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YEXOCJIOBALKUN MATEMATUUYECKUM XKVPHAI

Mame. KUl ym Yexoc. it Axademuu nayx
T. 12 (87) TIPATA 20. IX. 1962 r., No 3

THE MULTIPLEX METHOD AND ITS APPLICATION TO CONCAVE
PROGRAMMING

JAROMIR ABRHAM, Praha
(Received July 7, 1960)

The paper consists of two parts. In the first part, Frisch’ multiplex
method for linear programming is derived and the finiteness of this method
is proved. In the second part, an iterative provess based upon this method
is given for finding the maximum of a concave function subject to linear
inequality constraints. The convergence of this process is proved and an
estimate of the error is constructed.

I. THE MULTIPLEX METHOD FOR LINEAR PROGRAMMING

1. Formulation of the Problem, Outline of the Method. We shall consider the
folIowmg programming problem: To maximize a linear preference function f(x) =

= Z ¢;x; on the set M of all finite groups X = (x, ..., xy) of real numbers (to be

consxdered as points in the Euclidean N-space &) subject to the constraints that
N

1 Yayx;=ay,, i=1,...m<N
j=1

2 X, <x;5%, j=1,..,N

where a;;, i = 1,...,m, j =0,1,..., N are given real constants and X; < ;l, Jj=
=1,...,N are exther real constants or symbols — co or + oo (in thxs case the
equallty sign in (2) is to be excluded). The rank of the matrix of Eq. (1) will be suppos-
ed to equal m and the set I will be supposed to possess at least two different elements.
When explaining the method for solving the above-stated problem a point X LEM
will be assumed to be given.

It is well-known that the set 9 is a convex polyhedron contained in &y, dim M <
= N — m. When using some classical methods (e. g. the simplex method) for solving
the problem in question we should have to pass from a given vertex of 9 to another
one so as to increase the value of the preference function. Using the multiplex method
we shall however take a different algorithm. From a given point of 9 we shall con-
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struct another one passing on a line giving in some sense the largest increase of the
preference function.

From this point of view it would seem natural to find a vector u = (uy, ..., uy),
i. e. a solution of the linear homogeneous equations

N
3) Yau; =0, i=1,...m
=1

N N
maximizing ), c;u; subject to " u} = const. (i. e. the length of u being fixed). However
i=1 i=1

the computations necessary to find such a vector are rather difficult, especially when
a boundary point of M is given. The multiplex method to be explained below seems
to be more convenient.

Eqs. (1) being linearly independent we can without any loss of generality suppose
that

Ayt 1 -o0 Aypn
............. *+0,
am.n+ 15 o AN
where n = N — m. Then the variables Xy 15 ..., Xy €an be uniquely expressed in
terms of x, ..., x, in the form
N
) xj = bjo +k2 bjxi -
=1
Eqs. (4) are obviously valid for j = n + 1, ..., N. In the following however, it will

be useful to generalize Egs. (4) so that they also hold for j = 1, ..., n. For, it suffices
to put

bj0='0, ji=1,..,n; bp=90u, jk=1,..,n

s

where &, is well-known Kronencker’s symbol. Linear equations describing the poly-
hedron M will therefore in the following always be supposed to be given in the form
(4)forj = 1, ..., N which corresponds to a parametric description of the linear space
determined by Egs. (1). By using Eqs. (4) the considered preference function can easily,
be transformed into

(5). F(X) = bo +k;b0kxk
N

where bo, = Y ¢;by, k= 0,1, ..., n.
j=1

It would obviously be possible to describe the polyhedron 9 by linear inequalities
involving only the “basic variables” x,, ..., x, in the form

HExSx, k=1,..,n;

>

n
.—x-‘,é bJO +kzlbjkxk§§j’ j'——n+ 1,...,N
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i. e. it would be possible to take only the space of variables x;, ..., x, into consider-
ation. In fact, for computational purposes it is convenient to make use of these rela-
tions and to construct the vector of the maximal increase of the preference function
(5) in this space with some additional linear constraints to be seen from the consider-
ations below.

First, we have to find the above-mentioned vector giving the maximal increase
of the function (5). In the following, this vector will be referred to, regardless of its
length, as a gradient. However, we must remember that some variables may acquire
the boundary values and that some of the corresponding components of the gradient
can be such that it will not be possible to proceed from the given point in the gradient
direction in 9M; this difficulty can be avoided by seeking the gradient in some face
of the polyhedron 9.

For further considerations some basic notions will be introduced.

A variable x; as coordinate of a given point X € 9 will be termed a bound-attained
variable (coordinate) if either x; = X; or x; = X;,.

The linear dependency and independency of variables will now be introduced.
To each variable x; we can let there uniquely correspond a vector b ; with components
bj1, ..y by, (vector of coefficients of xy,..., x, in Eqgs. (4)). Then, the variables
Xiys --os X;, Will be said to be linearly dependent (independent) according to whether
the corresponding vectors b, , ..., b; are linearly dependent (independent). A neces-
sary and sufficient condition that the variables x;, ..., x; be linearly dependent
(independent) is that the Gram’s determinant

where M;; = 3 byby, vanish (be positive) (see e. g. [3], p. 203 and following).
k=1

By an r-dimensional face of M the set of all points X = (x,, ..., xy) € M will be
meant, exactly n — r linearly independent coordinates of which are bound-attained
variables lying on a fixed boundary of the corresponding interval in (2).

The operation set of a point X e is an arbitrary set of linearly independent
bound-attained coordinates of X (it need not contain the maximal number of its
linearly independent bound-attained coordinates).

Now, let u = (uy, ..., uy) be an arbitrary vector of 9, i. e. a vector, for which the
relations (3) or equivalent relations

n
uy= Y buts j =1, N
=1

are valid. Then a component u; of u is said to be admissible with respect to a point

X =(xp,...xy)eM if

u; 20 when x; =X;, u; <
u; is arbitrary when X;

0 when x; = x;,

<Xj<x).
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A vector u of M is admissible with respect to a point X e M if all its components are
admissible.

