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Чехословацкий математический журнал т. 11 (86) 1961, Прага 

THE TOPOLOGICAL STRUCTURE OF THE SET OF STABLE 
SOLUTIONS OF A DIFFERENTIAL SYSTEM 

Ivo VRKOC, Praha 

(Received March 22, 1960) 

It is shown that the set of points in which stable, equi-stable and uniformly 
stable solutions originate, may be characterised as a G^-set. 

This paper is devoted to the study of the structure of the set of stable, equi-stable 
and uniformly stable solutions of the system of differential equations 

(i) S = *M 
(in vector notation, x = [x1? x2,..., x„], ||x|| = / X х ? ) ' s u c n t n a t t n e c o m P ° " 

nents Xt(t, x) are defined in the half-space t ^ 0 and satisfy some existence condition 
(е. д., the Carathéodory conditions). The structure of this set will be studied by deter­
mining the type of the intersection of a hyperplane t = const ^ 0 with the solutions 
of (1). We will confine ourselves to the hyperplane t = 0; the results obtained for this 
case will also hold for any other case t = const ^ 0. 

The necessity of the condition, i. e. the statement "If M is the set of all points in 
which the stable, equi-stable or uniformly stable solutions of (1) originate then M is of 
type G/ ' , will be proved for systems of curves more general than that of solutions 
of ( l ) . 

Denote by S any system of curves which satisfies the following two c o n d i t i o n s : 

1. To any point x0 and real t0 there exists (at least one) vector function x(t) e S, 
defined and continuous on some interval (tl9 t2) with tl < t0 < t2, and such that it 
passes through x0 at time t0, i. e. x(t0) = x0. 

2. Let x^t) and x2(t) be curves of S, defined on intervals (tl912) and (*3, t4) respec­
tively. If there exists a real т such that хх(т) = х2{т) and t3 < x < t2, then the curve 
z(t) defined by 

z(t) = xt(t) for t1 < t ^ T , 
z(t) = x2(t) for T ^ t < t4 

also belongs to 5. 
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It is easily shown that for each curve of S there exists at least one maximal domain, 
which is necessarily an open interval (а, b), where a may be — oo and b may be + oo. 
This interval will be termed the interval of definition. If the interval of definition of 
a curve x(t) of S is (a, b) with b < + oo, then there cannot exist a finite limit lim x(t) 

t-*b-

(otherwise the curve x(t) could be prolonged through b). In other words, 
a(x) = lim sup ||x(a) — x(ß)\\ > 0 . 

t-*b- t<a<ß<b 

We will now define the basic notions: 
Definition 1. Let the interval of definition of a curve x(t) e S be (Tu T2) with 

Tx < 0 < T2, possibly Tt = — oo or T2 = + oo. Then x{t) is stable if to any в > О 
there is a ô > 0 such that if 

||x(0) -x\\<ô 

then every curve x(i) e S which has x(0) = x is then defined on <0, T2) and satisfies 

\\x(t) - x(t)\\ < s for 0 й t < T2 . 

Definition 2. Let x(i) be a curve of S with an interval of definition (Tl9 T2), T± < 
< 0 < T2. The curve x(Y) is equi-stable if to any g > О, Г0 (О | Г 0 < Т2) there exists 
a % T0) > 0 such that if 

\\x(t0) - x\\ < % T0) 
for some f0 e <0, T0), then every curve x(r) e S which has x(r0) = x is then defined on « 
<f0? ^2) a n ( i satisfies 

||x(f) - x(r)|| < ß for Г0 ^ Г < T2 . 

Definition 3. Let the interval of definition of a curve x(t) e S be (Tl5 T2), Tx < 
< 0 < T2. The curve x(t) is uniformly stable if to any e > 0 there exists a <5 > 0 such 
that if 

| | % ) ~x\\<S 
for some £0 e <0, T2), then every curve x(t) e S which has x(t0) = л: is then defined on 
<f0, T2) and satisfies 

\\x(t) - x(t)\\ < s for t0 й t < T2 . 
If we put T2 = + 00 in these definitions, we obtain the customary definitions of 

stability, equi-stability and uniform stability, i. e. definitions in which it is pre-assu-
med that the curves are defined for all t ^ 0. Since the solutions of (1) may be defined 
on a finite interval only, it seems useful to generalise the customary definitions to 
curves with bounded domains in the manner of our definitions 1, 2 and 3. The case of 
stable solutions defined for alH ^ 0 will be considered separately. 

Equi-stability is usually formulated in other terms: a curve x(t) e S is equi-stable if 
to any real s > 0, t0 ^ 0 there exists а <5(г, t0) > 0 such that if \\x(t0) — x(t0)\\ < 
< (5(e, t0), x(t) e S, then \\x(t) - x(t)\\ < s for t ^ t0. 
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However, if the curves are solutions of a differential system satisfying the Carathé-
odory c o n d i t i o n s 

1. For fixed x, Xt(t9 x) are measurable in t. 
2. For fixed t, Xt(t, x) are continuous in x. 
3. To every a > 0 there exists a Lebesgue integrable m(i) such that \Xt(t, x)\ S 

S. m(t) for \t\ g a, ||л;|| g a; then the two definitions of equi-continuity are equivalent. 
We will also need 

Definition 4. First we define T(a) for 0 ^ a g 1 and real Г. If T = oo, let T(a) = 
= a/(l - a) for 0 g a < 1, and T (1 ) = oo. If T < oo, then let T(a) = aT. Next we 
define sets M(

a
a) for 0 <; a ^ 1 and a ^ 0 or a = oo. A point x belongs to M(

a
a) if 

there exists a curve x(t) in S which satisfies the following c o n d i t i o n s : 
1. The interval of definition of x(t) is (T l9 T2), where Ti < 0 < T2, T2 ^ a, and 

the curve x(7) passes through x at time t = 0, i. e. x(0) = x. 
2. If T2

(a) > 0, let *0 be any point from <0, T(
2
a)); if T2

(a) = 0, put t0 = Oalso. To 
every sn = 2""" there exists a (^n) > 0 such that if \\x(t0) - x\\ < ô{

a
n) then any curve 

x(t)eS with x(t0) = x is defined on <f0, T2) and satisfies ||x(0 - x(t)\\ < en for 
*o й t < T2. 

Note . All curves of S which originate in the sets M(
a
a) satisfy a unicity coudition for 

increasing t. In greater detail, if x(i) e S and y(t) e 5, if x(0) = y(0) e M{*\ and if the 
intervals of definition of x(t) and y(t) are (Г*, Г*) and (T*, T^) respectively, then 
Tj - T^ and x(t) = y(t) for t e <0, Г*). 

The sets M(
a
a) have the following meaning: 

The set М^0) consists of all the points of the hyperplane t = 0 in which there origi­
nate stable curves in the sense of Definition 1. 

The set M^ consists of all the points of the hyperplane t = 0 in which there origi­
nate stable curves defined for all t ^ 0. 

The set M ^ consists of all the points of the hyperplane t = 0 in which there origi­
nate uniformly stable curves in the sense of Definition 3. 

The set M(^} consists of all the points of the hyperplane t = 0 in which there origi­
nate uniformly stable curves, defined for all t ^ 0. 

The set 
00 

-j м(*п) for 0 < a„ < 1 . lim a„ = 1 monotonously , 
П = 1 П-+00 

consists of all the points of the hyperplane t = 0 in which there originate equi-stable 
curves in the sense of Definition 2. 

The set 
oo 

~J M(^n) for 0 < a„ < 1 , lim a„ = 1 monotonously , 
n = l П-+0О 

consists of all the points of the hyperplane t = 0 in which there originate equi-stable 
curves, defined for all t ^ 0. 
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Theorem 1. The sets М̂«> with О ^ a ^ 1 and a '^ О or a = oo are of type G^. 
Note. By a well-known property of G -̂sets it immediately follows that the sets 

ПМ1 '̂̂ ^ are of type G .̂̂ ) 
n = l 

Proof. The ^-neighbourhood of x, i. e. the set of points x with \\x ~ x\\ < S, will 
be denoted by U{x, ô). To any point x e M^^^ there exists a <5̂ /'Цх) > 0 with the pro­
perty described in Definition 4, condition 2 (it was there denoted by <5̂ "̂ ), and such 
that 
(0,1) d^^]lx) < a{x) = lim sup \\x{ß) - x(v)|| , x{Ö) = x , x{t) e S 

t-^Tl- t<ß<V<f2 

if (7(x) > 0. Choose ô^^^^^) > 0 such that if 

Hh) - x{to)\\ < ôi"i{x) 

for arbitrary to e <0, T̂ ^̂ ) when f^^^^ > 0 and ô = 0 when Т^""^ = 0, then 
\\x{t) - x{t)\\ < \bfXA for Го ̂  r < f̂  . 

Theorem 1 then immediately follows from the identity 
OO 

which we proceed to prove. The inclusion 
00 

^'â'^ П I t7(x,4",lW) 
is obvious. Let x* be a point of 

(0,2) П E Ц^,4"М; 
и = 1 хеМа<«> 

we shall prove that then x* belongs to M^^^. By the existence condition the defi­
nition of S, there exists a curve x*(r) with x*(0) = x* and whose interval of definition 
is (Tf, T2*) with Tf < 0 < T2*, where Tf may be - 00 and T^ may be + 00. We must 
prove that 
(0,3) n ^ a . 
The intervals of definition (T^, T^ of curves x{t) e S with x(0) e M̂""̂  satisfy 
(0,4) T^^a, 
Since X* is in the set (0,2), there exists a point x e M '̂'̂  such that x* e C/(x, ^2"a(̂ )) 
(arbitrary и). Now, the inequality (0,3) will immediately follow from (0,4) if we prove 
the following statement: 

^) J. KisiNSKi has remarked that for ordinary stabilit}^ (/. e. for the sets AfJ^^), our Theorem 1 
follows from the theorem on the structure of zero sets of continuous functions. The uniformly 
stable and equi-stable cases cannot be reduced to this theorem. 
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Let xbe a point of M(*\ and x* a point of U(x, d2%(x)); let X*(É), x(t) be curves of S 
with x*(0) = x*, x(0) = x, and with intervals of definition (T*, T2) and (Ть T2) 
respectively; then T* — f2. 

