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YEXOCJOBALUKUN MATEMATUUYECKUN XVYPHAI

Mamemamuueckuii uncmumym Yexocaogaykoii Akademuu Hayx
T. 11 (86) IIPATA 30. IX. 1961 r., No 3

ON PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS

O. VEIvoDA, Praha

(Received February 5, 1960 — in revised form February 10, 1961)

The existence of a solution of a boundary value problem (0.1) is investi-
gated under the assumption that we know how to solve the shortened bound-
ary value problem (0.2).

In particular the autonomous case (i. €. f and g do not depend on ¢ expli-
citly) is studied thoroughly and a class of these autonomous boundary value
problems which show the same ‘“anomalies’” as problems with periodic bound-
ary conditions is singled out.

In this paper I prove some theorems on the existence of a solution of a nonlinear
boundary value problem

(0.1) x = f(t,x) + e g(t, x,¢), u(x(a), x(b)) + & v(x(a), x(b),e) =0

where x, f, g, u and v are n-vectors, under the assumption that the existence of a solu-
tion of some other more simple (“shortened”) boundary value problem

(02) y="f(ty), uly(a) y®) =0

is guaranteed. The shortened boundary value problem is got by equating to zero
a “small” parameter &. Then only those solutions of the original boundary value
problem are sought for which tend to some solution of the shortened problem as
& — 0. This method has been used until now as far as I know in problems with periodic
boundary conditions only (especially when the shortened system of differential equat-
ions was linear — so called quasi-linear systems) [1], [2], [3], [4].

To prove the theorems the variation-of-constants method for nonlinear systems and
implicit function theorem are used as principal tools. Necessary theorems are listed
in sec. 2.

In sec. 1 some theorems on linear boundary value problems which are needed later
are listed for the reader’s convenience. (Maybe only remarks 1.1 and 1.2 are original.)

See for instance [1], [5].

I wish to express my gratitude to DSc J. KUuRzZWEIL whose advices contributed con-
siderably to the improvement of this paper.
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Some notations and definitions. In this paper all given numbers, functions,
matrices etc. are assumed real without saying so explicitly.

If not stated otherwise a n-vector means always a column n-dimensional vector.

Given a m x n matrix C, C" will denote the transposed matrix.

The inner product of two n-vectors u and v is defined as

\

n
u.v=>up =uv=vu.
j=1

Given two m x n matrices A = (a;), B = (by), A : B denotes the m x 2n matrix

Ayq ... Ayy byq ... by,

Ay« oo Qg Dy -0 b

The rank of a matrix C will be denoted by x(C).

E, will denote the n x n unit matrix. If no confusion can arise the index n will be
omitted.

Everywhere in the sequel 4" denotes the naturally ordered set {1, 2, ..., n}. If &
is a (naturally) ordered subset of 4", then # denotes the (naturally) ordered comple-
ment of & with respect to A". (All subsets of .4~ will be supposed naturally ordered.)
The number of elements of a set ./ = . will be denoted by v(-#).

Let Cbe an x nmatrix and let ¥ < A, # < A . Then let the notation be intro-
duced

Cou=1(cp), PEZL, qed.

If #4 = &, we shall write shortly C,, instead of Cy ..

Similarly, if x is a n-vector and % < A/, then

xy=(x;), jeZL.
The signs 4 and = are defined by
X=Xy + Xz, Xop=X= Xgz.

Let E" denote a n-dimensional Euclidian space.

A closed (ﬁnite) interval a < t £ b will be denoted by {a, b), an open interval
a < t < b will be denoted by (a, b), a half-open interval a < t < b will be denoted
by (a, b) and analogously in other cases.

The notation E[x | ¥(x)] will be used to denote the set of all points x having the
property V(x).

By a neighborhood N(c*, §) of a point c* € E" we shall mean the open sphere
N(c*, 8) = E[c| |lc — c¢*| < 6], 6 > 0.

Point sets ¥ and 9) being given, ¥ x 9) will denote the Cartesian product of these
sets.

Let f(x, y, z) be a vector-function of vectors x, y, z defined for xe X,y e %, z€ 3,
where X, ), 3 are open sets. We say that f(x, y, z) is of class C>*" on £ x 9 x 3
(and write f(x, y, z) e C”*") if it has continuous partial derivatives of order p or g or r
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with respect to all components of the vector x or y or z, respectively, for (x, Y. Z)€
e X x P x 3. If the highest derivatives of order p with respect to x fulfil a Lipschitz
condition with respect to the vector x, then we write f(x, Y, Z)€ CPL%r and analo-
gously in other cases.

If the vector-function f(t, x) is defined for t € T, x € ¥, where  is a finite closed
interval {a, b) € E', then by saying that f is of class C' in t for (1, x)e T x ¥ we
méan that it is of class C* in int ¥ and has a right-hand derivative at a and a left-hand
derivative at b with respect to ¢t for all x € X.

Let f(x) be a m-dimensional vector-function of an n-vector x of class C* on an open
set X = E". Then

D ;
——f(x)::fx(x)z % (j=12..mk=12..,n)
Dx 6xk

will denote the m x n functional matrix of f(x).

1. LINEAR BOUNDARY VALUE PROBLEMS

Let us consider the system

(L.1) I(x) = % + A®) x = 0 (ﬁ:d_">,

dt

where x is an n-vector and A(f)isan n x n matrix of class C° on a finite closed interval

{a, b).

Let u(x(a), x(b)) be an m-vector of m boundary value forms defined by
u(x(a), x(b)) = M x(a) + N x(b),
where M and N are two m x n constant matrices (m < 2n).

If x(M : N) = m, we say that boundary forms have the rank m.
Then .

(1.2) u(x,, x,) = M x(a) + N x(b) = 0
represents m boundary conditions of rank m. (For the sake of brevity we shall
write x,, x, instead of x(a), x(b), respectively.)
The system
IF(x)= —x + A()x =0
(which is evidently equivalent with the system
(1.3) F(x)= —x' + x*A(t) =0,
is called the adjoint system to (1.1).
Let M and N be constant (2n — m) x n matrices. Let the matrix

(4 %)
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be of rank 2n. Then boundary conditions

u(x,, x,) = M x(a) + N x(b) = 0
are called complementary boundary conditions to (1.2) and u(x,, X;) are called com-
plementary boundary forms to u(x,, x,).

Theorem 1.1. (Green’s formula.) Let u(f) and v(t) be n-vectors of class C! on
{a,by. Let a = t; < t, = b. Then

J ). v — u. )] dt = u(ty) . v(ty) — u(t,) . v(ts) -

Theorem 1.2. (Boundary-form formula.) Let boundary forms u(x,, x,) defined by
m x n matrices M and N be of rank m and let ﬂ(xa, x,) be any complementary
boundary forms to u(x,, x,).

Then there exist unique boundary forms u*(x,, x,) and u*(x,, x,) of ranks m and
2n — m, respectively, such that for arbitrary n-vectors X,, X,, ¥, and y,

(14) xb . Yb - Xg . Yo = U(Xa, xb) . a*(Ya’ Yb) + l‘\j(xa’ xb) . u*(Ya’ Yb) .
(Forms u* and u* are called adjoint to forms u and u, respectively.)

If u, is another system of complementary forms to u, and ui and u¥ are corres-
ponding adjoint forms, then

(1.5) ui = Ku*,
(1.6) uf = u* + Lu*,
where K is a regular (2n — m) x (2n — m) matrix and L is an m x m matrix.

The relation (1.5) is known. The relation (1.6) can easily be proved with help of
assertion (a) of the following

Lemma 1.1. Let f and g be k-vectors. Let F be a regular k x k matrix such that
the first j (1 < j < k) components of the vector f = Ff are identical with the first j
components of f. Then there exists a unique regular k x k matrix G such that if
g = Gg then f. g = f. g and has the following properties:

(a) the first j components of g are equal to the first j components of g to which
linear combinations of the last k — j components are added,

(b) the last k — j components of g are linear combinations of the last k — j
components of g with a regular coefficient matrix.

Remark 1.1. (2n — m) x n matrices P, Q and m x n matrices P, Q@ defining
adjoint boundary forms u* and u*, respectively, may easily be determined in an
explicit form.

Substituting the expressions for u, u, u* and u* into (1.4) we see that (1.4) is ful-
filled for arbitrary x,, X;, y, and y, if and only if

P\M+P‘M~=—E, Q\M+Q\M” 0,
PPN + PN =0, QN +QN-=E

I
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Solving these two systems and writing

(i) (63

where R and § are n x m matrices and R and § are n x (2n — m) matrices, we get

P =—R, P = —R,

\

S.

Q
Q
I

In virtue of

B MN RR_MN —P‘—P‘*Em 0
miu)\ss) " \mr)lo @ 0 Ey.
it follows
-~ MP'+ NQ =E,, —MP' +NQ =0,
—MP +NQ'=0, — MP'+NQ =E,,_,.
Let u(x,, x,) = 0 be boundary conditions of rank m. Then boundary conditions

u*(x,, x,) = 0, where u*(y,, y,) are boundary forms of rank 2n — m determined as in
Theorem 1.2 are called adjoint boundary value conditions.

Theorem 1.3. Boundary conditions
u*(x,, x,) = P x(a) + Q x(b) =0
of rank 2n — m are adjoint to boundary conditions (1.2) of rank m if and only if
— MP' + NQ'=0.

If u(x,, x,) is a system of m boundary forms of rank m, then the problem of finding
on <a, b) solutions of the system
I(x)=x+ At)x =0, u(x,x,) =0
is called a homogeneous boundary value problem (1) of rank m.
The problem of finding solutions of the system

I*(x) = 0, u*(x,, x,) =0
on {a, b) is called the boundary value problem (A*) adjoint to (1).

Theorem 1.4. Let ®(1) be a fundamental matrix of solutions of (1.1). Then the
problem (2) has exactly k (0 < k < n) linearly independent solutions if and only if
the matrix M ®(a) + N ®(b) is of rank n — k.

Theorem 1.5. If the problem (/1) has exactly k linearly independent solutions, then
the problem (A*) has exactly k + m — n linearly independent solutions.
The problem of finding on <{a, b) solutions of

(1.7) I(x)=f, u(x,x)=y
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where f(t) is of class C° on {a, b) and y is a constant m-vector (while f 0 and
y # 0) is called a nonhomogeneous boundary value problem associated with (4).
(If y = 0 then the problem is called semi-homogeneous.)

Theorem 1.6. The nonhomogeneous problem (1.7) has a solution if and only if
b
(18) J i) . (i) di = 3. 80, W)

for every solution Y(t) of the adjoint boundary value problem (1*). (For a semi-
homogeneous problem the right-hand side equals zero, of course.)

Remark 1.2. According to relation (1.6) and to equality u*(y,, ¥,) = O for every
solution y(r) of (1*) the condition (1.8) is evidently invariant with respect to the choice
of the complementary boundary value conditions to u(x,, x,) = 0.

2. AUXILIARY THEOREMS

Theorem 2.1. (Variation-of-constants method for nonlinear systems.) Consider the
system

(2.1) x = f(t, x) + e g(t, x, ),
where x, f and g are n-vectors.

Let ¥ be a one-dimensional closed bounded interval {a, b). Let no(t) = 5(t, c,) be
a solution of

(2.2) y = f(t.y)
with an initial value n(a, ¢,) = ¢, defined on . Let
X =E[x|llx —no(1)l <o,te¥], ¢>0.

Let € be a one-dimensional interval 0, &), &g > 0.

Let f(t,x)e C>'L on T x ¥ and g(t, x,€)€ C>°"® on T x £ x €. Let € =
= E[c|llc — ¢l < uo), tto > 0, be such that every solution y(t, ) of (2.2) with
n(a, ¢) = c e € remains in X for te X.

Then there exist €, = <0,&), 0 <& < ¢ and € = E[c||c — ¢yl < py],
0 < puy < po such that every solution (1, <, €) of (2.1) where ¢ € €, with &(a, ¢, &) =
= ceQ, remains for t € T in X and is given by the formula

(2.3) &(t, e, ) = 1, C(t, ¢, ¢)),

where C(t, c, €) is the solution of the integral equation

(24) () =c+e J tn:‘(r, I(<)) g(<, n(x, (7)), &) dz .