Let X be a point contained in an r-dimensional face of M ane let an operation set
{Xip» - x3,} (0 £ v £ n — 1) be given. We wish to find the gradient of the function
(5) in the face of M described by the given position of the bound-attained variables

n

Xij> -+ Xi,. We have therefore to find real numbers uy, ..., u, maximizing > bogty
k=1

and subject to the constraints that
n
(6) Yobiahy =0, s=1,...v;
k=1

(™

where Lis a positive constant. For this purpose we construct the Lagrangian function

2 __ r2
u, = L

M=

k=1

]

n n v n
V= Z bowy + %A Z up + Z B, ) bi i s
k=1 k=1 s=1 k=1

where 4, B;, ..., B; are Lagrangian multipliers, and we consider the system of equa-

(3%

tions 0y/0u, = 0, k = 1, ..., n together with Eqgs. (6) and (7). We get first

(8) bo + Auy + Y B b, =0, k=1,....n.

s=1
Multiplying the k-th equation in (8) b;, , and adding over k from 1 to n we get with
regard to Eq. (6) the system of equations

=0, t=1,...,v

ssle

) . M;,o + ) B, M,
s=1

E n
for determining the parameters B, , s = 1, ..., v, where M;=Y bub,i,j =0,1,...
k=1

ip» -++» X;, being linearly independent the determinant of Eq. (9)
is positive and the B; s can therefore be computed uniquely. According to R. FriscH
[1], [2] the numbers B, s = 1, ..., v will be termed regression coefficients of the
operation set {x;, ..., x; }. From Eq. (8) we obtain then Au, = — d, where d, =

..., N. The variables x;

= bor + ). Bi,b; 4 k =1,...,n and using Eq. (7) we have
1

s=

(10) A2 =Y a2

Let us now put

If A = 0 we are not able to find the gradient in question; this case will be discussed
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in the following section. Suppose therefore that A < 0. We have (0%y/ou,0u;) = Ady,,
k,l =1, ..., n. Let us consider the quadratic form

_1_ n n aZl//
|Al k=1 1=1 Ou,0u,

dugdu, = — Y (duy)*.
k=1

Supposing that from the relations Z by ydu, =0, s=1,...,ve g ‘the differen-

tials duy, ..., du can be expressed in the form du, = Z Psudu,, s =1,...,vand
p=v+1
substituting this into the quadratic form in question we get the quadratic form

-y (duy)* Y[ ¥ Pa A, ]°

k=v+1 k=1 p=v+1

which is obviously negative definite. The vector found is therefore the gradient of the
preference function (5) in the space of variables x,, ..., x, with the given operation
set. The numbers u, being proportional to the numbers d,, k = 1, ..., n with a posit-
ive proportionality coefficient | 4|, the numbers d, ..., d, can be taken as components
of the gradient. In agreement with Frisch’ terminology the quantities d,, ..., d, will
be termed basic direction numbers. The general direction numbers d;,j = 1,...,N
are then defined by

n

d;=Y budy, j=1,...N.

For j = 1,..., N, it follows that
d] =kzlbjk(b0k + ZlBisbi”k) = MjO + ZIBE'Mi"j .

By this relation and Eq. (9) we obtain again: If x; belongs to the operation set then
d;=0.

The adm1531b111ty of direction numbers with respect to a given point X e I is
defined in the same way as the admissibility of components of a vector of M.

2. An Optimality Criterion. An optimal solution (or an optimum)is a point X, e M
for which the considered preference function acquires its maximum on M.

We shall now consider the case when 4 = 0 in Eq. (8). From Eq. (10) we can see
that A = 0 if and only if d, = 0, k = 1, ..., n. The natural question arises whether
from the relations that d, = 0, k = 1, ..., n we can conclude that an optimal solution
has been found. The example below shows that this is not the case.

Example. Let the preference function be 3x; + 2x, + 5x; and M be the set of all
points X = (x,, ..., X5) satisfying

Xy = X1 0=x;=5;
X, = Xy, 0=x,=3;
X3 = X3, 0=<1x;3;
Xg=—14+2x; — %X, + X3, —0<x,<+ ©
Xs = — 5+ 3x, + 3x;3, xs < 38.
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The point Y = (5, 3, 2%, 4%, 38) belongs obviously to M and f(Y) = 672 Choosing
the operation set {x,, x,, x5} the regression coefficients fulfil

3+ B, + 3By =0,
2 + B, ~0,
24 + 3B, + 18Bs = 0
and therefore B; =2, B, = — 2, B, = — 3. It follows that d, = d, = d; = 0,

hence also d, = ds = 0. But M contains also the point Z = (0,3,%% 3%, 38) for
which f(Z) = 782 > f(Y).

In order to be able to establish an optimality criterion the following definition will
be useful:

LetX = (xy, ..., xy) € M and let x; belong to the operation set. Then the regression
coefficient B, is sign correct if B; > 0 then x; = X,, but B; < 0 when x; = x;.

Ler us now denote b; = (byy, ..., b,), i = 1,..., N. Then the following theorem
is valid:

Let X = (Res - Ry) €M and let {x,, ..., x;,} be such an operation set of X

that all regression coefficients B;,, ..., B;, are sign correct and that the relation
(11) by = — } B.b,
s=1

holds. Then X in an optimal solution.

Proof. Forming scalar products of Eq. (11) with the vectors b, t=1,..,v we
get Eq. (9). If follows that, if b, can be expressed as a linear combination of b, b

i - by,
the coefficients in- this linear combination can be chosen equal to regression coeffi-
cients with opposite signs.

