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YexocaoBankuii MaTeMaTuyeckuil skypuai, 1. 12 (87) 1962, I'lpara

SEMI-GROUPS OF POSITIVE CONTRACTION OPERATORS

R. S. PHiLLips, Stanford (USA)
(Received March 28, 1961)

The paper is concerned with the general problem of semi-groups of
positive contraction operators in arbitrary Banach lattices. For discrete
Banach lattices of Ip-type (1 < p < 00), the analogue of the Kolmogorov
differential equations is considered.

1. Introduction. There is a voluminous literature dealing with a special class of
strongly continuous semi-groups of positive contraction operators, namely stationary
Markov processes. The usual setting for such a process is an L;-type Banach lattice.
Recently, however, some probabilists (see, for example, [6] and [8]) have found
it convenient to study Markov processes in a Hilbert space setting, treating a special
class of processes whose members were contraction operators in both the L; and
the L, metrics. The present paper is concerned with the general problem of semi-
groups of positive contraction operators in arbitrary Banach lattices.

Without assuming positivity, G. LUMER and R. S. PHILLIPS [11] have studied
semi-groups of contraction operators, characterizing the generators of such semi-
groups by means of the notion of a semi-inner-product, previously introduced by
Lumer.

Definition 1.1. A4 semi-inner-product (s. i. p.) associates with each ordered pair
x, y of a real (complex) normed linear space ¥ a real (complex) number [x, y]
having the properties:

(1.1) [x +yz] =[x, 2] + [y, 2], [4x,z] = A[x, ],
e, x] =[x, [[x 21| = %] 2] -

It is clear that such a s. i. p. is defined by choosing for each y e ¥ a functional
Wy e ¥* such that (y, Wy) = |y||* and Wyl = |y|. According to the Hahn-
Banach theorem this can always be done in at least one way.

Definition 1.2. An operator A with domain D(A) is called dissipative if
(1.2) re[Ax,x] £ 0, xeD(4),

and maximal dissipative if it is not the proper restriction of any other dissipative
operator.
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We state for future reference the following result on contraction semi-groups
proved in [11]; for convenience we use the notation R(A) to denote the range of A.

Theorem 1.1. A necessary and sufficient condition for a linear operator A with
dense domain to generate a strongly continuous semigroup of contraction operators
is that A be dissipative with R(I — A) = %.

The notion of positivity requires that we work within the structure of a partially
ordered real vector space. As a matter of fact, we shall restrict our considerations
to Banach lattices, defined in G. BIRKHOFF’s treatise [1] as a complete normed real
vector lattice for which the order relation and the norm are related by

(1.3) x| = || implies [x]} < []

here we have used the notation

s

(1.4) |x| = x* —x~ where x* =xv 0 and x~ =xA0.
For such spaces we require two further properties of our s. i. p. (see lemma 2.1):
(1.5) i) If x 20 then [y,x] 20 forall y 20, ’

ii) [, x"] = [x*]*.
We now describe the essential property exhibited by generators of semi-groups of
positive contraction operators.

Definition 1.3. An operator A is called dispersive‘) if
(1.6) [Ax,x*] 20, xeD(4).

In terms of this concept we can now state

Theorem 2.1. A necessary and sufficient condition for a linear operator A with
dense domain to generate a strongly continuous semi-group of positive contraction
operators is that A be dispersive with R(I — A4) = X.

For discrete Banach lattices of the [,-type (1 < p < o0) we consider the analogue
of the Kolmogorov differential equations solved by W. FELLER [2] for the case
p = 1. To help formulate this problem it is convenient to introduce the following
concepts.

Definition 1.4. Let D, denote the set of all vectors having only a finite set of
non-zero components. Then corresponding to the matrix (a;;) we define the minimal
operator A, with domain D, as
(Aof) (1) = X, ai; f(J), feDo;

and the maximal operator A, with domain .

D, =[fifeXk, g(i) =3 a,.jf(j) converges absolutely for each i and g e ¥],
(A1) () = Xy f(J), feDy.

T’._E;G;Ed dispersive operators in /, spaces were previously considered by W. J. FIrey in

a paper entitled ““On ballistically closed regions”, Applied Math. and Statistics Lab., Stanford
University Technical Report No. 19, 1954, 68 pages.
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In order that 4, make sense it is clear that the column vectors of (a;;) must each
belong to X¥. Employing a method of preof which combines ideas from the work of
W. FELLER [3], T. KaTO [7], and W. LEDERMANN and G. E. H. REUTER [10], we are
able to establish

Theorem 3.1. Let A, be a dispersive minimal matrix operator. Then there exists
a strongly continuous semi-group of positive contraction operators [F(t)] with
generator A such that Ay < A < A,.

It is shown that the semi-group [F(¢)] is minimal with respect to all semi-groups
of contractions with generators A" > A, or A’ = A;. Actually [F(r)] is even minimal
with respect to all semigroups of positive contractions [S(f) = (s;(¢))] for which

dsy()| _
a |, 7
For the case p = 1, these results are well-known and are found in each of the above
mentioned papers ([2], [3], [7], [10]). Moreover, W. B. JURKAT [5] has established the
existence of a minimal solution to a generalized Kolmogorov equation in a much
more general setting than ours; however, his development requires the a priori
existence of some positivity preserving matrix solution to the given equations.
What is novel in this part of the present work is the characterization of those matrices
for which a solution exists in the form of a semi-group of positive contraction
operators in the given (discrete) Banach lattice.
When X = [, and A4, is symmetric as well as dispersive, we show that the generator
A of [F(t)] is the Friedrichs’ self-adjoint extension of A4,. Another result (and a
somewhat disturbing result) is that for ¥ = [, (1 < p < o) the only honest process
(i.e., |S(®) x| = ||x| for all x = 0 and all ¢ = 0) is the trivial semigroup [S(t) = I].
The previous theory can be used to shed some light on the existence of a generator
A of a semi-group of contraction operators when it is required to be both an ex-
tension of a given dissipative minimal matrix operator A, and a restriction of the
corresponding maximal matrix operator A4;.