)

The solution &(t, c, ¢) is of class C1.0L0 ;) ¢, x €,.
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Proof. By the existence theorem and by the theorem on continuous dependence of
solutions on initial conditions solutions #(t, €) of (2.2) for te T, c e € are of class

C''L, Since
d(""( ))-—(t ) ot (1.9,

dt\D

by the known formula

det (E_Z (t c)> - det< D1, c)) exp f (5;1 6ffJ (%, 1(, <) dr>

Since det (y(a, ¢)) =1 and the integrand is for every (r,¢)e x € finite,
det (n(t, €)) + 0 and the inverse matrix . '(t, c) exists for (¢, €) e T x €.

Hence, the right-hand side of (2.4) is for (1,I')e T x € defined and satisfies a
Lipschitz condition in I'. Therefore by the existence and uniqueness theorem and by
the theorem on the continuous dependence of solutions on initial conditions and para-
meters there exist sets ¢; and €, mentioned above such that solutions C(1, ¢, ) of
(2.4), where ¢ € €, exist, are uniquely determined and C(t, ¢, ) e € for re T, ce €,
and ee €,. Hence n(t, C(1, ¢, ¢)) is defined on T x @1 x €, too. According to

n(a, ¢) = c and (2.4) 5(a, C(a, c, ¢)) = <.

By differentiating the function g(1, C(t, ¢, ¢)) we find easily that it satisfies (2.1).
Since the solution &(t, ¢, €) of (2.1) is by the assumptions of the theorem uniquely
determined by initial conditions, the relation (2.3) as well as the whole assertion of the
theorem readily follows.

Let us recall the following two theorems:

Theorem 2.2. (Mean value theorem.) Let f(1, x, &) be a k-vector function defined
and of class C%**' on the set T x ¥ x € where ¥ = (a. b), ¥ is a convex domain
in E", € = €0, &>, g, > 0.

Then for arbitrary te T, x, x + he X and ¢ € € there holds

(2.5) f(t, x + h,e) = f(t, x, 0) + f bD—f (1, x + Sh, 3¢) d3 h +
o Dx

laf
+ | =(t,x + 9h, 9e)dI¢.
o0 0¢

Theorem 2.3. (Implicit function theorem.) Let w(c, ¢) be a k-vector function defined
and of class CP? (p = 1) on N(cy, ) x € where N(c,, 6) is a neighborhood of the
point ¢, € E¥ and € = <0, &y, gg > 0. Let

(2.6) (¢, 0) = 0
and
2.7) det ('l’)_*: (<o, o)) +0
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Then there exists an interval €, = <0, &,>,0 < &; < g, such that for e € €, there
exists a unique solution ¢ = ¢*(¢) € C? of the system

(2.8) w(c, &) =0
such that ¢*(0) = ¢,.
Theorem 2.4. Consider the equation
(2.9 w(c, &) = u(c) + ev(c,e) =0,
where u, v and w are n-vectors and ¢ is a scalar.
Let the equation u(c,) = 0 have a real solution ¢, = c§. Let €, = E[c| |lc —

— ¢l < u], >0, € =<0,¢), & > 0. Let u(c)e C'* and v(c,£) e C°**° for ceC,
ceC. Let

Du
det( — (c§)) £ 0.
(Dc ( 0)>
Then there exists &1, 0 < &; < &, such that there exists for each e € ¢, = <0, &;)
the unique solution ¢ = c*(¢) of (2.9), which tends to ci as ¢ — 0.

The proof can easily be performed by help of the successive approximations
method.

3. GENERAL NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

We shall begin by considering the simple case when the shortened boundary value
problem has a unique (isolated) solution.

Theorem 3.1. Let the interval T = {a, b) be given. Consider the boundary value
problem (v)

(3.1) x = f(t, x) + eg(t, x, ¢)
(3.2) w(x,, Xx,, €) = u(x,, x,) + & v(x,, x,,8) =0,

where x, f, g, u, v.and w are n-vectors and ¢ is a scalar “small” parameter (as before
x, = x(a), x, = x(b)). Let the following assumptions be fulfilled.

(I) Let and be open sets in E" and let € = €0, &y, &, > 0. Let u(p, q) € C**'*
and v(p, q, &) € CO4OL0 for p P, qe and e € €.

(I1) Let the system
(3:3) y = f(ty)

have solutions y(t, €) with n(a, ¢) = ¢ existing and staying in ¥ for te T and for
all ce €, € an open set in E".

Let the boundary value problem (vo) given by (3.3) and
(3.4) u(ys y5) =0
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have a solution n(t, c§) where c§ € € (so that ¢} is a solution of
(3.5) u(n(a, ), n(b, €)) =0.)
Let n*(1) denote n(t, cg). Let n} €, n; €.

(IIX) Let the variational boundary value problem (A)

(3.6) z = f,(,n*(1) z,
Du* Du* Du* Du* Du , , CDu gk
07) g0 + gat) =0, [ (T2 5) = (. ok s 20|

have the trivial solution only.

(IV) Denote ¥ = E[x||x — n*()ll < o,teX], ¢ > 0. Let f(t,x)eC®'" on
T x ¥and g(t,x,e)eC>%on T x ¥ x €.

Then there exists for sufficiently small ¢ > 0 a unique solution &(t, c*(¢), &) (with
&(a, c*(¢), &) = c*(¢)) of the problem (v) which tends to the solution n*(t) of (v,) as
e— 0.

Proof. By Theorem 2.1 there exist an open set €, = € and a set &, = (0, ¢,),
0 < & < &, such that every solution &(t, ¢, ¢) of (3.1) where ¢ € €, with &(a, ¢, ¢) =
= ce €, stays in ¥ for t € T and that &(a, ¢, &) €, &(b, ¢, &) € for ce €, e€ €.
By the same theorem the solution (t, ¢, &) may be written for ¢ € €, and & € €, in the
form (2.3) where C(1, c, ¢) is the solution of (2.4) (n(t, ) has of course the same
meaning as in the assumption (II)).

Inserting (2.3) into (3.2) we get

(3.8)  u(n(a,c), n(b, C(b,c,e)) + ev(n(a,c), n(b, C(b,c,e),e)=0.
This is a system of n necessary and sufficient conditions for components of the initial
vector ¢ = ¢(e) such that &(z, c(e), &) be a solution of (v).

Letting in (3.8) ¢ — 0 we get (denoting ¢(0) = ¢,)

(3.9) u(n(a, €o), n(b, €)) = 0.
By the assumption (II) this equation has a real solution ¢, = c§. Let us show that
the jacobian of (3.9) is nonvanishing at the point ¢, = ¢g.
Indeed, (¢, c3) being a fundamental matrix of solutions of (3.6), the matrix
_I_)_"_ ( * _ Dy

a>'Ib

Dx, Dc

has to be (by the assumption (III) and by Theorem 1.4) of rank n, which means that
detU(c7) + 0. But det (U(c,)) is evidently the jacobian of (3.9) with respect to ¢, at
the point ¢ = ¢},

a’

Du Dy*
U(cH) = — (¥, 4f) —2 +
(<o) Dx (s, ) Dc

Denote

g = r 1. (7, C(1, ¢, ¢)) g(z, n(z, C(z, ¢, €), ¢) dt

a
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and applying the mean value theorem write (3.8) in the form

u(n(a, <), n(b, <) + a[ J ;(% (n(a, ) n(b, < + 9cg).

) ? (b, €+ 92) d9 g + v(n(a, €), n(b, ¢ + e, s)ﬂ _o.
C

(3.8)

By the assumptions (I), (IT) and (IV) and by the assertion of Theorem 2.1 the
equation (3.8") fulfils all assumptions of Theorem 2.4. Hence the assertion of Theorem
3.1 immediately follows.

From Theorem 3.1 we get the following corollaries for quasi-linear boundary value
problems and for periodic boundary conditions.

(We use the same notations as before.)

Corollary 3.1. Let the interval £ = {a, b) be given. Consider the boundary value
problem
(3.10) x=Al)x + eg(t, x,¢),
(3.11) M x(a) + N x(b) + & v(x,, x,, &) = 0

where A(t), M and N are n x n matrices, the two latter being constant.
Let the following assumptions be fulfilled.

(I) Let (M :N) = n. Let v(p,q,¢) e C°-°%0 for peYP, qe and ¢ €. Let
0e®P, 0e9.

(II) Let the boundary value problem
(3.12)) y=AQly,
(3.12,) My(a) + Ny(b) =0
have only the trivial solution.

(III) Denote ¥, = E[x | | x| < ¢], ¢ > 0. Let A(t) e C° forte T and g(t, x, ¢) €
eC» 0 on T x ¥, x C.

Then there exists for sufficiently small ¢ > 0 a unique solution &(t, ¢*(¢), €) of
the boundary value problem (3.10), (3.11), which tends to the trivial solution of
the boundary value problem (3.12) as & — 0.

Corollary 3.2. Consider the system (3.1). Let the following assumptions be ful-
filled.

(I) Let f and g be periodic in t with period o (in the sequel briefly: w-periodic).

(IT) Let the system (3.3) have a w-periodic solution y(t, ¢§) = n*(t).

(III) Let the system (3.6) have no w-periodic solution (except the trivial one).

(IV) Denote T, = <0, w). Let f(t, x) e C>'F on T, x ¥ and g(t, x, ¢) € C>°° on
T, x ¥ x C.
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Then there exists for sufficiently small ¢ > 0 a unique w-periodic solution &,
c*(e), €) of (3.1) which tends to n*(t) as & > 0.
In the book [2] an analogous theorem is proved for the system x = f(t, x, &) where
f(t, x,e)e C>"° on T, x ¥ x €.
Let us now investigate the more interesting and more difficult case when the shor-
tened boundary value problem has a family of solutions depending on k parameters,
1=k=n

Theorem 3.2. Let an interval T = {a, b) be given. Consider the boundary value
problem (v) given by (3.1), (3.2). Let the following assumptions be fulfilled.

(I) () Let u(p, q) € C* and v(p, q, &) € C***! for peP, qe and ¢ € €, whereD
and®) are open sets in E" and € = 0, &), ¢, > 0.
(b) Let for pe?P, e

(— (P.9): 5 (P q)) =n.

(I1) (a) Denote € an open set in E". Let there exist solutions y(t, c) of (3.3) defined
and remaining in X for t € ¥ and for every ce €.

(b) Let the equations

(3.13) u(y(a, c), n(b, c)) = 0
have a real solution ¢y = oy(cy), ¥V = N, (V) =k, 1 <k < n.

(c) Denote ¢y = y and @o(y) = y + ao(y). Let 64(y) € C* for ye &, G an open set
in E¥, and let ® = E[c| ¢ = g,(y),ye &] = C.

Denote 3(t) = n(t, go(y)). Thus y(t) is a k-parametric solution of the boundary
value problem (v,) given by (3.3), (3.4).

(d) Let n(a) e, n(b) €Q for ye G.

(III) Let the variational boundary value problem (1)

o.19 £ i) 2, .
Du Du

(3.15) -D—xaz(a) + Dx, z(b) =0,

where

(% : 3—2) = (D (M nb) (na, m))

have exactly k linearly independent solutions for y € @5.
We shall show that there exist a set & = N, (&) = k, a set &, &y a domain
in @ and a k x (n — k) matrix T(y) such that

(3.16) - T0) > D”ﬁ’ =

for ye &,.
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Further, we shall show that there exist a set &;, &, a domain in Gy, a k x n
matrix W(t, y) whose rows are formed by solutions of a boundary value problem
(4*) (adjoint to (2))

(3.17) w'= —w f(t. (1)),
(3.18) w'(a) P'(y) + w'(b) Q'(y) = 0
where n x n matrices P(y) and Q(y) satisfy conditions
D .. Di .
- —PH+——Q(»=0, x«(P(:Q() =n,
X, Dx,

fory e &, and which fulfils the condition

(3.19)

Du Duy
(3.20) Wb, y) = L — T(y) —2
X, Dx,
(IV) (a) Let the system
b
(3-21) f W'(s, 70) g(s, 'I(S, Qo(‘)’o)), 0) ds + vy — T(Yo) Voz =0

where v, = v(n(a, @o(70)), 1(b, €o(¥0), 0) have a real solution y, = 5.