Let now Y = (yy, ..., yy) be an arbitrary point of M. The obviously

f(Y) = f(f) +k2:41b0k(yk - xk) 5
according to Eq. (11), then
f(Y) - f(?) =kzlb0k(yk - 21‘) = “kzl(.Vk - xk) ZlBi,bi..k =
=-)B.Y by — ) -
s=1 k=1

Since ;

Z bi,.kyk = Yy, — bi.,o’ Z bi,,kxk =X, —bio, s=1,..,v,

k=1 k=1

we have

f(Y) —f(?) = "sé:lBi,(Yi, - gi,) .
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As YeIM, X e M, the vector ¥ — X is admissible with respect to X. All regression
coefficients being sign correct, if follows that B; (y; — £;) 2 0, s = 1,..., v, hence
f(Y) - f(X) 0.

From this, the following assertion is easy to establish: If all regression coefficients
are sign correct and all basic direction numbers vanish, then an optimal solution
has been found.

3. The Iterative Process by the Multiplex Method. First, we have to introduce
the preference direction number d0 Putting j = 0 in the definition of general direction

numbers we get dy = My, + Z B, M,_,. Expressing B;, s = 1, ..., v from Eq. (9)

by Cramer’s rule and substltutmg into the relation dy, = Mgy, + Z B.M,, o we find
<1

Moo, Mo, --o Mo‘ivl

Mil.O’ Mix.in’ cey My

M; o M; i ..., M;

iy, iy

dy =

M

iy,igy *o

The preference direction number d,, is therefore the ratio between two Gram’s deter-
minants and hence d, = 0. Moreover, from the assertions of Sec. 2 it follows that,
if dy = 0 and if all regression coefficients are sign correct, then an optimal solution
has been found.

For explaining the multiplex process, four logically possible and mutually exclusive
cases for the situation in the operation set are to be distinguished. According to the
situation described by these cases we shall either change the operation set, or construct
a new point in M so as to increase the value of the preference function, or we shall
see that an optimum has already been found.

The four cases in question are:
1. At least one regression coefficient is sign incorrect.

In cases II -1V all regression coefficients are sign correct.
II. At least one direction number is inadmissible.
111. All direction numbers are admissible, d, > O.
1V. d, = 0. Then an optimal solution has been found.

We shall now discuss the cases I—1III:

Case I. Some regression coefficient being sign incorrect we are e. g. even not able
to say whether an optimum has been found, especially when a situation as in the
example of Sec. 2 arises. From the reasons to be seen below the following instruction
is the most convenient: Drop from the operation set one or more variables having
sign incorrect regression coefficient.

The elements of the new operation set will clearly be linearly independent and we
are again in a situation corresponding to some of the four cases in question. When
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dropping two or more variables we are unable to say anything more about the new
operation set. If we drop only one variable, e. g. X, We can say that in the operation
set thus obtained, the variable x, (which is bound-attained but does not belong to the
new operation set) will have an admissible direction number. ;

For the proof of this assertion we shall make use of the relation for matrix inversion
proved in Sec. 5. If (a;) is a v-rowed symmetric regular matrix, (@w) av + l-rowed
symmetric regular matrix obtained from (a;,) by adding one (e. g the v + 1-th) row
and column, then

Z' ZI .
Zivt1Thvt ibh=1,..v

—_ >

(12) Ay = Ay —
‘ ¢ Av+1,v+1

where A, A, are elements of the inverse to (ay,), (a) respectively.

Let B, r = iy, .,,, i, be regression coefficients in the original operation set, B,,
r=iy,..., I, r =% o the regression coefficients in the new (reduced) operation set,
d;, j = 1,..., N direction numbers computed from the point of view of the reduced
operation set. M, r,s =iy, ....i, and M3, r,s =iy, ..,i, r+a+s wil
denote the elements of the inverse to the matrix of Gram’s determinant of the original
and reduced operation set respectively. According to Eq. (12) we have
M;,' Mt

(12)) Mt =ML~ o

, KhSs=id, L0, rFfafs.

From Eq. (9) it follows that
B,==YMM', r=i,...i,r+a,

s¥a

where the index s runs over iy, ..., i,. By (12') we get

— Mt —_ —
Br = - Z:Msojurs1 + :?T Z ]wsOMsazl = - Z:]MsOMrs1 +
s*a Maza s¥a s*a
'M—l . . _ Mol )
+ Mr—al ZMsoMsal - MaOMra1= B, — Mr_al B,, r=i,.., iy, =+ o.
ax S aa

Further, it follows that
daz = MaO + ZMasBs = MaO + ZMasEs -

s*a s¥a
B, . _ B . B,
- _'.a_l s;aMasMasl = MaO + gMasBs - Msza - M_l (1 - MuaMaal) = M_l

as M, + Y M, B, = 0; therefore

(13) B,=-M_'d,.

Then obviously M,,' > 0, hence sign B, = — sign d,.

Of course, it could occasionally happen that, step by step, all elements of the
original operation set would be dropped. If the operation set is empty we clearly take
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n
di = boy, k =1,...,n (basic direction numbers) and have dj =) bybjy = M,
k=1
Jj=1,...,N (general direction numbers). If no operation set containing exactly
one element has a sign correct regression coefficient, then all these direction numbers

are admissible, as follows from Eq. (13).

Case II. The vector of direction numbers being inadmissible, we cannot pass from
the given point in its direction to another point in M. Then it seems natural to seek
the gradient with a larger number of constraints and we come to the following
instruction: Add to the operation set one or more variables having inadmissible
direction numbers.

