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A NOTE ON PSEUDOCONGRUENT MATRICES

VeastiviL DLaB, Khartoum (Sudan)

(Received May 20, 1960)

In the present paper, a generalization of the concept of congruent matrices
is introduced and the Sylvester “Law of inertia” is derived.

1. The importance of the transformation 4 — PTAP in the ring of the matrices
over a field (where P is a regular matrix and P7 its transpose), in many branches of
mathematics, is well-known. By the equivalence A ~ PTAP, all matrices are distribut-
ed into classes of congruent matrices; every class with a symmetric matrix contains
a diagonal matrix. There are some relations among the diagonal matrices of the
same class depending on the given field. Particularly, these matrices are in the case
of an ordered field connected by the Sylvester “Law of inertia”.

In the present paper, some generalizations of these relations to matrices over a
ring are studied. Throughout the paper, capital letters (excepting R and V) denote
square matrices over a given ring. In particular, the scalar matrix with an elément
d in the diagonal is denoted by D = [d]. By A", we shall denote the transpose of a
matrix A.

2. Let R be a ring. For a given natural number k, denote by V,(R) the (right)
module (over R) of all finite sequences of k elements from R: &7 = (ay, a,, ..., ).
An element 7, € Vi(R) is said to be linear dependent on o, 4, ..., o, (€ V(R)
for i = 1,2,...,m) if a relation

(2.1) oS + ys; + oo + Lps, =0 with s;€R and s+ 0

holds. In an obvious way, we shall define linearly independent and dependent sets
of elements from V,(R).

By a V-ring we understand such a ring R for which every maximal independent
set of V;(R) has precisely k elements (for every natural k). Thus, every V-ring has the
following property P: For every pair r, s of elements of R, there exists a non-trivial
solution of the equation rx — sy = 0.)

On the other hand, we are going to prove
Theorem 1. A ring R without divisors of zero having the property P is a V-ring.

1) Thus, every commutative ring has the property P in a trivial way.
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Proof. Our assertion is a consequence of three “Basic Theorems™ of B. L. VAN
DER WAERDEN (see [1], p. 100). The first and the second of these theorems are ob--
vious from our definition of linear dependence in V,(R). To prove the third one, let
us suppose that o7, € V,(R) is linearly dependent on <7, &7,, ..., &Z,, and that each
of &/, (i =1,2,...,m) is linearly dependent on %, %,, ..., #,. Hence, we have,
besides (2.1), the following relation for suitable elements 1;; (i=1,2,...,m;
j=0,1,..,n) from R:

(2.2); Aty + Bty + ...+ Bty =0 with 1, £ 0.

Clearly, we may assume s; = 0 for all i = 1,2, ..., m. By our hypothesis, there:
exists a non-trivial solution u, v; of the equation s;x — #,,y = 0 in R: sju; —
— t;ov; = 0. Since R is without divisors of zero, both elements are, obviously,

non-zero. Multiplying the relation (2.1) by u, and substituting for o;s,u; from
(2.2),, we obtain

L oSouty + Bty vy + ..o+ Bty + Aysu + oo+ Hs,u = 0.

Now, s,u; + 0 and we can proceed by induction: In general, denote by u, v, a
non-trivial solution of the equation suju,...u;_;x —t,0y =0 (I =2,3,..., m).
It is easy to see that u, 3= 0, v, &= 0 for each I. Then, we obtain finally the relation

A oSolly .. Uy + By(ty104Uy oo Uy + 1oy 0sUs oo Uy + s F ByqUy) o+
+ Bty 01ty o Uy + LyplUs ooy + oo+ 0,) =0 with seuy ..., + 0.
This completes our proof.

Remark 1. The assumption of the absence of divisors of zero in Theorem 1 is
quite natural. Furthermore, an example of a free ring shows that the other assumption
of the property P cannot be also omitted.