(b) Let yse ©,.

(c) Let the jacobian of (3.21) with respect to y, be nonvanishing at the point

*

Yo = Yo-

(V) Denote = E[x | |Ix — n(t, €5)| < o, teZ], 0 > 0, where c§ = go(ys). Let
f(t, x) e C*>? and g(t, x, &) e C>*! forte ¥, xe ¥, e e €.

Then there exists for sufficiently small & > 0 a unique solution &(t, c*(¢), €) of the
problem (v) with &(a, c*(¢), €) = ¢*(c) € C*, which tends to the solution y(t, c3) of the
problem (v,) as & — 0.

Proof. Differentiating the identity
_ 1(t, ©) = f(t, 1(t, <))
with respect to ¢ and then putting ¢ = g,(y) we find easily that (1, go(7)) is a funda-

mental matrix of solutions of (3.14) for y € ®. Hence by (III), (Ib), (1Id) and Theorem
1.4

Di Du Dj,  Di Dj
(322) () =g oDt L)k for e @,
Dc Dx, Dc Dx, Dc

Thus there exist sets & < A, ¥y < N, W(&) = v(¥";) = k and &, &, a domain
in & such that

(3.22) det <E‘-'> +0.
Dc/gyv,

Let us show that ¥" = ¥”, may be put. In fact, differentiating the identity
uz(n(a, ¢o(v)) 1(b, eo(¥))) = 0
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with respect to y, we get

(3.23) Du)  Doo | (Du) _
Dc v Dy Dc/zy

Let us suppose that

D o
x—u <n—-—k—1 for some ye@,.
Dc/z5

Then there exist an index j e #and a 1 x (n — k — 1) matrix M such that (denoting #
the complement of j with respect to y)

D D 0
<——'l'> —M(——u> =0 for y=17y.
Dc/; 5 D¢/,

(B(—'> —M(Du> =0 for y=17%.
DC iV DC F2a )

x(ﬂl> <n—k—-1 for y=7%
DC;»

Then by (3.23)

But then evidently

which contradicts (3.22).
According to (3.22) and (3.22') there exists a k x (n — k) matrix T(y) such that

Du Du
(3.24) — ) =T (=
Dc > Dc 7
which in particular yields
Du Du
(3.24) 1) 1) (=—) =o,
Dc T DC Za
and
(3‘24”) D”y Duy D'IaE Du,, Duy’ D’Ib
Dc Dx, Dc

Let us now show that there exists the matrix llf(t, y) defined in (III) and namely
that

(3.25) (t,y) = L(t,y)

where
Duy D’Ib D’T ()
Dc

(3.26) L(1,y) = (D”S”
In fact we may find a system of complementary boundary conditions
M(y) z(a) + N(y) z(b) = 0




with n x n matrices M(y), N(y) € C* for y € ® such that

(3.27) x(""(?) ”(V)> o, (M(y) - g-ii, N() = '35'—>,

M(y) N(y) Dx,

for y = &,, &, a domain in &,. Then by Remark 1.1 and Theorem 1.3 there exist
n x n matrices P(y), Q(y) € C* for y € ®, such that relations (3.19) are fulfilled. Thus
the boundary value problem (1*) is defined for y € &, and by Theorems 1.3 and 1.5 it
has exactly k linearly independent solutions for y € &,. Since 5. (1, @o(y)) represents
a fundamental matrix of solutions of (3.17), rows of the matrix L(t, y) form k solu-
tions of these equations. Further the matrix L(t, y) obviously fulfils the condition
(3.20). Finally substituting L(z, ) into (3.18) and making use of (3.24") and (3.19)
we get S

a

L(a, y) P'(y) + L(b,7) Q'(y) =
= (No(y) — T(y) No(y)) 1(b) n. ' (a) P'(y) +
+ (Ny(y) = T(y) Na()) - n(b) 1 '(b) Q'(¥) =
= — (My(y) — T(y) Mz(y)) na) n'(a) P'() + (No(y) — T(y) N#()) Q'(») = 0

which completes the proof of (3.25). (From (Ib), (IId) and (3.24") it follows readily
that the rows of ¥'(¢, y) are linearly independent.)

The matrices T(y) and ¥(t, y) having been determined, the equations (3.21) are
completely defined and their solution y, = y5 with properties (IVb, c) may be
found.

Now by (V), Theorem 2.1 and the theorem on continuous dependence of solutions
on initial values and parameters there exists a neighborhood (g, ,), €5 = @o(73)
and an interval €¢; = <0, &), 0 < &, < ¢, such that (1) every solution (1, ¢, &) of
(3.1), where ¢ € €, with &(a, ¢, &) = cstaysin X for € T and it may be written in the
form

(3.28) &t ¢, 8) = (1, C(1, ¢, €))
where C(t, ¢, ¢) is the solution of equations
t
(3.28,) M) =c+e j 12 (s, I(5)) (s, n(s, I(s)), €) ds
and (2) according to (3.22) where ¥ = 7/,
Dw
. det — as s € 4: O'
(3.29) (DC (8or & ))W
A solution &(t, ¢, €) of (3.1) is a solution of the boundary value problem (v) if and
only if
(3.30) W(E, £y e) = 0.

This is a system of n equations for n components of the initial vector c. Putting
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¢ = 01in (3.30) we get a system of n necessary conditions

u(n(a, <o), n(b, <o) = 0
which n components of the vector ¢, = ¢(0) have to fulfil. This system is identical
(with the exception of notation) with the system (3.4) about which we know that it has
not a uniquely determined solution. Thus the system (3.30) is not suitable in this form
to investigate the existence of its solution by means of the implicit function theorem.
Therefore we shall modify it in the following way.
Leaving equations (3.30) with indices from % unchanged, we have

(3.31) wi(E, & €) = 0.

By (3.29) and the implicit function theorem there exist a neigborhood N,(y§, 6,) = G,
0 < J, < J, and an interval €, = <0, ¢,>, 0 < &, < ¢, such that for ¢, € N,(v5, &)
and ¢ € €, there exists a solution
(3.32) ¢z = o(cy, €)
of (3.30) such that (denoting again ¢, = 7, o(y, &) = 7 + a(y, ¢))

a(y, e) e C*', oy, 0) = ao(y) and g(y, &) € O4(c, 6y) .

Inserting (3.32) into (3.31), denoting
b .

(3.33) 8(7, ¢) = J n: (s, C(s, e(v. ¢), ¢)) 8(s, n(s, €(s, e(v, ¢)), &) ds

a

and making use of the mean value theorem we get the identity

- L r/pa\ o
wi(gm fba 8) = ui(ﬂa, "b) + SJ‘ [<5£> _f_] d9 +
9

0 C57~768
'Du, D EoZ
sj [ uyﬂ:l ds g(y, 8) + Svy(faa Ens 3) =0,
o.Px, Dc |,

where &(t) = &(1, (7, ¢), €) and the meaning of the index 9 may easily be found in
each case.
Inserting (3.32) into equations (3.30) with indices from & we get

(3-35) Wy(za, Eba 8) =0
or making use again of the mean value theorem

. ~ o~ ' /Du
wy(fna éb’ 8) = uy(ﬂa, 'lb) + 8_[ [<_u> _6_6] d9 +
9

ol \Pc /g5 O¢

"'Da,, Dy e
" afo[afﬁ]g do g(y’ 8) +e v‘y’(éaa éb, 8) =0.

(3.34)

(3.35)

By (3.34) the system of equations (3.35") may be replaced for ¢ + 0 by an equivalent
system of equations

(3.36) m(y, 8) = E[Wy(éas Eb9 8) - T()’) Wi(ém Eb’ 3):| =0.
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Now letting & — 0 in (3.36) and taking into account (IIb), (3.24), (3.24"), (3.25) and
(3.26) we get the system

(3-37) “’0(70) = Jb w‘(s, ?o) g(S, ;I(S), 0) ds + ;oy - T(Yo) ‘70? =0,

where vy = v(1,, 1,, 0), which is identical with the system (3.21). By assumptions (I),
(IT), (IV) and previous considerations w(y, &) € C'** for y € M,(yg, J,) and & € (0, &,).
Putting w(7y, 0) = w,(y) we may verify easily that lim (w(y, &) — w(y))/e exists; thus
e—0

w(y, &) e C'* on MNy(ys, 3,) x €,. Hence by (IVa, b, ) equations (3.36) satisfy all
assumptions of the implicit function theorem and by it we may conclude that there
exists a unique solution y = y*(g) e C' of (3.36) for sufficiently small ¢ > 0 with
7*(0) = 75. Then ¢z = o(y*(c), ¢) is a unique solution of (3.31) with o(y*(0), 0) =
= 6o(75) and ¢ = g(y*(e), €) is a unique solution of (3.30) with g(y*(0), 0) = ¢} which
completes the proof of Theorem 3.2.

Corollary 3.3. Let an interval ¥ = {a, b) be given. Consider the boundary value
problem (k) given by (3.10), (3.11). Let the following assumptions be fulfilled.

(I) Let y(M : N) = n. Let v(p,q,e) e C""! for pe®P, qeQ, e € € whereP and Q
are open sets in E" and ¢ € € = (0, gy, gy > 0.

(IT) Let the shortened boundary value problem (i,) given by (3.12) have
exactly k linearly independent solutions. Denote ®(t)an x k matrix whose columns
are formed by these solutions.

(IMT) There exist a set ¥ = N, (&) = k and a constant k x (n — k) matrix T
such that for any fundamental matrix ®(t) of solutions of (3.12,) it holds

(M®(a) + N&(b))y, = T(M®(a) + Nd(b))z .

Further there exists a k x n matrix ¥(t) whose rows are formed by solutions of
the boundary value problem (K:) (adjoint to the shortened boundary value problem

(o))

wi=—w A(r), w'(@P' +w(h)Q =0,
where — MP* + NQ' = 0, y(P : Q) = n, and which fulfils the condition
¥(b) = N, — TN5.
(a) Let equations

b
(3.39) f W(s) g(s, B(s) 70, 0) ds + Voo — Tvoy — 0.,

where y is a k-vector and vy = v(®(a) yo, B(D) o, 0), have a real solution y, = 7.
(b) Let d(a) y5 P, &(b) 75 € Q.
(c) Let the jacobian of the system (3.38) with respect to y, be nonvanishing at the
point y, = 7.

338



(IV) Denote® = E[x | |lx — &(!) y5ll < 0,t€X],0 > 0. Let A(t) eC%g(t, x, )€

eCot forte?, xe ¥, seC.

Then there exists for sufficiently small ¢ > 0 a unique solution &(t, c*(e), a) of the
problem (k) with &(a, ¢*(e), &) = c*(¢) € C' which tends to the solution &(1) v} of the
shortened boundary value problem (i) as ¢ — 0.

Corollary 3.4. Consider the differential system (3.1). Let the following assumptions
be fulfilled.

(I) Let f(t, x) and g(t, x, &) be w-periodic in t.

(I1) (a) (b) (c) The same as in Theorem 3.2 with the exception that a = 0, b = o
and that u(no, n,,) has the particular form u(no, 1,) = 1o — 1,

(III) Let the system

z = fi(t, 1(1) z

have exactly k linearly independent w-periodic solutions for y € &.
Then the adjoint differential system

w' = — w' (1, 7(1))
has also exactly k linearly independent solutions for y € ®. Denote W(t,y) a k x n

matrix whose rows are formed by them.
(IV) (a) Let the system

(3.39) ' f “W(s, 10) gls. (s), 0) ds = 0

have a real solution y, = yg € ®.

(b) Let the jacobian of the system (3.39) with respect to y, be nonvanishing at the
point y, = 74.

