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REMARKS CONCERNING THE INVARIANCE OF BAIRE
SPACES UNDER MAPPINGS

ZpENEK FroLik, Praha

(Received March 12, 1960)

Let f be a mapping of a space P onto a space Q. Under what conditions
on f may we assert that if P is a Baire space then Q is a Baire space. Analo-
gously, under what conditions, if Q is a Baire space then P is a Baire space.

A space is said to be a Baire space if every non-void open subset of P is of the second
category. The term Baire space was introduced in [1], Chapter 9. In F. HAUSDORFF [3],
Baire spaces are called O,;-spaces. For the basic properties of Baire spaces see [1],
Chapter 9, and [2]. :

Let fbe a mapping of a space P onto a space Q. Under what conditions on f may we
assert that if P is a Baire space then Q is a Baire space? It may be noticed that the
image of a Baire space under a continuous mapping may fail to be a Baire space.
Moreover, the image of a complete normed linear space under a linear continuous
mapping f may fail to be a Baire space. This is the case when f'is not open. The image
of a Baire space under an open mapping (f is open if images of open sets are open)
may fail to be a Baire space. For example, denoting by S the Euclidean plane, put

P, ={(x,») (x,y)€S, y =0}, P,={(x,0); (x,0)eS, xrational} .

Consider P = P; P, as a subspace of S. On the other hand, let us define a topology
for the set P such that P, and P, are open and P, and P, are subspaces of S (in the
relative topology). Denote this space by Q. It is easy to see that P is a Baire space, Q is
not a Baire space and the identity mapping from P onto Q is open (since the inverse
mapping is continuous).

On the other hand, the image of a Baire space under a continuous and open map-
ping is a Baire space. We shall prove a generalization of this theorem. We shall
introduce concepts of almost continuous and feebly open mappings and we shall
prove that the image of a Baire space under an almost continuous and feebly open
mapping is a Baire space.

The following unsolved problem is more interesting: Let f be a continuous and open
mapping of a space P onto a Baire space Q and let us suppose that the “point-
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inverses” of f are Baire spaces (we call a point-inverse of f every set of the form
f7'[v], y € Q). May we assert that P is a Baire space? In particular, may we assert
that the topological product of two Baire spaces is a Baire space? In [ 2], theorem 1.7,
the following result is proved:

(*) Let P and Q be a Baires spaces. Suppose that P contains a dense countable
set N such that every point of N is of a countable character. Then P x Q is a Baire
space.

This theorem is a generalization of the following older result:

(**) If P and Q are separable metrizable spaces, then P x Q is a Baire space
provided that P and Q are Baire spaces.

In the present note we shall give a generalization of this result, assuming more
generally that fis a continuous open mapping of a separable metrizable space R onto
a Baire space S and the point-inverses of f are Baire spaces. Of course, (**) is an im-
mediate consequence of this theorem. If is sufficient to put P x Q =R, Q = S,
f the projection of P X Q onto Q.

IMAGES OF BAIRE SPACES

Definition 1. Let f be a mapping of a space P onto a space Q. f will be called almost
continuous if for every open subset V of Q

Ty EYaIa)
f will be called feebly continuous if
McQ, intM=+0=intf"'[M]+90.
f will be called feebly open if
Nc P, intN +0=intf[N]+0.
It is easy to prove.
Proposition 1. A mapping f of a space P onto a space Q is feebly open if and only if
N is densein Q = f~'[N] is densein P.
The mapping f is feebly continuous if and only if
M is dense in P = f[M] is dense in Q .

Evidently, an almost continuous mapping is feebly continuous. In general the con-
verse is not true. Indeed, it may be noticed that if f is a mapping of a space P onto
a space Q and if R is an open subset of P with f[R] = Q, then f is feebly continuous
provided that the restriction of f to R is a feebly continuous mapping. However,
every one-to-one feebly continuous mapping is almost continuous. For clearness we
shall prove
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Proposition 2. A mapping f of a space P onto a space Q is almost continuous if and
only if for every open subset U of P the restriction of f to U is a feebly open mapping.

Proof. Suppose that for every open subset U of P the restriction of f to U is feebly
continuous. Let V' be a non-void open subset of Q and put H = f_l[V], U =int H.
We have to prove U > H. Suppose not and consider the restriction g of f to W =
= P — U. Then g being feebly continuous, the interior U’ of g~ *[V 1 glU]] (with
respect to W) is non-void. Since W is open, U’ is open in P and hence U’ < U. This

contradiction establishes the almost continuity of f. The converse implication is
obvious.

Theorem 1. Let us suppose that f is an almost continuous and feebly open maping
of a space P onto a space Q.If P is a Baire space (of the second category in itselif)
then Q is a Baire space (of the second category in itself, respectively).

Proof. First suppose that P is a Baire space. To prove that Q is a Baire space it is
sufficient to show that if {U,} is a sequence of open dense subsets of Q, then the set
U = (U,isdensein Q. Put V, = int f~'[U,] and V = () V,. Since f is feebly open,

n=1 n=1
the sets f _‘[U,,] are dense in P. By almost continuity of f the sets V, are dense in
f *I[U,,], and consequently they are dense in P. As P is a Baire space, the set V' is
dense in P. Again by continuity of f, the set f[ V] is dense in Q. Since f[V] = U, U is
dense in Q. Thus the proof of the assertion concerning Baire spaces is complete. The
second assertion is an immediate consequence of the first.