Definition 1.5. A minimal matrix operator A, with elements (a;;) is said to be
majorized by the matrix operator My with elements (m;) if (i) M, is a dispersive
minimal matrix operator, and (i) 0 = m;; = re [a;;] and ]a,.j| = my; for all i % j.

In terms of this concept we are able to prove

Theorem 4.1. If A, is a dissipative minimal matrix operator which is majoriz-
able, then there exists a dissipative generator A such that A, < A < A,.

Although this theorem is applicable in all discrete complex Banach spaces of the
Irtype (1 £ p < ), it is only for the case p = 1 that all dissipative minimal matrix
operators are majorizable (lemma 4.1). Hence it is only for p = 1 that we obtain
a complete solution for the above posed problem. '

2. General theory. The principal result of this section is theorem 2.1 which
characterizes the generators of strongly continuous semi-groups of positive con-
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traction operators. Before proceeding to the proof of this theorem, we shall verify the
fact that there exists a s. i. p. with the properties (1.5) in a Banach lattice. Since

xt A (—x‘) = 0 for any x € &, it is clear that it suffices to prove

Lemma 2.1. Given x 2 0, there exists an F e X* satisfying a) F is positive,
b) Fx = |x|* = |F||. and c) Fy = 0 for every y such that x A |y| = o.

Proof. Setting N = [y: x A |y| = 0]; it can be shown that N is a closed linear
subspace and that if |z| < |y| for y e N, then z e N. Moreover ||x — y| 2 [x| for
all y € N. In fact, according to [1; p. 220]

x =y =xvy—-xay

and since x v y 2 xand x A y £ x A |y| = 0, we see that |x — y| = x and hence
the assertion follows from (1.3). By the Hahn-Banach theorem there exists an F € X*
such that |F| = |x|, Fx = |x||%, and F(N) = 0. Next we decompose F into its
positive and negative parts (cf. [1; p. 245 and p. 248]): F = F* — F~ where for
y=20, Ffy =sup[Fz; 0 < z < y]. It is clear from the above stated properties
of N that F*(N) = 0. Further for arbitrary z € ¥, we have

[Frz| = [F72" + Fz7| = max ([F* 27, [F727)) < |[F max ([*], [7]) <
< [F =]

so that |F*|| £ |F|. Finally for the given x
Fx < F'x < [FP] x| < |F] |x] = [x]* = Fx

and consequently F*x = Fx = [|x|?and |[F*| = [|F|. It follows that F* satisfies the
assertion of the lemma.

The following lemma is essential to the proof of theorem 2.1:

Lemma 2.2. If T is a linear positive operator contractive on positive elements,
that is |Tx| < |x|| if x 2 0, then T is a contraction operator.

Proof. Since |z + y| < |z| + |y], we see that

ITx| = |Tx* + Tx~| < |Tx*| + |Tx7| = T(x* — x7) = Tjx|
and hence by (1.3)
||| < (Tl < Il =[] -

Theorem 2.1. A necessary and sufficient condition for a linear operator A with
dense domain to generate a strongly continuous semi-group of positive contraction
operators is that A be dispersive with R(I — A) = %.

Proof. If A generates a semi-group of positive contraction operators [S(#)],
then R(I — A) = ¥ by the Hille-Yosida theorem [4; theorem 12.3.1]; and further

a1 [ox= e 2 50 Il 2 [0 ]
z[S@)x*, x"] + [S(t)x7,x*] = [S(t) x, x*]
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so that for x € D(A4)
[4x,x*] = dg [S@)x x*]| 20,
t

0
which proves that 4 is dispersive.

In order to prove the converse assertion, let us suppose for the moment that
R(AI — A) = X for some A > 0. Then for fixed f > 0 in ¥ there is an x € D(4) such
that Ax — Ax = f. Making use of the dispersive property of 4 we see that

A =AL= x (=x)"] = L =x(=%)"] = [A(=x). (=%)"] =
=[-/(=x)"]=0
consequently x = 0 and
Al = AL x*] < 2[xx*] = [Axx] = [£x*T = £] ]
Thus
(2.2) x| = 11 -
Since 0 is a non-negative element, the relations (2.2) implies that (I — A) is one-to-
one. Hence (2.2) together with lemma 2.2 implies that

AR(A; A) = MAI — A)™!
is a positive contraction operator. Now according to [4; corollary 2 to theorem 5.8.4]
R(u: A4) = R(i A)[1 = (u — ) R(%: )]~
holds for |u — A| < 1/A. In particular then, R(ul — 4) = X for |u — 4| < 1/4
and the dispersive property shows as above that uR(u; 4) is a positive contraction
operator in this range. This permits us to extend the result by analytic continuation
to all x> 0 once it is known that R(AI — A) = ¥ for some A > 0. However this
is precisely what is assumed in the hypothesis to the theorem. The Hille-Yosida
theorem [4; theorem 12.3.1] therefore applies and establishes the fact that 4 is the

generator of a strongly continuous semi-group of contraction operators [S(f)]. It
is evident from the proof of the Hille-Yosida theorem that

(2.3) () x = lim exp (_zt)mi (i_? [2 RU; AT x

and it follows from this expression that S(r) is a positive operator if 2 R(4; A) is
positive.
Combining theorems 1.1 and 2.1, we obtain

Corollary. If ¥ is a Banach lattice and A is a dispersive semi-group generator,
then A is also dissipative.

We do not know whether an arbitrary dispersive operator is dissipative. However,
as the following lemma shows this is the case for the familiar Banach lattices:

Lemma 2.3. If X is a Banach lattice with s. i. p. satisfying the condition

24 [ox] = ol =] = A (-9)*]. yeX
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for some o, B > 0 (depending on x), then each dispersive operator on ¥ is also
dissipative.

Proof. For x € ©(4), the relation (2.4) implies that

[4x, x] = o[ Ax, x*] — B[Ax, (—=x)*];
and since A4 is dispersive, we have [Ax, x*] < 0 and [A(—x),(—x)*] £ 0 from
which [Ax, x] < 0 follows.