Proof. Assume T2* > T2 (necessarily then f2 < oo). As x(f) cannot be prolonged 
through T2, we must have 

<r(x) = lim sup \\х(/л) — x(v)|| > 0 . 
*-»Г2~ t<n<\<T2 

Since x* e l/(x, à2
n)Jxf), we have ||x* — x|| < S2

n?Jx); using the construction of è2
n]a 

and (0,1), 

ll**(0 - Ш < T*ïlfà < i<K*) for ° S t < f2. 
Obviously for any ц, v with 0 < \i < v < T2 

(0,5) \\x*(») - **(v)|| > HX(M) - x(v)|| - \\x*(ti) - x(/i)|| - ||x*(v) - x(v)|| > 
> \\x(fi) — x(v)|| -.f<r(x). 

To any у, 0 < у < T2, there obviously exist /x, v, y < ^ < v < T2 such that 
|cr(x) — ||x(/i) — x(v)||| < ^o-(x). Hence and from (0,5) we conclude 

| | x * ( A t ) - x * ( v ) | | > ( l - f ) ( r ( x ) = 1
1j<T(x). 

Thus the limit lim x*(f) does not exist, and x*(r) cannot be defined for t ^ T2. This 
г-im­

proves T2* ^ f2. The second inequality T2* ^ T2 follows from condition 2 in Defi­
nition 4 (the curves x(t) mus be defined for those t }£ 0 for which x(r) is), and we 
conclude T* = T2. 

Now we pass to the proof that x* satisfies the second condition in the definition of 
M^a). Since x* is in the set (0,2), we have for every n that 

x*e £ UfaS^Xx)), 
I E M . W 

so that x* e U(x„, 5{
2
п^\х„)) for some x„ e M<?\ Take 

Let x be any point satisfying 
(0,6) \\x*(t0) - x|| < <5»(x*) = ^:l)(xa) 
for some t0, where t0 is arbitrarily chosen in <0, Г*(а)) if T*M > 0 and f0 = 0 if 
T2*(a) = 0. From (0,6) and |x*(f0) - xn(t0)\\ < ffî^XxJ there follows 

||x-x„0o)ll <SZ:1\xn). 

If we had 0 ^ 10 < f̂ *, then by Definition 4 we would also have 

K O - *»(0ll < £»+i for <o ^ t < f2>n 

with x(f) e S, x(t0) = x, and (fin, T2,„) the interval of definition of x„(t). But we have 
already proved that T* = f2t„, so that (see T<x) in Definition 4) necessarily Т2*(я) = 
= t2% Thus we have proved the following statement: 
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/ / X is any point with 
llx*(g-xii < 6W(x*) = М",Г'(^„) 

(0 ^ fo < T*^^^ if T^^"^ >Oandto^0 if T^^"^ = 0, then 

Ht) - x„{t)\\ < £n+i for tout< Г2,„ = T*. 

From ||x* - x|| < 5̂ ",+1'(̂ „) there follows \\x*{to) - x{to)\\ < 3Ч"Г\^«) and thence 

ll^*(0 - «̂(Oll < «" + 1 for fout< Т2,„ = T* . 
Using this result, we may reformulate the preceding statement in the following 
manner: 

/ / X is any point with 
\\x*(t,)-x\\<ô["i{x*), 

then 
||x*(0 - x{t)\\ < 28„^, = 8„ for tout<Ti. 

Obviously this statement implies that x* satisfies the second condition in the defi­
nition of sets M[^\ i, e. that x* e M '̂'̂  

Thus we have proved that the sets in which stable, equi-stable and uniformly 
stable solutions originate, are of type G .̂ 

The converse problem is that of constructing a differential system to a given 
G -̂set in such a manner that stable solutions originate in the given set and unstable 
ones in its complement. Before passing to this problem, we shall examine the topolo­
gical properties of such sets in the autonomous case, 

AUTONOMOUS CASE 

Let us consider the problem just mentioned for the system of differential equations 

(0,6) ^ = Х{х) 

in vector notation. Theorem 1 remains true, but, as will be seen, it is too weak. Much 
more can be said of the sets than their Baire class. First let us take the one-dimensional 
case; the situation is different for equations with or without unicity of solutions. As­
sume, then, that all solutions of 

(0Л) ^ = / W 
d̂  

satisfy unicity conditions; here/(x) is a continuous function. We will make use of the 
following two assertions: 

I. Let Xi, X2 be neighbouring zero points of/(x); then all solutions with initial 
points in the open interval (x^, X2) are uniformly stable. 
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IL Let x be the greatest, and x the smallest, zero point of Дх) . Then the solutions 
with initial points in the open interval (3c, + oo) are either all stable or all unstable; 
a similar statement holds for (— oo, x). 

Using I and II, the following theorem may be easily proved: 

Theorem 2. The set of points in which unstable solutions of (0,7) originate is com­
posed of three subsets, 

1. A closed interval <x**, + GO), where x** may he -co (/. e. all solutions are 
unstable) or it may also be + oo (i. e. this subset is void). 

2. A closed interval (— oo, x*>, with x* possibly oo or — oo. 
3. A countable subset Q of (x*, x**) such that, if x e Q, then x is not simulta­

neously a limit point of both (— oo, x) Q and (x, oo) Q. 

Note . From 3 it follows that Q is non-dense. 
The properties 1 and 2 follow from assertion II directly. From assertion I it follows 

that the points x0 not in the intervals (—oo, 3c) and <3c, oo), and in which unstable 
solutions originate, can only be points such that Дх 0 ) = 0 and that Дх) is non-zero in 
some one of (x0 — ô, x0) or (x0, x0 + ô). Now we shall proceed to p rove that the 
conditions of Theorem 2 are also suff ic ient . 

Let there be given a set M composed of three subsets according to conditions 1,2 
and 3. Define a function Д х ) thus: 

Дх) = x — x** for x ^ x** if the first subset is non-empty (/. e. for x** < oo)^ 
Дх) = x for all x if x** = — oo, 
Дх) = x — x* for x g x* if the second subset is non-empty. 

The construction of Дх) in (x*, x**) will be more involved. We assume that Q is non­
empty — otherwise it would suffice to take Дх) = Oforx* < x < x**. Now take any 
closed interval J = <£, n}, Ç й Ц (possibly £ = — oo or rç = + oo) with no limit 
points of Q in its interior and such that g(£, rj) + 0. Define Xx and X2

 ш t n e following 
manner: 

a) if £ (or rj) is a limit point of Q(£, rj) then let Àl = Ç (or X2 = rj); 
b) if £ (or rj) is not a limit point of Q(£, rj) and { e Q (or neQ) then let Xt = £ (or 

2̂ -ч)\ * 
c) if Ç (or rj) is not a limit point of Q(Ln) and { e Q (or rj e Q) then let kx be the 

least (or X2 the greatest) point of the set Q{L rj)» 

Now define Д х ) in J thus: 

/(£)=/W=/(^p) = o, /W = ° for * e J ß ' 

/(x)<0 for xefcAO, /(x)>0 for * 6 (АЬ *L±J?) _ ß , 

Дх) < 0 for x e / Ъ - ± Л , Л (this last only if ц < + oo) . 
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However, if J is a closed interval <£, */>, £йЪ such that Q(& rj) = 0, then define 
Дх) thus:/(£)=/00 = 0; 

d) if £ e ß, ц G ß then let / ( Ü - J = 0 , 

f(x) > 0 for x e U, ^±Л\ , Дх) < 0 for x G 

e) if £ G ß , /7 G ß then let Д х ) > 0 for x G (£, 77) ; 
f>I if (ë ß , i/ € ß then let / (x ) < 0 for x G (& i/) ; 

g) if £ G ß , // G ß then let / (x ) = 0 for x G (& //) . 

In all the cases a) to g) we further require that Д х ) satisfy a Lipschitz condition (with 
unity constant) and be bounded in absolute value by one. 

It now remains to decompose Ег into a system of closed intervals (possibly de­
generate) in each of which Д х ) will be defined in the manner just described. The points 
of the set ß , countable by condition 3, may be arranged into a sequence xl9 x2, ..., 
xn, . . . Taking xu there exists a maximal closed interval J1 such that x1 G J1 and that 
its interior contains no limit point of the sets ß , (— oo, x*>, <x**, x). Next take the 
first xk not in J\, and repeat the construction. Continuing in this way we obtain a se­
quence of intervals Jn. Every point of ß is in some Jn, and from condition 3 of Theo­
rem 2 it follows that none of these intervals is degenerate. Finally, for any point x0 not 
in this system of intervals nor in (— oo, x*> or <x**, + oo) there is a maximal closed 
interval J such that the intersection of its interior with the sets ß , (— oo, x*> and 
<x**, + oo) is empty (this interval is possibly degenerate). On these intervals JIV J we 
define/(x) in the manner described above; if J is degenerate, we pu t / (x ) = 0 on J. 

The function/(x) thus defined on Ex is single-valued (the intervals J„, / may have 
common end-points, but / (x) is zero there) and satisfies a Lipschitz condition. 

We will now prove that the corresponding equation (0,7) has the desired properties. 
Obviously, solutions with initial points in (— oo, x*> or <x**, H-oo) are unstable. 
Next we must show that the solutions originating in points xn e Q are also unstable. 

1. If xn is an interior points of some Jkn, then by construction of Дх) in Jn (see 
a), b), c)) the solution through xn is unstable. 