When adding two or more bound-attained variables to the operation set we are
unable to prove any of its properties. Let us now suppose the operation set has been
enlarged by adding exactly one bound-attained variable x,. Then the elements of the
new operation set will be linearly independent. If this were not the case, real numbers
Cas S = Iy, ..., |, would exist such that b, = Y'c,by, k = 1, ..., n. It further follows
that y

M:

da = bakdk = ans Z bskdk = ansds .
k s k=1 n
But we have d; = 0, s = iy, ..., i,, hence d, = 0, i. e. d, is admissible. Moreover,
using Eq. (13) we conclude that, in the enlarged operation set, the regression coe-

fficient corresponding to x, will be sign correct.

1

Case IIL. Let X; = (x4, ..., X,y) be the considered point with the operation set
{Xi,> .-, x;, } and let us put X,(1) = X, + Ad, whered = (dy, ..., dy). Then X ,(2) e
for all sufficiently small 2 > 0 and we have

SO = F0) = 23 by = 1. bulbos + > Bubis) =

= A(MQO + ZB"sMO,is) = Ado >0.
s=1

If X,(4) € M for all 2 > 0 then obviously sup f(X) = + oo. In the contrary case we
XeM

choose 1 as large as possible. For, we define the parameters 4; by the relations

=" gis0, 4, =2UT% 4 g <0
d | d

J
J

J
and put 2* = min A;. Then X,(1*) e M but X,(1) non e M for 1 > A* and there
Jj:d;i*0

is at least one{ind’ex}g such that A* = 1,. Now, we put X, = X 2(/1*) and repeat the
whole consideration for X,. As for the operation set of X,, we are obviously in the
situation described by Case II. The values of X;,, -+ X;, have not changed, hence all
regression coefficients are again sign correct, but the direction numbers d, are in-
admissible with respect to X,. The instruction of Case II is therefore to be used first.
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Remark. If, in Case I, all direction numbers are admissible and }_ |d;| > 0, the
k=1
instruction of Case III may also be applied, but it would probably be possible to find
in M a direction giving a larger increase of the preference function. If Y |d,| = 0
k=1

we must clearly proceed according to the instruction for Case I.

A short expository of the multiplex method can also be found in [4].

4. Proof of the Finiteness of the Multiplex Method. In this section we shall prove
that by using the multiplex process an optimal solution will be obtained after a finite
number of steps. First, we shall introduce the following definition:

Letv = (vq, ..., vy) be a vector of M. Then the length of v is a number |v| satisfying

v = \/élvﬁ.

The length of v is therefore defined only in terms of its “basic”” components vy, ..., v,.
We can easily verify that the length thus defined has all the usual properties.

A unit vector of M is a vector u for which |u] = 1.

Let us now suppose that, using the above-described multiplex process, we can
construct an infinite sequence of points X,, r = 1,2, .... As there is only a finite
number of faces of I, there exists at least one face containing infinitely many points
of the sequence {X,}. Furthermore, the points X,, X, ; are not contained in the same
face for any r. Let us denote
— Xr+1 - Xr .

‘X;+l - X} ’

u, is then a unit vector parallel to and oriented similarly to the vector of direction
numbers used to construct X, , ; from X,. Then we can find a finite group X, X4, -..
...y X 44 Of points of {X,} such that:

u,

1. The points X, and X, , are contained in the same face I of the polyhedron IN.
n

2. bou, < bou,,;, j=1,...,q — 1 where bou = " bot.
k=1

Further, let X,, 4y = Xp4; + ApsjUpey, J=0,1,...,q — 1; then Apij >0
for j'=0,1,...,q — 1. We construct now two auxiliary vectors

q—1 q—1
_ -1
V= IZAWUNI X Ay s
j=0 ji=0

q—-1 q—1
t= (2 Ape) " X Ay My -
ji=0 Jj=0

It follows clearly that [t| < |v| = 1 and v, t are parallel and similarly oriented. Let w
be a unit gradient of the preference function in question in the face M. Then obviously
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bow = byv = bot. We shall now prove that byt > bou,. Let us suppose the opposite
inequality byt < byu,, i. .

q-1 q-1
Z Ap+j-bolipsj < bou, ¥ A, ;
Jj=0 j=0

is valid. Then we get by the assumption 2 that
q-1 q-1
j;'lpwboupu < J;’lpwboum
which is a contradiction. On the other hand, the relation bou, = byw must hold as
u, is a unit gradient computed with a Jess or equal number of constraints as w. It
follows that bow = bov = bt = byu,: but t = av, where
1 q

9- g—

a=| Z Ap+ibtp+j| : Z Aptj-
ji=o0 j=0

As all vectors u,, ..., u,,,_, cannot be parallel it follows that 0 < « < 1. From the

equalities just proved it follows that byv = bt = abov which implies byv = 0, i. e.

f(X,+4) = f(X,), and this is impossible.

5. An Auxiliary Relation for Matrix Inversion. Let (ay;) be a symmetric regular
v-rowed matrix and Ay be the elements of the inverse of (ay;). Let (d,;) be a sym-
metric regular v + 1-rowed matrix obtained from (a,;) by adding one (e. g. the
v + 1-th) row and column. The elements of the inverse of (a,,) will be denoted by
Ay Let D, D be determinants of (a,,), (a,;) respectively. M;; will denote the sub-
determinant of D obtained by dropping from D the i-th row and the Jj-th column.
Finally let D;; = (—1)"*/ M,;, D;; be minors of D, D respectively. Then, for i =
=1,...,v

v v
D,y = (—1)i+v+1 Z ah,v+l(_1)h+v My = “hzlah,vHDih
h=1 =

and hence
) B D
Aiyir = — ‘ﬁhglah,vnAih-
Further clearly 4,,, ,,, = D/D. For i, h = 1, ..., v the relations
- A A
(12) Aih — Aih + zi+1Ah,v+l
Av+1,v+1
are valid.

