f H(t,s)z;ds (0t <T),

i=1 o
where h (i) are m linearly independent solutions of the equation Y b,,_.h(t) = 0,
and H(t, s) may be established by well-known methods [31] of the theory of linear
differential equations. The differential operator involved in (5.23) will be denoted
shortly by M,

5.25 M=) b, ,—.
(5-29) ) o " dr
Further, we put
m . dr dk+i
M* =% b, [(=1)— and MM* = b 1b - -
121 (=1 dr kZI _Ig ‘ J( 1 dik*i

Theorem 5.2. Let {z,,0 <t < T} be a finite segment of stationary process with
spectral density (5.22). Let (9%, Q%) the closed linear manifold generated by co-
variances R(z,, zy).

Then & = &7, and the solution v* = U] 'y of the equation y, = R(z,, v) is
the same as the solution of the equation \y, = R(x,, v), where x, is given by (5.24)
and Y, is uniquely determined by

(526) (MY), = 7 and Q1) =0 (1)< m),
where M is given by (5.25), hy, ..., h,, are m independent solutions of ¥ b,,_h(i) =
= 0 and Q% is given by (5.10) or (5.11). The inner product Q% in @ is given by
Q(v, x) = Q¥(&, W) where QF is given by (5.10),  is determined by (5.26), and ¢&
also is determined by (5.26) on substituting v for y.

Random variables z(w) may be adjusted on zero-probability w -subsets so that
the trajectories z° = R(w) belong to L:_,,_, with probability 1, and that the in-
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volved integral and differential operators may be applied to individual trajec-
tories for ye L*_, .. If y € P 2ms then the solution is given by

n—-m—1 n—1-—j
(527) vi(w) = j A(0)(IFLo)dt 4 T (0] T (1 (Lo)a, s +
o ;

n—m—1 -1-

£ 3 W) L (e,

where @, is uniquely determlned by

(528) (MM*([)), = Xt>»
and
n—1—j
(5.29) ' ZO (- (Le)Pa-jt-1y =0 (n—m<j<n-— 1),
—1-j
(5.30) Z (—D(L*o)Pa,_j4-y =0 (n—m<Zj<n— 1).

Proof. Variances generated by spectral density (5.22) and variances generated by
the spectral density (5.1), where n = n — m, dominate each other, so that the closed
linear manifolds generated by respective covariances coincide (cf. Remark 2. 1). So,
in view of Theorem 5.1, * = #2_

Now, if R(x,, v) = ¢,, and ¢, satlsﬁes (5.26), then obviously R(z,, v) = ,. Further,
it is easy to verify on the basis of (5.24) that Q(¢, h;) = 0, 1 < j £ m, guarantees
that the solution v belongs to the closed linear manifold % generated by random
variables z,,0 <t < T.

Further, if y € #3,_,,, and the conditions (5.29) and (5.30) are satisfied, then the
operator M may be applied to the right side of (5.13) term by term under the integral
sign which shows that Mv? = v*, where v* is given by (5.27). Consequently R(z,, v*) =
= MM*R(x,, vp) = (MM*¢), = x,, 0 < t < T, in accordance with (5. 27).

The assertions concerning individual trajectories are implied by Theorems 4.1
and 4.2 as in the preceeding theorem.

Remark 5.2. If hy, ..., h,, are the solutions of Mh = 0, then the solutions of
MM*h = 0 are hy, ..., hy, hY, ..., h), where h*(t) = h(T — 1). Let ¢, be particular
solution of MM*¢ = y. Then

© = Qo + Z(c h; + d;hY), where ¢y, ..., Cpdy, ..., d,
 are determined by (5.29) and (5.30). If y, = ys—,, then ¢; = Hj, and if y, = — yr_,»

thenc; = — d;. In both the cases the number of unknown constants is m, and not 2m,
and they are determined by (5.29) or (5.30). Denoting = ¥;_,, we have

(531) =9+ %Zl{c,-(x + %) [hy + 071+ (e = «*) [h; = 03},
Fo
where ¢(v) denote the constants corresponding to a function v.
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Example 5.1. If Mg = ¢’ + Bo, B > 0, then the solution of (5.28) is given by
1 ("
(531) o, = *273[ e Wy ds + 3 (er + ) e 4 ey — ) e T,
0

where

n—2j T
B¥72 Y @noai-ilx” + 47) — L(—/f)f (7 + e T79%) y,dt
(1] 0

(532) ¢ =222 & ,
L(B) + L(—B) e ™
and
(5.33)
n—2j T
P a0~ (S0~ L) [ e
¢, = 1=j<n/2 k=0 0 ‘
L(B) — L(—B) e ™ ’
where
L(p) =k§0an-kﬁ" .
Moreover,
L*L<§~> _ L*L(p)
(5.34) (L*Lo), = ,L*L(B) + ! e

2 _ dy?
©

where L*L(f) = L(—B) L(B) and d/d¢ denotes the differential operator. We omit the
details.

 Integral-valued parameter t. The spectral density of an n-th order Marko-
vian process with integral-valued ¢ is given by

(5.35) f(d) = 51— [ian_keilkl'z (-m=2=n),
T k=0

c n
where a,_, are real and such that all roots of ) a,_,A* = 0 are greater that 1 in
k=0

absolute value.
It may be easily shown that the random variables

. n
(5.36) Ve=2 u X (n <t =< N)
k=0
are uncorrelated mutually as well as with x,, ..., x,_;, and have unit variance,

R(y,) = 1. If we consider a finite segment, of the process, {x,,0 <t < N}, N = 2n,
then @~ consist of all complex-valued functions ¢,, 0 < t £ N, and it may by shown
by the previous method that

: N N

W, 0) =Y Y ¥QF, wherefor |t—s|>n Q] =0,

t=0 s=0
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and for [t —s| < n

min[N—t,N-s,n—|t-s]|] .
(5.37) Q= 2 Auoi@y_i_ji—g >, if max(t,s)>N—n,
n—|t—s| =
= ZO an—ian—i—]t-s] H] if n é t, s é N - n,
i=

min[t,s,n—|t—5|]
= > Qyeiln—izji-s| » if min(t,s) <n.
i=0

The solution of ¢, = R(x,, v) is given by

z

(5.38) o

t

]
iM=

— NX
xt(pSQts >
0

s

which may be put in a form analogous to (5.13)

N-n N N-t n—1 t
(539) v* =Y x(L*Lo); + Y XY (L@)issug + ¥ X, > (L*Q);4ay—i»
t=n t=N-n+1 k=0 {=0 k=0

where
(L‘P)z =kzoan—k(pt-—k and (L*(p), =kzoan—k¢t+k .