2. If xn is the right (or left) end-point of Jkn, then there are two alternatives, 
a) xn is not a limit point of QJkn\ then according to b) (or c)) the solution through xn 

is unstable; 
ß) xn is a limit point of ß Jkn. Then according to condition 3 of Theorem 2, there is 

a ô > 0 such that (x„ - ô, xn) Q = 0 (or (x„, xn + <5) ß •= 0). The interval (xn — ôy 

xn) (or (x„, xn + ô)) is thus a subset of some Jk or J. By c), d), f ) (or by b), d), e)) the 
solution through xn is unstable. 

It remains to show that all solutions with initial points x0, x0 e ß , x0 G (— oo, x*>, 
x0 G <x**, + oo), are uniformly stable. 

Iff(x0) Ф 0, then.uniform stability follows from assertion I or II and from bound-

£ + n 
>n 
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edness of/(x). However, we cannot exclude the possibility tha t / (x 0 ) = 0, x0 ф Q. By 
a) to g), from f(x) < 0 for x < x0 it would follow that x0 e Q, contradicting our as­
sumption; thus/ (x) ^ 0 for x ^ x0; similarly Д х ) g 0 for x ^ x0. Thence we con­
clude uniform stability of the solution through x0. 

Thus, in the one-dimensional autonomous case, we have succeeded in characteris­
ing the set of points in which unstable solutions originate. The following example will 
show that in the two-dimensional autonomous case topological conditions are not 
sufficient, and that the conditions which may serve to characterise the structure of sets 
of initial points of stable solutions, become very complicated. In this example use will 
be made of Theorem 3 to be proved later. 

Example . Consider the set Lof all points of E1 with irrational coordinates. The 
set L is of type Gô, so that, according to Theorem 3, there is a differential equation 

17 = x { t > X l ) 

at 
such that X(t, x3) = 0 for t ^ 0; that X(t, xx) has continuous partial derivatives of all 
orders; that solutions of this equation are defined for all t; that solutions with initial 
points in Lare uniformly stable; and that solutions originating in £ x — Lare un­
stable. Let M be the set of all points on solutions which originate in L. Also consider 
a plane E2 with coordinate axes xu x2. The set M of the plane with axes xu t may be 
mapped into E2 by the relation x2 = t. 

Next construct a system of differential equations 

(0,9) -— = X1[xli x2) , — - = X2(xl9 x2), 
at at 

such that Xu X2 are continuous, that solutions originating in M are equi-stable, and 
solutions originating in E2 — M are unstable. Since the solutions of the original 
equation have a finite first derivative, it suffices to put X1(x1, x2) = X(xu x2) and 
X2\xl9 x2) = 1. 

Now map the plane E2 into a plane E2 with axes zuz2 thus: 

Zj_ = X± + j(X2) , Z2 — X2 . 

The set M will be mapped onto a set which we shall denote by Mf. 

1. Assume that the function/has a continuous bounded first derivative. Then the 
solutions of the system (0,9) are mapped onto curves in E2 which are solutions of the 
system 

(0Д0) ^ i = X1(z1 - f(z2), z2) + f'(z2) X2{zt - f{z2), z2) = Zt(zu z2) , 
at 

——- = X2(z1 — f(z2), z2) = Z2[zu z2). 
at 
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Since f(x2) has a bounded derivative, the equi-stable solutions will be mapped into 
equistable solutions, and unstable into unstable ones. 

2. Assume t h a t / i s continuous and does not have a derivative at any point. Let us 
attempt to construct functions Zl9 Z2 which are continuous, the solutions of (0,10) 
originating in Mf are equi-stable, and the solutions originating in E2 — Mf are un­
stable. The set Mf will then be composed of uncountably many continuous curves 
zi(0» z2(0' which will not possess derivatives at any point, and which will riot inter­
sect each other. Assume that such functions Z l 5 Z2 exist. The set Mf is invariant with 
respect to the system (0,10) (take any point [z1? z2] e Mf; the solution with this 
initial point is stable, so that, by definition of equi-stability in the autonomous case, 
all [ZJL(6>), z2(0j] with 0 ^ 0 are initial points of equi-stable solutions). Thuslthe set 
Mf consists of solutions of (0,10). But Mf consists of a system of non-intersecting 
curves without derivatives at any point. Thus the solutions of (0,10) which originate 
in Mf must correspond to single points, i. e. the functions Z1? Z2 must both be zero at 
points of Mf. Now, Lis dense in El9 so that M is dense in E2 and thus Mf is dense in 
E2. Thus we conclude that the functions Z1? Z2 are identically zero in E2. On the 
other hand, the solutions with initial points in E2 — Mf are not unstable. From this 
contradiction it follows that, unless the function f(x) is sufficiently smooth, systems 
(0,10) with the desired properties cannot be constructed. 

We have reached the following s i t u a t i o n . The set Mf consists of uncountably 
many continuous curves. If these curves are sufficiently smooth, then we are able to 
construct a system (0,10); if these curves are not sufficiently smooth, then we are not 
able to construct a system (0,10). It becomes clear that the conditions which cha­
racterise sets in which the stable solutions originate, become rather complicated in the 
autonomous case, and that in any case they are not of topological character. 

Now take the non-autonomous case. In Theorem 1 we have proved that the set in 
which stable, equistable and uniformly stable solutions originate is a G^-set. In order 
to be able to state that this characterises the former sets, i. e. that these sets exhaust the 
class of G rsets, we must, to any G^-set M, construct a differential system (l) such that 
the stable (or equi-stable, or uniformly stable) solutions originate in M, and that the 
unstable (non-equi-stable, non uniformly stable, respectively) solutions originate in 
E — M: We may also require that the notions of stability (equi-stability, uniform 
stability, respectively) correspond to solutions defined for all? ^ 0 (f. e. that T2 = oo 
in Definitions 1, 2, 3), and only resort to Definitions 1, 2, 3 if we do not succeed to 
construct such a system. In fact the differential system to be constructed will have its 
solutions defined for all t ^ 0. The three different cases for the three types of stability 
will be lumped into one by constructing, for a given G^-set M, a differential system 
such that uniformly stable solutions originate in M and unstable solutions originate in 
the complement of M. The proof of Theorem 3 becomes extremely complicated in the 
three-dimensional case, and therefore will be performed for two dimensions only; the 
fundamental idea of the proof applies to the poly-dimensional case also. The system to 
be constructed will have one component identically zero; thus Theorem 3 is also easily 
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formulated in the one-dimensional case, which, therefore, does not differ fundamen­
tally from that in many dimensions. 

Theorem 3. Let M с E2 be a Gô-set. Then there exists a differential equation (1) 
{a vector equation with two components) such that every solution with initial point 
x E M is uniformly stable, and every solution with initial point x e M is unstable. 
Furthermore, the function X(t, x) has continuous partial derivatives of all orders. 

First, an outline of the proof. Let M be the given G^-set in the plane E2 with axes 
x, y. We may assume it is the intersection of a decreasing sequence of open sets G* in 
E2. First, in E3 (z. e. in three-dimensional space with coordinates t, x, y) we construct 
a system of two differential equations all of whose solutions are unstable; this step is 
prepared in Lemma 2. Next, in G* — this is the set of points on solutions with initial 
points in G* — we leave a countable set of these solutions (this will serve to prove 
unstability of certain solutions), cancel the rest, and construct a new differential 
system in E3. This new system will have the following properties: 

1. In the complement of G* it coincides with the original system. 
2. All the previously selected solutions remain solutions of the new system. 
3. All the solutions of the new system are unstable again, but do not diverge very 

much; more precisely, there is a previously given a > 0 such that, to any solution 
x*(t) with x*(0) e G\ there is a Ô > 0 with sup \\x*(t) - x(t)\\ < a whenever ||x*(0) -

— x(0)\\ < ô. This is the object of lemma 11. The construction is repeated for the sets 
00 

G*, ..., G*, . . . From lim an = 0 it will follow that solutions originating in M = f\ G* 
n-> oo n= 1 

are uniformly stable. As for the remaining solutions x(t), their unstability follow 
directly from the construction if x(0) is an interior point of some G* — G*+1. If 
x G G* — G*+ ! but is not an interior point, then to prove unstability, use must be 
made of the curves which had been left unchanged at each step. 

It is rather difficult to construct a differential system with the desired properties to 
any given region G*, since its frontier may be very complicated. To this end, in Lemma 
8 a system of auxiliary surfaces is introduced, which decomposes G* into countably 
many tubes with simple boundaries andjn which the subsequent construction be­
comes simpler. Another system of auxiliary surfaces forces the solutions not to diverge 
too far apart (Lemma 9). Finally, using Lemma 10, unstable solutions are con­
structed in these tubes. 

As will be noticed, the system of differential equations 

- Ï = X(t, x,y), ^ = Y(t, x, y) 
at at 

to be constructed for Theorem 3 will have Y(t, x, y) = 0, i. e. the solutions move only 
in the direction of the x-axis. Obviously the proof of Theorem 3 is composed of 
a series of lemmas. 
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Before formulating Lemmas 1 and 2, let us consider a special case, in which the 
set M consists of a single point — e. g. the origin. After a suitable transformation, the 
solution passing through the origin is x = 0. This solution is to be stable, so that 
||x(f)|| < г for t ^ 0 if ||x(0)|| < ô; however, all solutions with x(0) Ф 0 must be 
unstable. Thus we must be able to construct a differential system (1), whose solutions 
with initial points in \è < \\x\\ < ô are unstable and bounded: \\x(t)\\ < s for t ^ 0. 
First we will take n = 1 and, using Lemmas 1 and 2, construct a differential equation 
all of whose solutions are bounded and unstable. The following definition will be 
useful. 

Definition 5. Let d > 0; let oc(t), ß(t) be functions defined on some interval <70, oo) 
(different for different pairs of functions) and with continuous derivatives of all orders. 
We will say that oc(t), ß(t) form a regular couple with respect to d if, for some n > 0, 
a(t) + rj < ß(t) for t E <70, oo) and if there is a monotone sequence tn -> oo such that 
«('») + à + n < ß(tn). 

Unless explicitly remarked, all functions will be assumed to possess derivatives of 
all orders. 