(V) The same as in Theorem 3.2 with the exception that T = T, = <0, »).

Then there exists for sufficiently small ¢ > 0 a unique w-periodic solution
&(t, c*(e), &) of (3.1) with &(a, c*(¢), &) = c*(¢) € C* which tends to the w-periodic
solution n(t, @o(vs)) of (3.3) as e — 0.

Remark 3.1. Clearly we may choose instead of the vector ¢ some other parameters
by which the solution of (3.1) is uniquelly determined. (We have made use of this fact
in Corollary 3.3.)

Remark 3.2. It may happen that it is convenient or necessary to suppose that the
length of the interval on which we consider the perturbed boundary value problem (v)
is also a function of e. Let us put b(e) = b + 1(¢) where b is the right-hand endpoint
of the interval {a, b) on which the shortened problem (v,) is considered and 1(¢) € C'
for ¢ € € with 7(0) = 0. It is obvious from proofs of Theorems 3.1 and 3.2 that in both
cases the existence of a solution of the problem (v) may be proved when we substitute
T, = <a, b + 1(¢)) instead of T and leave the other assumptions unchanged.
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Remark 3.3. The solution of the boundary value problem (v) (be it under the as-
sumptions of Theorem 3.1 or Theorem 3.2) may be found by means of the method of
successive approximations. (See [6].)

If the functions f(#, x) and g(#, x, ¢) are analytic in x and ¢ and the functlons u(p, q)
and v(p, q, ¢) are analytic in p, g and ¢ on sets given in Theorems 3.1 or 3.2, it may be
shown that the found solution is analytic in ¢ (for sufficiently small ¢ > 0) and it may
be obtained by solving recursively a sequence of boundary value problems (from which
only one is nonlinear).

Remark 3.4. A system of necessary conditions (equivalent with (3.21)), which the
vector y has to fulfil, may be found by a somewhat different consideration than that
presented in the main text.

Under the assumptions of Theorem 3.2 every solution &(f, € + &d(e), &) with
&a, ¢ + ed(g), &) = ¢ + ed(e) of the system (3.1) may be written in the form
&t e+ ed, g) = g(t, ) + e {(t, ¢, d, &) wheren(t, ¢) € C*2,{(t, ¢, d, ) e C"'*'*! and
n(a, ¢) = ¢, {(a, ¢, d, &) = d. If &(t, ¢ + &d, &) has to be a solution of the boundary
value problem (v) then the functions 5(t, ) and {(t, ¢, d, &) have to fulfil boundary
value problems

(3.40) n = f(t,n), u(n(a),n(b)) =0,
and
(3.41) ¢ —J. ——(t n+ 9e0)d¥ + g(t,n + €, ¢),

! Du ! Du
—— (1, + 9Ly, 1y + 9e8,) d9¢(a) + | —— (M. + 9eL,, 1, + 9e8;) (D) +
0 Dxa o Dxb
+ v(éas fby 8) = O
respectively.
The boundary value problem (3.40) has the k-parametric solution 1(t) = n(t, 0o(7))-
Letting ¢ — 0 in (3.41) and then substituting #(¢) for n, we get the boundary value
problem .

fo = x(t 1(t) ¢ + 8(t,n(1), 0),
(3~42) Du -
—— (112> 1) Sola) + 57 2 (s 1) Col(b) + V(3o 1 0) = 0.

Dx,

a

The homogeneous boundary value problem associated to this problem is evidently
the problem (1) given by (3.14), (3.15). Now by Theorem 1.5 the problem (3.42) has
a solution if and only if

(3.43) r Wo(t, ) g(t, (1), 0) dt + (¥o(a, y) P'(y) + Wo(b, 7) Q'(¥)) V(Har 1, 0) = O

where rows of the k x n matrix ¥'(t,7) are formed by some k linearly independent
solutions of the problem (1*) (given by (3.17), (3.18)) and the n x 2n matrix (P(y) :
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: Q(y)) defines the complementary adjoint boundary conditions to boundary condi-
tions (3.15) for y e ;.

It may be easily verified that, if ¥'y(t, ) satisfies the condition (3.20) (so that
W(1,y) = W(1, 7)), the condition (3.43) reduces to (3.21).

Indeed, by (3.25), (3.26) and (3.24")
(3.44) Wo(a, v) f"(v) + Wo(b,y) Q'(y) =

_ (D"y )m) . (3:5’ - 1( )""f) 30).

b
Since by Remark 1.1

Du
Dx

a

N Du .
P(y) + D, Q(») = E,,

so that

- BB+ ot @) = Ky

the equality (3.44) yields
Wo(a,y) P'(y) + Wo(b,7) Q'(y) = Ey — T(y) E7

whence our assertion readily follows.

?*\Y)E
b

b

4. NONLINEAR BOUNDARY VALUE PROBLEMS FOR AUTONOMOUS
DIFFERENTIAL SYSTEMS

In this section we shall consider the boundary value problem (o) given by
(4.1) x = f(x) + e g(x, ¢),

(4.2) w(x,, X,, &) = u(x,, x,) + ev(x,, X,,8) = 0.

It is known that this problem with periodic boundary conditions (i. e. w(x,, x,, ) =
= x, — x, = 0) has some characteristic features by which it differs fundamentally
from a similar problem with a nonautonomous differential system. Above all it is the
fact that one component of the initial vector c*(¢) of a solution (¢, c*(¢), €) may be
chosen arbitrarily (ina certain range) and that the length I(e) = b(s) — a of the inter-
val on which the solution exists, depends on ¢ and has to be taken as a new unknown.
Another such fact (closely related to the previous one) s that the length of the interval
on which a solution from a k-parametric family #(t, ¢(7)) of solutions of the shortened
boundary value problem (o)

(4.3) y =f(y),
(4.4) u(ya ys) = 0

exists also depends on the parameters y (we usually choose as these parameters some
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components of the initial vector ¢). We shall see later that these features appear in
a wider class of boundary value problems with autonomous differential systems
(among which however the problems with periodic boundary conditions occupy an
outstanding position). That is why we shall suppose from the beginning that the right
endpoint b of the interval {(a, b) on which a solution of the shortened boundary va-
lue problem exists is a function of the initial vector ¢ (or of other equivalent para-
meters) of this solution and that the right endpoint of the interval on which a solution
of the given problem (o) exists is a function of the parameter é.

Let us now investigate the problem (o) in more detail. In the sequel we shall suppose
that the following conditions (%) are fulfilled.

Let ¥ be a domain in E", let € = €0, &y, & > 0,and let T, = (4, B), 4 < 0 < B.
Let f(x) e C?, g(x,&) e C'° for x e ¥,-e € €. Let P and L be domains in ¥ and let
u(p,q)e C>% v(p,q.e)e C" forpe P, qeQ, e €. Let € be a domain in ¥ and
let every solution &(t, ¢, ) of (4.1) with &(a, ¢, &) = ¢ be defined and stay in % for
teTy,ceC eeC. Letb(e)e C®and T = (a, b(e)) = T, foree €. Let &(a, ¢, &) e,
&(b(e), €, ¢) €2 and further let

Dw Dw
X <—D—x‘; (P, q, 8) . D—Xb(P, q, 8)) =n

for peY, qef, e€C.
When the dependence on ¢ in (oc) does not take place at all or when the parameter ¢
is fixed, we shall write briefly

(4.3") x = h(x),
(4.4") z(x(a), x(b)) = 0
and denote it as a problem (o). In this case we shall suppose that the following con-
ditions (¢”) are fulfilled.

Let h(x) e C* for x € ¥. Let z(p, q) € C*** for p €, q €. If the problem («') has
a solution ¢(t, ¢*) on the interval (a, b*), then let us determine (if possible) functions
¢y = o(cy)and b = b(cy) (¥ = N, W(?¥") = k) defined and of class C* for ¢, € €,
€, a domain in E*, such that

(a) € = E[c]ec=cy + o(cy), ¢, €] = €,

(b) u(e(a, ), p(b(cy), c)) =0 for ceC,,

(c) e*e€y, b(c*) = b*.
If we choose other parameters y = (yy, 5, ..., ;) from a domain & in E* for expres-
sing ce €y, let ¢ = ¢(y) e C' and €, = E[c| ¢ = c(y),y € &] (then y(c,(y)) = k for
y € &, i. e. the parameters y are essential). The other conditions ((6) have to be modi-
fied in the obvious way.

Lemma 4.1. Let the conditions (€') be fulfilled.
(1) Let the problem («) have a solution ¢(t, c*) = @*(1).
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Then, denoting ¢*(a) = ¢, ¢*(b) = ¢;, ¢*(0) = @5, 2(@}, ¢;) = z* and simi-
larly for other expressions, there holds the equality

D* ES % ES % * % *
(45) |2 de. | Dzde,)  [Dz"Dy,  Dz'Dg,ldey _
Dx, dt Dx, dt Dx, Dc Dx, Dc | dt

(2) Let the problem (o) have a k-parametric solution ¢(t) = ¢(t, (y)) on the
interval {a, b(y)) for ye &, & a domain in E*.

Then there holds the equality (denoting z (or z(y)) = z(@,, ¢,) and so on)
(4.6) [E Do, N Dz %]D_c Dz d¢, Db

— + ——2—=0 for ye@®.
Dx, Dc Dx, Dc |Dy Dx, dt Dy

Proof of the assertion (1). If ¢(t, ¢*) is a solution of problem («'), then the function
o(t — 8, ¢(J, c*)) represents according to the group property of dynamical systems
the same solution for all real numbers 6 such that (5, ¢*) e €. Thus

(4.7) 2(p(a — 8, ¢(3, c*)), o(b — 5,9(5,c*))=0.
Differentiating (4.7) with respect to 6 and then putting 5 = 0 we get (4.5).

Proof of the assertion (2). By assumption

(4.8) z(p(a, <(y)), p(b(y), €())) =0 for ye®.
Differentiating (4.8) with respect to y, we get (4.6).

Lemma 4.2. Let the assumptions (€") be fulfilled. A solution ¢(t, c*) of the equat-
ion (4.3") is constant if and only if

d
f (to, €*) = 0 for some tye€,.

The proof is evident.

Corollary 4.1. Let the assumption of the assertion (2) in Lemma 4.1 be fulfilled.
Then there hold the inequalities

(4.9) wW0@) <n—k if g—: (¥) =0 orif ot ¢(y)) = const,

(4.10) x(0G)=n—k+1
where
~ Dz D¢ Dz Dg
Uy) = — Loy 2%
Dx, Dc  Dx, Dc

and y € G.

Proof. When %) = 0 or ¢(t, €(y)) = const, then by (1.6) the equation
Y
up)é=o0
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has, according to (4.6) and x(c(y)) = k, at least k linearly independent solutions
whence by the known theorem of linear algebra the inequality (4.9) follows imme-
diately.

When %’2 + 0 and ¢(t, ¢(y)) * const, then evidently
v

de , o o0 Db o
—(b(y), (7)) — =1.
AEACORDEC)
Then there clearly exists a k x (k — 1) matrix K(y) of rank k — 1 such that
D; ° d(p o o Db o o
——(y) = (b(y)- (7)) — (y) K(y) = 0.
22 5)22 063 <) . () KO)
Since
~ o DC 0 o
03 — @) K@) =0
Dy
and
Dc o o
(g K@) =k -1,
Dy

the inequality follows by the same argument as above.

Let us now introduce a very important notion. We shall say that a boundary value
problem («') has the property () if there holds: If the problem («) has a solution
o(t, c*) on a fixed interval {a, b*) then ¢(t, c*) is as well a solution of the problem

(4.11) x = h(x), z(x(a + 6), x(b* + 6)) = 0
for every & such that ¢(a + 9, c*) e €.
It is obvious that we may interpret this circumstance in two different ways:
(1) ¢(t, <), being a solution of the problem (o) on a fixed interval <a, b*}, is also

a solution on every displaced interval {a + &, b* + 6) (on which the function
o(t, c) is defined);

(2) o(t, <) being a solution of the problem («') on a fixed interval {a, b*), ¢(t+ 6, c*)

is a solution of the same problem on the same interval (for all &, for which ¢(t+6, c*)
is defined).