3. Generalized Kolmogorov differential equations. In this section we study the
analogue of the Kolmogorov differential equations for a general class of discrete
Banach lattices. More specifically we suppose that ¥ is a function space, that is a
class of real-valued functions [f(i); i € 3] on an abstract set 3, satisfying the usual
algebraic relations and in addition

(3.1) (i) The set D, of all functions with only a finite set of non-zero compo-
nents belongs to X;

(ii) f < g is taken to mean that f(i) < g(i) forallie J;
(iii) Any monotone increasing directed system of positive elements EA
which is bounded in norm is a Cauchy sequence and converges to V f,.
As a consequence D, is dense in X. In fact, for fe X let = denote any finite
subset of ¥, order the n’s by inclusion, and set f,(i) = f(i) for ien and =0
otherwise. Then for m; < 75, |fy,| £ |foo] £ |f] and |f = fo| = |f] = |fu]; hence

(AR g AR
which converges to zero by property (iii) above. It also follows that if fe ¥ and
lg| < |f], then g e %. It is clear that the I, spaces (1 < p < c0) over sets of any
cardinality are examples of such spaces, as are product spaces such as [, x I, (1 < p,
q < o).
Any operator A4 with domain containing D, can be represented on D, as a matrix

operator: (Af) (i) = ¥; a;; f(j), f€Do.

Lemma 3.1. If A is a dispersive operator with D(A) = D,, then a; £ 0 and
a;; 2 0 for i+ j.

Proof. Suppose x; is defined as x;(i) = 0 for i + j and x,(j) = 1. Then it is clear
that [f, x;] = |x;]|>f(j). Hence [Ax;, x;,] <0 implies a;; < 0. Likewise setting
X = gx; — x;, i + j and & > 0, the relation

[Ax, x*] = efxi|* (eai — a;)) = 0
for all ¢ > 0, implies a;; 2 0

Remark 1. If = I(w) with norm [f|| = Ywi|f(i)| (here the w; are positive
weight factors), the notion of a dispersive minimal matrix operator and a Kolmo-
gorov matrix operator coincide. In fact for a fixed finite subset © of J, suppose
ien and define x(i) = 1, x(j) = &> 0 for jen, j + i, and x(j) = 0 otherwise.
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Then

0= [4x, x] = |x[[ X wi(aw: + &y, ay)]
kemn JJ:I;
for all ¢ > 0 and n implies
(3.2) Y wa <0
kel
which is the Kolmogoroff condition when combined with a;; £ 0 and a;; = 0 for
i # j. It is easy to see that this condition also suffices to make the minimal matrix

operator dispersive.

Remark 2. Let £ = [,(w) with norm |f| = [Yw|f(i)]"]"/". Then if A is a dis-
sipative minimal matrix operator such that a;; < 0 and a;; = 0 for i & j, then 4 is

necessarily dispersive. In fact given x € ®, and setting y(i) = w(i) x(i)?~"/|x*|P~2
for x(i) > 0 and = 0 otherwise, we see that
[Ax, x*] = 3 (Payx(f) y(i) = [Ax", x* ]+ 3 ayx(j) y(i) < [4x",x*] < 0,
RS 53
since a;; = 01if i + j and x(j) y(i) < 0 for x(i) > 0 and x(j) < 0.
We include for completeness the following generalization of a lemma due to
G. E. H. REUTER [15; lemma 1.1] (cf. W. FELLER [3; theorem 3.1]):

Lemma 3.2. In order that a family of linear bounded operators [R;; 2 > 0] be
resolvent operators for the generator of a semi-group of (positive) contraction
operators it is necessary and sufficient that

() Ri = R, = (0 — )RR, Au>0,
(ii) AR, is a (positive) contraction operator for each ). > 0,
(iii) im AR,x = x, xe¥.
A= 00

Proof. The necessity is clear from well-known properties of the resolvents of
generators of semi-groups of (positive) contraction operators (see [4; theorems 5.8.1,
11.7.1, 11.7.2, and lemma 12.2.1]). On the other hand, operators R, satisfying the
above properties must be one-to-one. For if R,x = 0, then by (i) R,x = 0 for all
p > 0 and (iii) implies that x = 0. According to [4; theorem 5.8.3] the R,’s are
resolvent operators for some closed linear operator, say 4. Since D(4) = R[R,] it
follows from (iii) that ©(A4) is dense. Hence (ii) together with the Hille-Yosida the >-
rem ([4; theorem 12.3.1]) implies that A generates a strongly continuous semi-group
of (positive) contraction operators.

Corollary. The lemma remains valid if condition (iii) is replaced by
(iv) R(AI — Ag)x = x, xeD(4,),
for some A > 0 where ©(A,) is dense in X.1n this case the generator A is an extension
of A
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Proof. It suffices to show that (iv) implies (iii). However, for x e D(4,), we see
from (ii) and (iv) that |iR,x — x| = |R;Aex|| = O(1/4). Thus (iii) holds for all
x in D(4,) and since this set is dense, condition (ii) allows us to assert (i) for all x
in X.

We now establish the existence of a semi-group solution to our generalized Kol-
mogorov equations and in deference to Feller we denote this solution by [F(f)]. The
minimal properties of this solution will be verified afterwards.

Theorem 3.1. Let Ay be a dispersive minimal matrix operator. Then there exists
a strongly continuous semi-group of positive contraction operators [F(t)] with
generator A such that Ay < A < A,.

Proof. Let = denote a generic finite subset of X. The class of =’s, ordered by in-
clusion, forms a directed set. Corresponding to each = we define the matrix operator
C, = (cf;) where ¢f; = a;;if i, jen and i % j, and ¢}; = 0 otherwise; then ¢}; =0
for all i, j. Since C, has only a finite set of non-zero elements it is well defined with
D(C,) = ¥. Next we define B = (b;;) where b;; = a,; for i = j and b;; = 0 other-
wise; then b;; < 0 for all i, j. As to its domain, we set

D(B) = [f; fand {a,; f(i)} € X] .
We now approximate the desired operator by
(3.3) A, =B+ C, with D(4,) = D(B).