We also find that the inverted covariance matrix (R(x;, x,))j%Lo consists of the
following elements
(5.40)
min[j,k,n—|j—k|] n—|j—kj|
Dy = )y A ilnimfjmi) = 0. Gneilpoirpj-i 0 =j, k=n—1).

i=0 i=n-—max(j,k)

If we have a process {z,, 0 < t < N} possessing a general rational spectral density

m 2
. Y b,,_se'
(s.41) o= LT (xsagw,
o T Zan—keuk
k=0

where both the a’s and b’s are real and such that the roots of Y a,_,/*=0 and
k=0

m
Y b,,_A* = 0 lie outside of the unit circle, we may proceed as we did in the conti-
k=0
nuous-parameter case.
First, we may consider, the process {x,, —m < ¢t < N} having the spectral density

(5.35) related to z, by the difference equation

(5.42) zy=Y bp_iX— = (Mx), (0 <t<N).
k=0

Then the equation y, = R(z,, v) is solved by

N N
=3 ¥ xJ.07

t=—ms=-—m
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where Y is uniquely determined by (My), = Z bp-r Wit = %,0 =<t <N, and

Q*(, h;) = 0 for m arbitrary linearly mdependent solutlons of (Mh), = 0,0 £ t <N.
Similarly Q*(v, x) = Q(¢, ¥), where & is an arbitrary solution of the equation M¢ = v.

Second, we may consider the process {x —-m<t<N+ m} and the adjoint
operator

(M*(D)t =k20bm_k¢t+k .

Then we obtain the following analogues of equation (5.27):

N
(5.43) v =7 z(L*Lg), (m=n),
t=0
and
N-=n+m N—t+m n—m—1 t+m
(5'44) v = Z t(L L‘P)z + Z Zy kz‘;) (L(P)H-kan—k + ZO Zy z;)(L*(p)t—kan—k
t=n—m t=N-n+m = t= k=

(m <n),

where ¢, is uniquely determined by (MM*¢), = 3, 0 < t < N, and

(5.45) Y L*P)mktyk =0 (r=0,....,m —1),
K=0

and

(5.46) kZQ(L(p)NM_,Ma,,_k =0 (r=0,....,m—1).

Cf. (5.29) and (5.30). Remark (5.2) is also valid for the present case. If n = 0,
we get results for the moving-average scheme.

6. Strong equivalency of normal distributions. Let us first consider two normal
distributions P and P* of a random sequence {v,, n = 1} defined by vanishing mean
values Ev, = E*v, = 0, n = 1, and covariances

(6.1) R(v,,0,) =0, R*(v,,0,) =0, if n+m,

R(om0) =1, R*(oy0,) = ; (nz1).

The J-divergence of Pa P* restricted to the vector {v,, ..., v,}, say J,, equals (see [18])
' n _ 2
(6.2) -43 (1- A.ﬂ )

and, consequently, J,, = lim J, < oo, if and only if

n— o

Nl'-‘

1-4)Y<ow.

(63)

So, according to [18], P and P* defined on the Borel field generated by {v,,n = 1}

M8
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are equivalent, P ~ P*, if and only if (6.3) is true. If P ~ P, then it follows from

theory of martingales ([30], Th. 4.3, Ch. VIII) that

dP :

(6.4) 7 = P {=3Y [v2(1 — 4,) + log 4,1},
1

where the sum converges with probability 1. In general, however, we cannot write
dp
dp*

0

(65) ([ 2)7% exp (= 13030 = 2},

unless the product [] 4, is absolutely convergent. The well-known necessary and
1

0

sufficient condition for absolute convergence of [] 4, is 4, # 0 and
1

o0

(6.6) Y —2) <o,
1

which is stronger then (6.3). If (6.6) is satisfied, then almost surely

0

(6.7) Y (@) |1l = 4] < o,

1
because E{Y v2(w) |1 — 2]} £ Y |1 — 4, < .
1 1
Thus (6.6) is a necessary and sufficient condition for dP/dP* being of the form

(6.5), where the product [] 4, is absolutely convergent and the quadratic form
1

0

Y v2(1 — 4,) is absolutely convergent with probability 1. This leads us to the notion
1

of strongly equivalent normal distributions introduced in the following.

Definition 6.1. Two covariances R and R™ will be called strongly equivalent, if
they dominate each other (Definition 2.2), the operator B defined by R(x, y) =
= R*(Bx, y) has purely point spectrum, and the non-unity eigen-values 7, of B
satisfy the condition (6.6). Two normal distribution P and P* defined by strongly
equivalent covariances R a R* and by vanishing mean values will be called strongly
equivalent.

Lemma 6.1. The Probability density of a normal distribution P with respect to
another normal distribution P*, strongly equivalent to P, is given by (6.5) where v,
and ), denote the eigen-elements and eigen-values of the operator B mentioned in
Definition 6.1. The vs are normed by R(v,,, v,,) =1,n2=1.

Proof. Clear.

Unfortunately, the right side of (6.5) scarcely may be considered as an ultimate
expression for dP/dP*, because the eigen-values and eigen-clements are difficult to
establish even if dP/dP* may be found explicitely (see Section 7). This leads us to

derive a theory of the product [] 4, and of the quadratic form Y i1 = 4,).
1 1
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We begin with the following:
Definition 6.2. Let H be a compact symmetric operator, and k, be the non-zero
eigen-values of H. If )’ |r<,,| < o0, we say that H has a finite trace, and put tr H =
o 1
=Y K,
1
Definition 6.3. Let B — I be a compact symmetric operator and 4, be the non-unity

eigen-values of B. If the product [T 4. is absolutely convergent, we say that B has
1

0
a determinant, and put det B = [] 4,.
1

Obviously, B has a determinant if and only if the eigen-values of B are different
from 0 and B — I has a finite trace. If {v,} is the orthonormal system of eigen-elements
of B, corresponding to the non-zero eigen-values, and {x,} is another orthonormal
system in (%, R*), then

i I(HX", X,,)| zni ,jil(me Uj) (xn’ vi)l ="=i)l lj;ilxil(x"’ vj)lzl =
< 3 [ 3 50
(69) ¥ [(Hs 5] = 3l

where (., .) = R*(.,.) and H=B —1.

