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Yexoc/0BanKHii MaTeMaTHIeCKHil sxypuu, T. 11 (86) 1961, Ilpara

SPECTRAL THEORY OF SEMI-GROUPS CONNECTED
WITH DIFFUSION PROCESSES AND ITS APPLICATION

PETR MANDL, Praha
(Received December 3, 1959)

In this paper a connection between the semi-group defined by transition
probabilities of a diffusion process bounded on one side and a semi-group in
a Hilbert space is established. This connection is then used to study the limit
behaviour of the probability distribution of the process.

The present paper is devoted to the application of the theory of singular boundary
problems for second order differential equations to diffusion processes. Processes
bounded on one side by a reflecting, absorbing or elastic barrier are studied. The main
subject of the paper is the study of the following problem posed by J. HAJEK for the
case of absorbing and elastic barriers:

To find the conditions for the convergence to a limit distribution of the probability
distribution of the position of the particle at time ¢ under the condition that the
particle was not absorbed before the time t. (Compare also [4].)

We shall study diffusion processes restricted to the interval (0, c0) which are usually
described by the aid of the diffusion equation

i’.u=_‘3_{_"_u —b(x)u}

at 0x (0x

with boundary condition (1). We shall characterize them by means of semi-groups in
the following way:

In the space L of functions integrable on (0, ), let us consider the operator
Qu = d/dx {d/dx u — b(x) u}. To the domain of definition of Q there belong
those u € L for which d/dx {d/dx u — b(x) u} € L and which satisfy the boundary
condition

(1) (1= p)u=p(u — bu),ey, where 0<p=s1,
d/dx means the derivative of an absolutely continuous function, u’ is the derivative
with respect to x, p is a constant. We presume that b(x) is a real function which has

a continuous derivative b’(x) on <0, o). We shall suppose throughout that b(x) satis-
fies the following condition:
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If we set B(x) = [§ b(s) ds, then the functions [jexp B(s)dsexp — B(x) and
5 exp — B(s) ds exp B(x) are not integrable. (This means that in the terminology
of W. FELLER, infinity is the natural boundary of the process.)

It is a classical result of Feller ([2], p. 495) that under this condition the operator Q
is the generator of a semi-group {V,, t = 0} of contraction operators in L. This semi-
group defines unique transition densities such that V,g = [§° f“(y, x) g(y) dy.

We shall use the notation
oft, x3 g) = f FO(, x) 9(3) dy
0

Thus if g is a density of initial probability distribution, then v(t, x; g) is the probability
distribution inside €0, co) at time t. We remark that the value p = 0 in condition (1)
corresponds to an absorbing barrier and the value p = 1 to a reflecting barrier.

Let us set f(x) = [5 exp — B(s) ds and denote by % the Hilbert space of functions
on (0, o0), whose squared absolute value is integrable with respect to the measure
determined by the distribution function f(x). The differential operator

i{iu—b(x)u}=§20

dx (dx

may also be considered as an operator acting on elements u of %. In this space it is
formally self-adjoint in the sense that for arbitrary functions ¢ and  with absolutely
continuous first derivative and vanishing in some neighborhood of zero and infinity
we have

j " (©00) ¥ d4B(x) = j " o(@0) dB().

All the definitions and theorems of the theory of singular boundary problems (as for
instance the notion of the limit point case) (see [1], chap. IX), stated usually for ope-
rators formally self-adjoint when the weighing measure is Lebesgue measure, can be
carried over to such operators without changes. We can use the substitution mentioned
in the proof of Theorem 6 to transform the operator Q, into a self-adjoint one.

Lemma 1. Under our condition that oo is a natural boundary of the process, the
case of limit point takes place for the operator Q.

Proof. It suffices to show ([1], chap. IX, th. 2.1), that there exists one solution of
the equation Qqu = 0 which does not belong to #. One such solution is u(x) =
= exp B(x) [§ exp — B(s) ds. We have

jmuz(x) dp(x) = on e (Jxe”B(‘) ds)2 dx .
0 0 0
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It is immediately seen that this integral is infinite when [§ exp B(x) dx =co0. When
& exp B(x) dx <oo then [§ exp — B(x) dx =o0. So for x large enough,

X 2 X
P <f e B® ds) > e‘“"’f e 5 ds
0 0

and the expression on the right side is not integrable by the hypothesis that co repre-
sents a natural boundary of the process.