Lemma 4.3. Let the assumptions (€") be fulfilled. o(1, €*) being any solution of the

pr(l)bl;m (o) (on a fixed interval (q, b*}), the problem («) has the property (%) if and
only i

Dz d
B‘;(‘P:M’ fl’:w) % + Dz (¢;k+a’ ‘p;k+6) dey.s =
¢ t Dx, dt

for every & such that ¢(a + 9, *eg
The proof is easy.
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Corollary 4.2. If ¢*(t) is a solution of a problem («') which has the property (2),
then there holds the equality

Dz* do* + Dz* do}

(4.12)
Dx, dt Dx, dt

Lemma 4.4. Let the assumptions (%') be fulfilled. Let a problem (') have the
property (&). Let this problem have a non-constant solution ¢(t, c*) = ¢*(t) on an
interval {a, b*).

Then the given problem (o) has on the interval {a, b*) (at least) a one-parametric
family of solutions ¢(t, p(a + 6, c*)) for all 6 such that ¢(a + 6, c*) € €.

Proof follows readily from the second interpretation of the property () and from
the group property of solutions of a dynamical system.

Corollary 4.3. Let the assumptions of Lemma 4.4 be fulfilled. Then the jacobian
of the system

(4.13) z(¢(a, c), @(b*, ¢)) = 0

with respect to ¢ is vanishing at the point ¢ = c*. )

This is an immediate consequence of the fact that the system (4.13) has (at least
a one-parametric family of solutions ¢ = ¢(a+J, c¢*).(One may show it also by means
of (4.5), (4.12) and Lemma (4.2.)

Corollary 4.4. For proving the existence of a solution of a problem (oc) with the
property (Q’)for all e € & Theorems 3.1 or 3.2 cannot be used.

This is clear from the fact that by these theorems the existence of an isolated solution
is proved, which contradicts Lemma 4.4.

(On the other hand when the problem (o) has not the property (%) we have no
reason to expect non-validity of Theorems 3.1 or 3.2.)

Let a problem (o) with the property (£) be given. Let us suppose that this problem
has a non-constant solution ¢(z, ¢*(¢), ¢) on the interval (a, b*(¢)) for & € €. Then
05(1) = o(t, €*(0), 0) is a solution of the shortened problem (o). Let us suppose that
this solution also is non-constant and say that in particular the component ¢g (?) is
non-constant. Then there exists obviously 7, e such that q30, (to) * 0. Denote
A = @g (to) and let dy = @(t,) € €, @§(to + 1) = ¥ for t € T. By the property (%),
@o(t, dy) is also a-solution of the problem (o). According to the continuous depend-
ence of a solution on a parameter, there exists for sufficiently small ¢ also a solution
o(t, d*(¢), €) of the problem (o) such that ¢,(a, d*(¢), &) = 1. Thus, by fixing from the
beginning ¢, = 4, we fix only one solution from (at least) a one-parametric family of
solutions of the problem («). Instead of the component ¢, of the initial vector we
must then choose as a new variable the variation 1*(¢) = b*(e) — b*(0) of the in-
terval {a, b*(0)).
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Let us now clarify the position of boundary valpe problems with periodic boundary
conditions among other boundary value problems with the property (2).

Lemma 4.5. Let z(x,, x,) be given. Let a boundary value problem (o) have the
property (?) for an arbitrary function h(x) for which the boundary value problem
(a") fulfils the conditions (%”) with the same sets €, X, €, and Q. Then

z(x,, %) =0=x, — X, =0.

Proof. Let us suppose that there exist two points x,, x, (not necessarily differing
from each other) such that x; e, x, €9 and z(x,, x,) = 0. Now, let us suppose that
x; # x,. Choose constant vectors h,, h, € E" such that

D D
(4.14) —Z (xy, X5) hy + —— (x;, X;) hy % 0.
Dx, Dx, ‘
Join the points x,, x, by a simple arc x = (1) of class C? for t € ¥ so that &(a) = x,,
d .
&(b) = x,, d—g(a) = hy, g—é(b) = h, and (1) € X for t e L. Vectors hy, h, and the
t t

arc &() with prescribed properties evidently exist.
Denote X = E[x | x = (1), t € T]. To each point x, = &(t,) € X co-ordinate the

d
vector d—é‘(to) = h(x,). The function h(x) being defined and of class C*> on the com-
t

pact set X, may be continued onto the whole set . Thus a function h(x) is defined on
X such that the boundary value problem («"), defined by functions h and z, fulfils the
conditions (%) and has a solution ¢*(r) = &(r) such that

o*(a) = x;, ¢*(b) =x,, ¢*(a)=h(x;)=h;, ¢*b)=h(x,)=h,.

But by Corollary 4.2 in virtue of (4.14) the defined boundary value problem cannot
have the property (2). Thus, it has to be x; = x,.

It would be very interesting to know under what conditions a boundary value pro-
blem («) has the property (2) for all ¢ € €. It can be shown that this also happens for
other than periodic boundary conditions, e. g. it may easily be verified that the boun-
dary value problem

(4.15) x = Ax + ¢Bx, Mx(a) + Nx(b) =0

where y(M : N) = n and matrices A and B commute with matrices M and N, has the
property (2) for all e. '

We shall see that in the main theorems our method fails when the solution of the
shortened boundary value problem is constant. It is natural to seek then a solution of
the same character (i. e. a constant one) of the perturbed system. This problem is
solved by the following

Lemma 4.6. Let the conditions (€) be fulfilled. The boundary value problem (o)
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has a constant solution ¢(t, c*(¢), &) = c*(¢) if and only if the system of 2n equations
(4.16) f(c) +eg(c.e) =0, w(c,c,e)=u(c,c) +ev(c,c,e) =0

has a real solution ¢ = c*(g).
The proof is evident.

In the sequel we have to distinguish the case when the shortened boundary value
problem (oco) associated to the given boundary value problem ((7.) has a k-parametric
family of solutions ¢(t, ¢(y)), y € @ on the interval {a, b} of constant length and the
case when such a family exists on the interval {a, b(y)> whose length depends on the
parameters y. The reason is the following: In Theorems 4.1 and 4.3 the number of
linearly independent solutions of the variational boundary value problem (y)

z= fx((}(t)) z, (1) = o(t, <(v)) ,

Du Du - ~ o~
— Zla +-—Zb =O, u =ulg,, >
5. 29) D, (b) (@0 1)

a

(4.17)

is of great importance. By Theorem 1.4 this number equals n — y(U), where

i Di Dy, Di D¢
(4.18) O(y) = — —2a 4 2 2%
Dx, Dc Dx, Dc

By Corollary 4.1 in the first case (b = const) y(U(y)) < n — k whereas in the second
case (b(y) # const) (U(y)) < n — k + 1 for y e &. We shall suppose that the ranks
of the matrices in question attain their maximal values. Hence in the first case the
problem (u) has exactly k linearly independent solutions, whereas in the second case it
has exactly k — 1 linearly independent solutions only.

Theorem 4.1. Let an interval T = {a, by) be given. Consider the boundary value
problem (o)
(4.1) x = f(x) + ¢ g(x,¢),
(4.2) w(x(a), x(b(e)), &) = u(x,, x,) + £ v(X,, X;, 8) = 0
where the function b(g) with b(0) = by has to be determined suitably. Let the follow-
ing assumptions be fulfilled.

(I) Let the problem (o) have the property (?) for all e € € = <0, &), &9 > 0.

(IT) The same as (1) in Theorem 3.2.

(IIT) (a) Denote € an open set in E". Let solutions n(t, ) of

(43) y = f(y)
with n(a, ¢) = c exist and remain in ¥ for te Ty = (A4, B) > {a, by) and for all
ceC.

(b) Let equations

(4.4') u(n(a, c), n(b, c)) = 0
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(where we consider b as an unknown) have a real solution b = by, ¢y = o’o(c,/) (that
means that the number k cannot be increased by equating b to some nonconstant
function of ¢y), V" = N, W(¥) =k,2 < k < n.

(c) Denote ¢, =y and go(y) = 7y + oo(y). Let ao(y) € C* for y€ &, & an'open set
in E* such that ® = E[c| c = g(y), y€ @] = €. Denote y(1) = n(t, ¢o(7)) so that
1(t) is a k-parametric solution of the boundary value problem (o) given by (4.3) and
(4.4) on the interval {a, by).

(d) Let n(a) e, n(b) e for ye .

(¢) Letle? . Put ¢, = A€ E[c,| ¢, = nfa),ye G].

Denote a = y = A, 6o(a) = ao(@ + 2), do(®) = eo(@ + 2), 7(t) = n(t, @o(«)). (Thus,
#(t) is a (k — 1)-parametric solution of the problem (x,) with ¢, = A.)
(IV) Let the variational boundary value problem (p)

419 = £i(0)
Du Du
(4.20) D, 2(a) + Dx, z(b) = 0
where
(%— : %(lib) = < (M0 1) : B“u” ('la’ 'lb))

have exactly k linearly independent solutions for y € @.

(V) We shall show that there exist a set Ao, Uy a domain in E*"* such that
Elyly=a+ Lae¥]c B aset ¥ <N, W(F)=kand ak x (n— k) matrix
T(a) such that

(421)  det ba +o, Dis_ T(«) Diz _ o (Pi_ _(,,a, )
Dc g7 Dc Dc Dc

for e ¥,.

Further we shall show that there exists a set ¥, ¥, a domain in Y, and a k x n
matrix ¥(t, «) whose rows are formed by k solutions of the boundary value problem
(1*) (adjoint to boundary value problem (u) in which ¢, = A is put)

(4.22) . w' = —w' f,(1(1),
(4.23) w'(a) P'(«) + w'(by) Q'(x) =0

where n x n matrices P(a), Q(a) satisfy conditions

(@)=0, xPx): Q) =n

(4.29)

a

for a € U, and which fulfils the condition

DUg’ T
( ) ny )
b

(4.25) W(by, @) =
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(a) Let the system
(4.26) Yo w(bo’ “o) il(bo, @o(“o)) +
bo
+ f ’:P"(s, ao) g('l(S, ao(do)), 0) ds + voe — T(“o) vog =0

a
where vy = v(n(a, o(20))s 1(bo> 20(%0)), 0) have a real solution vy = v§, ay = aj.

(b) Let ag e ,.

(c) Let n,(a, go(x5)) * O-

(d) Let the jacobian of the system (4.26) with respect to vy, &, be nonvanishing at
the point vy = Vi, ag = ®g.

(VI) Denote X = E[x|Ilx — n(t, 8o(ag)l < o, te<a, by + 6Y], ¢ >0, §>0.
Let f(x) e C?, g(x,e)e C*' for xe %, e €.

Then there exists for sufficiently small ¢ > 0 a unique function b*(e) = by +
+ e v¥(e), v¥(e) € C' such that there exists a unique solution &(t, €*(¢), &) of the
problem («) with &a, c*(e), &) = c*(e) e C', c[(e) = 1 on the interval {a, b*(c))
which tends to the solution y(t, @o(a3)) of the problem (a,) as & — 0.

Proof. We shall explain in more detail those parts of the proof only in which the
proof of this theorem differs from the proof of Theorem 3.2.