Lemma 1. Assume that Ç00(t), Ç01(t) are defined for t ^ 0 and form a regular 
couple with respect to d. Then there exists a system of functions Çl'\t), i = 0, 1, 2, ..., 
0 й к й 2* such that: 

£'•*(*), 0 й к й 21 are defined for t ^ i ; 

for t ;> i} C'2k(t) coincides with ^~l,\t) ; 

<T' (0* Çl'k+1(t) form a regular couple with respect to d ; 

to every curve x = ^i,2k+x(t) there corresponds a point with coordinates x = ai,2k+1, 
t = 0 which will be termed the fundamental point of the curve x = Çi,2k+1(t); (to 
clarify the situation we describe the relation between these points and curves; in 
the subsequent construction, the functions £i,2/c+1(Y) will be defined for all t ^ 0, and 
the points x = alf2k+1, t = 0 will be the initial points of these extended curves 
x = ^2k+1(t)); 

the a1' c l with i ^ 1, fe ^ 0 are all the dyadic rationals in the open interval 
(£°(0), £ » ) ; 

set al,2k = al~1,k; then to every curve x = £l'k(f) there corresponds a point 
x = al,k, t = 0, and to the curves Çl'2k(t), ^i~1,\t) identical for t ^ i, there corres­
ponds the same point; the last property may then be formulated thus: al,k < al'k+1, 
i. e. the points al,k are ordered similarly to the curves Çl'k(t). 

The p r o o f of this lemma is quite obvious. For instance, the function c^11(̂ ) is 
constructed thus: let 

e\tn) + d + b< e\tn) 
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for 0 й t0 < tt < . . . < tn < . . . , lim tn = oo. We choose points iXx(t„)' f o r e v e n n 

П-КХ) 

let in(t„) satisfy 

Г ( 0 + b' < {"(*„), e\tn) + d + b'< e\tn), 
where V is sufficiently small positive; for n odd let £u(f„) satisfy 

^oo (g + d + v < r W f {n(g + b , < { o i ( g _ 

For other values of * ^ 1 choose Еп(*) in such a manner that it has continuous deri­
vatives of all orders and that 

t00® + v < t11®, e\t) + ъ' < e\t). 
Since £10(r) = £00(*) and £12(r) = £ol(0> the functions £10(», £"(*) and the functions 
£ n ( / ) , £12(f) form regular couples with respect to d. The functions Ç2i(t), Ç23(t) are 
constructed in the strips between Ç10(t), ^11(t) and £ n ( ï ) , Ç12(t) respectively, in the 
same manner. The set of points x = al,2k+1, t = 0 with the desired properties is then 
also constructed easily. 

The point of the foregoing construction is the fo l lowing : if a function X*(t, {) can 
be found, with continuous partials, defined in the region t ^ 0, Ç00(t) й £ й £О1(0 
and such that Çl,\t) are solutions of the differential equation 

(U) f = x*{tA), 
at 

and if on extending the solutions £***(*) over the interval 0 :g t S i we have £1>2к+ x(o) = 
= aU2k+\ then any two solutions Çx(t), Ç2(t) with <f °(0) й fi(0) < {2(0) й £01(0) 
will form a regular couple with respect to d. Thus all solutions will be unstable. Such 
a function X*(t, 0 will be constructed in the following lemma, for the case of two 
equations. 

Lemma 2. There exists a function X(0\t, x, y) defined in the half-space t ^ 0, with 
continuous partials of all orders and such that all solutions of the system 

(2Д) £ = x<°V, *,;>), ^ = o 
at At 

are bounded and unstable. 

Proof. First construct the function X*(f, x) considered above. In Lemma 1 put 
<f°(f) = 0 and £°\i) = 1 for t ^ 0. This is a couple regular with respect to d = } . 
According to Lemma 1, there exist a system of functions £*'*(*) of the properties 
described there. In the regions t ^ 0, x g 0 and t ^ 0, * ^ 1 and * g 0 put 
**(*, x) = 0. 

The construction of X*(t, x) in the half-strip 0 ^ x ^ 1, U 0 will proceed by 
induction — the w-th step will consist in the construction in the rectangle 0 ^ x ^ l , 
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n " <£ tu n + 1. We will require that the curves £'•*(*) be solutions of the differential 
equation 

(2,2) ^ = * * M 

and that the initial point of solution £i,k(t) (prolongable over all t ^ 0) be the point 
x = au\ 

F i r s t s t e p : before constructing X*(t, x) in the first rectangle, we must define the 
function ^11(t) (heterofore defined for t ^ 1) on the interval <0,1>. As already stated, 
we require that: 

1. ^ ( o ) = a11; 2. ^\t) possess derivatives of all orders; 3. £00(r) < ^\i) < 

< £01/л 4. d*gn(0) = 0 for a l l fc > L 
V ; dr* 

On the curve ^11(t), the function X*(£, x) is defined in such a manner that this curve is 
a solution of (2,2). The function X*(t, x) may then be extended over 0 S t £ 1, 
0 <; x ^ 1 with continuous partials of all orders, using general theorems (see [1]). 

I n d u c t i o n . Assume that X*(r, x) is already defined in the first n rectangles, i. e. on 
the region O ^ f r g n , O r g x g l l (with continuous partials of all orders), and on the 
curves x = Çl,k(t), i S п. Further assume that the functions Çi,2k+1(t) with i ^ « are 
defined for all t ^ 0, have derivatives of all orders, satisfy Çi,2k+1(0) = ai,2k+1, and 
<T'2fc+1(0 is a solution of (2,2) for 0 й t й п. 

First we must extend the domain of definition of £w+1»2*+i^ t o а ц ^ ;> Q. In the 
interval <0, n> identify £«+*.2*+i^ w i t h t h a t solution of (2,2) which has initial point 
x = aw+1'2fc+1

5 r = 0. In the interval <n, w + 1> we extend the function f» + i*2*+i^ 
in such a manner that it has derivatives of all orders and satisfies 

^\t)< <Г + 1'2*+1(0< C'k+i(t). 
Such an extension is possible (see [ l ] ) . On the curves <T+1'2k+1(f) define X*(t, x) so 
that <j«+1.2*+i(r) a r e solutions of (2,2). Finally X*(t9x) is extended to the region 
n й t й %+ 1 , 0 ^ x ^ 1 in such manner that it possesses partials of all orders. 

We have thus defined a function X*(t, x) with partials of all orders, and with zero 
values in the regions t ^ 0, x <; 0 and t ^ 0, x ^ 1 and t <L 0. In the note following 
Lemma 1 it was remarked that all solutions £(t) with 0 ^ £(0) <; 1 are unstable. 
Finally, let [x] denote the integral part of a real number x. In the half-space t ^ 0 
define a function X(0)(f, x, j ) by 

X(0)(f, x, у) = *•(*, x - И ) , 
This proves Lemma 2. 

The system (2,1) has the following property: 

Definition 6. Let X(t, x, y) be defined in the half-space t ^ 0. We will say that the 
system of differential equations 
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(2,2) ^ = X(t,x,y), ^ = 0 
at at 

has property (A) in an open set G с E2, if for any point [x0, y0] and any open set Gv 

with [x0, j ; 0 ] e G1 cz G there holds 

inf g([t, x(t), y0], [т, X, y~]) > 0 

where x = x(t), у = y0, x(0) — x0 is a solution of (2,2), [т, x, j ] is any point on 

/ï(Gi)2) and £ is the ordinary Euclidean distance function. 

No te . The system (2,1) has property (A) in E2. The function X(0\t, x, y) is inde­
pendent of >', so that the course of integral curves does not depend on the y-coordinate 
of the initial point. For any pair of different integral curves x(f), x*(f) with equal 
^-coordinates of initial points, there cannot be 

lim inf \x(t) - x*(t)\ = 0 
t-*ao 

since they form a regular couple with respect to d. 

Before passing to the formulation and proof of Lemma 8, some auxiliary lemmas are 
necessary. The following one is concerned with decomposition of an open set into 
a system of rectangles with a special property. 

Lemma 3. Any open set G in E2 can be decomposed into a countable system of 
rectangles in such a manner that their interiors are disjoint, the limit points of the 
system are precisely the boundary points of G, and the x-coordinates of their vertices 
are dyadic rationals. 

C o n s t r u c t i o n . For positive integral n let Gn consists of those points of G whose 
distance from the boundary of G is greater than 1/2". For integers n, m let Kx

nm 

be the rectangle with vertices [n, m], [rc, m + 1], \n + 1, m], [n + 1, m + 1]. Let К 1 

be the system of those Kl m whose closure is in Gx. More generally, let Kl
n m be the 

rectangle with vertices 

n 
l-\ ' 

m 
' 

n 
. 2 ' " 1 ' 

m + 1 
2'-1 _ ' 

n + 1 m 
2'-!_ ' 

n + 1 m H- 1*1 
2'"1 J 

and let Kl consist of those rectangles Kl
nm whose closures are in Gb and which are not 

subsets of any rectangles from Kl, ...,Kl~l. Finally, let the system К be the union of 
the systems X1, X2, . . . , £ " , . . . 

The following notation will be useful. 

Definition 7. 0(xu x2, yl9 y2) (xx ^ x2, y± < y2) denotes the rectangle with 
vertices [xl9 yx\ [xu y2\ [x2, y j , [x2, y2\ The segment joining points [x1? y j , 
[*i> У Л (points [x2, j i ] , [x2, j72]) will be termed the front (end, respectively) x-edge 

2) h(G) is the boundary of G. The set /z(G) consists of points on solutions of (2,2) with initial 
points on h(G). 
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of the rectangle O. Similarly, the segment joining points \xu y^]9 [x2, j / x ] (points 
\_xu Уг\> [*2> У2]) w m 1 be termed the front (end) y-edge of O. 

N o t e t o L e m m a 3 . In each rectangle (square) of the system K9 consider the points 
which lie on one third and two thirds of each y-edge. Denote the set of these points 
by Z. Let us state explicitly some i m p o r t a n t p r o p e r t i e s of this set. 