Denote by log B the operator which has the same eigen-elements as the operator B
but eigen-values log 4, instead of 4,. Denoting the eigen-elements of B by v,, we have

(Bx, x) = ) 4|(x,v,)]* and (log Bx, x) = ¥ log Ao|(x, va)]? .
1 1
On making use of Jensen inequality, we get for (x,x) =1
(6.9) log (Bx, x) = (log Bx, x) [(x,x) = 1].

Let %' be the subspace of 2 spanned by eigen-elements of B corresponding to non-
unity eigen-values. &5 is separable even if & is not separable. For any orthonormal
system {x,} complete in &, we have

logdet B = trlog B = ) (log Bx,, x,) < Y log (Bx,, X,)
1 1
ie.
(6.10) det B < [](Bx,, x,) ,
n=1

where the absolute convergence on the right side is guaranted by (6.8).
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Let &, be a n-dimensional subspace of &, and let I," denote the projection on & e
The contraction of B on %, say B,, will be defined as follows.

(6.11) B,=1+I1;(B-1)I;.
Obviously (B,x, x) = (Bx, x), if x € Z,, and (Byx, x) = (x, x), if x L Z,. The ope-

rator B, is well-defined on Z as well as on &, and in both cases the determinant
Det B, is the same. If &, is spanned by linearly independent elements x, ..., X,, then

(6.12) det B, = [(BXo X))l (hj=1,...n),
|(xir x))|
where |a; ;| is the ordinary determinant of a matrice (a;;). Relation (6.12) will be clear,
if we take for x, ..., x, the eigen-elements of B,.
Theorem 6.1. Let ; < &, = ... be a sequence of finite-dimensional subspaces

of & such that the smallest subspace containing \J %, contains all eigen-elements
1

of B corresponding to non-unity eigen-values. Let B, be defined by (6.11). Then
(6.13) det B = lim det B, .

n—oo

Proof. Let v;and 4; # 1 be the eigen-elements and eigen-values of B, respectively.

For any ¢ > 0 we may chose [ so that ) [/Ij - 1| < ¢ and then N so that in &y there
1+1

exists an orthonormal system x, ..., x, such that

(614) BB = 1)%%) 2 TI(B Do) e = Sy~ 1] .

In view of (6.8) we have for any orthonormal system {z,}, such that z; = x,,...,z, =
= xl’

(6.15) z§1l((3 —1)z,z,)| £ i |4, — 1| = Zi:|((B —1)z,z,)| < 2.

Now let n > N, and ¢™' = min (Bx;, x;). Let {v,;} and {v;} be the eigen-elements
1=j=1

of B, and B, respectively. From (6.10), (6.14) and (6.15) it follows that

n

(6.16) det B, = H (Bu,j, v,;) = (1 — 2¢) det B

0
and, in view of Y |1; — 1] < &,
I+1

1 1
(6.17) det B> (1 — &) [](Bvj,vj) =2 (1 — &) (1 — ce) [](Bx;, x)) =
1 1
2 (1 —e)(1—2)(1—ce)[[(Bxj,x;) = (1 — 3e — ce)det B,,
1
where x, ..., x, is an orthonormal system from %, such that x,, ..., x, satisfy (6.14).
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Now we may let e > Oand ¢c™! = ¢; ' > 0, where ¢, ! is independent of &. The proof
is completed.

Now we shall study the ratio det B/det B,, where B, is given by (6.11), or more
generally, det B/det B,, where B, =11 + I(B —I)I}, I} denoting the projection
on a subspace #', (not necessarily finite-dimensional) of Z'. More precisely, I denotes
the projection on &, with respect to the covariance R*. The projection with respect
to the covariance R(x, y) = R*(Bx, y), say I,, will be generally different from I},
Now, let us introduce the following “conditional” covariances

(6.18) R*(x,y|Z) = R*(x — L',y — ITy),

(6.19) R(x,y|Z) = R(x — Ix, y — Iy).

If R*(. | Z.) dominates R(. | Z), denote by B the operator defined by
(6.20) R(x,y| %) = R*(Bx, y |Z.).

Theorem 6.2. If det B exists, then the determinants det B, and det B¢ also exist,
and

(6.21) det B = det B, det B°.

Proof. First suppose that we have n + m random variables Xiseeer Xy Xy 15 enes
<++s Xy 4 Which are independent with unit variances, if P* is true, and have an arbi-
trary non-singular normal distribution with covariance matrix R = (Ry)), if P is

true. Let R, = (Ry;)i ;=; and R" = (R};); %", ., where R", is the conditional partial
J/tJ ijli,j=n+1 Jj

covariance of x; and x; (i, j > n) for given x, ..., x,. In this case (6.21) is equivalent
to

(622 , R = [R,] [R"].

where |[ denotes the determinant of the corresponding matrix. Equation (6.22)

may be proved as follows: We introduce random variables z; = x;(1 £i<n)and
z; =% —ILx; (n +1 < i < n+ m), where I, is the projection on the subspace
spanned by x;, ..., x,. In matrix notation z = Ax, 4 = {a;;}, where ’Al = 1, because

a;;=0(i <j)and a; = 1(1 £ i < n+m). The covariance matrix of random vari-
ables z; equals
(6.23) ARA* = (R,, 0\,

o R

from which it follows that |R| = |4 |R| [4*| = |ARA*| = |R,| |R"|.

The general case will be obtained by Theorem 6.1. We take random variables
Yis oo Ymfrom & © Z . and n random variables x,, ..., x, from Z, so that the closed
linear manifold spanned by x,, ..., x, contains the projections Iy, and I7y; of y,
on Z.. Then we let n — oo, and subsequently m — oo so that the closed linear
manifold spanned by {y,, y,, ..., xy, X, ...} contains all eigen-elements of B with
non-unity eigen-values. The proof is finished.