We shall restate in a concise manner the results of the spectral theory of singular
boundary problems needed in the sequel. (See [1], chap. IX.) Let y/(x, A) be the solu-
tion of ’

d (d

= {dx v bl/l} + Ay =0
satisfying ¥(0, 2) = p, ¥'(0, ) = 1 — p(1 — b(0)) and let o(2) be the spectral distri-
bution function corresponding to the boundary problem. We suppose that o(1) is left-
continuous and equal to zero for A < 0. We denote by £, the Hilbert space of func-
tions whose squared absolute value is integrable with respect to the measure deter-
mined by ¢(4). There exists a unitary transformation ¥ of £ onto £, which is defined
for f € & by the relation

v = lim (2,) J 709 w(x, 4) dB(x) -
A- © 0
For ge £, we have
vlg = lim (2) f W(x, 7) 9(2) do(d) -
- ® 0-

We denote by O the operator d/dx {d/dx u — b(x) u}, considered in the space &, whose
domain of definition is restricted to elements u satysfying (1). The operator Q is the
generator of a semi-group of operators in E{IA/,, t = 0} such that '1’l'>,f = e~ Myf.
(This is a known fact which may be established for instance by means of exercise 12
to chapter IX in [1] and by the Hille-Yosida theorem. The operators of multiplication
by e *in &, form a semi-group in #,. We show that the resolvent operator of this
semi-group corresponds (in the equivalencé of &, and % defined by the transforma-
tion ¥) to (AE — !AZ)“ and this implies that Oisa generator of the semi-group in %,
which corresponds to multiplication by e ~** in Z,). We denote f;(t, x;f) = V.f.

The norms in L and % will be denoted by | k|, and ||h||,. Next we define an auxi-
liary Banach space I, which is the set L n % with the norm ||k, = ||h|l. + [|hll&. The
differential operator d/dx {d/dx u — bu} restricted to I and limited by the boundary
condition (1) will be denoted by &.

~ . A
Theorem 1. The operator 2 is the generator of a contraction semi-group v(t, X; )
in I. We have for gel

o(t, x; 9) = ot, x; 9) = ?)(t, x;g)-
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Proof. According to the Hille-Yosida theorem we have to show that for fe / and
A > 0 there exists exactly ane solution of the equation

) u—Qu=7f

and that it satisfies Afjull, £ ||f]|,- This is the same as to show that the (unique)
functions u, € L and u, € & satisfying

3) Aug — Quy = f
and
(4) Juy — Quy = f

are identical.

We shall establish the equality of u, and u, when f is nonnegative. The general case
may be treated by decompositing f into its positive and negative parts. It is known
(see [2], [3]) that there exists a nonnegative solution v of the equation

i{it»—laz;}—iv:O

dx |dx .

satisfying (1). From the unicity of (3) and (4) it follows that v belongs neither to L nor
to Z.If f = 0, then also u; = 0 and u, = 0. We must have u, — u; = cv. If ¢ > 0,
we would have u, = cv =2 Oandsou, ¢ &. If ¢ < 0, we would have u; = — cv 2 0
and so u, ¢ L. Hence u; = u,, and @ is the generator of a semi-group in { which we
denote by (¢, x; g). From the equality of resolvent operators it follows that for g €

o(t, x5 g) = o(t, x; g) = ?)(t, x5 9) .
Theorem 1 enables us to transfer to u(t, x; g) the results obtained for o(t, x; f) when
its spectral representation is used.

In the important case, when [§ ¢®™ dx <oco, we have by Schwartz’s inequality
that for fe &

j :If(x)l dx = J :If(x)l eI g < ( J " opeo dx>* ( j :|f(x)|2 dfs(x>>* -

0

Thus fe L and ||f||. = c|fll¢. Hence I may be identified with .#. In this case we have
also that ¢®*™ e & and [§ f(x) dx is a linear functional in %.