Finally we decompose ¥ into ¥, and X, where

(3.4) X, =[f;f()=0 if i¢n],

X, =[f;f(i)=0 if ien].
It is clear that A, leaves X, and ¥ invariant and that A, restricted to X, (in symbols
A,/%,) is the same as Ay/X, as concerns the dispersive relation. Hence A,/%, is
dispersive and since I/%, — (A,/%,)is one-to-one (by 2.2)) and ¥ is finite dimensional
we have R[(I/%,) — (4,/%,)] = ¥,. On the other hand A,/X; is diagonal with
non-positive elements and hence dispersive and it is readily verified that R[(I/%}) —
— (4,/%.)] = ¥,. Again by (2.2) we see that for 2> 0, 2 R(; 4,) exists and is
a positive contraction operator when restricted to either X, or X;; consequently it
is positive and of norm < 2 on X itself.

For a given f = 0 in ©,, we consider only those 7= which contain the support of
f. In this case x, = R(4; 4,)f€ ¥, and 1 < |f]- For n, £ m,, it is clear that
C,, £ C,, so that

R(3s 4,,) — R(% Ap) = R0 A,) (Coy = C) R(1: 4,,) 2 0.

Thus 0 < x,, < x,, and we may conclude from (3.1) that {x,} for a Cauchy sequence
with lim, x, = x = V x, and A|x| £ [|f]|. Since Dy is dense in ¥, we see that

xﬂ

AR, = strong limit, 2 R(4; 4,)
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exists, that it is positive and contracting on positive elements, and hence by lemma
2.2 that it is a positive contraction operator. Further the strong limit of resolvent
operators satisfies the first resolvent equation and thus condition (i) of lemma 3.2.
Finally for each x e ®, = D(4,) we have

R(A; A) (A — A))x = x
and

lim, A,x = Agx .

Passing to the limit we then obtain R,(Al — 4y) x = x. It follows from lemma 3.2
that R, is the resolvent of a generator A of a semi-group [F(¢)] of positive contraction
operators and that 4 o A,.

It remains to show that A < A4,. It clearly suffices to consider only elements in
D(A) of the form x = R(4; A) f for f = 0. In the notation of the previous paragraph
x = lim, x, where (Al — A4,) x, = f; in particular

(A = ay) x(i) = f(i) + Y aijx(j), iem.
i%i
The sum on the right consists of non-negative terms each of which is monotonic
non-decreasing in n. The monotonicity which was proved only for positive f in
D, holds for all f-= 0 by continuity. Since the equality is termwise convergent, it
follows by Fatou’s lemma that the equation holds in the limit; that is

(= @) (i) = S() + T ay () €3

Transposing the infinite sum to the left hand member we see that ) i aij x( j) is ab-
solutely convergent for each i € J and that

(AX)(i) = (Ax _f)(l) = Ziaij \(]), I'ES .
This concludes the proof of theorem 3.1.

Remark. For any f > 0 and x, = R(4; 4,) f € D(A4,) = D(B), it is clear that
Ax, — Bx, = f + C,x,
so that

x, = R(4; B) f + R(4; B) C,x, = ‘;“R(A; é) [C. R(2; B)Jf + [R(4; B) C.]"*" x,.
Hence )
02 Y R(k B)[C, R(E: B < x,

and it follows that the infinite series converges in norm for f = 0 and hence for
arbitrary fe ¥. In particular then [R(4; B) C,]" R(4; B) f — 0 and consequenctly
[R(4; B) C,]" z - 0 for all z e D(B). Therefore

(3.5 R(A; 4,)f = Y R(A4; B)[C, R(A; B)* .
k=0
We now consider the minimal properties of the process [F(1)].
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Theorem 3.2. Let A, be a dispersive minimal matrix operator, let A, be the cor-
responding maximal matrix operator, and let A be the generator of the process
[F(t)] constructed in theorem 3.1. Suppose that A’ is the generator of a semi-group
of positive contraction operators [S(t)] and either A' = A, or A’ > A,. Then
F(t) £ S(1) for all t = 0.

Proof. In order to prove that F(r) < S(r) for all ¢ = 0, it suffices to show that
R(4; A) < R(4; A") for all A > 0. For in this case [R(%; 4)]" < [R(4; A")]" for all
4 > 0 and integers n = 0 and it follows from (2.3) that F(f) < S(r). Suppose first
that A" > A4, and let f = 0 belong to D,. Then in the notation of the proof of theorem
3.1, we have R(1; 4,) f€ D, and since A’ — 4, = A, — A, on D, (and hence has
only non-negative matrix elements as an operator on ), the second resolvent
equation yields

R(3; A')f = R(%; A)f = R(J; A) (A" = A)R(A; A)f 2 0.
Now ®g is dense in £* so that R(4; A') f = R(A; A,) f for all f = 0, and passing
to the limit with = we obtain R(4; A") f 2 R(4; A) f, which was to be proved.

Next suppose that A" = 4; and take f = 0. Setting x" = R(4; A") f and x, =
= R(A; 4,) f, we see that

(3.6) (}- - aii) xl(i) = f(’) + Z aij x/(j) >

=f)) + Y ayxj), iem,
(A = ay) x,,(i)< fi
"= f(i), i¢m.

For i¢ m it is clear from these relations that x'(i) 2 x,(i) 2 0. On the other hand
[/%) — (AJE)] (K0) — *0) Jem) = { T ayx(); ien)
Jnonen

has a unique (positive) solution because of the dispersive property of Ao/X, =
= A,/%,; thus x'(i) = x,(i) for all i e 7. Consequently x" = x, and passing to the
limit with 7 we conclude that R(4; A) f = R(4; A) f.