Now we shall study the quadratic form ) v(1 — A,) appearing in (6.5).
1
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Theorem 6.3. Let P and P* be two normal distributions of a stochastic process
{x,,teT}. Let [x,dP = [x,dP* =0, te T. Assume that x, = Kz,, t € T, where z,
is a stochastic process or a white noise, and K is a compact operator such that K*K
has a finite trace. Let (®, Q), (9, Q*), (#%, Q%) be closed linear manifolds ge-
nerated by covariances R(x,, x,), R*(x,, x,) and R(z,, z,), respectively. Let B be
the linear operator defined by R(x, y) = R*(Bx, y). Assume that ®* = & and for
some constant C

(6.24) |01 = B) o, ¥)| = CO%(0) Q*(¥) (9, ¥ e®).
Then P and P* are strongly equivalent. Moreover, there exist a unique extention

/\
Q—0"0of Q— Q" from ® x & on &° x &, continuous in the Q*norm, and we
have

dp 4070 T x
(6.25) — = (det B)71/2 =407 (x|

dpP*
where x° = x,(w) is the trajectory of the process modified according to Theorem 4.2
or 4.1.

Proof. I — B has a finite trace because K*K has a finite trace and because (6.24)
holds, where Q%(¢) = Q(K¢). Since #* = &, the covariances R a R dominate
each the other and B has all eigen-values different from 0. Hence B has a determinant,
and P a P* are strongly equivalent.

In @ the operator B is defined by Q*(y, ¢) = Q(BY, @), in view of Lemma 2.2.
Let y,(f) be the eigen-elements of B corresponding to non-unity eigenvalues,
Zn * 1. We first show that y, = KK*h,, where h, e ®*. In view of (6.24), we have

> I-B n : n z,
(6.26) o, 2] = 12U =B ) o ¢ &) gy,
|t — 4, [L— 2,

which shows that Q(y, x,) is a linear functional on (®%, Q7). So Q(Y, x,) = Q*(y, h,)
for some h, € @%, which implies, in accordance with (4.11), that y, = KK*h, (Q* = Q).

Now from (6.24) it follows that (Q — Q%) (¢, ) = Q*(A¢, ¢), where 4 is a boun-
ded operator in ®*. Consequently, if ¢, — ¢, where @, € @ and ¢ € &, there exist
a limit

T

(6.27) Q = 0%(¢, ¢) = 1im (2 — 0*) (¢ 9) = Q(40, 0),

which represents a unique continuous extention of ¢ — Q* on ®* x ®* Because

(Q - Q+) (Xm Xn) = Q((l - "{n) Xn> Xn) = Qz((l - An) An> hn) ’
we conclude that Ay, = (1 — 4,) h,. So, on developing @ — Q* (¢, ¢) into a series,
we get

(629) 0= 0"(0.0) = X [0(p ) (1 = 4) =
= %1070 (0. 725) 0 - 2 = Slete (- 4.
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Random variables v, satisfying x,(f) = R(x,, v,) are eigen-elements of B in &. Be-
cause x, = KK*h,, from Theorem 4.2 or 4.1 we have

(6.29) v(@) = Q*(x*, h,).
— %
On comparing (6.25) and (6.29), we get Q — Q¥(x, x*) = ¥ v3(w) (1 — 4,). Re-
© 1
turning to the equation (6.5) and noting that det B = I1 A, we see that the proof
1

is completed.

7. Probability densities for stationary Gaussian processes. We begin with the
case of an integral-valued parameter ¢t =0, 1, ..., N, which is easier. The pro-
bability densities may be taken with respect to Lebesgue measure, because the number
of random variables is finite.

Theorem 7.1. (i) The probability density of a finite part {x,0 < t < N} of
a Gaussian stationary process with vanishing mean values and covariances gener-
ated by the spectral density (5.35) is given by

N
(1.1) Pxos oo 5n) = [Quf " exp (=3 3
t= t

z

Qtsxlxs) =
0

]

n—1n—1 n

N
= [Du|"?ag" " exp [=5Y ¥ Dpxx — LYY apx, )],
Jj=0 k=0 t=n s

=0
where Q,, 0 < 1,5 < N, and D, 0 < j, k < n — 1 are given by (5.37) and (5.40),
respectively, and || denotes the determinant.
(ii) The probability density of a finite part {z,0 <t < N} of a stationary
Gaussian process with vanishing mean values and covariances generated by the
spectral density (5.41) is given by

(7.2) P(zos ++- 2x) = | Dju|""* |R(x1, X4] 205 - -+ zy)|' /2 ag g ML

n—1 n—1

N n
- €Xp [—%,Zo kZODjk;‘j—mik—m -3 2 (T a1,
. Jj=0 k=

t=n—m k=0

where x_,,, ..., Xy is a process considered in (1) and such that z, = Zbkx,_k, and
R(x;, x| zgy -oes 2y), —m < i, h < — 1, are conditional (partial) covariances of
X, Xy, when zg, ..., zy are fixed. Moreover, %_,, ..., %y is the solution of equations
z, = Y b, _, satisfying the conditions

N N

Z z Qtsl//ths =0

S S

for some m linearly independet solutions of Ybh,_, = 0.