Let 4 be a measurable subset of (0, c0) and let h € £. We denote

14(2) = Pyue® = J‘Ill(x, 2)dx

and g(1) = ¥h. From the unitarity of the transform ¥ and from the spectral represen-
tation of the semi-group o(t, x; .) we obtain-that

f o1, x; h) dx = J "ot (2) 7,(2) do(2) -

[

LY
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We see that for asymptotic behaviour of the integral over A it is decisive, how the
functions () and ¢(4) behave in the neighborhood of the least point of increase of
the function g(%). This point is characterized by the following lemma:

Lemma 2. Let A, be the least point of increase of the function o(2); then A, is the
greatest of those numbers A, for which y(x, 2) does not change sign.

Proof. The spectral distribution function g(1) is the limit for s > oo of spectral
distribution functions corresponding to the boundary problem on the interval <0, s},
with boundary condition (1) for x = 0 and condition u = 0 for x = 5. So we see that
there cannot exist a A > 1, for which y(x, 1) does not change sign. Let y(x, 4,)
change sign. Then there exist bounded intervals I and J such that for x € I we have
¥(x,4,) > 0 and for xe J yY(x, 4,) < 0. Let us choose a nonnegative fe.¢ not
equivalent to zero, such that f(x) = 0 for x ¢ I, and denote ¥f = g(4). We see that

lim 7,(1) g(4) < 0.
A apt

Hence we must have

P(z, x;f) dx = j " e (2) o(2) de(d) < 0

lp—

for sufficiently large ¢, in contradiction with the nonnegativity of f.

We shall use the symbol /, in the sense already introduced.

In some of the following theorems we shall restrict ourselves to a set ¥, = &
defined as the set of all nonnegative functions from %, not equivalent to zero, whose
transformation ¥fis bounded from below in some right neighborhood of 4,. The set
£, contains functions which tend sufficiently quickly to zero when x tends to in-
finity.

Theorem 2. For every fe &, and bounded measurable nonzero subsets A and B
of (0, ) we have

lim Uﬁ(t, x; f) dx) (P(t, x; f) dx>_1 = T,Tp,

T, = J}//():, Aydx, 5= j\//(x, Ap) dx .
4 B

where

If o(4, +) > 0, then the assertion is true for every nonnegative nonzero f € &.

We shall use the notation f = O(g) to express that for two functions f(¢) and g(t)
we have 0 < ¢; < |f(t)/g(t)] < c, for t large enough. The notation f = O(g) will be
used to express that we have |f(1)/g(f)] < ¢ for large values of t. We introduce the
following notation: For K > 1, we denote

1K, ) = j e h() do(2)
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and

A(K, ) = J © emHe(2) h(2) de(d)

1 will be used also to denote the function identically equal to one, and we put g(1) =
= Yf. The symbols h* and h~ denote the positive and the negative parts of h.

1. When we use the fact that g(4) is bounded from below in some neighborhood of
4, we obtain 4(c0, g7) = O(I(K, 1)).

2. Let f, € % be a function equal to zero in some neighborhood of infinity, equal

to f elsewhere, and let ¥f, = g,. The limit lim go(4) = g, exists and is positive be-
Amdpt
cause Y(x, 4,) is a positive function of x. From this we obtain that

limI(K, 1)™* Ao, go) = T4go > 0.
t—>
3. The existence of the positive limit lim 7 ,(4)implies that 4(c0, g *) = O(I(K, g %))
A A+
and A(o0,g7) = O(I(K, g7)).

4. I(K, g) = O(I(K, g*)) and I(K, g) is positive for ¢ large enough. Let suppose
that on the contrary there exists a sequence {t,}, f, —co such that

(5) tim 2. 9)
th I(K g+)
Then we must have
.
(6) lim sup K. g7) <C
tn I(K, 1)

because from 1 and 3 we can deduce that

I(K,g9%) _

I(K, 1)

I(K,g)
IKq%)

lim sup
implies
lim sup

The constant C is independent of K.
We have the following relation

lim mfI(S 1)7" A(o0, g) = lim mfI(S 1) A(K, g) <

< 7, lim mfI(S 1)~ I(K, g) + 811m supI(S D' (I(K,g%) +I(K,g7)) -

Here K is so chosen that for 4, £ A < K itis [t4 — t4(4)| < e. It is also supposed
that 7, > & > 0. Hence using (6) we see that the relation (5) implies

lim inf I(S, 1)~* A(c0, 9) £ 0,
th

which contradicts 2, because A(c0, g) = A(0, go)-
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We have I(K,g7) = I(K,g*) — I(K, g). Hence from 4 we obtain I(K,g~) =
= O(I(K, 9))-