The [F(t)] process is minimal with respect to an even larger class cf semi-groups
which can be associated with the matrix (a;;) by means of the following result due to
W. F. JurRkAT [5]: Let [(p;;(t))] denote a semi-group of positive matrices satisfying

the condition p;(f) » &;; as t > 07; then
) — 1
= lim p”(——~—) <0

ai;
10+ t

exists but may be infinite, and

It

a; = lim p;;()/t 20
t—-0+

exists and is finite for all i # j. In particular this applies to any strongly continuous
semi-group of positive contraction operators.
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Lemma 3.3. Let [S(t) = (s,(t))] be a strongly continuous semi-group of positive
contraction operators and set a;; = si(0). If the column vectors of the matrix
(a;;) belong to %, then the minimal matrix operator A, associated with (a;;) is
dispersive.

Proof. Let y e D, and suppose that the support of y is contained in the finite
subset 7 of . Then the s.i. p. functional associated with y as in lemma 2.1 vanishes
for all z with z(i) = 0 for all i in n. Consequently [S() y, y*] depends only on the
[s:(1); i, j € o] portion of S(¢) so that its derivative at ¢ = 0 exists and depends only
on the [a,;; i, j € n] portion of A,. Applying the inequality (2.1) we obtain

th [S(1) y, vy lo = [4oy, ¥*] £ 0,

which was to be proved.
It should be emphasized that the above lemma does not require the infinitesimal

generator A’ of [S(f)] to be an extension of A, nor, for that matter, a restriction of
the maximal matrix operator 4;. Never-the-less we have the following result:

Theorem 3.3. Suppose [S(t)] is a strongly continuous semi-group of positive
contraction operators with the column vectors of (a;; = s7,(0)) in ¥ and let [F(t)]
be the process associated with (a;;) as in theorem 3.1. Then S(t) = F(t) for all
t = 0.

Proof. Let A’ denote the infinitesimal generator of [S(¢)] and suppose that
x 2 0 belongs to D(A4’). Then

(A%) (i) = lim {7 (sui(t) = 1) x() +j§it“sij(t) x(J)} »
so that by Fatou’s lemma we have
3.7) (4%) (1) 2 aux(i) + 3 aiy x()

Now let f > 0 be given and set x = R(4; 4 )f and x, = R(1; 4 )f, where again
we use the notation of theorem 3.1. Then Ax — A'x = f implies

(A = ay) x(i) = f(i) + j;iaijx(j).

Comparing this with the corresponding relation for x, namely (3.6), we obtain
precisely as in the proof of theorem 3.2 the fact that R(4; A") = R(4; 4), where
A is the generator for the [ F(¢)] process. As in the proof of theorem 3.2, this implies
the assertion of the theorem.

Remark 1. It is interesting to note that when [S(f)] is a strongly continuous
semi-group of positive contraction operators with generator A" and when 4’ > A, -
or A" = A,, where as before 4, and A, are minimal and maximal matrix operators
associated with (a;;), then s},(0) = a;;. This is obvious when A4’ > A, for in this
case x; = {x,(j) = 6;;} €Dy = D(A’) and s{;(0) = (4'x)) (i) = (4ox;) (i) = ay; .
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On the other hand when 4" = A, then theorem 3.2 applies and we see that S(1) =
= F(t). Thus if we set «;; = s;(0), then it follows from this that

(3.8) o 2 a;

and in particular that o; > —o0. Moreover for x 2 0 in D(4") = D(4,) we have
(4'x) (i) = Zj:“fj x(J) ;

whereas by Fatou’s lemma we have as in (3.7)
(4'x) () z JZ%' x(j) -

Consequently Y a;; x(j} = D o;; x(j) and combining this with (3.8) we see that a;; =
= a;; provided x(j) #+ 0. However for any f = 0 AR(4; A')f Z 0 and converges to
fas A= co. Thus for each j there is an x = 0 in D(A’) such that x(j) > 0, and there-
fore a;; = o;; for all i, j.

Remark 2. The preceding theorems can be extended so as not to require the
column vectors of (a;;) to lie in %. In this case the notion of a minimal matrix opera-
tor may not be meaningful. Never-the-less the operators A4,/%X, are well defined and
we can require that each of these operators be dispersive. We can then proceed to
construct the process [F(t)] as in the proof of theorem 3.1. The argument showing
that R, = strong limit R(4; 4,) exists and satisfies the first resolvent equation for
A > 0 remains valid. The relation R,(AI — 4) x = x, x€D,, no longer makes
sense. Instead we can prove that lim AR, f = f for all fe X, provided we further

A= 0
assume that ¥ is a uniformly monotone Banach lattice. As defined in [1, p. 248]
this means that given ¢ > 0 there is a & > 0 such that for f,g = 0 and |f]| = 1,
then [|f + g| < |f] + 6 implies [g| < & Now for f > 0,

[{AR.f — A R(2; A) f} + AR(Z A f] = [AR:f] = |/]

and since AR(4; 4,)f — f, the uniform monotonicity of the norm implies that
[AR,f — AR(A; A,) f] = 0 and hence that AR;f — f.

Lemma 3.2 now shows that R; is the resolvent of a generator A of a semi-group
of positive contraction operators. Finally one shows as in the proof of theorem
3.1 that A = A,. The proof of theorem 3.2 shows that [F(1)] is minimal over all
semi-groups of positive contraction operators having generators 4" = A;. For an
arbitrary semi-group of positive contraction operators [S(f)] with a;; = s{;(0)
finite for all i, j, one proves as in lemma 3.2 that 4,/X, is dispersive and the proof
of theorem 3.3 shows that F(t) < S(¢) for all ¢ = 0.

Theorem 3.4. Suppose X = l,(w) and A, is a symmetric dispersive minimal
matrix operator. In this case the generator A of the minimal process [F(t)] con-
structed in theorem 3.1 is the Friedrichs’ self-adjoint extension of A,.
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Proof. It will be recalled that R(4; A4) is the strong limit of the approximating
resolvents R(4; 4,) where A, is defined as in (3.3). Now A4, is obviously self-adjoint
and hence so is R(4; 4,) and R(4; 4) for 4 > 0, and finally so is A.