We shall now prove that the numbers A4,, satisfying Eq. (12) are elements of the
inverse of (d@;). Multiplying Eq. (12) by a,; (1 < r < v) and adding over i from 1 to v
we get

v _ v A v _
Z a, Ay = Z a,; Ay + okl Z a,id; iy -

1 i=1 Av+1,v+1 i=1
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v v+1 .
Since ZariAi,v+l = ZariAi,v+1 - ar,v+1Av+l,v+1 = - ar,v+1Av+1,v+1’ we have
i=1 i=1
M A
hyv+1 T s i
z ariAih = (Srh I— ar,v+1Av+1,v+1 - brh - ar,v+1Ah.v+l
i=1 v+1,v+1
and hence
v+1
> A = Oy -
i=1

6. A Numerical Example. We shall apply the multiplex method to the following
simple programming problem: Maximize the linear preference function 2x, + x, +
+ 3x; — x4 + x5 on the set M described by the conditions

(14) X+ X, +2X3 + x4 — x5 =4, 2x; — X, + x3 — x, =1
(15) 0=x; =5, 0=x,<3, 0=<x3, —ow<xy3< + o, xs5s=38.

Transforming Eq. (14) into

X1 = X1

Xy = X3

X3 = X3,
Xg=—1+42x; — x, + x5,
Xs = — 5+ 3x, + 3x5,

we obtain the preference function in the form
f(X) = — 4+ 3x; + 2x, + 5x;.

3
We construct now the matrix M = (M;), i,j =0,1,...,5 where M;; = byb,.
k=1

We get
383 25 924 i=0
31 00 2 3 1
M=| 20 10-10 2
50 01 1 3 3
92 -11 6 9 4
243 03 918 5

j=01 23 4 5.

Let the initial point be X, = (1,1, 1,1, 1); f(X;) = 6. As X, has no boundary
attained coordinate the operation set is empty and we have the basic direction
numbers d; = 3, d, = 2, d; = 5. From the relations

dy =2dy —dy, +dy, ds=3d, + 3d;

we obtain d, = 9, ds = 24. We now put X,(1) = X, + Ad, where d = (d, ..., ds),
2> 0. Hence X,(4) = (1 + 34, 1 + 24, 1 + 54, 1 + 94, 1 + 242) and from (15)

It
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we get the following constraints for 2 : 1 < 3,2 < 1,1 < 37. Hence we choose 4 = 1
and have X, = (4,3, 6,10,25), f(X,) = 44. The point X, possess one bound-
attained coordinate x, = 3 and the above-computed direction number d, is not
admissible with respect to X,. The operation set {x,} will therefore be chosen. The
regression coefficient B, fulfils M,, + B,M,, = 0 hence B, = — 2 which is sign
correct. Computing the basic direction numbers d, = do, + B,ybyy, k = 1,2, 3 we
find d; = 3,d, =0, dy = 5, hence d, = 11, ds = 24. All direction numbers being
admissible we put X;(1) = (4.+ 34, 3, 6 + 51, 10 + 111, 25 + 24}). Using (15) we
conclude that A < 3, therefore A =% is taken and X, = (5,3, 23/3, 41/3, 33),
f(X3) = 555 At X, the operation set {x;, x,} is to be taken. Computing B,, B,
from equations M,y + B;M,; + B,M, =0, M,, + B;M,, + B,M,, =0, we
obtain By = — 3, B, = — 2. Both regression coefficients being sign correct we find
dy=0,d, =0,d; =5,d, =5,ds = 15. As all d’s are admissible we put X,(1) =
= (5,3,23/3 + 54, 41/3 + 51, 33 + 151) and by choosing A = 1 the point X, =
= (5, 3, 28/3, 46/3, 38) is obtained and f(X,) = 63%. Adding the new bound-attained
variable x5 to the operation set we find the regression coefficients B, =2,B,= -2,
Bs = — 5/3. As B, is sign incorrect we drop x,; from the operation set. For the
reduced operation set {x,, x5} we have B, = — 2, B; = — 4/3. As both B, and B,
are sign correct we compute dy = — 1, d, =0, dy =1, d, = — 1, ds = 0. Then
we have X5(4) = (5 — 4, 3,28/3 + 4, 46/3 — 4, 38). From the inequalities (15) the
condition A <5 follows. Taking 2 =5 the point X5 = (0, 3, 43/3, 31/3, 38) is
obtained, f(Xs) = 732. At X, x, is a bound-attained variable again (x; has moved
from its upper to its lower boundary). Taking the operation set {x, x,, xs} we find
the sign correct regression coefficients By = 2, B, = — 2, Bs = — 5/3 and hence
di=0,j=1,...,5 i e. X5 is an optimum.

II. APPLICATION OF THE MULTIPLEX METHOD TO CONCAVE
PROGRAMMING

1. Formulation of the Problem and the Iterative Process. In this chapter we shall
construct a modification of the multiplex process for solving the following program-
ming problem: To find the maximum of a concave preference function o(xygs ..o Xy)
on the set I described by conditions (2) and (4). Substituting into ¢(x,, ..., xy) for
Xnt 15 -+ Xy from Eq. (4) the preference function will become a function of x,, ..., x,
only. This function will be denoted by f(xy, ..., x,) or by f(X). The preference
function f(X) will obviously be concave, too.

Let us remember that f(X) is concave on I if, for any two different points X, Ye I
and any two positive numbers a, § such that @ + = 1 the inequality f(«X + BY) =
= of(X) + Bf(Y) is valid. If the relation f(aX + BY) > of(X) + Bf(Y) always
holds then f(X) is strictly concave on M. As an example of a concave (strictly concave)
function we can take the function aX’ — XCX’ where aX’ is any linear form and XCX’
any positive semidefinite (positive definite) quadratic form.
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As for f(X), the two following assumptions will still be made:

1. We shall suppose that the set M(X*) = {X e M : f(X) = f(X*)} is bounded
for every X* e M.

2. The function f(X) will be supposed to be defined and concave and to possess
continuous partial derivatives of the first order with respect to all variables on some
set R described by Eq. (4) and by the inequalities

X-n<x;<x;+n, j=1,..,N,

where # is an arbitrarily small positive number.