5. We have lim I(s, g) ! A(o0, g) = t,. This is established be means of 4 and the
relations e

1, —elimsupI(s,g) "' (I(K,g"%) + I(K, g 7)) < liminfI(s, g) ' A(o0, g) S
t— 0 t— o0

< limsupI(s, g) ™" A(o0, g) < t4 + elimsupI(s, g) " (I(K, g*%) + I(K, g 7))
1= 0 t—+

where K and ¢ are subject to the same conditions as in 4.

The first assertion of the theorem is an immediate consequence of 5. To establish
the second we remark that if (4, +) > 0 then

A(oo, g) = g(4,) e(A,+) e %7, + o(e™*).

We return now to the problem of the convergence to a limit distribution of the
probability distribution at the time ¢ under the condition that the particle was not
absorbed before the time t. For nonnegative, nonzero g € L we denote

ot x: 9) = (J:ov(t, vig) dy)vlv(t, % q).

So when g is a probability density, u(t, x; g) is the probability density of the condi-
tional distribution examined.

Theorem 3. If (& ¥(x,A,) dx = oo, then for every fe £onL and A >0,
lim [§ ot, x; f) dx = 0. This case arises when zero belongs to the spectrum of the
=0

problem and, in the condition (1), either p %1 or p =1 and at the same time
{5 €® dx is infinite. When o(1,) > 0, the assertion holds for every nonnegative
nonzero fe £ n L.

Proof. We denote I = (0, 4), J = (0, B). From Theorem 2 we obtain

lim sup jAE(t, x;f)dx < lim <JAv(t, x; f) dx)(JBv(t, x; f) dx)—1 B RTh

t— o 0 t— 0 0

and, by hypothesis, lim 7, = c. We have
B
X

,‘b(x’ 0) - peB(x) + (1 _ p) eB(x)j e—B(_,) ds
0

and this is not an integrable function under the hypothesis of the second assertion of
the theorem. ’

Note. When the hypothesis of the second assertion of the theorem holds for some
boundary condition, then it holds also for the remaining conditions for which p = i.
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This follows from the fact that the derived set of the spectrum is independent of P-
(Compare | 1], chap. IX, exerc. 8.)

Theorem 4. Let be |3 ¢®® dx <co. Then for the existence of lim (&) v(t, x; h) =
t—* o0

= w(x) for some probability density h(x), he % it is necessary that y(x, 1‘,) eZ.
If Y(x,A,) € Z, then for an arbitrary density f € £ we have lim (£) o(t, x; f) =

t
= ([& ¥(x, 2,) dx) "1 y(x, 4,) and [3 B(t, x; f) dx = O(e™*").
Proof. Let lim (&) u(t, x; h) = w(x). Then we have
t—~ o

0 0 -1
lim<J o(t + s, y; h) dy)(J o(t, y; b) dy) =
"o \Jo 0

- limf (s, y: 5, -; b)) dy =_[ 3s, vi W) dy = ofs) .

2o 0

i

It is easy to see that ¢(s) satisfies the relations ¢(s; + 52) = @(s) @(s,), o(s) £ 1.
Hence ¢(s) = e with « = 0. Also
© © -1
5t + s, x: h) = (j 3, v b) dy)(J 5t + 5, y: h) dy) 3s, x; 81, - 1))
0 0
By a passage to the limit for t o0 we obtain e ~* w(x) = (s, x; w). Using the
definition of the infinitesimal operator of a semi-group, we obtain Ow + aw = 0. We
see that o belongs to the spectrum of the boundary problem and the corresponding
eigenfunction is nonnegative. From Lemma 2 it follows that a = A,. Hence w(x) =
= k y(x, 4,), and we must have k = ([§ ¥(x, 4,) dx)~".
If Y(x, A,) € &, then the function ¢(2) has a jump at the point 4,. Under our hypo-

thesis we have exp B(x) € £. We denote ¥ exp B(x) = 7(1). We take an arbitrary
density f € £ and put ¥f = g(1). We have

j (e, x;f) dx = f e g(2) (A) do(2) -
0 2p—
From the fact that f € & and exp B € % it follows that the integrals

o(3,) = j :f(x) W, 1) dB(x)

and
(1) = j W(x, 1) dx
0
exist and are evidently positive. It is easy to see that

lim j "6t % 0) dx = 9(2) 14) el +)