Proof. (i) As Q,, given by (5.37) represent elements of inverted covariance matrix
R = (R,,), the first expression for p(x, ..., xy) in (7.1) is clear. If we put R, =
= (R(x;, x;))I720, then, in accordance with Theorem 6.2,

(7'3) thsl = anI_l[jj"Rz(xt - It—lxt)]_l s
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where I, _ x, is the projection of x, on the subspace spanned by the random variables
Xo, -++» X;—y. However, we have |R,|™" =|D,| and R*(x, — I,_,x,) = a2, as
ye = ao(x, — I,_x,), where y, is given by (5.36). Thus we obtain the determinant
of the second expression for p(x,, ..., xy) in (7.1). The quadratic form of the second
expression is a mere transcription of Y ¥ Q,.x,x,, and is based on the fact that the Vs
given by (5.36) are independent of each other and of XQs eees Xy qe

(i) First we derive the determinant. Put z, = x,, if —m <t < — 1, and z, =
= Y bx,—y, if 0 £ t £ N. This transformation may be denoted in the matrix form
as z = Cx, where the matrix C = {c;;} is such that ¢;; =0, i <j, and ¢;; = 1,
if —=m =i <1,and ¢;; = by, if 0 < i < N. Consequently |C| = b)*! and

[R(zs» )| = b"*2[R(x,, x,)|, —m <t, s<N.
Now we know from (i) that

lR(x" xs)l = |Djk|_1 a(;Z(N+m+l_")

which gives

(74 |R(ze 2)] = [Dp| ™" ag 2T BENED (= m

IIA

t, s < N).
Finally, according to Theorem 6.2,

(7.5) [R(z,» 2,)| = [R(zo:, zo)| [R(xi, X1 | Zos ---» 24)] -
(-m=Zt,sEN; 0, <N; —m<i,h< —-1),

where x; = z;,if —m < i < —1. On combining (7.4) and (7.5), we get for |R(z,,, z,/)|,
0 =7, s" < N, the expression appearing in (7.2). The quadratic form in (7.2) follows
from the form of Q%(v, x) described below equation (5.42).

Now we proceed to the case of a continuous ¢, and first consider the n-th order
Markovian processes. The probability density cannot be taken with respect to
Lebesgue measure, because the system of random variables is infinite. The dominating
distribution P* = P, of {x,,0 < t < T} used in the next theorem will be defined
by the following conditions:

(7.6) the vector (xo, X4, ..., x§ ~ ")) is distributed according to n-dimensional Lebesgue
(=1} is a Gaussian process with independent increments such that

measure; x'!
E |dxf"_1)|2 =g~ 2dt;

(n—1)

x{"™Y — x{~ Y is independent of (x,, ..., X' *)); the mean values vanish.

Theorem 13.1. Let {x,,0 < t < T} be a finite segment of a stationary Gaussian
process with vanishing mean values and with covariances generated by spectral
density (5.1). Then the distribution of {x,,0 < t < T}, say P, is strongly equivalent
to P* = P, defined by (7.6), and
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dP la n—1 T
(7.7) T lekII/Z exp {5 ;1_1 T — %kZOA"_"f lxgk)(w)lz di —
. R -
0
1n—l n—1 X .
-1 Zr:k Y OXP 4+ xPxP] D,-,(} ,
J even

where D;,,0 < j, k < n — 1 are given by (5.21) and 4,_, by (5.9).

Proof. Let (@, 0*) be the closed linear manifold generated by covariances
R™*(x,, x,) corresponding to the P, ., — distribution. It is easy to see that ¢* = £?
and

T
(7.9 wmm:zum@=dfwwwtwweﬁy
0
Consequently, for Q given by (5.11), where we have made use of (5.21), we get

(7.9) (Q — 0%) (v, ¥) =:20An_kf Ill/(tk)IZ dt +

33 ST + UPTR D,.
=0 k=

Now let o, be a root of L(4) = Ya,_,4* = 0, and let Ly(2) = L(A)/(A — «;). Then
z, = x" + oyx,is a (n — 1)-th order Markovian process, if n > 1, and a white noise,

if n = 1. We have
t

X, = xpe*" + e"“'J e 'z ds = Kz,,
o0
where K*K has a finite spure. Obviously Q7 satisfies (6.24). Consequently, according
to Theorem 6.3, Pand P* = P, are strongly equivalent. Since &* = £2_,, 0 — o
may be extended to #7_,. The right side of (7.9) is, however, adjusted so that it di-
“ rectly represents the extention of Q — Q* to #2_,. Now, in view of (6.25), we only

have to substitute x, for ¥, in (7.9), which yields he quadratic form of (7.7).

It is now necessary to find the determinant. The determinant corresponding to the
vector (xo, ..., xg' ") equals |Dy|, D, given by (5.21). This determinant is to be
multiplied by the determinant of the operator B such that

(7.10)  R(x{"=1, x{(n=1 | Xos -o0s X)) = RF(Bx"™D, x(= 1 [ X, o0y x§ 7).
" Let By be the restriction of B ot the subspace spanned by random variables
(7.11) w; = x4, (i=1,...,N).

According to Theorem 6.2, we have

a R(u; — ug, u; — u?)

7.12 det By = S
(7.12) N il=_Il R+(u,-—ui+,ui—u,.+)

where u{ and u;" are the projections of u; on the subspace spanned by (x,, ..., x§' ™V,
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Uy, ..., u;—y) with respect to the R-covariance and R™-covariance, respectively.
According to the assumptions (7.6), u;" = u,_, and

(7.13) R*(u; — uf, u; — ui) = %a&z.

If R-covariance holds true, the situation is more complicated. First we find the
projection of u;, say ii;, on the subspace spanned by {x, 0 =1 < [(i — 1)/N] T}.
Because the process {x;_,,0 < 1 < T} has the same distribution as {x,0<t=< T}
we may write (5.10) in the following equivalent form:

in the following equivalent form:

T n-1 n—1
(7.14) oY, ¢) = f (L) (L) dt + 3 Y yPoPD,,,
0

j=0 k=0

where Dy, is given by (5.21). When looking for i;wehavetoput T=[(i — 1)/N]. T
and @, = R(x,, u;). However,

(7.15)  (L*¢), = L*R(x,, u;)) = R(L*x,, u) =0, 0=t<[(i-1)/N].T,

because L*x, is a white noise independent of x,, s > ¢, similarly as Lx, was a white
noise independent of x,, s < t. This means that for ®. = R(x, u;)

n—1n-1
Q(lp, q)) = Z Z ‘/’gll)r/zvag)—nr/NDjk-
j=0 k=0
If we replace y, by x, and substitute
(k) ak (n—1) k p(n—1+k)
P = 5:" R(xta XiT/N ) = (—1) Rt—iT/N >
where R,_; = R, we get

n—1 n—1
(7.16) i, = Zox;{’_nm kzo(— DFREN O Dy =
= =

n—1 n—

/ ‘ - T oo -
S G R L1 D
J= =
Now
n-1
(7.17) , kzo(—1)k RE™YOD, =1, if j=n-—1,

=0, if h<n-1,
because ((—1)*RY *¥) is the covariance matrix of the vector (%45 ooy x4"7 1), and (Dj)
is its inverse. Moreover, in view of L*R®, =0, t < s, we have
1 n—1