We next show that the Friedrichs’ extension, which we denote by A4’, is dispersive.
The Friedrichs’ extension is defined as follows: Let

(3.9) X, > = —(4ox, y) + (x,5), x,y€D,.
Condition (2.4) is satisfied in /,(w) so that A, is also dissipative, that is (4ox, x) < 0
for all x € ®,. As a consequence (3.9) defines a new inner product on D,. If D,
denotes the completion of ©, with respect to this new metric, then it can be shown
that ©,; = I,(w). In terms of these notions, the Friedrichs’ extension is given by
A' < A5 and D(4) =D, n D(4).

Now for x € Dg, (x,x) = (x*,x¥) + (x7, x7) and

(Aox, x) = (Aox*, x™) + (Aox™, x7) + (Aox 7, x™) + (Aox 7, x7).
Each term on the right in this last expression is non-positive; the first and last be-

cause of the dissipative property, and the middle two because a;; = 0 for i =+ j
so that

(Agx™*, x7) = }):;OW.'GUX(J’) () £0, (Adpx7,x%) = §OMfia,j x(j)x(i) 0.
xfj)>0 ) xfj><o

Therefore we can assert
(3.10) {x, x> = {xt, xty.

Suppose next that x € D(A4’). Then there exists a sequence {x,} = D, which converges
to x in the {.) norm. By (3.10) the sequence {x, } will be bounded in the {.) norm.
Hence there is a subsequence, which we renumber as {x,’}, converging weakly in
both the {.) and the (.) metrics. It is clear that {x,"} converges to x* in the (.)
metric since this was true of the original sequence. Moreover since

x>y = —(Aoy, x7) + (1, x)) > < xty, yeD,,

and since D, is dense in D;, we see that {x;"} converges weakly to x* in the {.)
metric. Further

<xm X,:> - <x>x+> = <xn - X, X;> + <x’ Xm+ - X+> ;
the first term on the right converges to 0 uniformly in m and the second term con-
verges to O uniformly in n. Hence the double limit exists and in particular
lim (4ox,, x,;) exists. Now
n,m

(A'x, x*) = lim (4'x, x,) = lim (x, Agx,;)

= lim lim (x,, Agxy) = lim (Apx,, x,) 0.

m n n

It follows that A’ is dispersive.
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Once we know that A’ is dispersive as well as dissipative and self-adjoint, theorem
2.1 implies that A" generates a semi-group of positive contraction operators. Accord-
ing to theorem 3.2
(3.11) R(i; 4') 2 R(1; A), >0,

since 4" > Ay. On the other hand, M. KReIN [9] has shown that the Friedrichs’
extension is minimal among all self-adjoint extensions of 4, in the sense that

(3.12) (R AN ) = (R(A; A f), 2> 0,fely(w).
The relations (3.11) and (3.12) together imply
(3.13) (R AVLf) =R AL f), fz0.

Replacing f by f + g in (3.13) for f, g = 0 and using the symmetry of the resolvent
operators, we see that

(R(2; 4 f,9) = (R(%; A) f, g) and from this we infer that
R(2; A')f = R(2; A) f first for all f 2 0 and then for all f e I,(w).
This establishes the identity of 4 and A4'.

In the theory of Markov processes on L,-spaces the honest processes play a very
important role. It is therefore somewhat surprising to find that there are no non-
trivial honest processes in I,(w), 1 < p < oo.

Theorem 3.5. For ¥ = I,(w), 1 < p < oo, the only honest process is [S(1) = I].
Proof. If f, g = 0, then

im e~ [lf + eg]” — [£]7] = p Zwi 9() LA

e~ 0+

as can be readily verified by using a termwise Taylor series expansion (two terms
plus a remainder) of the expression on the left. Suppose that [S(t)] is honest, that
is suppose it consists only of positive contraction operators which are isometric on
positive vectors. Then for x; = {x,(]) = ¢;;} and ¢ > 0, we have

e [[S(1) (xi + ex)|” =[SO xi'T = e [lxi + ex;” =[x ],
and passing to the limit as ¢ —> 0 + we obtain
(3.14) Y wi (1) [sa(0)]7 ™ = Xwic o[ 0:]7 71 =0
for i + j. Now S(f) = 0 implies 5;(t) = 0. Further
st +1) = Yusalt) siit) = sii(t) silx) .
and since s;(f) > 1 as t - 0, we may conclude that s:(t) > 0 for all + = 0. Thus

(3.14) implies s,;(t) = 0 for all i # j. Finally since [S(r) x;| = |xi]| we conclude that
s;i(t) = 1;in other words S(f) = I forall 1 = 0.

4. On the extension of dissipative matrix operators. The problem of extending
a dissipative minimal matrix operator 4, to a dissipative generator A (of a semi-group
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of contraction operators) so that A is at the same time a restriction of the correspond-
ing maximal matrix operator A,, is not in general solvable. However, by utilizing
the previous dispersive theory we obtain a complete solution in I;(w) spaces and a
partial solution in the case of some other discrete Banach spaces.

In the present section we deal with Banach spaces of the type 9 = X x X, where
¥ is a discrete Banach lattice satisfying the conditions (3.1). Thus a generic element
of 9 is of the form {x,, x,} with x,, x, € ¥ and for real a, b we have

(a + ib) {xy, x,} = {ax; — bx,, bx{ + ax,}.
We employ the notation l{xl, x,}| for the variation of {x,, x,} € 9 where
(4.1) [Geas %2} () = [Pa @) + 2D -

From the fact that D, is dense in %, it is easily verified that |{x,, x,}| € ¥. Finally
we assume that .

(4.2) Iyl = Mill
as given in X. It is clear that the familiar complex lp(w) spaces are of this type.

The notion of majorizing as defined in Definition 1.5 plays the central role in this
section. Not all dissipative operators are majorizable. For instance, for ) = [,
(complex) of dimension 2 and

1
Ao = ("3 }) s
2

it is easy to see that (A4,y, y) < 0 for all y. According to the second remark following
lemma 3.1, in order that a majorizing operator M, be dispersive, it suffices that it
satisfy conditions (i) and (ii) of Definition 1.5 and be dissipative. However, in the
case of A, this requires that

2
lgm“mzzg M >1,
4 2

which is impossible. Never-the-less for /,(w) we have

Lemma 4.1. For 9 = 1,(w) a minimal matrix operator A, is dissipative if and
only if '
(4.3) wire[a,] + Y wla;| £0, ieJ.