1=+ 0
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and that

lim (£ ,) e*** ¢ (¢, x; f) = k(4),

1=
where k(4,) = g(4,) and k(1) = 0 for A % 1,. The desired result follows by means of
the formula for ¥ ~! and from the unitarity of ¥.

Note. The conditions of Theorem 4 are satisfied, when [§ exp B(x) dx <oco and
we have a reflecting barrier at zero. Then exp B € & is the eigenfunction of the pro-
blem, corresponding to the eigenvalue 1, = 0. In this case for h € &

j (t, y; h) dy =J h(y)dy .
) 0

This follows from the fact that in the case p = 1 the semi-group {V,, t = 0} preserves
norm in L. (See [2].) From Theorem 4 it follows that

a0 o0 -1
lim (¢, x; h) = f h(s) ds ( J eB(‘)ds) P
1= 0 o

in the norm of . We now use the fact that & is a dense set in the space L and that
the convergence in % is stronger than that in L. From the contractivity of the semi-
" group u(t, x; g) we find that the limit relation holds for every g € L, in the norm of L.
(Compare [4].)

Theorem 5. Let [ e®® dx <oo and ¥e® = 1(2). If

™ lim (1) = | ¥(x,4,)dx <o,
A=A+ °
then for every h e &, we have

lim -[ He, x; B dx = <f :w(s, 1) ds)_l J :1//(3, 2) ds.

t=w Jo

Note. The expression (7) has the meaning that in the class of functions equivalent
to 7(1) there exists one for which this relation holds.

Proof. The proof of Theorem 5 is exactly the same as that of Theorem 2 if we put
5(4) = (4).

If we wish to deduce from the coefficient b(x) the limit behaviour of the probability
distribution, the following theorem may be useful:

Theorem 6. If [3 ¢®™ dx <oo and lim £b%(x) + b'(x) = oo, then for every density
o -1
fe lim(2)u(t x:f) = ( J W(x, 4)) dx) W(x, Ay -
t—> o 0
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If [§ 13b*(x) + b'(x)| dx <oo and p =+ 1, then for every fe Zo A L
lim [ o(t, x; f) dx = 0.

t—* o0
Proof. By means of the known substitution u(x) = e***y(x) the equation Qqu +
+ Au = 0 transforms to y” — {3b* + 3b'} ¥ + Ay = 0 and the boundary condition
(1)to(1 = p) y = p(y" — }by)l.=o. The spectral distribution function of this problem
remains g(4). So the condition lim $b*(x) + b’(x) = oo is the condition of Weyl for
X 00

discreteness of the spectrum (compare [1], chap. IX, exerc. 1), and Theorem 4 may be
applied. The condition [§ |3b%(x) + b'(x)| dx <oo implies (compare [1], chap. IX,
exerc. 4) that zero belongs to the spectrum of the problem. Hence the second assert-
ion of Theorem 3 may be used.

Example 1. We may have [§[3b%(x) + b'(x)]dx <o and [§ €™ dx <o
simultaneously. This is the case of e. g. b(x) = — (x + 1)~* with 1 > a > 4. Thus if
there is a reflecting barrier at zero, the distribution of particles tends to a 11m1t distri-
bution, but for every p # 1, the conditional distribution tends to infinity.

Example 2. Brownian motion in a gravitational field.

4z d
Qu=-—u+pf—u,
=t rig

i.e. b(x) = — f, B > 0. The boundary condition at the origin is 1-pp- pu—
— pu’ = Oly—q. € = ™% 50 that [P B dx <oo. We denote y = (3 — A)*.
Then for 0 < A < 3% we have

FSPNET ESTEY ERRSIREY. IFETY P
Y b

Y(x, 38%) = [(1 — 38p — p) x + p] ™.
If we denote § = (1 — 2$%)*, we obtain for 2> < A that

s, ) = LoD

5 sin 6x + pe~*%* cos ox .