1. No point of Z lies on an x-edge of any rectangle of the system K. 
2. Every point on the boundary of G is the limit point of pairs of points from Z 

with equal ^-coordinates and such that their distance converges to zero. 
3. No point of G is a limit point of Z. 
Not to have to repeat this list, we formulate the following definition. 

Definition 8. A set Z will be said to have property (B) in G with respect to the 
system K9 if К is a system of rectangles which satisfies, in G, the conditions of Lemma 
3, if the conditions 2. and 3. just listed are satisfied, and if the x-coordinates of points 
of Z are not dyadic rationals (thence follows condition 1). 

For the purposes of lemmas to follow, we will use the following notation. Let there 
be given two functions xx(t), x2(t) defined for alH ^ 0 and such that xx(0) = x2(0), 
and also a pair of real numbers yx < y2. The surface x(t9 y), as a function of t9 y, de­
fined in the set t ^ 0 yt S У й У г by x{t9 у) = x^t) will be denoted by 
P(x1(t)9 yl9 у2). The surface x(t9 y)9 defined in the set t *z 0, y1 ^ y <j y2 by 

x(t9y) = x1(t)+X2®-XM(y-y1) 
У2 - У± 

will be called of type R and denoted by R^x^t), x2(t)9 yl9 y2). The curves \t9 x1(r), y^\9 

\t9 x2(t)9 у2] for t ^ 0, will be termed boundary curves (front, end). Note that 
x(t9 y) has continuous partials of all orders. Let Rfx^t), x2(t)9 yl9 y2) be arbitrary. 
Consider the following two surfaces. Set xjt) = min (x^t), x2(t)), xM(t) = 
= max (x^t), x2(t))9 and denote the surfaces P(xm(t), yl9 y2)9 P(xM(r), yl9 y2) by 
P^P), P2(P) respectively. If we move in the direction of the x-axis, then the surface R 
lies between the surfaces P1(R)9 P2(R) and these latter surfaces act as a type of buffer. 
Note however, that Pl(R), P2(R) do not necessarily possess partial derivatives. 

If S9 N are arbitrary sets in E3, then the distance between S and N is defined by 

Q(S9 N) = infQ([tl9 xl9 j / J , [t29 x29 y2]) 

with [tu xl9 yt~] an arbitrary point of S9 and \tl9 x2, y2] an arbitrary point of N; 
g is the usual Euclidean distance-function. 

Finally, the segment V(x09 yl9 y2) is the set of points [0, x0, y\ with уг й У й У2\ 
the points [0, х0, j ^ ] and [0, х0, у2~\ are the end points of the segment V(x0, yl9 y2)-
The fundamental segment of a surface P(x1(t)9 yl9 y2) or R(x1(t)9 x2(t)9 У и У'2) i s t n e 

segment V(x1(p)9 yl9 y2) (recall xx(0) = x2(0)). 
We may now formulate the following lemma. 

277 



Lemma 4. Let P(x1(t), yu y2) be a surface and N a set such that Q(P(xl(t), yu y2), 
N) > 0. Then there exists a Aa > 0 such that for the surface P(xt(t), yt - Aa, 
y2 + Aa) there again holds Q(P(xl(t)9 yt ~ Aa, y2 + Aa), N) > 0. 

The p r o o f is obvious. 
Now we shall proceed to the construction of the auxiliary surfaces. For the sake of 

clarity the construction is divided into several lemmas. 

Lemma 5. A s s u m p t i o n s : Let there be given a system of differential equations 

(54) ^ = X(t,x,y), ^ = 0 
dt dt 

an open set G с Е2 and a finite number of segments 

Vt = V(xl9yl9y2)9 ..., Vn = V(xn9yl9y2), 

x* й xx < . . . < xn й *** , Vi <= G,. . . , Vn с G . 

Let there be given surfaces 

P\ = P(xu(t\ У и У il ...> Pi = % ë У и Уг) , 

*ki(fy = хк, xkl(t) й xk2(t), i = 1, 2 

(xfei(f) need not possess derivatives) with the following properties: 

(5.2) 6(Pj,fc(G))> 0 , fc= l , . . . , n , i = l , 2 , 3 ) 

(5.3) e ( P * , P { ) > 0 , k + / , l ^ f c ^ n , l ^ l ^ n , / , j = l , 2 . 

Lef there be given a segment Vn+1 = V(a, yu y2), x* t^ & ^ ***, Vn+i c G diffe­
rent from all the preceding segments, and such that for the surface P(o(t)9 yl9 y2) 
there holds 

(5.4) Q(P«t\ У и Уг), Щ) > 0 

where х = a(f), у = y(y t + y2) is a solution of (5,1) with initial point x = a9 

У = \{У1 + У2)-
C o n c l u s i o n . There exists a surface P(x(t)9 yl9 y2) originating in the segment 

Vn + 1 such that x(t) has derivatives of all orders and 

(5.5) Q(P(x(t),yuy2),hiG))>09 

(5.6) Q(P(x(t)9 ylt y2), Pj) > 0 

for к = 1 , . . . , n, i = 1,2. 

Proof. If the surface P(o(t)9 yi9 y2) satisfies, the inequality (5,6), then it suffices 

3 ) h(G) is the boundary of G, h(G) is the set of points of solutions of (2,2) with initial points 
in h(G). 
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to put x(t) = <r(t). However, P((j(t), yu y2) may have zero distance from some of the 
surfaces Pl

k. In that case, put 

у й min Q(PI Р{) , к Ф / , 1 g к g n , 1 ^ / g и , i,j = 1,2, 

7 й min е(Р*, Ä(gj), к = 1,...,п, î = l , 2 , 

У ^ ( П , 7 и + 1 ) , fc = l , . . . , n . 

Using (5,2), (5,3) and the fact that Vn+1 does not coincide with any of the Vk 

(k = 1, ..., n), we may choose у > 0. Now take the least Г such that, for some k, i, 

(5,7) Г,а(Г),^],[т,хм(П^" 
where the point [T, xfe/(T), ^{j^ + j 2 ) ] belongs to the surface Pl

k = P(xki(i), yu' y2). 
Using the properties of y, there is at most one such pair of indices i, k. 

Assume i = 2 (the case i = 1 has a similar proof). In [1] there is perfomed the 
construction of a function x*(t) with continuous derivatives of all orders and such that 
for t > 0 

xkf2(t) + \y < x*(t) < xkt2(t) + fy 

(xka(t) need not be differentiable). In the same paper it is shown that there exists 
a function x(t) and a S > 0 such that x(^) has continuous derivatives of all orders and 

x(t) = cr(r) for 0 = г g T, x(f) = x*(t) for t = T+ 3, 

* м ( 0 + •£? < *(') < *ад(0 + Ь for Г < t < T + 5 . 

We will now demonstrate (5,6) for the surface P(x(t), yu y2). First take / = k, i = 2; 
thus we shall prove 

^ ( P f c
2 , P ( x ( 0 , ^ , y 2 ) ) > O , 

where к is that index for which (5,7) holds. According to (5,7), 

x(t) = a(t) ^ xki2{i) + \y for 0 = t = T 
and 

This implies the inequality to be proved. Since 

x*,i(0 ^ Xfc,2(0 < xkt2(t) + »7 < x(f) , 

the inequality (5,6) also holds for / = k, i = 1. 
For the remaining indices / ф /с, г = 1, 2, the inequality (5,6) is proved thus: by 

(5,7), in 0 = t й Г there holds 

l*w(0 - 401 ä ir > / * fc, 1 ^ / ^ n, Î = 1,2, 

and for * ^ Г there holds \xk>2(t) - x(t)\ < fy. From this and д(Р(
к, P]) > y, l 'ф fe 

there easily follows (5,6). 
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Now let us prove (5,5). In the set 0 й t й T9 yt S У й Уг, the surface P(x(t), yi9 y2) 
coincides with P(<r(t), yl9 yi). Using (5,4), the part of P[x[t)9 yl9 y2) which lies 
above 0 <£ t <£ T, ух = у = y2 has a positive distance from h(G). In the set t ^ T 
Ух й У й У2 there holds xk>2[t) + \y < x(t) < xka[t) + fy, so that as 

Q(PlHG)) = y , 

this part of the surface also has a positive distance from h[G). Thus both parts of the 
surface have a positive distance from h[G), i. e. 

g[P[x[t)9 yi9 y2), Щ) > 0 . 

This proves Lemma 5. 
In the following Lemma 6 we will consider a more complicated case. 

Lemma 6. A s s u m p t i o n s : Let there he given,a differential system (5,1), an open 
set G a E2, a rectangle 0(x*, x**, y0, yt)9 and three groups of segments: 

1. segments Vx = V(xl9 y0, yx), I = 1 , . . . , и, x* g xz ^ x**, j ; 0 < y1? 7, с G 
[disjoint and contained in the rectangle 0(x*, x**, j / 0 , yx)), 

2. segments Vq = F(xe, y_g, .у0), 4 = n + 1, ..., w, x* = xq й ***, )>-e й У о, 
Vq с G [disjoint), 

3. segments Vs = V(xs, yl9 ys), s = m + 1, ..., г, x* ^ xs ^ x**, j ^ ^ ys, Fs с G 
[disjoint). 

In these segments there originate surfaces Rl9 ..., Rr, which satisfy 

(6,1) Q[Pl[Rk), HG)) > 0 for к = 1 , . . . , r, i = 1, 2 . 

Тйе nex£ assumption will be denoted by (6,2): 

6,2) J / f/ze segments Vl9 Vq [I = 1, ..., n, <? = rc + 1, ..., m) or ffte segments 

Vl9 Vs [I = 1 , . . . , w, 5 = m + 1, ..., r) have a common end point, then the 

surfaces Rh Rq or Rt9 Rs respectively, have a common boundary curve. 