Clearly (1, @o(y)) is a fundamental matrix of solutions of (4.19). By (IV), (IIb),
(IlIc) and Theorem 1.4

Du u Dg, Du Dy
(4.27) 0 (P") = (P« B Dubnm)
Dc Dx, Dc Dx, Dc

In particular there exist sets & = A, ¥y = N, W(F) = W(¥";) = k, such that

(4.29) det <'3i‘> oy
D¢/,
Analogously as in Theorem 3.2 it may be shown that ¥", = ¥" may be supposed
without loss of generality.
Obviously putting ¢, = A€ E[¢)lc, = n(a, (7)), 7€ @] in (4.27) and (4.28) it
holds for a, & + Ae &,

(427) . ('?-) —

Dc
(4.28) et (ﬂ’> +o0.
C /7y
Thus there exists a k x (n — k) matrix T(«) such that
4.29 = T(a
(4.29) oo = T 5o
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whence it follows in particular

4.29)) PU) 1w (B8) =o,
Dc/y7 Dc/z5
A A = D/\ A ! A _ A
(4.297) Dy _ 7(4)287)\ Pl _ _ (Diy _ 7, Dil7) D
Dx, Dx,/ Dc Dx, Dx, / Dc

Putting ¢, = 4 into (4.19) and (4.20) we get the boundary value problem () which
again has clearly exactly k linearly independent solutions for a € %,. As in Theorem
3.2 the existence of the matrix ¥ (1, a) defined in (IV) for a € A, A, some domain in Uy,
may be proved and namely that for a € U,

A - A A A -1
(4.30) Wi, a) = (D”y_ T() D"ﬂ”) Di, (ﬂ (t)) .
Dx, Dx, / Dc \Dc

Now the equations (4.26) are completely defined for « € 2, and we may find their
solution vy = vy, &, = ag which fulfils the assumptions (Vb, ¢, d).

If there exists a solution &(t, €/®)(¢), ¢) of the problem («) which tends to the solution
n*(1) = n(1, @o(axg + 2)) of the problem (a,) fulfilling the condition (Vc)) as & — 0,
then we know by previous considerations that there definitely exists in virtue of (I) and
of the continuity a solution &(t, ¢*(¢), ¢) of (a) which tends also to n*(r) and which
satisfies the condition ¢f(¢) = 4. Hence let us require

(4.31) ¢la, c*(e), 8) = cf(e) = 4.

Remark. In practice, it may sometimes be difficult to find at the begining a nume-
rical value ¢, = 1 such that the assumptions (Va, b, ¢, d) would be fulfilled (if it is
possible at all). Thus it may be more appropriate to keep A as a parameter and not to
choose its value until the equations (4.26) are determined and then to try to choose its
value in such a way that the assumptions (Va, b, ¢, d) would be satisfied.

Now by (VI), Theorem 2.1 and the theorem of continuous dependence on initial
values and parameters there exist a neighborhood 9,(¢g, 8,), €5 = 9o(«;) and inter-
vals

@1=<0,61>, 0<81_§80, %1=<b0—n1,b0+ﬂ:1>, 7[1>0

such that (1) every solution &(t, €, &) of (4.1) where g€ €,, with &(a, ¢, 8) = ce
€ 9,(c}, 6,) remains in ¥ for t € ¥, and it may be written in the form

(4.32) &a, . &) = n(t, C(t, <, €)),

where C(t, ¢, ¢) is a solution of

(4.33) I()=c+e J 075, T) glals, T o) s

a
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and (2) according to (4.28")
(4.34) det <_D-“f (Em & e)> + 0
Dc 77

for ce D,(c5, 6;), be DB, and e C,.

A solution &(t, ¢, €) of (4.1) is a solution of the boundary value problem (o) if and
only if

(4.35) w(E, &,¢) =0.

Inserting ¢, = 4 into (4.35) we get (denoting % the complement of the index I with
respect to 7")

(4.35) w(é(a, ey + co + A,8), E(b,cy + €4 + A, ¢),6) =0.
Leaving equations from (4.35") with indices from & unchanged we have
(4.36) wir(é(a, ey + co + A e), &b, ey 4 €o + A 8),¢) =0.

By (4.34) and the implicit function theorem there exist a neighborhood N,(«g, 6,),
0<6, £0y, and sets B, = by — 7y, by + 7,), 0 <7y, <71y, €, =<0, ¢,),
0 < ¢, < & such that for ¢y e N,y(af, §,), b€ B, and ¢ e €, there exists a solution

(4.37) ¢y = o(cy, b, &)

of (4.36) such that (denoting again ¢, = a, g(«, b, &) = & + A + o(a, b, ¢)), o(«, b,¢)e
e C>1, o(a, by, 0) = 6¢(xy) and g(a, b, &) € O,(c5, 5y).
Inserting (4.37) into (4.36), denoting

T=>b— by,

g(a, b, &) = fbr]c—l(s, C(s, o(a, b, ), €)) g(n(s, C(s, e(a, b, €)), €) ds

(4.38)

and making use of the mean value theorem we get the identity

A A 1 Du. )
(4.39) wi (&, & €) = uz(ii(a), Ai(bo)) + 1 j [.D_”z ‘7_"] a9 +
B

0
1 _ 1 &
+ af [9518 0_"] d9 + TJ [D"“ d"”} d9 + ¢ f [-D—"ﬁ 91’2] d9 g(a, b, &) +
o Pecy e |y o| Dx, dt Dx, Dc |,
+ & Vy"—(éa’ éh: ’5) =0

where é(t) = &(t, C(t, ¢(a, b, ¢), €), &) and the meaning of the index § may easily be
found.

Inserting (4.37) into equations (4.35") with indices from & we get
(4'40) wy(éas 8};5 8) =0
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or, making use of the mean value theorem

(4.40) Wb & 9) = usli(a) i(bo) + < f ‘ [D"y @z] 45+

0 DC«T/’ 6b &

1 D 1 D 1 D D
+ BJ‘ [ﬂa—a:l d\9+TJ\ |: uyd—'lb:] d19+8J\ I: uy_ll-b] dgg(“} b98)+
ol Dy de | ol Dx, dt |, ol Dx, Dc |y
+evy(E, &ne)=0.

By (4.39) the system (4.40") may be replaced for & + 0 by an equivalent system

@) e bo + 7 0) = - (Wl o) = T@) wolGe 9] = 0.

Letting ¢ — 0 and taking into account (Ille), (4.29), (4.29') and (4.30) the system
(4.41) implies

T A
(4.42) wo(ag, bo) = hmg W(by, ao) n(bo, 0o(ao)) +
=0

bo
+ f W(s, ag) g(n(s, do(®o)). 0) ds + Vo — T(ao) Vo = O

where vo = v(n(a, 8o(o)), #(bo, @o(#o)), 0) -
In the first place let us prove the existence of lim 1/e. The existence of this limit will
=0

be deduced if we show that the system (4.26) has a real solution v, = v, &y = ag and
that W(b,, ag) 1(bo, 2o(25)) = 0. But the first fact is assured by the assumption (IVa)
and the second by the assumption (IVc) since the column in the jacobian of this
system corresponding to partial derivatives with respect to v, would otherwise be zero
at the point vy = vg, &y = ag. Hence we may write t(¢) = ¢ v(e), where v(e) is con-
tinuous at the point ¢ = 0.

Now substitute ev instead of 7 into (4.41) and v, = ¥(0) instead of lim t/¢ into
g0

(4.42). Thus the latter system becomes precisely (4.26). Defining w(a, b, 0) = wo(a, b)
the system (4.41) satisfies all assumptions of the implicit function theorem. Applying
this theorem we deduce that there exists a unique solution v = v¥*(e), &y = a*(e) of
(4.41) for sufficiently small e > 0 such that a*(¢) € N,(ag, 9,) and b*(e) = b, +& v¥(e) e
€ %B,. The existence of a unique solution ¢*(c) = g(a*(e), b*(¢), &) e C* of (4.35)
then follows readily and this completes the proof of Theorem 4.1.

Corollary 4.5. Let an interval ' = {a, by> be given. Consider the boundary
value problem (i)

(4.43) x = Ax + e g(x,g), Mx(a) + N x(b) + ¢ v(x(a), x(b), &) = 0
where the function b with b(0) = b, has to be determined suitably. Let the following
assumptions be fulfilled.
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(I) The same as (1) in Theorem 4.1.

(IT) The same as (1) in Corollary 3.3.

(1) (a) Let the shortened boundary value problem (i)
(4.44) y=Ay, My(a)+ Ny(b) =0
have exactly k linearly independent solutions. Denote (1) a n x k matrix whose
columns are formed by these solutions.

(b) Let B(a)y e, d(by) y € for ye &, & an open set in E-.

<(c) Puty; = A(ianindex from {1,2, ..., k}). Denotea = y ~ A. Let ¥ = E[a|a +
+ 1e B].

(LV) It may be shown that there exist a set & = N, W(F) =k, and a k x n
constant matrix T such that for any fundamental matrix ®(t) of solutions of (4.44)
it holds

(M®(a) + Nd(b)), = TMD(a) + N&(b))5.

Further it may be shown that there exists a k x n matrix W(t) whose rows are
formed by k solutions of the boundary value problem (i)

\

w'=—wA, w(a)P + w'(b)Q =0
where n x n matrices P and Q satisfy conditions
—MP' '+ NQ'=0, xP:Q)=n
and which fulfils the condition
¥(b) =N, — TNy
(a) Let the system

(4.45) v W(bo) (b, B(bo)xo + 2)) + f “W(s) glns, Bs)(ao + D), 0) +

+ Yoy — Tvoz =0
where vy = v(®(a)(2o + 4), &(b)(ay + 1), 0) have a real solution vo = v, &g = ag.

(b) Let d(a)(ag + 1) € ©.

(c) Let @ (a)(ag + 2) + 0.

(d) Let the jacobian of the system (4.45) be nonvanishing at the point vy = vg,
ay = ag.

(V) Denote ¥ = E[x| ||x — ®(t)(ag + )|l < o,t€Z], ¢ > 0. Let g(x,e)eC"*
for xe %, ¢ C.

Then there exists for sufficiently small ¢ > 0 a unique functlon b*(e) = by +
+ £ v¥(e), v¥(e) € C* such that there exists a unique solution &(t, c*(e), €) of the
problem (k) on the interval {a, b*(e)y> with &a, c*(e), ) = c*(e)e C', ¢f(e) =
= & (a)(@y + 1) which tends to the solution ®(t)(«y + 1) of the problem (ko) as & — 0.
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Corollary 4.6. Consider the differential system (4.1). Let the following assumpt-
ions be fulfilled.

(I) The same as (I1I) (a) (b) (c) (¢) in Theorem 4.1 with the exception that a = 0,
= w and that u has the particular form (representing periodic boundary con-
ditions)
(4.46) u(n(0), n(e)) = n(0) — n(e) -
(IT) Let the variational system
z = f,(n(1) z
have exactly k linearly independent w-periodic solutions for y e &.

Then the adjoint system w' = — w" £,(1(1)) has also exactly k linearly independent
solutions fora & A€ ®. Denote W(t, a) the k x n matrix whose rows are formed by
them.

(IV) (a) Let the system
@47)  vo Wo, agi(w, dofa0)) + j “W(s, ay) gln(s, do(o)), 0) ds = 0

have a real solution vy = v, ay = ap.

(b) Let n,(0, 8(23)) + 0.

(c) Let the jacobian of the system (4.49) with respect to v,, oy be nonvanishing at
the point vo = v, ag = ag.

(V) The same as (V1) in Theorem 4.1.

Then there exists a unique function w*(e) = w + & v¥(g), v*(e) € C' such that the
system (4.1) has a unique w*(¢)-periodic solution &(t, c*(g), &) with &0, c*(¢), &) =
= ¢*(¢) € C' which tends to the w-periodic solution n(t, @o(a3)) of the system (4.3)
as ¢ > 0.

Remark 4.1. Let us prove that
(4.48) W1, o) n(t, go(x)) = const for e, .

Indeed, differentiating (4.48) with respect to ¢, we get
= W(t,a) (1, 4(0) 1(2) + Lo, o) £,(1, (1)) #(1) = 0.
Thus, we may write ¥'(a, a,) g(a, go(xo)) instead of W(bg, o) 1(bo, @o(#o)) in (4.26)
and W(0, &) 7(0, o(a,)) instead of W(w, ap) n(w, 2o(ao)) in (4.47).
Now let us state the following theorem which corresponds to Theorem 3.1.

Theorem 4.2. Let an interval T = {a, b,) be given. Consider the boundary
value problem (o'.) given by (4.1), (4.2). Let the following assumptions be fulfilled.

(I), (I1) The same as in Theorem 4.1.