J#i

Such an operator is always majorizable by My = (m;;) where m;; = re [a;] and
m;; = [a,-jl for i % j.

Proof. For y € D, the s. i. p. is defined as

(23] = [y & i =0 5000

in particular, for a finite subset 7 of ¥ and for fixed i e m, if we set y{i) = 1, y(j) =
= g(sgnay) forjen, j % i, and y(j) = 0 otherwise, then

re [Agy, y] = ||ly| [wire [ ai] + éiwklak,-l +0(g)] £ 0.

ken
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Since this holds for all ¢ and © we see that (4.3) holds. Conversely if (4.3) holds and
y € D, with carrier n, then we have

e [Aoy. y] = || re [X wiy(@ ()" X ais y(0)] =

Jjem

< [y [X {wire[au] + ;“’klaki” [yl =0.
iem #i
kemn
Setting m;; = re [a;;], m;; = |a,;| for i # j, it is clear from the first remark following
lemma 3.1 that M, is dispersive and hence that it majorizes A,.

The principal result of the present section is

Theorem 4.1. Let A, be a dissipative minimal matrix operator which is major-
izable. Then there exists a dissipative generator A such that A, = A = A,, where
A, is the corresponding maximal matrix operator.

Proof. Let My = (m;;) be a majorizing minimal matrix operator for A,. Fol-
lowing the approach employed in the proof of theorem 3.1, we define the operators
N and P, on the discrete Banach lattice ¥ and Band C,on %) = ¥ x ¥ (n being a
finite subset of 3) as follows:

(Nx) (i) = my x(i), D(N) = [x; {m; x(i)} € X] ;
= Y myx(j), ien,
(Px) () %
t=0, i¢gn, DP,) =%;
(4.4) (By) (i) = a; y(i), D(B) = [y; {au y(i)} € V] ;
/: Zauy(j), ien,
. j# i
COTOR
=0, i¢gn,DC,)=19.
Setting 4, = B + C,, M, = N + P,, where D(4,) = D(B) and D(M,) = D(N),
and defining 0, and %), as in (3.4), it is readily verified that 4,/9, and 4,/%, are
dissipative and that the equations
(’11 - Ax)yn =fs ()“I - Mn)xrr = Ifla fE@ s
have unique solutions for A > 0. Since M, is dispersive, the results established for
A, in the proof of theorem 3.1 apply. In particular the relation (3.5) holds and we
have

(4.5) x, = R(; M) |f] =k§0R(A; N) [P.R(%; NYJ*|f

and lim, [R(%; N) P,]"z = 0 for all ze D(N). On the other hand, (AI — B) y, =
= f + C,y, so that y, = R(4; B) f + R(4; B) C,y,. Iterating this relation gives

o =X R(s B)[C.RUS BIFS + [RU3 B) C.T e
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Now the elements of C, are dominated in absolute value by those of P, and the
elements of R(4; B) are dominated in absolute value by those of R(4; N).

1t follows that
|[R(%; B) C,J" ya| = [R(2; N) Py]" 1] -
Since y, € D(B) implies |y|, € D(N), we can assert that
I[R(4; B) C.1" ya| = [[R(%: N) Po]" |yal| = 0
as n — . As a consequence

(4.6) Ve = RO A) f =§OR(A; B) [C,R(i; BYJ* f

We now wish to show that {y,} defines a convergent system. To this end we note
that for n; < n, we have

R(: B)[Co R B)Y S = RO B)[Co R B -
i; {R(%; B) [Cy, R(%; B)}' [C, R(2; B f —
— R(%; B) [Cy, R(%; B)) ™1 [Cy, R(2; BYPH 1} =
- .Z:R('l; B)[C,, R(%; B)]"™* (C,, — Cu)) R(A; B) [Cy, R(; BY* .

It is readily verified that the i-th term of the left member is majorized componentwise
by replacing all matrix elements by their absolute value majorants and by replacing
f by|f]. Since P, < P,,, we find that

[Var — yn.l—
p Z ZIR(i B) [C., R(%; B)]'™* (Cyy — Cp,) R(4; B) [C,, R(2; B)TP f] <

kOl—

=Z {R(%; N) [Pry R(A; N)]' (P, = Pr,) R(2; N) [Poy R(Z; N)F|£]} =

IIA

||[\/]g IlMg

{R(/1 N) [Pry R(Z; N)J* [f] = R(E; N) [P, RO NS} = ey = i, -

Consequently 172 = Vasll £ %2 = Xa,|l- It Was shown in the proof of theorem 3.1
that {x,} forms a Cauchy system and therefore the same is true of {y,}. Thus
R,f = lim, R(4; A4,) f exists for all f€%). Moreover comparing (4.5) and (4.6) we
see that

AR.S| = ARG M) (1] =
where M is the dispersive generator of the [F(f)] process corresponding to M,,.
It is further clear that R, satisfies the first resolvent equation for A > 0 along with
the approximating resolvent operators R(Z; A,). Finally for ye®, we have
lim, (AI — A,)y = (AI — A4,) y and hence

RyAI — Ag) y = lim, R(A; A,) (M — A,)y = y.
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By lemma 3.2 we conclude that R, is the resolvent of an operator A which is the
dissipative generator of a semi-group of contraction operators and that 4 o A,

It remains to show that 4 = A4,. Again comparing (4.5) and (4.6), we see that
|v] € x. £ x = R(%; M) |f|. Consequently |y| < x and since Y m;; x(j) converges
(i.e., M = M,), it follows that ¥ a;; y(j) converges absolutely for each i € J. Finally
(AI — A,) y, = f implies that

’){yn(l)_Eau)’n(}):f‘(l)a ieﬂ,
Jjem
and the dominated convergence theorem can be used to show that
Au(i) = Ysai0(7) = A(0)
for all i e J. Since (AI — A) y = f, this proves that

(Ay) (i) = Yja,; () = (A1) (i) .