If the segments Vk, Vh [k = 1 , . . . , r9 h = 1 , . . . , r) are disjoint, then 

(6.3) <?И**), ^ ) ) ' > 0 , U = l , 2 . 

Let there be given a segment Vr+l = V[a9 y0, yt)9 Vr+1 с G, different from all the 
segments Vt [1=1,..., n) [it may have a common end point with the segments Vq9 

q = n + 1, ...9m, Vs, s = m + 1, ..., r) such that 

(6.4) Q[P[a[t)9yO9yi)9ï(G))>0 

where x = a[t), y = \[y0 + yi) is a solution of (5,1) with initial point x = a9 

У = \{Уо + Ух\ 
C o n c l u s i o n . The segment K+i can be decomposed into five segments 

Vr
(e

+\[a,rje9rje+1), y0 = 4iuri2U . . . йП t = yl9 
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in which there originate surfaces R^+i with 

(6.5) Q(P'(R%i), Л Й ) > 0 , e = 1 , . . . , 5 , i = 1, 2 . 

(6.6) J / r/ie segment Vr+l has a common front point (or rear point) with some 
segment Vk, к = 1 , . . . , r, then the surface JR^VI ( o r ^ i ï i » respectively) has 
a common boundary curve with the surface Rk originating in the segment 

vk. 
If the segment Vr+i is disjoint with Vk, к — 1 , . . . , r, £/геи 

(6.7) e(P'(K<e
+\), P W ) > 0 /o r fc = 1, ..., r, e = 1, . . . , 5, i, ; = 1, 2. 

(6.8) TTie surfaces Rr+U l^+V* have common boundary curves . 

Let us make some remarks before passing to the proof of Lemma 6. The relation of 
the rectangle 0(x*, x**, y0, yt) to the segments Vk is the fo l lowing : the segments of 
the first group lie in the rectangle, the segments of the second and third groups lie 
o u t s i d e this rectangle and intersect it in a single point only. The significance of this 
rectangle, unimportant for the proof of Lemma 6, will appear in Lemma 8. In order 
to prevent possible misunderstanding, we emphasise that the inclusion 0(x*, x**, 
У or, У\) c G need not hold, and that the points xk (k = 1, ..., r) need not be ordered 
by magnitude. We do not even exclude the case that to some xt (1 ^ / ^ n) there is 
a q or 5 (n + 1 :g q ^ m, m + 1 ^ 5 ^ r) such that xf = x^ or xt = xs. 

P roo f of Lemma 6. Using Lemma 5, we construct a surface P(x(r), j ; 0 , ух) which 
has 

(6.9) ^ P ( x ( 0 ^ O J J i ) ? 4 ^ ) ) > O 5 

(6.10) Q(P(x(t), y0, У1), PXRt)) > 0 , I = 1 , . . . , n . 

This surface P(x(r), y0, yx) may, however, intersect the surfaces Rq or Rs (q = n + 1, 
..., m, s = m + 1, ..., r) in the sense that their boundary curves intersect. In such 
a case we must change the boundaries of the surface P(x(t), y0, >?i). 

Assume, then, that for some q, n + 1 ^ q ^ m, 

e(p(x(f), уо: Ух), ̂ W ) = о 
(the case of an 5, m + 1 ^ 5 ^ r, is similar). 

According to Lemma 4, to every surface 

P\Rq) = P (^ (0 , y . e , Уо), <Z = n + 1, . . . , m, i = 1, 2 

there exists an <xq > 0 such that 

в ( Р ( Ф ) , У-, - 4 Уо + otl
q\ Ä(öj) > 0 , e = и + 1, . . . , m, i = 1, 2 

(^(t) is the minimum, and <^(f) the maximum, of the functions that describe the boun­
dary curves of the surface Rq; see Definition 4). 

Take a > 0 with a < ocl
q9 oc < ~(y1 - y0). Define surfaces P^fe, к = 1 , . . . , m, thus: 

If the segment F(x/, j 0 , Уо + а ) Д = ' = n n a s n o common end point with any of the 
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segments Vq, q = n + 1, . . . , m then let P[tl be that part of P ' ( Ä , ) which originates in 
the segments 7(x„ Уо. Jo + <*)• If however F(xz, y0> Jo + « ) Л - ' ^ w ' h a S a C O m" 
mon end point with some Vq9 n + 1 й Я. й m, then let Pl

aJ = P(t]\(t)9 y0, y0 + a), 
where 

n\(t) = min (#(*). tf(0) » *?(0 = max (#(*), €f
2(0) • 

For q = и + 1 , . . . , m, if Fe has no common end point with any of the segments F,, 
1 ^ / g n, then set 

P ^ = Р(ф), у0, Уо + сс). 
According to (6,1), 

(6.11) e(Pj>k, Ä(G)) > 0 , l ^ H m , i = l , 2 5 

and according to (6,3), 

(6.12) Q(Plk, PJ
ath) > 0 for fc * h, 1 ^ fc й m, 1 ^ ft й m, ij = 1, 2 . 

There are now two cases. 
a) The segment Vr+i = F(cr, j 0 , j ^ ) does no t i n t e r sec t any Vq, q = n + 1, 

..., m. Then, using Lemma 5, there exists a surface P(x(t), y0, y0 + a) with 

(6ДЗ) Q(P(x(t), y0, Уо + *\ HG)) > 0 , 

(6,14) Q(P{x(t), уо, Уо + a), Pi,fc) > 0 , 1 й к й m, i = 1, 2 . 

The segments Vn of Lemma 5 are those of the segments V(xh y0, y0 + a), / = 1, „ v n 
and V(xq9 y0, Уо + oc), q = n + 1, ..., m that are not in the first group. According 
to (6,11), (6,12) and (6,4) respectively, the inequalities (5,2), (5,3) and (5,4) subsist. 

b) The segment Vr+1 i n t e r s e c t s some Vq9 n + 1 й Q й m, in which there origi­
nates the surface Rq. If the boundary curves of Rq are l\(t\ ^q(t), we may write 

Set x(t) = k\(t). Then the surface P(x(t), y0, y0 + a) will satisfy (6,13) and (6,14). 
Indeed, if there were 

Я(Р(Ш Уо, Уо + а), Щ) = 0 , 
then we would also have 

e W Ä O . Уо, Уо + «), 4G)) = <?(il9, © ) = 0 
for some i, where 

eq(t) = min {X\{t), Xlit)) , ф) = max {l\(i), X2
q(t)) ; 

but, by construction of a, this is impossible. Similarly for (6,14): if there were 

б № ( ' ) > Уо, Уо + a), Pi,k) = О 
for some к, 1 <; к й m, к + q, and i = 1,2, then we would also have 

Q(P{,9, PU) = о 

for some j , in contradiction with (6,12). 
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Now set Y\y = y0, Чг = У о + j a , */з = Уо + fa, rç4 = )>i> а construct the surfaces 

Я^Л = P{x(t), Пи Пг)> * î? i = Я(*(0> *(')> *Ь Чз) > Я<3Д = ^(*(0> Чз, 44) -
By construction of jR^+\ (see b)), (6,6) is evidently satisfied, and the surfaces R(

r
e+l9 

ÄJ++
1

1) have a common boundary curve. Using (6,9) and (6,13), we see that (6,5) is 
satisfied. If 

Q(P(x(t), Уо, Ух), P\RS)) > 0 for s = m + 1, . . . , r9 i = 1, 2 , 
then (6,7) for e = 3 is a consequence of (6,10). The inequality (6,7) for e — 2 is a con­
sequence of (6,10) and the fact that the domains of definition of the surfaces Р1(Я^+\) 
is t ^ 0, n2 S У S *b a n d those of the surfaces Pl(Rq) or Pl(Rs) are £ ^ 0, y_q <̂  
:g 3; ^ y0 < n2 and £ ^ 0, n3 < yl ^ y ^ ys respectively. The inequality (6,7) for 
e = 1 is a consequence of (6,14). If there were Q(P(x(t), y0, yx)9 Pl(Rs)) = 0 for some 5, 
s = m + 1, ..., r, i = 1,2, then it would be necessary to change the rear boundary of 
P(x(t)9 y0, yt) in a similar manner. 

In the following lemma we shall weaken the assumption (6,4). 

Lemma 7. Make all the assumptions of Lemma 6 except that (6,4) is replaced by 

(7.1) V((F, Уо, yx)czG. 
Assume that the system (5Д) has property (A) in the open set G. Then the conclusions 
of Lemma 6 hold, with the following changes: The segment V{a9 y0, y±) can be 
decomposed into a finite system of subsegments Fr

(+\, ..., V}+\9 in which there origi­
nate surfaces R^+i, ..., R(

r
P+i with the properties described in Lemma 6. (There their 

number was reduced to five.) 
Proof. Using property (A), the segment V(cr9y09yl) may be decomposed into 

a finite set of segments 
V{o,nl9n2)9..., V(o,na9na+1)9 y0 = rjl < rj2 < ... < na < na+1 = yt 

in such a manner that the surfaces P(ak(t), rjk9 nk+i) (where x = ak(t)9 у = \{г]к + 
-f- пк+1) is a solution of (5,1) with initial point x = а, у = ~(пк + пк+1)) satisfy 

(7.2) Q(P(*k(t)9 Пи, Пи+1), * Й ) > 0 . 
Consider, in turn, the rectangles 0(x*, x**, rjl9 n2)9 0(x*, x**, ц29 п3), ..., 
0(x*9 x**, na, na+i). By (7,2), in each of them (6,4) holds, and the construction of 
Lemma 6 may be performed. 

Before formulating Lemma 8, another definition will be necessary. 