3. Let M,(R) be the system of all matrices of order n over a ring R. Two matrices
A and B from M,(R) are said to be congruent if P, Q € M,(R) exist such that PTAP =
= Band Q"BQ = A. A and B are said to be pseudocongruent, if U, Ve M,(R) exist
such that UTAU = rBs and V7BV = uAv for suitable r, s, u, v € R. Thus, all matrices
of 9)?,,(R) are divided into classes of congruent matrices, and, if R is commutative,
also into classes of pseudocongruent matrices.

We shall say that an operation on a matrix is elementary if it can be performed
by the following simple operations:

(i) by the multiplication of a column by a non-zero element of R;

(ii) by the addition of a multiple of a column to another column;

(iii) by a transposition of two columns.

A matrix is said to be D-elementary, if it can be obtained from a non-zero scalar
matrix by an elementary operation.?)

2 ) It can be proved that in the case of a field the concepts of D-elementary and regular matrices.
coincide.
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To the end of this section, R denotes a commutative ring satisfying r + r + 0
for every non-zero element r € R.

Lemma 1. To every symmetric matrix A e%ﬂ?,,(R), there exists a D-elementary
matrix P such that PTAP is diagonal.

Proof. Let A = (a;;). Take a non-zero element re R and consider the scalar
matrix Dy = [r]. Now, if the matrix A" = DJAD, = (a{}’) is diagonal, the proof
is completed. Otherwise, let I be the natural number such that

al =0 for i>j, j<1land ai}} + 0 at least for one i, > I.

iol
Denote by A? = (a{}’) the matrix A", if a{;’ + 0, or, when this is not the case, the
matrix D{A"D,, where D, is the matrix obtained from D, by the transposition of
iond and I-th columns (if a{}) =+ 0) or by adding the i,-th column to the I-th one
(if a$}) = 0). Clearly, a'? = 0 for i > j, j < l and a}’ # 0 (for, a{}’ is either af}’
or ai!) or all) + ai)).

Consider further the matrix D, originated from D, by muitiplying the (I + 1)-th,
(I + 2)-th, ..., n-th columns by the same element ai;’ and, finally, the matrix Dj
which we obtain from D, by the addition of (—a{)-multiple of the I-th column to
the m-th one (for m=1+1,14+2,..., n). D, is, obviously, a D-elementary matrix
again. Then, as one can immediately see, the matrix A®) = DIAD; = (af’) satisfies
the following conditions: a{}’ = 0 for i > j, j < I + 1. Now, we may complete the
proof of our lemma very easily by induction.

Remark 2. The proof of Lemma 1 gives, simultaneously, a very advantageous
method for the numerical calculation of a diagonal form of a symmetric matrix
and of the matrix of the corresponding transformation. In the case of a field, this
method may be arranged in an obvious way into a much more suitable form.

Lemma 2. Let PTAP = B with a D-elementary matrix P. Then a D-elementary
matrix Q exists such that Q"BQ = r*4 for a suitable r € R.

Proof. First, transform the relation PTAP = B by means of a scalar matrix
D =[d], d  0: d*P"AP = D"BD. 1t is obvious that to prove our assertion it
suffices only to prove the following proposition:

If s2’KTAK = MTBM, where K is a matrix obtained from a matrix Lby a simple
operation of the form (i) or (ii) or (iii), M a D-elementary matrix and s € R, then there
exists a D-elementary matrix N such that t?’ITAL = NTBN for a suitable ¢ € R.

Suppose that K is obtained from L by an operation of the type (i), i. e., say, by
the multiplication of the i -th column of Lby u € R. Then, multiplying all columns,
with the exception of the iy-th, of M by the same element u and denoting the D-ele-
mentary matrix thus obtained by N, we have readily obtained s*u*L'AL = N”BN.

In case that K is obtained from L by an operation of the type (ii) or (iii), Lcan be,
on the contrary, obtained from K by the same operation. This operation; applied
to the matrix M, gives us the desired matrix N.
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The proof of our proposition, and, thus, also of Lemma 2, is completed.
Lemmas 1 and 2 then immediately imply

Theorem 2. In each class of pseudocongruent matrices over a commutative ring
satisfying r + r £ 0 for every its non-zero element r which contains a symmetric
matrix there exists a diagonal matrix.