The set M will again be supposed to possess at least two different elements.

The symbol yf(X) will denote the n-vector with components df/dx,, ..., of /0x,,
the derivatives being computed at the point X.

We are now in a position to explain the iterative process for finding the maximum
of f(X) on M. To this purpose we shall construct a sequence {X,} of points of M and
then prove that

lim f(X,) = max f(X).
XM

r—oo

The sequence {X,} will be constructed by induction. Let X, be any point of 9 and
suppose the point X, = (x,y, ..., x,y) (r 2 1) has already been found. Then the

auxiliary linear function
n

0.X) = V(X) (X - X) =% %X’ (5 — %)

k=1

will be taken and we apply the multiplex process for determining the maximum of
g,(X) on M in the following way: We find an operation set of X, and classify it ac-
cording to four fundamental cases described in Chapter I, Sec. 4. If we are in a situation
corresponding to Case I or II we proceed according to the corresponding instruction.
When in a situation corresponding to Case III (this situation and the situation of
Case IV will be in the following expressed by saying that the operation set is admis-
sible) we compute all direction number. Let d(X,) = (d(X,), ..., ds(X,)) be the vector
of these direction numbers. Then we put

Xr+1 = Xr + Ard(Xr) ’
where A, maximizes the function f(X, + Ad(X,)) of one real variable A subject to
X, + Ad(X,)eM.
We: will now discuss the situation corresponding to Case IV, i. e. the situation
when all regression coefficients are sign correct an all direction numbers vanish.

Let us suppose that this situation occurs at some point X, € M. Then the linear
function go(X) = vf(X,) (X — X,) acquires obviously its maximum at X, i. e.

max go(X) =0
XeM

which is equivalent to the condition that go(X) < 0 for all X e M. We shall now
prove the following statement.
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A necessary and sufficient conditionforf(X) to acquire its maximum on M at the
point X, is that go(X) < 0 for all X e M.

As for the sufficiency of this condition, let us remember that the linear function
z = f(X,) + Vf(Xo) (X — X,) represents the tangent superplane of the super-
surface z = f(X) at the point X,. From the concavity property of f(X) we conclude
that the inequality f(X) < f(X,) + vf(Xo) (X — X,) = f(Xo) + go(X) holds for
all X e M. If go(X) < 0 for all X €M we thus obtain that, for every X €M, f(x)
= f(Xo).

Let us now suppose that

f(X,) = max f(X).
XeMM

Then the relation
d
0= d_tf(Xo + X — XO))I:=0 = Vf(X,) (X — X,) = go(X)
is valid for every X e M.

2. Proof of the Convergence of the Iterative Process. From the assumptions made
in Sec. 1 follows the existence of at least one point Y& I such that f(Y) = max f(X).
We shall now prove that Xem

lim f(X,) = max f(X) .
r=o X eM

Let {X, } be a subsequence of {X,}. Then the sequence {X,} is homogeneous if the
following conditions are fulfilled:

1. The sequence {X, } is convergent.

2. All points X,_are contained in the same face of IN.

3. For s = 1,2,..., the point X, ,, is constructed from X,, by using the same
operation set {x;, ..., x, }.

A homogeneous sequence {X, } is regular if the operation set {Xipp oo X3} is also
admissible for the point X, = lim X,.

§—* 0

Let {X,} be any homogeneous sequence and lim X,, = X,. The regression coef-

§— 0

ficients being obviously continuous functions of X € M, we have

lim B (X,) = B;(X,), j=1,...,v.

§— 0
As the operation set in question is admissible at X, »,» all regression coefficients B, j(X )
and therefore also all B; (Xo)'s, are sign correct. Hence we conclude that the homo-

geneous sequence {X,} is regular if and only if all direction numbers di(Xo), j =
=1, ..., N are admissible with respect to X,,. Of course, it also follows that

di(X,) =limd (X,)
S0
because all direction numbers are continuous functions on M, too.
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We can easily prove that the sequence {X,} contains at least one homogeneous
sequence {X,}. Let now {X,} be an arbitrary homogeneous sequence. We shall
distinguish two special cases according to whether the sequence {X, } is regulat or not.

I. Let the sequence {X,} be regular and denote

XO = lim er .
Then
f(X,) = max f(X).
XeM

Proof. According to the definition of regular sequences the same operation set
{Xi» ..., x;,} is admissible both for all points X,, s = 1,2, ... and for X,. Let us now
suppose that d(X,) # 0. Then the function go(X) = Vf(X,) (X — X,) does not
acquire its maximum on M at X, and therefore there exists a positive number 4,
such that X, + Ad(X,) e M, f(Xo + Aed(Xo)) > f(Xo). We shall now construct
anumber 2* (0 < A* < o) such that X, + A*d(X, ) € M for every sufficiently large s.
As the vector d(X,) is admissible with respect to X, there is either a real number
t,. > 0 such that X, + 7, d(X,)eM but X, + td(X,)noneM for t > 1, or X, +
+ td(X,) eM for all £ > 0. Then we put f, = + co. Let us put t, = liminfys,;

§— 0

then obviously 7, > 0 and it suffices to choose e. g. A* = min (4o, %to). Then A* > 0
and we have

F(Xo + 2d(Xy)) = f[% (Xo + Jod(X0)) + <1 - j_) xo] >

> *):;f(xo + Zod(X,)) + <1 — ?)f(xo) > f(Xo),

lim f(X,, + 2*d(X,) = f(Xo + 2*d(X,))

§— 00

and l;ence, for all sufficiently large s, _
f(X,, + (X)) > f(Xo) 2 f(X,, + 2,d(X..)

which contradicts the construction of 4,. It must therefore follow that d(X,) = 0
which implies
f(X,) = max f(X).
X eM

II. Let the homogeneous sequence {X, } not be regular. In order to treat this case
we shall first prove two lemmas:

1. Let {X,} be a homogeneous sequence which is not regular. Then lim 4, = 0.

Proof. Let lim X,, = X,. The operation set of the points X, being inadmissible
$— 00
at X, the vector d(X,) = lim d(X, ) is inadmissible. If the relation lim 4, = 0 did not
§— 0 5§00
hold then there would be a subsequence {4, } such that lim 4, = Z > 0. But then
P pow P
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lim X, +1—th +A d(X )—X0+Zd(X0) m,

p—®© 4nd

i. e. the vector d(X,) would be admissible.