Definition 9. A surface (a function x(t9 y) in variables t9 y) defined in the half-strip 
1 ^ 0, Ух ^ У S У 2, will be termed of type R+ if there exist a reaH0 ^ 0 and a funct­
ion oc(t) > 0 with lim a(f) = 0, with derivatives of all orders, and such that for t ^ t0 

f-*oo 

there holds a(f) < ~[y2 — yx) and 
x(t9 y) = X(t, y) for yt + oc(t) S У й У i - oc(t), 

min (xi(r), X(t9 y)) ^ x(t9 у) й max (хх(г), X(t, y)) for yx й У й Ух + а ( 0 » 
min (x2(t), A(f, y)) ^ x(f, у) й max (x2(f), A(f, у)) for y2 - a(f) ^ у й У2 , 
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where 

K*> У) = *i(0 + ~ Х (У ~ Ух) » *i(0 = *(*> -Vi) > ^2(0 = *(*, J>2) , 

with x(t, у) possessing partials of all orders in t ^ 0, y± ^ у ^ y2, and such that 

^ Z ) = 0 f o r f c è l , y = j ; , i = = l 5 2 . 

If several such surfaces are considered simultaneously, we will denote them by 

N o t e to Def in i t i on 9. We will perform the construction of a surface of type R+ , 
given a fundamental segment V(x0, yl9 y2), the boundary curves x^t), x2(t) (with 
x t(0) = x2(0) = x0, defined for all t ^ 0), the function a(r) and the t0 ^ 0. 

Set 
x2(t) - x^t) 

x(t, y) = xx(t) + 
У2 - }>1 

y /•« 
Cx(yu yx + a(t)) f(rj, yu У1 + <x(*)) d?7 d£ + 

С2(Уи Ух + a(0) nf{4> Уи У\ + a(0) drl d ^ 
J >>i J yi 

for y1 ^ 3; ^ {(у! + y2), f ^ r0, and x(f, y) = x^t) + x2(t) - x(t, y1 + y2 - y) 
for \(y1 + j 2 ) < У = У 2^ = ,*o> where the function/is defined as follows (denoting 
the second and third variables by u, v). It suffices to define/(/7, w, v) for и < v, by 

/fa, i/, !?) = eCi/^-iW + Ci/C-f-»)] f o r w < ^ < y ? 

/(?7, w, t;) = 0 for r\ 'й и or rj ^ v . 

It is easily shown that 

, l ( , 1 + , 2 ) ) = i ^ ± ^ ) and dx(£, y) _ x2(t) — x^t) 

ду У2 - Ух 
for yx + a(r) ^ у ^ j ; 2 — a(r). The C^u, v) and С2(и, ^) are determined by the 
system of equations 

C\(u> v) f(rj9 u, v) drj + C2(u, v) rjf(ri, u, v) drj = 1 , 
J и J и 

П С çv rt 

f(rj, и, v) drj d£ + C2(u, t>) 17/(1/, w, v) drj dÇ = v - и . 
u J и J и 

Since for w < f the determinant of the system, 
/(*/, и, v) drj , rjf(rj,u,v)drj 

f(rj, u,v)drjdÇ, rjf(rj9u9v) 
) и J и 

dtidÇ 

= - Г Г / ( { , м, в)/(Ч , м, Ü) (£ - ц)2 dn dÇ 
J uj и 
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is non-zero, the coefficients Ct(u, v), C2(u, v) are determined uniquely and have 
continuous partials of all orders for и < v. Since xx(t), x2(i), <x(t) also have continuous 
derivatives of all orders, it follows that the function x(t, y) has continuous partials of 
all orders. From the above relations it easily follows that 

* ( * , J O " * I ( 0 + *2® ~ Xl{t) (y - yj 

Уг - Ух 

for t ^ t0, yx + a(f) ^ j ; ^ у2 — a(0- Since the function 
f(n, u, v) dn d£ + C2(u, v) rjf(n, u, v) dn d£ 

и J и J и 

has at most one zero point of the second partial derivative Ц—- in the open 
dy 

interval (u} v), we have 

0 ^ œ(t, у) й У ~ и ; 

thence we conclude the inequalities of Definition 9. In addition, from the expression 

for x(t, y) it easily follows that ^ ' ^ = 0 for к '}£ 1, у = yi9 i = 1 , 2 , ^ 0 . 

Lemma 8. A s s u m p t i o n s : There is given a system of differential equations 

(8.1) ^ = X(*,x , j ; ) , ^ = 0 , 
dr d£ 

#rcd an o/?en sef Gx с E2. The system (8,1) /шз property (А) ш Gx. There are given 
a system of rectangles Kx and a set Z1 such that Zx has property (B) in Gx with 
respect to Kx. The solutions of (8,1) with initial points on the x-edges of rectangles 
of Kt generate surfaces of type R+ (single surfaces of this system will be denoted 
by R:). 

Conc lus ion . To every open set G2 <= Gx there can be constructed a system of 
rectangles K2 and a set Z2 such that Z2 has property (B) in G2 with respect to K2, 
and that there exist surfaces Ln originating in the x-edges of rectangles of K2 with 
the following properties'. 

If the x-edge of a rectangle of K2 is not a subset of an x-edge of some rectangle of 
Ku then the surface Ln originating in this edge is of type R (see Definition 8, p. 277). 

If it is such a subset, then the surface Ln is part of one of the surfaces of type R+ 

mentioned above. 

(8.2) / / Vm, Vn (fundamental segments of the surfaces Lm, Ln) have a common end 
point, then the surfaces Lm, Ln have in common the boundary curve with this 
point as initial. 

if Vm<> К are disjoint, then 
(8.3) e(Lm,L„)>0. 
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Finally, there hold 

(8.4) Q(L„, h(Gj) > 0 , 

(8.5) e(Ln, Z) > 0 
Л 

where Z = Zx + Z2 and Z is the system of solutions of (8,1) with initial points in Z. 
Proof. First note that the surfaces R* (generated by integral curves of the system 

(8,1) with initial points on x-edges of rectangles of Kx) have the properties (8,2), (8,3), 
(8,5) with Z replaced by Zt; this is a consequence of property (A) and of the conti­
nuous dependence of solutions on the initial point. 

Denote by K(1) a system of rectangles which is finer than the system K1 and simul­
taneously finer than the system obtained by decomposing G2 according to Lemma 3 
(the rectangles of K(i) are the intersections of rectangles from K1 with the rectangles 
obtained by application of Lemma 3). 

For the system i£(1), construct the set Z2 according to the note to Lemma 3. Now 
number by positive integers the front x-edges of those rectangles from K{1\ in which 
the surfaces R+ do not originate (i. e. the edges which are not subsets of x-edges of 
rectangles from Kx). 

Construction of the f irs t aux i l i a ry surface. Let the first front x-edge 
V(xuy[1\ y{

2
l)) belong to the rectangle Оп(в^\ G2

n\ n[n\ п2
п))еКх. Use Lemma 7, 

with 
(G2 - Z). 3 ( в ? } < x < 6>(

2
w)) 

instead of G, and O(0(?\ в{
2

п\ у{х\ y2
X)) instead of the rectangle 0(x*, x**, y0, yt). 

If yW = rj(^ (or у2
х) = n2

n)), then for the surfaces originating in segments Vqy 

q = n + 1 , . . . , m (or Vs9 s = m + 1, ..., r) in Lemma 7, take the curves 

* = Ф > У = № (or у = n{n)) 
which are the boundary curves of surfaces JR„+, and whose fundamental points are on 
an y-edge of the rectangle 

0{в?,в2»\у«\у^). 
According to Lemma 7, the segment V(xu у[г\ j/2

1}) decomposes into a finite set of 
segments 

v(xt,ck,Ck+l), y\ « Ci < Ca < ••• < t«, = yP ; 
in the individual segments V(xu £*, Cit+j) there originate surfaces JR(,*} with 

Q{P\Rf), ЦЗ)) > 0 , k = 1 m» i = 1, 2 . 
Either the curve 

* = a 0 > 3' = У(
1") (ory = /2

n>) 
is a boundary curve of the surface R(

1
1) (or -Rimi)), or 
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where P(Çk(t), y[1}, у\г)) is really the curve x = Çk(t)9 y = у^\ By definition of G, of 
surfaces of type R , and from the last two inequalities, we easily conclude that 

#ife), Rf+1) have a common boundary curve , 

Q(P\R^), fc(53) > 0 , ^ ( < ) 5 Z) > 0 , к = 1,. . , ml5 i = 1, 2 , 
either R ^ , R^ have a common boundary curve or 

Ш О > 0, к = 1,..., m1? î = 1, 2 . 

From the system iC(1) we form a new system K{2) by subdividing all rectangles of 
X (1 ) by straight lines у = £fc, к = 1, . . . , m le 

I n d u c t i o n . Now assume: The set G2 is decomposed by a system of rectangles 
K(n\ where i£(n) is finer than all the systems K(n~1},..., K{1) and every rectangle of K(1) 

has been subdivided into a finite number of rectangles. The system Kin) decomposes 
each of the first n x-edges Vk9 к = 1, . . . , n, into subsegments Vk

(s,n\ s = 1, . . . , p[n\ in 
which there originate surfaces Rk

s\ к = 1 , . . . , n, s = 1, ...9р^ with the following 
properties (Ffe

(s'"}is the fundamental segment of the surface R(
k
s); according to Defini­

tion 4 of surfaces R and to the construction presently being performed, an index n at 
R(

k
s) would be superfluous): 

(8.6) If Vk
(s>n\ V[d'n) have a common point, then the surfaces R{

k
s\ R\d) have in 

common the boundary curve with this point as initial; 

(8.7) if V£'n\ V{d>n) are disjoint, then 

Q(PXR[%P\R^))>0; 

for every surface R(
k
s\ к = 1 , . . . , n, s = 1 , . . . , p(

k
n) there hold 

(8.8) Q(P\R[%1^)) > 0 , 

(8.9) e ( P W ) , Z ) > 0 ; 

(8.10) if Fjp'10, Vh have a common point, then the surfaces JR£5), R^ have in com­
mon the boundary curve with this point as initial; 

(8.11) if Vk
(s>n\ Vh

+ are disjoint, then 

Q(P\Ri%R:)>0. 