4. Now, we are going to give a proof of the Sylvester “Law of inertia”. First,
prove the following

Lemma 3. Let R, be an ordered V-ring and A, B two diagonal matrices from
M(R) such that

(4.1)  CTAC = rBs for suitable r,s€ R, and C = (c;;) from M,(R,) .

Denote by ki, k, the numbers of positive, and by 1, l,, the numbers of negative
elements of A and B, respectively. If rs is positive, then k; = k, and 1, = I,.

If rs is negative, then ky = 1, and 1, = k,. .

Proof. Let rs be positive. We are going to prove the inequality k; = k,. The
other statements can be proved in a similar way. It is easy to see that we can assume
(without loss of generality) that a,, for p =1,2,...,k; and b, for g = 1,2,..., k,
are all positive elements of 4 and B, respectively.

Suppose that k; < k,. Consider the following vectors of V,(R,), the components
of which are the elements of the matrix C: %7, = (Cyp» Coms -+ s Coym) fOr m =1,2, ..,

. ki + 1. Then, by our hypothesis, there exist suitable elements f, e R, (m =
= 1,2, ..., k; + 1) such that at least one of them is non-zero and

kyi+1
(4.2) mzlcpmtm =0 for p=1,2,...,k,.
Denote by F = (f;;) the matrix defined as follows:
(4.3 Smp+1 =tufor m=1,2,..,k; + 1 and f;; = 0 otherwise.
Further, denote by G = (g;;) the product
(4.4) G =CF.
Then, from (4.1), G"AG = F'rBsF. By (4.4), (4.3) and (4.2) we have
kit 1

gp,k1+1 Z cpmfm kg+1 = Z cpmtm =0 for each p= 1’ 2’ e kl‘
m=1

m=1

‘Hence, at the position (k; + 1, k; + 1) of the matrix GTAG we obtain the element

n kit+1 ki+1 n ki+1 ki+1
Zgl,k1+lallgl ki +1 — Z( Z clmtm au Z Clmtm) = z 1( L C t )au( z clmtm)
i= i=ky+ m=1

‘which is, obviously, non-positive.
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On the other hand, in the same (k; + 1, k; + 1) position of the matrix F'rBsF’
we obtain
ki+1

n
Z fm,k|+1rbmmsfm,k1+l = Z tmrbmmStm 5
m=1

m=1
that is, clearly, a positive element. This contradiction concludes the proof of our
lemma.
From Lemma 3, we deduce immediately

Theorem 3. The numbers of positive, resp. negative elements of two pseudo-
congruent diagonal matrices over an ordered V-ring are equal.
Finally, using both Theorems 1 and 2, we may formulate

Corollary 1. Let R, be an ordered ring with the property P. Then the numbers of”

positive, resp. negative elements of two pseudocongruent diagonal matrices of”
M(Ro) are equal.

Corollary 2. Let R, be a commutative ordered ring. Then, in every class of pseudo--
congruent matrices of M,(R,) which contains a symmetric matrix there exist
diagonal matrices. The numbers of positive, resp. negative elements of all these
matrices are equal.
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Pesrome
3AMETKA O ICEBAOKOHI'PYSDHTHBIX MATPULIAX
BJIACTUMMII JJIAB (Vlastimil Dlab), Xaptym (Cynan)

ITycts nano xombuo R. O0o3HaumM yepes Vk(R), rae k — JnaHHOe HaTypalbHOE
4iCII0, (paBblit) Moy (Hax R) BceX KOHEUHBIX IOC/IEI0BATEILHOCTEN Kk 3JIEMEHTOB
u3 R: & = (ay, a, ..., a). MBI ckaxeM, 4T0 31eMeHT & € Vi(R) auneiino 3asucumt
or &y, Ay, ..y L, (€ Vi(R) nnst i = 1,2, ..., m), €ClIK CYLIECTBYET COOTHOLICHME

oS + 151+ oo + S, =0 ¢ s5;€R u s F0.
OueBHaHBEIM 06Pa30M MBI ONPENETHM AUHEHHO He3asUCUMbIE U 3A6UCUMbIE MHO-

acecmea snemeHToB u3 Vi(R).