Without the assumption that A, is majorizable, theorem 4.1 is no longer valid as
the following example shows. Let %) = I, and consider the triangular matrix (a;;):
a; =0 for i >j, a;= —1, and a;; = —2 for j > i. It is readily verified that
A, is dissipative; we need only note that for y € ©, we have

re (Aoy, y) = re [ {~ (i) — 2j§iy(j)} i) = = L@ < o0.

Now the smallest closed extension of A, namely A, exists (by [12; lemma 1.3.1])
and is actually maximal dissipative so that 4, generates a semi-group of contraction
operators. In fact, because of the triangular property of (a;;) the equation

(I — Ao) y = f has a solution ye®, for each fe®, given by y(i) = [ f(i) -
— f(i + 1)], ie3J. Thus R(I — A4,) is dense in Y and since (I — 4,)~"| £ 1, it
follows that A4, is a maximal dissipative generator. On the other hand for
f(j) = (=1)/j7, the equation (I — A,) y = f has the solution y(j) = (—1)/(2j +
+ 1)[2j(j + 1)]7". Consequently ) ;a;; y(j) is convergent but not absolutely con-
vergent. Furiker all of the above properties except the convergence of Y a;; ¥(j)
are independent of the ordering of the integers J. Thus by a suitable reordering of
3 we see that there exist y in ©(A4,) such that Y a;; y(j) is not even convergent. In
this example there is only one dissipative generator A extending A,, namely A4,
and A, is not a restriction of A;, even if we modify Definition 1.4 so as to allow me-
rely the convergence of ) ;a;; y(j) (rather than its absolute convergence) to qualify
y to be in D(4,). ,

In the case ) = [, it is known that any dissipative operator with dense domain
has a maximal dissipative extension which generates a semi-group of contraction
operators (see [12, theorem 1.1.1]). It is also known (see [13]) that if both the rows
and columns of (a,-j) lie in [,, then there exists a dissipative generator 4 such that
Ay = A = A,. It is not known whether either of these results hold in the other
I, spaces 1 < p < oo.
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PesroMe
TIOJIVIPVIIIIBI COKUMAIOIUX INOJIOXUTEJIBHBIX OIIEPATOPOB

P. C. ®UWIJIMIIC (R. S. Phillips), Crardopn (CIIA)

B paboTe MCCIEAYIOTCA TONYTPYIIIE CKAMAIOIIMX TOJOXKUTEIBHBIX ONEPATOPOB
B cTpykType Bamaxa ¥ oGuiero Tuma. B Takoif CTpyKType BCETa MOXHO BBECTH
TOJTy-CKaJIspHOe TpousBenenue [x, y], obnanarowee cpoiicrsamu (1.1) u (1.5).

Onpenenenne 1.3. OnepaTtop A Ha3BIBACTCS OUCNEPCUOHHBIM, E€CIIA
[4x,x*] <0, xeD(4).
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Teopema 2.1. [Jus mozo, umobel AuHeliHbiii onepamop co 6crody HAOMHOU 00-
Aacmeto onpedeneHus 0bla NPOU3BOOAUWUM ONEPAMOPOM CUALHO HENpepul8HOU NOAy-
2PYANbL  CHCUMAROUWUX NOAONCUINEALHBIX ONEPamopos, HeoOX00uMo u 0ocmamoy-
Ho, umobvl onepamop A Obll OUCNEPCUOHHBIM U UMOObL UMEAO MeCHmO DA8eHCINEo
R(I — A) = £ (R — obaacme usmenenusn).

Iycts ¥ — GanaxoBa CTpyKTypa BewecTBeHHBIX dynkumit [f(i); i € J] na ab-
CTPaKTHOM MHOXeCTBE J C OOBIYHBIMHM anreOpauyecKUMH ONEpalMsMH, KOTopas

YOOBJIETBOPAET COOTHOUWIEHUIM:

(i) MuoxectBo D, Bcex GyHKUMH, MMEIOIIMX JIHULIb KOHEYHOE YHMCIO HEHYJIe-
BBIX COCTaBJISIOLLMX, BXOAUT B X.

(i) f £ g osmavaer f(i) < g(i) wis Beex i€ .

(ili) Kaxmoe MOHOTOHHOE HANpPaBIEHHOE MHOXECTBO HEOTPUIATEIbHBIX 3JIe-
MEHTOB [ f,], sByIsirolLieecs: Or pAHMYEHHBIM 110 HOpMe, cxomuTesi kK V f.

Kaxnoit matpuue (a,-j), CTonbueBble BEKTOPHI KOTOPOH BXOHAT B X, MOXHO
TOCTaBUTh B COOTBETCTBHE MUHMMAJIBHBIN onepaTtop A, ¢ 001acTblo ONpeAeIecHUs
Dy, onpeneneHHblii NPU NTOMOIUM COOTHOLIEHHS

(Aof) (') = Zjaijf(j) , f€D,
a Taxxe MaKCUMaJibHbIH onepatop A; ¢ 06J1acThIO ONnpeneIeHUs

D, =[f;fe¥®, ¢(i)=Y,a; f(j) cxomurcs abcontoTHo ans Besikoro i u g € X],
ONpeZieNIeH Bl IIPH NOMOLUM COOTHOLICHMS

(A f) () = Y f(J), feDy.
Teopema 3.1. I[Tycms Ay — OucnepcuoHHwlil MUHUMAAbHBIT MAMPUYHBLE ONEPAMOp.

Toz20a cywecmeyem CUNbHO HENPEPbIBHAA NOAY2DYNNA CHCUMAIOWUX NOAOHCUM EAbHBIX
onepamopog [F(t)] ¢ npousgodawum onepamopom A maxum, umo A, < A < A;.

B pasnene 4 NIPUBOAMTCS aHAJIOTHYHAs TCOpEMA O PACIIUPEHUNA OUCCUTALIMOHHOTO
orneparopa Ao NpAd YCJIIOBHH, YTO OH HaJICXKalIUM o6pa30M MaXOpUPYETCA
JUCICPCUOHHBIM ONIEPATOPOM.
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