(LII) The same as in Theorem 4.1 with the exception that now(7") = k = 1 and
with the the addition that n,(a, g(%)) = 0.
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(V) The same as in Theorem 4.1
(V) It may be shown that there exist an index & = A" and a constant matrix T
such that

Dd, _ Dl _
Dc Dc
Let
Di, . Diz\di,,
Dx, Dx, / dt

(VI) The same as in Theorem 4.1.

Then there exists for sufficiently small ¢ > 0 a unique function t*(e) e C' with
©%(0) = O such that there exists a unique solution &(t, €*(¢), ¢) of the problem ()
with &(a, €*(g), &) = ¢*(e) € C', c5(e) = A on the interval {a, by + 1*(c)y which
tends to the solution n(t, @o(2)) of the problem (ay) with ny(a, @o(4)) = 4 on the inter-
val {a, byy as ¢ - 0.

The proof may be omitted since it is very similar to the proof of Theorem 4.1.
(Notice that besides n — 1 equations

wi(&(a, €7 + 4, ¢), &by + T, ¢y + A, 8),8) =0

for ¢y with the solution ¢y = o(7, ¢) € c*t We have the equation
''p Du; 1 Du-
ol \Dx, Dx,/ dt |, ol \Dcy Dcy/ o7 |y
ol \Dcy Dcy/ oe |, o \Dx, Dx,/ Dc |,

j 175 €6, e, 9, 0) ln(s, €. (e, 0). ), ) ds +

a

+ Vy(éa, éb’ 8) - T Vfg)(éa, %b’ 8)} = 0

for 7, which fulfils all assumptions of the implicit function theorem.)
A similar theorem for periodic boundary conditions was proved in [4] (Chap. 14,
Th. 2.1) under less restrictive assumptions.

Theorem 4.3. Let an interval T = (a, b’y be given. Consider the boundary
value problem (o)

(4.1) x = f(x) + e g(x, ¢),

(4.2) w(x(a), x(b(z)), &) = u(x,, x,) + & ¥(X,, X,, &) = 0

where the function b(e) (fulfilling a condition with respect to b'®, see (I1Ib)) has to
be determined suitably. Let the following assumptions be fulfilled.
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(1), (11, (IIa) and (VI) the same as in Theorem 4.1.

(I11) (b) Let equations u(n(a, <), n(b, €)) = 0 have a real solution cz = ao(cy),
b=pocy), Ve N, W(V)=k 2=k =n

(c) Denote ¢y =y, go(y) = v + 60o(7)- Let ao(y) € C2, Bo(y) € C* for ye &, & an
open set in E¥ such that D = E[c |c = Qo(y) yE @] c @

that 5(t) is a k parametuc solution of the problem (‘10) given by (4. 3) (4. 4) on the
interval {a, Bo(y)>.

(d) Let n(a) e, n1(Bo(y)) €Q for ye G.

(e) Let 1e¥". Put ¢, = A€E[c,|¢,=7v,7e ]

Denote a =y = 1, 6o(a) = oo(x + 1), 2o(@) = go(x + ), t](t) = (1, do(2)). (Thus,
n(t)isa (k — 1) -parametric solution of the problem (o) with ¢, = A.

(IV) Let the variational boundary value problem (,u)

uﬂwn-lmwﬂaww

where

Du Du Du ., , - Du ~, . -~
i — ) = — (n(a), :— (n(a), ,
(Bt o) = (. (1) e e ()
have exactly (k — 1) linearly independent solutions on the interval {a, Bo(y)) for
ye &.

(V) We shall show that there exist a set Uy, Yo a domain in E*¥~' such that
Ela + AlacWU)] = G, aset & = N, v(y’) k—1landa(k—1) x (n—k+1)
matrix T(a) such that

D A
(4.50) ”5" ~ T(a ) 7=0, det (E’> +0,
Dc /75
where
DG Du A AsA
| De - De (1(a), #(Bo))
for ae¥,.

Further we shall show that there exists a (k — 1) x n matrix W(t, «) whose rows
are formed by k — 1 solutions of the boundary value problem ({i*) (adjoint to (u) in
which ¢, = A is put)

W= = WD), W (@) P+ w(b) Q) = 0
on the interval {a, fo(@)) where n x n matrices P(«) and Q(«) satisfy conditions
Dii . DG
— —P(a) + — Q@) =0, x(P(x): Qx)) =
Dx, Dx,
forae U, A, a domain in Y, and which fulfils the condition

(4.51) W(ho(a), a) = D0

Duy
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(a) Let the system

o(x0)
659 [ ) (s ) 0) 5 + o~ Tlxo oy = 0
where Vo = v(n(a, 8o(2)), u([?’o(ao), 00(a,)), 0) have a real solution ay = og-

(b) Let age ;.

(c) Let na, c§) + 0, where ¢ = go(a}).

(d) Let the jacobian of the system (4.52) with respect to a, be nonvanishing at the
point ay = ag.

Then there exists for sufficiently small ¢ > 0 a unique function b*(a) e C! such
that there exists a unique solution &(1, ¢*(¢), £) of the problem (o) with &a, ¢*(¢), &) =
= c*(e)e C', ¢f(e) = 2 on the interval {a, b*(¢)> which tends to the solution
u(t, €§) of the problem («y) on the interval {a, /?O(az’g)) ase— 0.

Proof. By the same argument as in Theorem 4.1 we find that

Dii
(4.53) X(—u>=n—k+1 for ye@.
Dc

Let us show that
Du du
4.54 —:—)=n—-k+1.
(4.59) , X(Dc db)

In fact, the rank of the matrix in question obviously cannot be less thann — k + 1.
On the other hand writing the identity

(4.55) u(n(a, eo(r)); #(Bo(7): €o(3) = 0
and differentiating it with respect to y we get

u uD
(4.56) Du Dg, , duDf, _,
: Dc Dy db Dy

or in a somewhat different form
(4.56) <Du ' gﬂ) Do) - .

Dc db Dy
Since evidently

X<Eg"—’ﬁ_°)—>=k

Dy
by the known theorem of algebra
X Du :d_u Sn—k+1
Dc db
whence (4.54) follows readily.
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Hence there exist sets & < A, ¥, <= 4, WF) =k -1, W77,) = k and 8,, G
a domain in &, such that for y € §,

Du; duj
(4.57) x(p:y :dibf>=n-k+1.
7y
Let us now show that in particular
(4.58) det V(y) = det (247,997 4
DCq/ db

In fact, taking into account that

uy('l(a QO(V)) 'l(ﬂo(?) Qo V)) =

for y € & and differentiating this identity, we get
(Pi ; dj) (00, fo) _
Dc, db/, Dy
Clearly if for some point y € &,
V@) £ n —k

then there would exist an index je.% and a 1 x (n — k) matrix M(7) such that
(denoting # the complement of j with respect to &)

(4.59) V() — M() V,(3) = 0
Then by (4.56)

Du; Du o
()—95—0 for y=7
Dc,/
which together with (4.59) contradicts (4.57).
The relations (4.53), (4.54) and (4.58) evidently continue hold if we put ¢, = Ae

e E[c,| ¢, = n(a, 0o(y)), v € B]. Thus there exists a (k — 1) x (n — k + 1) matrix
T(a) such that

(4.60) (D‘A'“ ;9&> T(x )(D"“ dﬁ?f);

Dc db db

forae U, = E[a|a + A€ &,], whence it follows in particular

(4.60') Dug,, T ) Duy , duy, T )dug,

and

(4.60") Duf T(a )Duq, Dy, _ Duy, T(a )Df:? Dy, .
' Dc Dx, / Dc

Quite analogously as in previous cases we may prove that the adjoint boundary
value problem (ﬂ*) is defined and has exactly k — 1 linearly independent solutions for
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ae Uy, Uy a domain in U, and that there exists the matrix (¢, «) with properties
listed in (V) and namely that '

Go W= (F - TR Do) (3L0)

Dx, Dx,

(to prove it we make use of (4.60")).

Now equations (4.52) are completely defined for a € 2, and their solution g = o
with properties (Vb, ¢, d) may be found.

As in Theorem 4.1 we may require that the solution (1, ¢*(e), ¢) of the problem (o)
fulfils the condition )

(4.62) cHe) = 4.
By the same argument as in Theorem 4.1 there exists a neighborhood 9, (¢, 9, ), €5 =

= 2’0(“3) and sets B, = <by — 7y, bg + my), by = Bo(“g)a @i =<0,8;7,0 < ¢ =
< &, such that (1) every solution (1, ¢, &) of (4.1) where ¢ € €, starting on O, stays
in ¥ for t € Ty and &(b, ¢, &) e Dfor be By, ce Dy, e € €, (2) it may be written in the
form (4.37) where C(t, ¢, ¢) is a solution of (4.38) and finally (3) by (4.58)

DWy

(4.63) det <_Dc_17 (éas éb’ 8) . db (gaa éba 8)) * 0

for be B,,ce®, and ¢€C,.
A solution &(t, ¢, €) of (4.1) is-a solution of the problem («) if and only if
(4.64) w(&(a, ¢, ¢), &(b, ¢, ¢), ) = 0.

Inserting (4.62) into (4.64) we get the system of equations (denoting & the comple-
ment of I with respect to ¥”)

(4.65) w(&(a, ez + €o + 2,8), &(b, €7 + co + A 8),8) = 0

for n unknowns ¢y, ¢y and b.
Leaving equations (4.65) with indices from % unchanged we have

(4.66) wi(é(a, c7 + co + 4,¢), &b, €7 + €2 + 4,6),6) = 0.

By (4.63) and by the implicit function theorem there exist a neighborhood Ny(af, 5,)and
aset €, = <0,¢,), 0 < ¢, < ¢, such that for ¢y € N,(ay, 5,) and ¢ € €, there exists
a unique solution

(4.67) ¢y = o(cy,8), b= P(cy, &)
of (4.66) such that (denoting again ¢, = a, g(a, &) = a(a, &) + « + 1), o(a, &) € C*'1,

Bla, €) € C*, a(a, 0) = 6,(«), B, 0) = Bo(x) and g(a, &) € O,(a, 5,), la, &) € B,.
Inserting the solution (4.67) into (4.66) we get the identity

(4.68) wo&(a), {6z, ). ) = 0
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where é(t) = &(1, o(a, ¢), &) or making use of the mean value theorem and denoting

(4.69) g(a, &) = fﬁ(a’”,,c‘l(s, C(s, o(x, €), ¢)) g(n(s, C(s, o(a, ¢), €), €)) ds
we have ’
(4.68) wi(&(a), &(B(x, ). &) = ug(i(a), 1(Bo)) +
'I'Duy o6 '[Duy Dy,
wof oz ]+ o e o+
i J o [%f ﬂdl‘) + o v5(8(a). &(p(@, 2)), 2) = 0

where the meaning of the index 9 may-easily be found in each case.
Inserting the solution (4.67) into equations (4.65) with indices from & we get

(4.70) w(&(a), &B(a, €)). &) = 0
or again making use of the mean value theorem
(4.70') wo(&(a), &B(a, €)), &) = u(ii(a), #(Bol®))) +

1 [) 1
+8J[ uya_a}d9+8j I:D—UZ%:I d9 g(a, &) +
ol Decy Oe |, ol Dx, Dc |g

: ﬂ [%]sds + ov,(§a), EB(a,)).e) = 0.

By (4.68) the system (4.70") may be replaced for ¢ + 0 by the equivalent system

1 Y A A
@71) (o) =~ [wil&(a), b)) ~ Tl2) wr(&(a). &(). &)] = 0.
Letting ¢ — 0 and taking into account (I1Id), (4.60") and (4.61) we get the system

Bo(ao)
(4.72) wolag) = J W(s, o) gln(s, do(o), 0) ds + Pou — T(xo) borr = O
where Vo = v(n(a, 8o(a)), 'I(/I}o(%)’ 0o(%o)), 0), which is identical with the system
(4.52). Putting w(«, 0) = wy(«) it may be easily verified that by (II), (III) and (VI)
w(x, &) € C**! on M,(ag, 6,) x ¢,. Hence taking further into account (Vb, c, d) all
assumptions of the implicit function theorem are fulfilled. Applying this theorem we
deduce the existence of a unique solution @ = a*(¢) € C' of (4.70) such that «*(0) =
= ag, a*(e) € My(a§, 0,) for sufficiently small ¢ > 0 and that a(a*(2), &) € C', b*(¢) =
= P(a*(c), &) € C' is a solution of (4.64) such that c*(e) = @(a*(¢), &) € D,(c5, J,),
b*(¢) € B,. Thus by the above considerations &(t, €*(¢), ¢) is a solution of the problem
(o) on the interval {a, b*(¢)), which completes the proof of Theorem 4.3.