2. Let {X,} be a homogeneous sequence which is not regular and let lim X, =
= Xy = (Xo1» ..., Xon)- Let o be such an index that the direction number d(X,) is
inadmissible and that all d(X,)s, for j + «, are admissible. Then Xr41.a = Xog

for all sufficiently large s.

Proof. Let, for example, x,, = X,. Then d(X,) < 0 and therefore there is an s,
such that also d,(X,.) < 0 for s > s,. The considered operation set being admissible
at X, we have obviously x, , > X, for s > s,. If the equality x, ,, , = X, did not
hold there would be infinitely many indices s,, p = 1, 2, ... such that Xyt > X,.
Let us now consider our problem modified so that the variable x, has to acquire
values from the closed interval <X, — ¢, x,» where ¢ is an arbitrarily small positive
number. Then the quantities Xrg, 1. would not change but d,(X,) would become

admissible and similarly as in the previous case we conclude that d(X,) = 0.
In the following, two special cases are to be distinguished again:

la. Let the vector d(X,) = lim d(X, ) have exactly one inadmissible component

S— 00

d(X,). Then we can without any loss of generality suppose that x, is the only bound-
attained coordinate of X, not included in the operation set. For, if x, is another
boundary attained coordinate of X, not included in the operation set, e. g. Xop = Xp,
then the direction number dy(X,) is admissible with respect to X, (hence dy(X,) = 0)
and it suffices to replace the condition X; < x; < x; in (2) by X — ¢ < x; < X,
where ¢ is an arbitrarily small positive number and X, stops being a boundary attained
variable. Then, as follows from Lemma 2, the situation in the considered operation
set {x;,, ..., x;,} will be the same both for all points X, ,; and for X, and the new
operation set formed according to the corresponding instructions (Chapter I, Sec. 4)
will therefore be admissible also for X, (by Lemma 1 we conclude that lim X, 41 =
= X,), i. e. the sequence {X,_,,} is regular and hence 7o

f(Xo) = max f(X).

IIb. Let the vector d(X,) = lim d(X,) have inadmissible components d,(X,), ...

-» dq (Xo), p = 2. Analogically as in Case Ila, the set of all bound-attained coordin-
ates of X, can be supposed to be the union of the operation set {x;, ..., x; } withtheset
{Xaps o X,,}- To fix the ideas we shall, for example, suppose that X0,a; = Xopp J =
=1,..,u (other possible cases being treated similarly). Then we shall define the
auxiliary parameters 1, (r,) as follows:

X — X
laj(rs)z——'—‘u s=1,2,..,j=1,...,u.
-daj(er)
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There exist certainly an integer ¢ (1 £ g < p)and a subsequence {X } of {X, } such
that, for all p,
2, (1s,). = max [a(rs,)s +-os A0, (r,)] -

Y, = X, o+ 4 (r)dX, ).

Let us now put

Then clearly Y, non € M but to every ¢ > 0 there exists a p, such that Q(X,, i Y,) <e

for p > p, (o(X, Y) denotes the distance between the points X, Yin En), hence Y,eR
for all sufficiently large p (the set R was defined in Sec. 1).

We shall now define the set % as follows: U is the set of all points X € &y satisfying
Eq. (4) and the inequalities

5Ei§x~<3=c,., LSiEN, i%oa,a,..

* ‘xq—l, aq+1, LS a;‘ ;

—&e=x; < x,, I= 0y, 0, ..., Olg—15 Ug1s « ey Oy

where ¢ is a positive number such that ¥ = R. Clearly M < Y and Y, e % for all
sufficiently large p as lim Y, = X,,. The points Y,, p = 1, 2, ... and X, have the same

p=o©
properties as the points X, ,,, s = 1,2, ... and X, in Case IIa. The sequence {v,}
is therefore regular in U and we conclude that

f(X,) = max f(X) and afortiori f(X,) = maxf(X).
XeY XeM

Remark. From what we have just proved it follows that for each limit point X,
of the sequence {X,} the equality

f(X,) = max f(X)

holds. If the preference function f(X) is even strictly concave on 9 then the point
for which it acquires its maximum on 9 is determined uniquely, as is well-known.
The sequence {X,} is therefore in that case convergent and the relation

f(lim X,) = max f(X)
r—oo XeM
is valid.

3. An Estimate of the Error. Throughout this section, the set 9 will be supposed
to be bounded. Let us denote

o, =maxg,(X), r=1,2.., ¢=maxf(X).
XeM XeM

Then obviously ¢, = 0, o, = 0 if and only if f(X,)
number c fulfils the inequalities

fX)Sc=sfX)+o0, r=12...