(7.18) RGP = — — % a, (R§Y (0<k < n)
ag h=0
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which, in connection with (7.17) gives

n—1

(7.19) Y (—1FR§OD, = —D=i 0<j<n—1.
k=0

If we insert (7.17) and (7.19) into (7.16), we get
T"la

(7.20) i, =u;_, — N ,Zo ;‘f x oy + O(N72).
0
From (7.20) it follows that
(7.21) R(u; — ity u; — @1;) =
np(2n—2) 27" " n—j Jj(pn—1+j) (n—1+j)
= 21— (SIPRERD) + 20 L (CRYD - RGO
i= 0

TZ n—1n—1 a,_ia,_ . A
W B N H(-1YRY + O(N-2) -
(2n—1) (2n) 212 ") n—j JR(n+J)
=2(-1)"= R + (- )NR°++ Zoa (1R +
J 0

2 n—1 "_la,,_Aa,,_ L _

F 2 Z 12 k(-'—l)"Rg]:k) + O(N 3) —
j=0 k=0 ag
2 n—1

FRETY 4 TS B (iR 4 ov-?) =
N 2 =0 a,

= 2(-1y

NREED 21 5 RGED o)

=Ia(;2 1_Iﬁ + O(N7?),
N N a,

where we have made use of (7.18), and of the adjoint relation

=21y

(_ 1)nRgljk) — _"Z_‘(_l)h An—n REH

o
together with RGY*D =0, j <n -1, R} = RG» =RP?, 0<j<n —1, and
@n-1) _ @n-1) _ "go2
R — RZ™D = (=1)tag?.

If we chose the projection u{ of u; on the subspace spanned by (Xgs ee0r X5 uy, ..
.., U;_y), we cannot make use of random variables x(,) e 02j<n—2
appearing in (7. 20) However, we may approximate them by sums

i1
)
2(. TN —Zx’c +Z“kdk,
k=1

so that
Rt pyryw — £ ryn) = O(N7Y).
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For example we may put
i—-1
_ . T
3?5':"—12))T/N = xﬁ, P4 Z Ug —
k=1 N
etc. Consequently, we have

(7.22) R(u; — uf, u; — u?) = %m;z (1 - Iﬂ) + O(N73).

ao

So, in accordance with Theorem 6.1 and with (7.13) and (7.22),

I (1 - Iﬁ) + O(N~3)

N ]
(7.23) det B = lim det By = lim ] ™ N ao = it
e e Kiprs
N

which concludes the proof.

In the case of a general rational spectral density the leading term of Q%(y, x) is

T
a(z)bgzj lxgn—m)l2 dt = Q+(X, X) ,
0

T
(7.24) (1, 1) = aébo‘zf [ ™) dt + ...
0

and Q*(y, x) — @*(x, x) is dominated in the sense of (6.29) by Q(x, x) corresponding
to any rational spectral density with i — i = n — m — 1. Without entering into
details let us present the following

Theorem 7.3. Let {z,,0 < t < T} be a finite segment of a stationary Gaussian
process with vanishing mean values and with covariances generated by spectral
density (5,22). Then the distribution of {z,,0 < t < T}, say P, is strongly equivalent
to P* =Py b and

dP

7.25
(7-29) dp*

= D] b " |R(xY, xP|z,, 0 < 1 < 1))V,
1 b —
. exp {— <ﬂ - ~i> T — 30° — 0*(x, x“’)} .
2\ay b,
where Q% = Q. . is given by (7.8), and the Dy’s,0 < j,k < n —1,aregiven by
(5.21). Further, x, is a process considered in Theorem 7.2 such that z, = Y by x®,
K=o

and R(x(’,x3”|z,0<t<T), 0<i, h <m— 1, are conditional (partial) co-
variances of x§’ and x’, when {z,,0 < t < T} is fixed.

Proof. The assertions concerning the quadratic form follow from Theorems 5.2
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and 6.3 and from the above discussion. As for the determinant, let us go back to
formula (7.7). If the dominating distribution P* were modified so that

m
Z bm_kXSm—m—1+k) — Yt
k=0

has independent increments and E*|dY;|? = a2by?, then the only change in the
determinant would consist in replacing

1 1
exp 4y by exp~ﬂ——1?iT.
2a, 2\a, by
This could be proved by arguments similar to those used in the proof of Theorem 7.2.

m
Now, if we put z, =}’ b,,_,x{*’, we can easily see that P* — distribution of z, is the
k=0

one used in (7.25). Further the transformation (z5™, ..., zn—m- D) = A(xg, ..., xq 1),
defined by

(7.26) z§) =kz bpoyx§™, i 0Zj<n—m-1,
=0
= x§*+m if —m<j< -1

has the determinant IA] = by ". Now replacing x, by z, amounts to multiplying the
determinant by by™", and excluding random variables x§*™ = 2§, —m <j < — 1,
amounts to dividing the determinant by the factor |R(x{", x{ |z,0 <t < T),
which follows from Theorem 6.2. The proof is finished.

Remark 7.1. Obviously, the following limit exists: .
(727)  lim [R(x6, xG” | 2,0 < t £ T)| = [R(x$), x| 2,0 < 1 < )| .
T-w
Remark 7.2. Consider a stationary Gaussian process {x:,0 <t < T} with cor-

relation function R(r) = max (0,1 — |7]). From Example 3.2 it follows, after some
computations, that, for 0 < T < 1, ' '

L(po + o) 1(7
7.28 Ao, ) =21 4~ @* dt.
(7.28) (0, 9) = 2= — L
Consequently, the respective distribution, say P, is strongly equivalent to P* = PJ,
defined by (7.6), and :
1(xo + xT)Z] .

