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Чехословацкий математический журнал, т. 11 (86) 1961, Прага 

REMARKS CONCERNING THE INVARIANCE OF BAIRE 
SPACES UNDER MAPPINGS 

ZDENEK FROLIK, Praha 

(Received March 12, I960) 

Let f be a mapping of a space P onto a space Q. Under what conditions 
on f may we assert that if P is a Baire space then Q is a Baire space. Analo­
gously, under what conditions, if Q is a Baire space then P is a Baire space. 

A space is said to be a Baire space if every non-void open subset of P is of the second 
category. The term Baire space was introduced in [1], Chapter 9. In F. HAUSDORFF [3], 
Baire spaces are called O i rspaces. For the basic properties of Baire spaces see [1], 
Chapter 9, and [2]. 

Letfbe a mapping of a space P onto a space Q. Under what conditions onfmay we 
assert that if P is a Baire space then Q is a Baire space? It may be noticed that the 
image of a Baire space under a continuous mapping may fail to be a Baire space. 
Moreover, the image of a complete normed linear space under a linear continuous 
mappingfmay fail to be a Baire space. This is the case whenfis not open. The image 
of a Baire space under an open mapping (fis open if images of open sets are open) 
may fail to be a Baire space. For example, denoting by S the Euclidean plane, put 

Pt = {(x, y); (x, y) e 5, y * 0} , P2 = {(x, 0); (x, 0) e S, x rational} . 

Consider P = Px ft P2 as a subspace of S. On the other hand, let us define a topology 
for the set P such that Pt and P2 are open and Px and P2 are subspaces of S (in the 
relative topology). Denote this space by Q. It is easy to see that P is a Baire space, Q is 
not a Baire space and the identity mapping from P onto Q is open (since the inverse 
mapping is continuous). 

On the other hand, the image of a Baire space under a continuous and open map­
ping is a Baire space. We shall prove a generalization of this theorem. We shall 
introduce concepts of almost continuous and feebly open mappings and we shall 
prove that the image of a Baire space under an almost continuous and feebly open 
mapping is a Baire space. 

The following unsolved problem is more interesting: Letfbe a continuous and open 
mapping of a space P onto a Baire space Q and let us suppose that the "point-
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inverses" of/ are Baire spaces (we call a point-inverse of / every set of the form 
/ _ 1 [ v ] , y e Q). May we assert that P is a Baire space? In particular, may we assert 
that the topological product of two Baire spaces is a Baire space? In [2], theorem 1.7, 
the following result is proved: 

(*) Let P and Q be a Baires spaces. Suppose that P contains a dense countable 
set N such that every point of N is of a countable character. Then P x Q is a Baire 
space. 

This theorem is a generalization of the following older result: 

(**) If P and Q are separable metrizable spaces, then P x Q is a Baire space 
provided that P and Q are Baire spaces. 

In the present note we shall give a generalization of this result, assuming more 
generally tha t / i s a continuous open mapping of a separable metrizable space R onto 
a Baire space S and the point-inverses off are Baire spaces. Of course, (**) is an im­
mediate consequence of this theorem. If is sufficient to put P x Q = R, Q = S, 
fthe projection of P x Q onto Q. 

IMAGES OF BAIRE SPACES 

Definition 1. Letfbe a mapping of a space P onto a space Q.fwill be called almost 
continuous if for every open subset Vof Q 

intf-^V] =>rx[V]. 

f will be called feebly continuous if 

M c Q , int M 4= 0 => int f" ![M] + 0 . 

f will be called feebly open if 

N c P , int N # 0 => intf[N] #= 0 . 

It is easy to prove. 

Proposition 1. A mappingfof a space P onto a space Q is feebly open if and only if 

N is dense in Q =>/_1[N] is dense in P . 

The mapping f is feebly continuous if and only if 

M is dense in P =>/[M] is dense in Q . 

Evidently, an almost continuous mapping is feebly continuous. In general the con­
verse is not true. Indeed, it may be noticed that i f / i s a mapping of a space P onto 
a space Q and if R is an open subset of P wi th / [P ] = Q, then/ is feebly continuous 
provided that the restriction of / to R is a feebly continuous mapping. However, 
every one-to-one feebly continuous mapping is almost continuous. For clearness we 
shall prove 
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Proposition 2. A mappingfof a space P onto a space Q is almost continuous if and 
only if for every open subset U of P the restriction off to U is a feebly open mapping. 

Proof. Suppose that for every open subset U of P the restriction off to U is feebly 
continuous. Let Vbe a non-void open subset of Q and put H = / " ^ [ V ] , U = int H. 
We have to prove U => H. Suppose not and consider the restriction g of f to W = 
= P — U. Then g being feebly continuous, the interior U' of g~x[V f) g[^]] (with 
respect to W) is non-void. Since Wis open, U' is open in P and hence V c. U. This 
contradiction establishes the almost continuity of f. The converse implication is 
obvious. 

Theorem 1. Let us suppose that f is an almost continuous and feebly open maping 
of a space P onto a space Q. If P is a Baire space (of the second category in itselif) 
then Q is a Baire space (of the second category in itself, respectively). 