Komnb1o R, it KOTOPOTO CIPaBEIIUBO YTBEPKACHHUE, YTO KAXKI0€ MAKCUMAJILHOE
HE3aBHCUMOE MHOXeCTBO M3 Vi(R) MMeeT B TOYHOCTH k 21eMeHTOB (IUIsi Kakmoro
HATYpaJIbHOTO k), Ha3zoBeM V-xoavyom. Teopema 1 maer mocTaToYHBIE YCIIOBHSL
JUISL TOTO, YTOOBI KOJIBIO OBLIO V-KOJIBLIOM:
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Teopema 1. Koabyo R 6e3 deaumeaeti Hya5, 8 KOMOPOM KANCAOE YPABHEHUE IX —
— sy = 0 (r,s € R) umeem nempusuaivroe peuienue x, y, aeaaemca V-koaoyom.

ITycrs M,(R) o3mauaer cucreMy Beex (KBaApaTHBIX) MATPMI MOpsaka n Haja R.
JBe matprusl A, B u3 M,(R) M1 HazoBem ncesdokonzpysnmuvimu, ecmi B M,(R)
cyuiecTByrT MaTpuusl U, V tak, uto UTAU = rBs u V'BV = uAv nns moaxons-
uix r, s, u, v € R.') Wrax, ecniu R kommyTaTiBHO, To Marpuusl 13 IM,(R) pacnana-
FOTCS Ha KJIACCHI B3aHMMHO TICEBIOKOHIPYSHTHBIX MATPHI; KPOME TOTO CHPABEIIHBA

Teopema 2. ITycmv Kaacc nceBOOKOHZPYIHMHBIX MAMPUY HAO KOMMYMAMUGHBIM
KOAbYOM, YO08AemEopAlOWUM Hepasencmgy r + r £ 0 0aa 406020 Henyreeo2o
3/1eMeHma r, cooepucum Kaky-aubo cummempuueckyro mampuyy. Tozoa 8 kancoom
Makom Kiaacce umeemcsa OUA2OHAAbHAA MAmpuya.

Teopema 3 BeIpaxaeT B 0000ILEHHOM BHUJE ,,3aKk0H uHepumu CiuibBecTpa:

Teopema 3. Yucio noaoxncumenvHvix, cOOmE., OMPUYAMMEAbHBIX IAEMEHINO0E 08YX
21CeB00KOH2DYIHIMHBIX OUASOHANLHBIX MAMPUY HAO YNOPAOOUEHHBIM V-KOAbYOM 00u-
HAK080.

U3 TeopeM 1 —3 Torma HEMOCPEACTBEHHO IMOJYYUM

Caencrue 1. ITycme R, — ynopadouennoe Koavyo, 8 KOMOPOM KaAHcooe ypagHeHue
rx —sy =0 (r,se R) o6aadaem nempusuasehbim pewenuem x,y. Toeda uucao
N0A0HCUMEABHBIX, COOME., OMPUYAIMEAbHBIX IAEMEHMO08 08YX NCe800KOHZPYIHMHBIX
Ouazonanvhvix mampuy uz M, (R,) odunakoso.

Cneactsue 2. ITycmo Ry — Kommymamugnoe ynopadoyentoe koavyo. To20a & kasic-
Jom Kaacce 3aumno ncesdokonepysumuolx mampuy uz IMM,(R), codepyucawyem Kakyro-
AUBO CUMMEMPUYECKYI0 MAMPUYY, CYUWecmayom ouazonaibHle mampuyst. Yucao noao-
ICUMEABHBLX, COOME., OMPUYAMENLHBIX INEMEHIMO8 8 KANCOOl U3 IMUX MAMPUuy 00u-
HAK080. )

1) Cumeon PT o3nauaer MaTpuiy, TPAHCIOHMPOBAHHYIO IO OTHOIIEHHIO K MaTpuue P.
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