7.29 = const exp | —
(7.29) p[ 4 2-T

dp*

If, however, 1 < T < 2, we get

1200 + 207 + @ + @r_()> 1Y |
(7.30) (o, (p) _ _( Po o1 + @1 + 9r_y) + - ,‘P:lz dr +
6 4—-T 21—

2 T ’ ’ ’
# 5[ o+ lotal + wioi 2,
1
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which shows that the distribution is not equivalent to any distribution we have met
with.

If we introduce two parameters by puting R(7) = d2. max (0,1 — |7|/a), then
for 0 < T<a and P* = P

1,2d%/a>
P - 2
(7.31) d“+ = 2a -T V2 exp| — i%—(fo + xT) .
dp 2a 4d¥2 — T/a)

The determinant was established as follows:
If we put . =R(s+ 4 —1) =d*(1 — (s + 4 = 1)/a), 0 <t < s, then
o, ¢) = d*(1 — 2401 + 24%a7(2a — 5)71)
gives the variance of the projection of x,, , on the subspace spanned by {x,,0 < t < s},
so that the residual variance equals 42d%q~ (1 — 4(2a — $)~"). Then we may proceed
with a development similar to that used in evaluating of (7.23). Note that xy + x4
is a sufficient statistic for estimating a. As is well-known
2d*a™' = 1.i.m. (X -v1m = Xizp)? -
1

n=ow i=

Remark 7.3. From (7.7) it follows that the vector

T T
-1)|2 -1 -1
{J |x|? dt, ,f XD dt, xg, ., x®D, Xy eeuy X ’}
(o] 0

represents a sufficient statistics for all n-th order Markovian processes with fixed a,,.
In the case of a general rational spectral density with m > 0 apparently no sufficient
statistic exists, which would not be equivalent to the whole process {z,0= 1< 1)
See Example 7.3.

Remark 7.4. We have proved, by the way, that distributions P, and P, correspond-
ing to two rational spectral densities are strongly equivalent, if n, — m, = n, — m,
and ay; by, = ag,b,,, and perpendicular in other cases. This result (with equivalence
instead of strong equivalence) has been announced by V. F. Pisarenko [24].

Example 7.1. If n = 1, we get
R(z) = (2aga;)-! e"‘”"/"o)lfl,
and

(7.32) dp

dP*
where x; = x,(w). See also [25].
Example 7.2. If

. 1 orT
= (2a4a,)""* exp {E % T — %afJ‘ [x,|? dt} ,
)

0

1 a;? _ 1 %’
(7.33) f(2) = 2 (12 + ad) (2 + a2)  2n [ + (i) (o1 + ) + a0y

(22 > oy > 0)
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then a,/aq = o, + a,, a/ay = a,0,. Consequently,

I 1 1 —ayt 1 —az|t
(7.34) R(r):7<_e W1, |1>,

ag \a, o,

Di2 =0, Doo = 2a,ay = 2(o; + a,) aya5, Dyy = 2a4a; = 2y + a,) aj, and
dpP
dP*

: T T
exp {(o? + o) a2 J |2 df — LoZaa? f 2 dt +
0 0

(7.35)

= 20y + o) (250,)'? a2 exp [3(oy + a3) 7)].

+ 5(x6" + x) (o + ;) al — 363+ x3) (2 + ay) ao,ag) .

Example 7.3. Consider a general spectral density with n = 2 and m = 1,

(7.36) (3) = — Lo + )
lao(i2)* + ay(id) + a,|?

andput L(B) = aoB* + a,p + a,, L¥(B) = apB® — a,p + a, and LL*(B) = L(B)L*(e) =
= a3B* + (2apa, — a}) B + a2, etc. In order to find Q(x, x), let us first suppose
that y € £3, and use the form of Q%(y, y) resulting from the right side of (5.27)
after substituting y, for z,(w). On obtaining ¢, from formula (5.31), we get

T
(7.37) ¢, = %}f eIy ds + ce 4 cpe*TR,
0
where
(7.38)
1 . 1 T
awl(P)to = 120) 3 [ 1,0 = L3(3) s, — 1) = j Ty, dy)
— 0 R
“ LL(f) — CL(g) e 277
and
(7.39) ¢, =

0

aoL(B) (r — L*(ﬁ)-z-IB f e~ T8y di) — L¥(B) e~ (y, — L*(ﬂ)ii j e 3, di)

LL(B) — L*L*(B) e~ 2T*
Now in view of (5.29) and (5.30) (Lg); = (L*¢), = 0, so that
T
(x> x) =f X(LL*@), dt + graglaoey + a,@f + a 0] +
0
+ Xo@o[ao0s — a1y + areh] .
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On using the relations ) = — y, + Bo, and (7.37), we get, after some transforma-
tions, that

2 T T
00) 0t 2) = ((2) [ el a4 (0 = 200, — g2 IR
0 [ 0

ao\? T pT s
+(~> LL¥(p) f f eIy di ds +
bo 0oJo

- LL(B) + L*L*(p) e=27#
+ (ol + [xr]?) b 2(‘10"1 — Bag LL(B) — L*L*(p) e—zTﬁ) h

_1p(% : l ! ~tB, d 2 ljr —(T-1)p .2> LLL*L*(ﬂ)
’ <b0> (ﬁ.[oe o t; +:l/3 oe & dtl LL(/})——L*L*(ﬁ) e~ 2TH

2 T T *
+ 2<@> (fo e” Ty dt + x()f e %y, dt> LLL*() =5 +
bo 0 0 LL(ﬁ) — L*L*(B) e

+ 4p 4o ’ LoXr + L"‘L*(/i)i Te“"’x dt 1 Te_(T_')BX dt
bo) \"*" 2800 728 ), ‘

%* -TB 2 T
LL*(p) e =2 ol Xo | e TPy, dt +
LL(B) — L*L*(B) e~*"# b, o

T LL*L*(B) e™ ™
ty, d .
+ XTJOE Xe t) LL(B) _ L*L*(ﬂ) o~ 2TP

If T— oo the terms involving e™ " become negligible. The quadratic form (7.40),
obviously, is well-defined for any y € #2. On putting

2 pT
(7.41) 0~ 0*(12) = 0w 1) - <%> f il
0. 0

—N
Q% — Q" will be well-defined for any y e Z35. The probability density will equal

A

(7.42) ddTP“ = 2b, 'ay(a¢as)'"* R(xg z, 0<t < T). exp ,:% <ﬂ - B) T:l .

do
1 z/\ +( o )
.exp {—3;0% — 0*(x“, x°)},
—T .
where Q% — Q¥ is given by (7.41) and (7.40). The conditional variance of x, equals
(7.43) R¥(xo |z, 0St<T)= R*(xo) — Q*(v, ),

where R?*(x,) is the absolute variance and v, = R(xo, z,) = boR(xo, x| + Bx,) =
= bo[R'(7) + BR(t)]. In the special case considered in Example 7.2, we have

‘ (744) Rz(xo) = 1M v, = _1~ (e-—alt B—a — ot B - a2> .