The left-hand side part of this inequality being trivial we shall prove its right-hand
side part. Under our assumptions, there exist points X, Y;, Y,, ... such that f(X,) = ¢,

c. We shall now prove that the
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g,(Y,) =0, r = 1,2, ....1f the considered inequalities were not valid then, for some r,
the opposite inequality

f(Xr) <c¢ - g, =f(X0) - Vf(Xr)(Yr - Xr)
would hold. But from the concavity property of f(X) follows
and substituting from this relation into the previous inequality for f (Xo) we get
and hence vf(X,) (X, — Y,) > 0. It follows that

o, = Vf(X,) (Y, = X,) = v/(X,) (Y, — X,) +

+ Vf(Xr) (XO - Xr) < Vf(Xr) (XO -Xr) = gr(XO)
which contradicts the assumptions that o, = max g,(X).
XeM
We are now in a position to prove that lim o, = 0. For the proof, the following

auxiliary assertion will be useful: T

Let {Z,} be any convergent sequence of points contained in M, lim Z, = Z,. Let

S§— 00

{X.,} be a convergent subsequence of {X,}, lim X,, = X,. Then limg,(Z,) =

= go(zo)- .
The proof follows immediately from the continuity property of all derivatives of
the Ist order.

s o0

Let us now suppose that the relation lim 6, = 0 does not hold. Then there exists

a subsequence {g, } such that
limo, =0, >0.
p— 0
The sequences {X, }, {Y, } being bounded there exist convergent subsequences
X, (1,
limX, =X,, limY, =Y,.
g- o Pq g 'q
Then it follows from the above stated auxiliary assertion that
‘}i_'n;‘frpq = jin:o grpq(erq) = go(Yo) =00 >0
which contradicts the fact that g,(X) < 0 forall X e M.

Having found the point X, and the value f(X,) we can therefore find an upper
estimate o, of the difference ¢ — f(X,). The problem of finding o, is then a usual
linear programming problem consisting in maximizing the linear function g,(X)
on the set M. The determination of o, being rather laboricus, it is convenient to
compute it only when fairly small values of the differences f(X,.,) — f(X,) occur.
The estimate in question is also rather rough at the beginning of the iterative process.
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Remark. Under our assumptions, the set
N(X*) = (X eM: f(X) = f(X*)}
is bounded for every X* e M. If we are able to compute the quantity
7, = max g,(X)
XeN(Xr)
we can obviously use also , as an upper estimate of the difference ¢ — f(X,), even

when the set MM is not bounded. Of course, the computation of z, is not a linear
programming problem any more.

The analogical convex programming problem has also been studied e. g. by G. B.
DANTZIG [5] and J. E. KeLLEY [6]. For a special case, the quadratic programming,
various finite methods have already been found (see e. g. [7], [8]).
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Pe3rome

METOJ MVIIbTUIIJIEKCA U EI'O UCIIOJBb30BAHUE
B HEJIMUHEMHOM TIPOI'PAMMUPOBAHUU

SAPOMMHP ABPI'AM (Jaromir Abrham), ITpara

Pa6ota pasnenserca Ha jBe yacTi. B mepBoil yacTH HaHOBO (OPM YIHPYETCS
MeTos, MynbTHILIekca ®puma (om. [1]) s onpenenenuss MaKCHMyMa JTUHERHO#M
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n
ueseBoil Gynkuun boy + Y b jxXx Ha MHOXecTBe I, ONMCaHHOM CHCTEMOH JMHE-
k=1

HBIX ypaBHEHUI

n
X;=bo+ Y byx, j=1,...N>n,
k=1

roe by, j=0,1,...,N, k=0,1,...., N — [aHHble BeleCTBEHHbIC Yyucia, ISl KO-
TOPBIX b;, = 0, by, = dj, j = 1, ..., n, ¥ cUCTEMOIt JIMHEHHBIX HEPABEHCTB
X <x;5x;, j=1,..,N,

rie Xj, COOTB. X; — WJIM BEIIECTBEHHBIE YACIIA WM CHMBOJBI — o0, + 00. ITokasaHo,
uto BeKTOp (dj, ..., dy), THE d ; — HanpaBJIAIOLIME YKMCA, ABJIAETCS B W3BECTHOM
CMBICIIC BEKTOPOM HaUOOJIBIIErO BO3PACTAHUS PACCMATPHBAEMO TeNeBOH HyHKIMH.

B n. 4 noxaswiBaeTcst QMHUTHOCTH METOA MYyIBTHIIEKCA IUIS JIMHEMHOTO nporpam-
MHPOBaHHSI.

Bo BTOpO#i HacTu popmysmpyercss crnoco6 uTepammit ISl ONMPEACIICHUS MAKCH-
Myma Bbinykioit ¢ynkmun f(X) = f(xy, ..., x,) Ha MHOXecTBe M. OTHOCHTETBHO
dyuxumu f(X) mpemmonaraercs, 4TO OHa ONpe/ENeHa HA HEKOTOPOM OTKDHITOM
MHoxectBe R D M M o6iagaeT Ha HTOM MHONKECTBE HENPEPHIBHBIMHA YaCTHBIMH
NPOM3BOJHBIMU TIEPBOIO MOPSAKA IO BCEM MepeMeHHBIM. IToCTpoeHa mocienoBa-

0

TeNbHOCTL {X,}72 | Touex MHO)ecTBa M, 0 KOTOPOI ZIOKA3aHO, YTO
lim f(X,) = max f(X).

r—oo X eM

B 3axirouenue, npu ycuoBuu, 4To MHOXeECTBO I OrpaHMYEHO, HOCTPOEHA MOCIE0-
BATENBHOCTD {0,}/2 ; HEOTPULATENBHBIX YMCET TAKMX, 9TO JUIL BCEX I UMEET MECTO

¢~ f(X,) £0,, rme c¢=maxf(X).
XeM
Kaxmoe u3 yncen o, BHIYMCIAETCS KaK MAKCHMYM HEKOTOPOil CIIELHAIbHON JUHE -

HOHU QyHKuMM Ha MHOXecTBe IR, T. €. BHIMUCIEHHE KaXOTO M3 3THX YHCEI ABJIETCH
3a/1aveii JIMHEHHOTo porpaMMupoBaHust. Jlanee 1oKka3biBaeTcs, 4o lim o, = 0.

r—oo
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