Corrolary. Let f be a one-to-one feebly open and feebly continuous mapping of
a space P onto a space Q. Then P is a Baire space if and only if Q is a Baire space.
P is of the second category if and only if Q is of the second category.

Proof. Since f is one-to-one and feebly continuous, fis almost continuous. f being

feebly open and one-to-one, the mapping f ! is feebly continuous, and consequently,
almost continuous.

INVERSE IMAGES OF BAIRE SPACES

We shall prove the following

Theorem 2. Let us suppose that f is an open and continuous mapping of a metri-
zable separable space P onto a space Q. If Q is a Baire space and if the point-
inverses f (that is, the sets of the form f~'[y], v € Q) are Baire spaces, then P is
a Baire space.

The theorem 2 is an immediate consequence of the following

Theorem 2'. Let f be an open and continuous mapping of a metrizable separable
space P onto a space Q. If Q is of the second category (in itself) and if the point-
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inverses of f are of the second category (in themselves), then P is of the second cate-
gory (in itself).
First we shall prove the following

Lemma. Let f be an open and continuous mapping of a metrizable separable
space P onto a space Q. Let F be a nowhere-dense closed subset of P. Denote by
M(F) the set of all y € Q for which the interior of f~'[y] N F is non-void. Then the
set M(F) is of the first category in Q.

Proofofthelemma. Let {U,} = {U,; n = 1,2, ...} be an open base for P. For
every n, n = 1,2,... put
(*) M,={y;yeQ, @+ f'[y]nU,cF}
{U,} being an open base, we have at once
M(F) =

Therefore it is sufficient to prove that the M, are nowhere-dense in Q. We shall show
that the M, are closed and their interiors empty. Evidently
0-M,={y;yeQ f'YInU,N(P-F)+0}=
=f[U.n (P - F)].
The mapping f being open, the set Q — M,, is open, and consequently, M,, is closed.
Now suppose V = int M, % 0. According to the definition (*) of M,

o +f'[VlnU,cF.

By continuity of f the set f~'[V] is open, and hence F is not nowhere-dense. This.
contradiction establishes the lemma.

Proof of the theorem 2'. Let us suppose that Q is of the second category (in
itself) and the point-inverses of f are of the second category (in themselves). Finally,
suppose that P is of the first category in itself. There exists a sequence {F,} of closed
nowhere-dense subsets of P such that

P=U{F;n=12..}.

According to the lemma the set M = U M(F ) is of the first category in Q. Thus we:

may choose a point y, in Q — M. Put K f '[yo]- The sequence {F, N K} of
closed subsets of K covers K, and hence there exists an n such that the interior U
(with respect to K) of F,, N K is non-void. But this is impossible since M is the set of
all y € Q for which there exists an n, n = 1, 2, ..., such that the interior of F, N
N f~'[y] (with respect to f~'[y]) is non-void. The proof is complete.
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PesomMme

3AMETKHU OB OTOBPAXKEHUNAX, COXPAHAIOIMX
ITPOCTPAHCTBA BOPA

3NEHEK ®POJIMK (Zdenék Frolik), Ipara

IIpocTtpancTBOM B3pa Ha3bIiBaeTCsl TOMOJIOTHYECKOE TPOCTPAHCTBO, B KOTOPOM
BCSKOE HEMYCTOe OTKPHITOE MHOXECTBO BTOpPOM kaTeropuu. PaccMmaTpuBaroTcs
caenyrome Bonpocs (1) u (2):

(1) Myctbp f — otobpaxenue mpocTpancTBa bapa P Ha mpoctpancTBo Q. Ilpm
KaKHX TOTIOJIOTHYECKUX YCIIOBUSIX, KACAIOLIMXCS OTOOpaXkeHus f, Takke Q ecTh Hpo-
cTpancTBO bapa? OxasbiBaeTcsi, YTO AOCTATOYHO IpPEANOJIaraTh:

(a) Eciu V' — OTKpBITOE HOJAMHOXECTBO MPOCTpaHcTBa Q, TO

intf'[V]o V],
(b) Ecmu U — HemycTroe OTKPBITOE NOAMHOXECTBO NpOCTpaHcTBa P, To int
int fTu] % 0.
B yacTHOCTH HOCTATOYHO NPEAINONAraTh, YTO f — HEMPEPHIBHOE U OTKPHITOE OTO0-
paxeHue.

(2) Hycts f — HenpepsIBHOE M GKTPBITOE OTOOpakeHHE NMPOCTpaHCTBa P Ha
npocrpancTBo bapa Q u mycTh nmosiHble NPOOOpPasbl TOYEK SBISIFOTCS IPOCTpPaH-
crBamu boapa. Bomnpoc, siBnsercs nu P nmpocTpancTBoM bapa, aBTOpy Kaxercs
MHTEPECHBIM M CJOXHBIM. JloKa3bIBaeTcs, YTO OTBET TOJIOXMUTEJEH, €CId Npo-
CTpaHCTBO P MeTpu3yeMo U cenapabenbHo. DTo — 000011eHHe KIIaCMYeCKON Teope-
Mbl O TOM, YTO TOIOJOTMYECKOE TMPOU3BEICHHUE IBYX METPU3YEMBIX cernapabesbHbIX
npoctpancTB bapa sBnsercs mpocTtpancTBoM bapa.
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