2 ’ 2
2 agoqa, 2ag oy o,
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Peswome

O JIMHEWHBIX CTATUCTUYECKUX IMPOBJIEMAX
B CTOXACTHMYECKUX IMPOLIECCAX

SIPOCJIAB TAEK (Jaroslav Hajek), IIpara

B paGote paseuta 0GbenMHEHHAS TEOPHS JMHEHHBIX CTATHCTHYECKHX npobiem,
B TOM HMCJIC Npe/ICKa3hIBaHMs, (QUIbTPALUH, OLUCHOK KO3((ULUEHTOB perpeccuu
1 OMpE/ICNICHHS MIIOTHOCTI BEPOATHOCTU OJHOM TayCCOBCKOI MepbI MO APyroii.

Mycte {x,, 1€ T} — xakol-HUOYAb CTOXACTHYECKHMIA NIPOIECC Takoi, 4To Elx,[2 <
< o u Ex, =0, te T. IIlyctb & — NPOCTPaHCTBO I'misbepra, 31€MEHTaAMHI KOTO-
POTo SBJISFOTCS JIMHEHHBIC KOMOMHAIMU CIyYaiiHBIX BEIMMMH X, M MX IpPeIesbl 110
Hopme | x|| = [E|x|*]'/%. IIpocTpancTBy 2 MOXHO MOCTABHTb B COOTBETCTBHE npo-
CTPaHCTBO P, INEMCHTAMH KOTOPOTO SBJISIOTCS KOMIUTEKCHBIE (DyHKIIMU ¢ (teT)
TakHe, YTO IS ONpPeNeICHHOTO dJIEMeHTa v € X

(2.1) ¢, =Exp (teT).
IIputom Hopma [Q(¢, ¢)]'/* B mpocTpaHCTBe & HaHA COOTHOLICHHEM (e, ) =
= E’vlz, TO€ 0 — 3JEMEHT Z', COOTBETCTBYIOIMI (hYHKIUM @ B CMBICIE YPaBHEHHUS
(2.1). Cszannbie ¢ mporeccom {x,} nuueiinEIe POGIEMEI COCTOAT, BOOBIIE, B OTHIC-
kaHun @ 1 Q(¢, @) u B peruennu ypasrennd (2.1) 0THOCHTENBHO 0.

B §2 onpenensitotes ocHoBHbIE CBOMCTBA mpocTpaHCTB 2 M P a TaKkKe 31ech

opmysmpyloTCs M pelatoTCes B OGLIEM BUE OCHOBHBIE THITBI JIMHEHHBIX TPOGITEM.
§ 4 mocesmaeTcs mape mpoueccos {x,} u {y,}, CBS3aHHBIX COOTHOLICHIEM x, = Ky,,
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rae K — nuHeiiHbIi onepaTop. HokasbIBaeTcs, YTO I TayCCOBCKHMX NpOILIECCOB
{x,} MOxHO ocywiecTBHTS B yHKIMAX BHIA Y. = Ey,b, v ey, TOrAa ¥ TONBKO TOT1a,
ecin onepatop K*K — simepubiif. B § 5 maercst B ssBHOM BUJIE PEUIECHUE JIMHEHHBIX
npoGneM sl CTAlMOHAPHBIX MPOLECCOB C PalMOHAJIbHONW CMEeKTPaIbHOM IIOT-
HOCTBIO Ha KOHEYHOM HHTEpPBAJE.

B § 6 mBe rayccosckue Mepsl P n Pt Ha3sBaHBI CHJIBHO 9KBUBAJICHTHBIMH, €CJIH
JIUHEHHBI OTepaToOp, MepeBOAsLLMI OgHY KOBapUAaHTHYIO (QYHKLHIO B IpPYryio,
ABJIACTCSL SIAEPHBIM (1151 9KBHBAJIEHTHOCTH JOCTATOYHO, YTOOHI onepaTop ObLI THMA,
Cunb6epra-Umunra). 3nech BLIBOmATCS mBe TEOPEMBI O IOBEJECHUU ONpPENEIUTEN
9TOTO ONepaTopa v JOCTATOYHOE YCIOBHUE UL TOTO, 4T06bI dP/dP* 6bui0 byHkunein
KBaJPaTHYHOMH (OPMBI, OTIPE/IC/ICHHOMN Ha BEIGOPOUHBIX byskmusix. B § 7 atu o6imme
TEOPEMbI PUMEHSIIOTCS K CTALMOHAPHBIM MPONECCAM C PALMOHANBHOM CHEKTPaib-
HOJ MIOTHOCTBIO MK ¢ (PYHKLMEH KOPPeISILIK R(7) = max (0, 1 — |7]). Hanpuwmep,
BBIBOJUTCSL, UTO [JIs TAyCCOBCKOM Mepbl P, MHIYLUPOBAHHOIM CIIEKTPaJIbHOM TJIOT-
HOCTbIO

n 1 n
JO) = | X api(i)72 = = | ¥ 4,42
k 27 k=0

1
27 k=0
HMEET MECTO PaBEHCTBO

n—

dp
dp+

- 1/2 lay o 17d T B2 _
= |Dy|'? exp T Ay | |x(w))? dt
2a, 2 k=0 o

ln—l n—1
), (k j),.(k

=2 2 O+ XX Dy,

4j+k YETHBIE

rae D, maHel ypaBHeHHEM (5.21), |Djk| O3HAYaeT ONpeleJIUTENlb, & pachpeiesieHe
Pt = P,f, 4o ONIPEIEIIAETCS Ha cTp. 433.
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