Let us first find the value of the smallest point of increase of ¢(1), using Lemma 2, 1t
is easy to see that for 1 > 3%, Y(x, 2) has infinitely many changes of sign. The func-
tion y(x, 38%) is nonnegative for 0 < p < 2/(2 + f). So for such p, 4, = +p*. Fof
2/(2 + B) < p < 1, the greatest A with nonnegative ¥(x, 1) is such that 1 + p(y —
=38 — 1) =0, so that

5 =p(2+[3)—p2(1+ﬂ)—-1.

p
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For 0 £ p < 2/(2 + B) the function ¥/(x, 4,) does not belong to &, but it is easily
seen that the conditions of Theorem 5 are satisfied. For 2/(2 + ) < p < 1 we have
Y(x, 1,) € & and this is the case of Theorem 4. Particularly for the absorption barrier

at the origin (p = 0), we see that the weak limit of conditional distributions is the
distribution given by the density (55)* xe™ %,

Example 3. The process of Uhlenbeck:

d (d
Qou = —<—u + PBxul,
¢ dx{dx p }

where f > 0. In this case
M = TR Sx) 4 b(x) = 1

The boundary condition for the process with an absorbing boundary at zero is
u(0) = 0. By means of the substitution

- (- )

we find that the eigenvalues of the problem are 4, = (2k + 1), k = 0, 1,2,...and
the coresponding eigenfunctions are

u(x) = e P12 g\ y (J3Px) for x 2 0.

Here H,(y) is the Hermite polynomial. When we use Theorem 4 we find that

lim o(t, x; g) = Bxe™#*"/* and J o(t, x; g)dx = 0(e™) .

t= 0

The paper [5] is devoted to this process.
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Pe3ome

CHIEKTPAJIbHAS TEOPUS NOJVIPVIII CBA3AHHBIX
C IUdSY3UOHHBIMU MMPOLIECCAMY U EE NPMMEHEHUE

TIETP MAH/JI (Petr Mandl), Ilpara

B paboTe uccnenyroTcs MeTOoLaMu Teopuu nonyrpynn xuddy3nonnsie npouecch
Ha untepsale (0,00), KOTOPHIC OIMCAHBI YPABHEHUEM

0, 9—-{iu— b(x)u}.

5; - dx (0x

I'maBHOE BHMMaHWE YAENEHO Clyvalo, KOTa B HyJie IIOMEIIEHA MOIJIoaomas mid
ajacTuyeckasi CTeHKa. Toraa mu3yyaercs INpeesibHOe NOBENCHHE pacrpeiesieHus
BeposiTHOCTEll mosioxenns AudOYHIUpYIOWEeH YacTHILI BO BPEMs ¢ NPU YCJIOBUH,
4TO JI0 3TOrO BpeMEHH MOIJIOIIEHNE YaCTULE Ha CTEHKe elle He npousouuto. Micnos-
3yeTcsl CIeKTpajibHask TEOPHs CHHTYISIPHBIX KPaeBBIX 3aa4 A AuddepeHuuanbHbx
ypaBHEHUII BTOPOTO NOPSAKa.

ITonyuyenpl HEKOTOphIE KacaloImdecs CHEKTpajibHOM (YHKIMU pachpenelieHus
| pelleHUl ypaBHEHUS
d (d

a{a—xw—b(x)w}wwo

yCIIOBHS JUIsL TOTO, YTOOBI YCIOBHOE paclpelelieHHe CTPEMHJIOCh K NPENeNbHOMY
nin K 6eckoHeyHocTH. IIpUMEHEHUEM 3TUX YCJIOBUI NMOJyYaeTCs yTBEPKACHHUE:

ITycms exp [ b(s) ds unmezpupyema u lim (3b(x)* + b'(x)) = o0, mozda ycaosnoe
X 00

pacnpedenenue cmpemumes no Hopme k npedeasnomy. Ecau [§ I%bz(x) + b(x)] dx < oo,
mo oHO cmpemumca K 6ecKoneuHocmu.

K crartre nobaBiieHbI TPU NpUMeEpa.

569



		webmaster@dml.cz
	2020-07-02T19:00:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