Corollary 4.7. Consider the system 4.1. Let the following assumptions be fulfilled.
(I) The same as (Illa, b, c,e) in Theorem 4.3 with the exception that a = 0,
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b = 0, w = wy(y) and the function u (representing the periodic boundary
condition) has the particular form

u(1(0), n(e)) = n(0) — n(w).

(IY) Let the variational differential system

b z= fX(';(t)) z
have exactly k — 1 linearly independent w(y)-periodic solutions for y e &.

(L) It may be shown that there exists a (k — 1) x n matrix ¥(t, «) whose rows
are formed by k — 1 linearly independent &(a)-periodic solutions of the adjoint
differential system

W = — W ()
where ae U = E[a|a + e B].
(a) Let the system

J“I’O(au)qf(s, do) g('l(s, @O(ao)), 0) ds = 0

0
have a real solution ay = o},

(b) Let age .

(c) Let 1,(0, 0(e3)) * O.

(d) Let the jacobian of the system (4) with respect to a, be nonvanishing at the
point &y = .

(IV) The same as (VI) in Theorem 4.2.

Then there exists for sufficiently small ¢ > 0 a unique w*(e)-periodic solution
&(t, c*(e), &) of (4.1) with &0, c*(e), &) = c*(e) e C", ¢} (e) = 4, w*(e) € C*, which tends
to the wy(ag)-periodic solution y(t, @o(ay)) of (4.3) as & > 0.

Remark 4.2. In Theorem 4.3 and Corollary 4.5 we may restrict ourselves to the
case that 2 < k < n. In fact, if k = 1 then the unique parameter must evidently be

equivalent to the parameter 6 which may be added to the variable t. This implies that
the whole one-parameter family exists on the same interval {a, by).

Remark 4,3. Remarks analogous to Remarks 3.1, 3.3 and 3.4 with respect to
Theorems 4.1, 4.2 and 4.3 might be stated.
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Pe3rowme
BO3MVIIEHHBIE HEJIUHENHBIE KPAEBBIE 3AJTAUU
OTTO BEMBOJIA (Otto Vejvoda), Tlpara

B nepBom maparpade npuBeeHbl T€ TEOPEMBI M3 TEOPUM JIMHEWHBIX KPaeBBIX
3a/1a4, KOTOPbIE UCMOJIb3YKOTCS B AajbHEHIIIEM.

Bo BTOpOM maparpade NpUBOASTCS TEOPEeMbl O METOZE BapHallMi MOCTOSIHHBIX
M O HESABHBIX (PYHKIHMAX. DTU JIBE TEOPEMBI SIBJISIFOTCSI OCHOBHBIMU CPEICTBAMM IS
H3y4YEHHsl CJIEIYIOLIMX BONPOCOB.

B TpeThem maparpade paccMaTpuBaeTcs kpaesas 3amaua (V):
(3.1) x = f(t, x) + eg(t, x, ¢),
(3.2) w(x,, X,, &) = u(x,, x,) + e¥(X,, X,,8) =0,

rae f, g, U, v, W — n-MepHble BEKTODBHI.

13

TMpennonaraercs, YTo pellieHns yKopoyeHHOi (,,ipeebHOI ) kpaeBoii 3anaun (vo)

(3.3) y =f(t.y),
(34) u(Ya ys) = 0

M3BECTHBI, M OTBICKMBAIOTCS TOJILKO Te pelleHus 3anauu (V), KOTOPble CTpeMsTcst
st € > 0 X HEKOTOPOMY PEILEHHIO 3aa4U (vo).

BaxHy!o poJib B laibHEIIIEM UIPAeT kpaepas 3afaya ,,B Bapuauusx‘ (1):
. D - '
(3.5) 2= 2f (i) 2,
: Dx

(36) D ) 2(a) + D (o 1) 2(6) = 0.

rae #(t) = n(t, go(y)), obiee pewenne kpaepoil 3amaun (v,), npuieM y(t, c), obuiee
petrenue cuctemst (3.3) ¢ HauaMBHBIM 3HaueHueM (2, €) = ¢ U o(Y), PewueHue cucTe-

Mbl (3.4), 3aBnc;1mee oT k mapametpos y = (Y1, 7 ..., 7). Kak uspectHO, ecau
D
x <Du Mo M) (1],,,11,,)) = n — k (y(M) o6o3navaer panr MaTpuupl M) mus
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ye®, @ obnacts B E*, To xpaesas 3anaua (L) nmeet uis y € & Touno k nuueiino
HE3aBUCHMBIX peureHuii (1 Hao6opot). Torma Takxke CONpsDKeHHAst Kpaesas 3aia-

ya (1%) _
W o _w\% (t7(1), w(a)P@) + w(b) Q@) =0

(' obo3navaer TpaHcnoHupoBaHue), rae n x n matpuubl P(y), Q(y) mis ye®
YIOBJIETBOPSIIOT COOTHOLUEHUSAM

B 3—:,(:;,,, i) P'3) + s—, (1) Q) = 0, £(P(2) : Q) = n,

HMMeeT TOYHO k JIMHEWHO He3aBUCHMBIX PELLEHMIA.

MoxHo JAOKa3aThb CJICOYOUIHUE NBE TCOPEMBI:

Teopema 3.1. ITycmb kpaeéasa 3adaua (Vo) umeem uzoauposantoe peuwienue y(t, cy)
u nycmeo kpaesas 3adaua (\) 044 1(t) = y(t, €) umeem mo.avko mpusuaibioe peuierue.
Ecau umerom mecmo ewe Hexomopwle OdaavbHeiiuiue npeonooxceHus (Hanpumep,
2aadkocmu), mo kpaeeas 3aoaua (V) 044 0OCMAMOUHO MAAbIX & UMeem O0OHO OOHO-
3Hauno onpedeaennoe pewenue E(t, €*(g), &) ¢ Hauarvnvim 3nauenuem E(a, c*(e), &) =
= c*(¢) maxoe, umo &(t, ¢*(0), 0) = n(t, cg), ¢*(0) = <. -'

Teopema 3.2. ITycmo 3adaua (v,) umeem k-napamempuueckoe cemeiicso peuleHuti
n(t, 00(7), v € &, & — omrprimoe muoxncecmso ¢ E*. ITycmv 3adaua (\) umeem 0as
ye®,, &, — omxpeimoe mHoscecmeo ¢ &, mouno k auneiiro nezasucumolx pewienuil.

H3 smoeo evimekaem, umo
Du . .
—("a"’) =n-—k.
4 (Dc b

Ilycme, ¢ wacmuocmu,

DUy» ~ o~ DUy ~ o~
"a,'l)_T( —— W, )EO’
Dec ( b 7) Dc (14> s
20e T(y) — mampuya muna k x (n — k), ¥ — ynopadouennas cucmema k urnoexcoe u3z
{1,2,...,n} = N, &P — Oonoanenue & omuocumenvto N .

MosHO moka3aTk, uTo cyuiectByer matpuua ¥(7, y) Tuma k x n Takas, 4to ee
CTPOKHU SIBJISIFOTCSL PELLCHUSIMU CONPSDKEHHOM 3anaun (A*) H YTO OHA yIOBIETBOPSET
KpaeBOMYy YCJIOBHIO

Du, .~ -~ Du- .. -
Wb, y) = —Z (e 1) — T(Y) —= (s 1) -
Dx, Dx,
Hycmo cucmema ypasnenuii
b
(3.21) f W(s, 1) g5, 105, 20(30)) » ) ds + Vour — T(yo) Vo = 0
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(e0e vy = v(n(a, 0o(vo)), 1(b, €0(20)), 0)) umeem OoOeiicmeumenvroe pewenue y, =
=75€@,.

ITycmy axobusn cucmemst (3.21) omnocumenvto y, 6 mouke y, = yo omauuen om
HYAA.

Tozoa npu HEKOMOPbIX Npeonoaodcenusx 2iaokocmu (U HeKOmMopvIX OAAbHeHuUX
meree CyujeCmgeHHblX) 0451 OOCMAMOYHO MAAbLX € CYWecmeyem 0O0HO 0OHO3HAUHO
onpedeiennoe pewenue &(t, c*(e), €), &(a, c*(g), &) = ¢*(¢) 3adauu (v) maxoe, umo
&(t, 00(¥5), 0) = (1, @o(75)), €*(0) = @o(¥5)-

Haxonen, B yeTBepTOM maparpade HCCIEAYIOTCS KpaeBble 3a/1a4M, IUisi KOTOPBIX
cuctema auddepeHuaibHbIX ypaBHEHHH aBTOHOMHA, T. €.

(4.1) x = f(x) + eg(x, ¢).
Kpaesyro 3anauy (4.1), (3.2) o6o3naunm yepes (¢) U COOTBETCTBYIOLIYIO YKOPOYEH-
HYIO 3amauy depes (o).

BBomuTCs creayrolee OCHOBHOe moHsTHe: CkakeM, 4TO Kpaesas 3amaua (o)

MMeeT CBOHCTBO (2), ecn umeeT mecto: Ecn ¢*(f) — penienne kpaesoii 3amaun (o)
Ha ompelescHHOM uHTepBaje <{a, b), To Takxe

w(g*a + 0), ¢*(b + ).6) = 0
nas ar06oro 8, ans koroporo GyHkuus @*(t + 0) UMeeT 3HauCHHE.

Jlerko BuJeTh, 4TO [JIsI KPAaeBbIX 3a7a4 CO CBOWCTBOM (9‘) HEJIb351 MOJIb30BATHCS
TeopeMaMM TpeThero maparpada, Tak Kak pelleHHs 3THX 3a7a4y oO0pa3yloT Mo MEHb-
el Mepe ogHomapaMeTpuieckue cuctemsbl. [103ToMy MBI JOJDKHBI OJHY W3 KOMIO-
HEHT HAYaJIbHOrO BEKTOpa HCKOMOTO pelleHust (UKCHpOBaTh, M IOKa3blBAETCS
HEOOXOAMMBIM BMECTO 5TOM TepeMeHHON BhIOpaTh minHy uHTepsasa <a, b(e)),
Ha KOTOPOM MUICTCS pelIeHHe,KaK HOBYIO HEU3BECTHYIO.

(OueBuano, 4TO KpaeBble 3a1a4M C NEPHOIUYECKUMU KPACBBIMH YCJIOBUSIMU HMEIOT
CBOWCTBO (2). DTH 3a/aui 3aHUMAIOT 3HAMEHATENIBHOE TOJIOKEHHE CPEd KPacBbIX
3a1a4 co coiictsom (2).)

B Teopemax cyliecTBOBaHHMs y KpPaeBbIX 3a/1a4 CO CBOMCTBOM (9’) HaJIo pa3jinyarThb
ciydaif, Korga yKkopoueHHas Kpaesas 3aznaya (o) UMeeT k-napameTprueckoe cemeii-
CTBO pelleHuit Ha uHTepBae {a, b) moctosHHOM AanHel (Teopemsr 4.1 n 4.2), u cay-
yaif, korga 3amava (v,) MMeeT CeMeiCTBO pEIeHHMii, 3aBucsLiee OT k mapaMeTpos
9 = (71, V25 ---» Vi) ¥ CyLLeCTBYIOUIEE Ha nHTepBane {a, b(y)).

B 06oux cnyyasix mojgy4uM Teopemy, aHaJloTH4Hyto Teopemam 3.2 u 3.1.

364



		webmaster@dml.cz
	2020-07-02T18:54:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