Proof. First suppose that P is a Baire space. To prove that Q is a Baire space it is 
sufficient to show that if {Un} is a sequence of open dense subsets of Q, then the set 

oo oo 

U = f| Un is dense in Q. Put Vn = mtf~~l\Un~\ and V = f) Vn. Since/is feebly open, 
n = l n = l 

the sets f~x\Un~\ are dense in P. By almost continuity of/ the sets Vn are dense in 
f~x\Un\ and consequently they are dense in P. As P is a Baire space, the set Vis 
dense in P. Again by continuity off, the setf[V] is dense in Q. Sincef[V] c 17, U is 
dense in Q. Thus the proof of the assertion concerning Baire spaces is complete. The 
second assertion is an immediate consequence of the first. 

Corrolary. Let f be a one-to-one feebly open and feebly continuous mapping of 
a space P onto a space Q. Then P is a Baire space if and only if Q is a Baire space. 
P is of the second category if and only if Q is of the second category. 

Proof. Sincefis one-to-one and feebly continuous,/is almost continuous./being 
feebly open and one-to-one, the mapping/ - 1 is feebly continuous, and consequently, 
almost continuous. 

INVERSE IMAGES OF BAIRE SPACES 

We shall prove the following 

Theorem 2. Let us suppose that f is an open and continuous mapping of a metri-
zable separable space P onto a space Q. If Q is a Baire space and if the point-
inverses f (that is, the sets of the form /~1[)>], y e Q) are Baire spaces, then P is 
a Baire space. 

The theorem 2 is an immediate consequence of the following 

Theorem 2'. Let f be an open and continuous mapping of a metrizable separable 
space P onto a space Q. If Q is of the second category (in itself) and if the point-
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inverses off are of the second category (in themselves), then P is of the second cate­
gory (in itself). 

First we shall prove the following 

Lemma. Let f be an open and continuous mapping of a metrizable separable 
space P onto a space Q. Let F be a nowhere-dense closed subset of P. Denote by 
M(F) the set of all y e Qfor which the interior 0ff_1[y] f) F is non-void. Then the 
set M(F) is of the first category in Q. 

Proof of the lemma. Let {Un} = {Un; n = 1, 2,. . .} be an open base for P. For 
every n, n = 1, 2 , . . . put 

(*) Mn = {y; yeQ,<P* f'^y] (]Unc:F} 

{Un} being an open base, we have at once 

oo 

M(F) = U M„ . 
n=l 

Therefore it is sufficient to prove that the Mn are nowhere-dense in Q. We shall show 
that the Mn are closed and their interiors empty. Evidently 

Q - M„ = {y; y e Q, f " 1 ^ ] n UH n (P - F) * 0} = 

= f[U„n ( P - F ) ] . 

The mappingf being open, the set Q — Mn is open, and consequently, Mn is closed. 

Now suppose V = int Mn 4= 0. According to the definition (*) of Mn 

* * f ~ 1 [ V ] n UHcF. 

By continuity off the set f~1[F] is open, and hence F is not nowhere-dense. This, 
contradiction establishes the lemma. 

Proof of the theorem 2'. Let us suppose that Q is of the second category (in 
itself) and the point-inverses off are of the second category (in themselves). Finally, 
suppose that P is of the first category in itself. There exists a sequence {F„} of closed 
nowhere-dense subsets of P such that 

P = U { P „ ; n = l , 2 , . . . } . 
00 

According to the lemma the set M = {J M(Fn) is of the first category in Q. Thus we 
n = 1 

may choose a point y0 in Q — M. Put K = f _ 1 [yo]- The sequence {Fn n K} of 
closed subsets of K covers K, and hence there exists an n such that the interior U 
(with respect to K) of Fn f] K is non-void. But this is impossible since M is the set of 
all y e Q for which there exists an n9 n = 1, 2, ..., such that the interior of Fn ft 
n f-1[y] (with respect to f _ 1 [ j ] ) is non-void. The proof is complete. 
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Р е з ю м е 

ЗАМЕТКИ ОБ ОТОБРАЖЕНИЯХ, СОХРАНЯЮЩИХ 

ПРОСТРАНСТВА БЭРА 

ЗДЕНЕК ФРОЛИК (2аепёкРгоНк), Прага 

Пространством Бэра называется топологическое пространство, в котором 
всякое непустое открытое множество второй категории. Рассматриваются 
следующие в о п р о с ы (1) и (2): 

(1) Пусть / — отображение пространства Бэра Р на пространство ^. При 

каких топологических условиях, касающихся отображения/, также ^ есть про­

странство Бэра? Оказывается, что достаточно предполагать: 

(а) Если V — открытое подмножество пространства ^, то 

(Ь) Если ^ — непустое открытое подмножество пространства Р, то т ! 

ЫДи] Ф 0. 

В частности достаточно предполагать, что/ — непрерывное и открытое отоб­

ражение. 

(2) Пусть / — непрерывное и октрытое отображение пространства Р на 
пространство Бэра ^ и пусть полные прообразы точек являются простран­
ствами Бэра. Вопрос, является ли Р пространством Бэра, автору кажется 
интересным и сложным. Доказывается, что ответ положителен, если про­
странство Р метризуемо и сепарабельно. Это — обобщение класической теоре­
мы о том, что топологическое произведение двух метризуемых сепарабельных 
пространств Бэра является пространством Бэра. 
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