For the inductive step we further assume: 

(8.12) The system Kin) decomposes the (n + l)-st front x-edge of a rectangle from 
K(1) into G subsegments such that: 

If we denote 

F ( i \ = V(v u(l) n(l+1A I = \ a 4- I 

then for every segment 

^ • и ) = Цуь#*\1$+1»% (к = l , . . . , » , s = i , . . . , ^ > 

287 



and strip 

there holds the following r e l a t i o n : 
a) either all the points [yk9 у], ц{

п
1)

+1 й У й tâ+ÎK he on the segment V£s>n\ 

ß) or the segment Ffc
(s'n) has precisely one point in common with Я, 

y) or finally Vk
(s'n) and H are disjoint. 

The auxiliary surface originating in the segments P*+i will be constructed in turn. 
First, using Lemma 7, construct the surfaces originating in the segment V^\. 

If V£l\ is in the rectangle 

0(0™, S[m\ rf?\ iAm)) 

then in Lemma 7 we take the set 

(G2 - Z ) . 3 ( 6 ) (
1

m ) < x < 6>(
2
w)) 

for the set G, and the rectangle 

f)(<9(m) f)(m) //(1) ; /2 ) ^ 

for the rectangle 0(x*9 x**, .y0> У1) considered there. The surfaces R[s\ к = 1 , . . . , и, 
5 = 1, ...,pk\ and R^ already constructed are grouped according to the property 
a), ß) or y) in (8,12) that they satisfy. Those R(

k
s) that satisfy a) are placed in the first 

group, /. e. the group of surfaces whose fundamental segments are of the form 
V(xk, y09 y\), к = 1, . . . , n. The surfaces that satisfy ß) are placed in the second and 
third groups; those that satisfy y) are not considered at all. If 

..(1) _ „(m) / (2) _ (m)\ 
Mn+l — 41 V o r Ми+1 — 4 2 ) 

then the boundary curves of surfaces R^, 

whose fundamental points are on an y-edge of the rectangle O(0(
1

m), <9(
2
m), /4V i> /4+Y)> 

are also placed in the second and third groups of Lemma 7 (as in the construction of 
the first surface). According to Lemma 7, the segment K(yn+i>/4Vi> /4Vi) decom­
poses into a finite number of subsegments 

%>+!>£*>Cc+i), /4+1 = Ci < £2 < ••• < CM+i = /4+i ; 

in the individual segments there originate surfaces jR*s
+1 such that: 

ö ( ? ^ i ) , K G ) ) > 0 , s = 1 , . . . , 11, î = 1, 2 ; 

(8.13) If V{
n\\ (or 7„(

+\) and Ffe
(l'M) have a common point, then the surfaces K<Vi 

(or jR^+t) and Rfc0 have a common boundary curve; 

(8.14) If F ^ i , VlUn) are disjoint, then 

ö № t i ) , РЩ1))) > 0 , s = 1 , . . . , и, к = 1, ;.., п, I = 1, ...,р<?\ IJ = 1, 2 ; 

(8.15) Each couple of surfaces #),s+1? R^+P have a common boundary curve. 

•288 



As in the construction of the first auxiliary surface, we conclude that 

(8,16) # ? ] , ) , /<G7)) > 0 , s = 1,..., и, i = 1, 2 ; 
(8Д7) e(P\Riil),Z)>0. 

(8.18) If V$u Vh have a common point, then the surfaces R(
n
s+l9 R^ have a com­

mon boundary curve; 

(8.19) If V^u Vh
+ are disjoint, then 

Q(PXR(
ni1),R:)>0. 

The segments Fn
(J\, ..., v£l\ are dealt with in precisely the same manner. Thus we 

obtain a decomposition of Vn+l into a finite number (p(n+i}) of subsegments, in 
which there originate surfaces R $ t , s = 1, . . . , /iVi1* w i t n properties (8,13) to (8,19)), 
possibly after renumbering). Taking into account (8,13) to (8,19), we see that (8,16) 
and (8,11) hold for n + 1 also. 

It remains to define K(n+1) and to show that (8,12) holds for n + 1. The segment 
Vn+i has been subdivided into p%+f} subsegments 

' v(v u ( l ) u(l + 1A 1 - 1 n(n + 1) 

The straight lines 

(8.20) У-MÏlt, / = l , . . . , ^ n
+ V ) + l 

decompose the rectangles of K(n). Those rectangles from K(n\ in whose both x-edges 
there originate surfaces already constructed, are left unchanged; the remaining 
rectangles are subdivided by the straight lines mentioned; the resulting system is 
denoted by Kin+1\ By construction, property (8,12) holds for K(n + 1) also. Let us 
show that the sequence of systems K(n) subdivides every rectangle of i£(1) into a finite 
number of parts, /. e. that to every rectangle of K(1) there is an index n0 such that 
K(n) with n > n0 do not subdivide this rectangle. 

Let the integer associated with the front x-edge of this rectangle be kt; the rear 
x-edge is decomposed into a finite number of front x-edges of rectangles of K(i); to 
these then corresponds a finite set of positive integers /c2, ..., kr. According to (8,20) 
we may then put n0 = max (kl9 ..., kr). The sequence K{n) defines a limit system of 
rectangles, which we denote by K2. By construction, in those x-edges of rectangles of 
this system that are not subsets of x-edges of rectangles of K1 there originate surfaces 
R(

k
s) satisfying (8,2) to (8,5). 
If an x-edge of a rectangle of K2 is a subset of an x-edge of some rectangle of Kl9 

then the solutions of (8,1) with initial points on this x-edge form, by assumption, 
a surface of type R+; this is the surface which will be denoted by Ln. It remains to 
prove that these latter surfaces together with the surfaces R(

k
s) already constructed, 

satisfy (8,2) to (8,5). 
As has been mentioned at the beginning of this proof, and by (8,10), (8,11), evi­

dently (8,2) and (8,3) hold. Since the fundamental segment V+ of R+ is in G2 and by 
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property (A), the relation (8,4) holds. It was mentioned that (8,5) holds if Z is replaced 
л 

by Zx\ all that there remains to prove is that 

Q(R\Z2)>0. 

Since the fundamental segment V+ of the surface R+ is a subset of G2, no point of V+ 

is a limit point of Z2 ; using property (A), we obtain this last inequality. 
Note also the following property: if the x-coordinates of vertices of rectangles 

from Kt are dyadic rationals, then so are the x-coordinates of vertices of rectangles 
from K2; this is so since, except for the application of Lemma 3, all the subdividing 
lines were parallel to the x-axis. 

N o t e to L e m m a 8. All the surfaces constructed in Lemma 8 were such that if 
they are described as functions x(t, y) of variables t, у then they have continuous 
derivatives of all orders. However, if two of these surfaces have a common boundary 
curve, they need not have a common tangent plane along this curve. In the sequel it 
will be required that these surfaces consist of solutions of the system (8,1) with 
X(t, x, y) having continuous derivatives of all orders. Thus it will be necessary to 
change these surfaces in the neighbourhood of common boundary curves so as to 
obtain surfaces sufficiently smooth. Such surfaces are of type R+. Using the note to 
Definition 9 we may successively change our surfaces in such a manner that we obtain 
surfaces of type R+, leave the boundary curves unchanged, and preserve properties 
(8,2) to (8,5). 

In the next lemma, a system of surfaces will be constructed, such that the distance 
between them does not increase overmuch. The point is that if we also construct 
a differential system whose solutions do not intersect the surfaces of this system, then 
the distance between solutions will not increase overmuch also. However, a different 
notion of distance than the one used heretofore will be introduced. 

Definition 10. Let St( x = Xi(t, j/)), S2(x — ^(У? УУ) ̂  two surfaces defined over 
the set t ^ 0, yx rg у ^ y2; then their ou t e r d i s t a n c e on the half-line t ^ t0 is 
defined as 

Q(2tl + v)(si> S2) = sup \x%(t, y) ~ x2(t, z)\ for t^t0,ye (yl9 y2} , ze (yu y2} . 

Lemma 9. A s s u m p t i o n s : There is given a differential system (8,1) and an open 
set G. The solutions o/(8,l) are bounded and the system has property (A) in G. There 
is given a set Z and a system of rectangles К such that: Z has property (B) in G with 
respect to K, the x-coordinates of vertices of rectangles from К are dyadic rationals> 

and in the x-edges of these rectangles there originate surfaces of type R+ which 
consist of integral curves of the system (8,1). The fundamental segments V of these 
surfaces of type R+ and the x-edges of rectangles from К have the following relation: 

Every x-edge of any rectangle from К either consists of a finite number of funda­
mental segments of these surfaces, or it is a subset of some fundamental segment. 

' 290 



These surfaces of type R+ have the following properties: 

(9.1) If Vm, Vn [fundamental segments of surfaces R^, R„) have a common end-
point, then R^, R* have in common the boundary curve with this point as 
initial. 

If Vm, Vn are disjoint, then 

(9.2) Q(R+,R:)>0, 

(9.3) Q{R:, h(G))>0, 

(9.4) в(К, Z) > 0 . 

Conc lu s ion . To every positive real rj there exists a system of rectangles K\ 
finer than K, and such that: every rectangle of К consists of a finite number of 
rectangles from K'; the x-coordinates of vertices of rectangles of K' are again dyadic 
rationals; the lengths of у-edges of rectangles of K' are less than rj; in the x-edges 
of rectangles from K' there originate surfaces of type R+ which, together with the 
given surfaces, again satisfy (9,1) to (9,4); for every rectangle, if R^ (R2) *5 the sur­
face originating in the front (rear) x-edge, then 

(9.5) Q\V0,JRÎ> *2 ) < П 

(t0 may vary for different rectangles). 
Proof. Use positive integers to number the rectangles from K. In each in turn 

perform the following construction. Denote the n-th rectangle by 0 ( x b x2, yu y2). 
In its x-edges there originate a finite number of surfaces of type R + ; in its y-edges 
there originate either boundary curves of the remaining or newly constructed (in 

л 

preceding steps) surfaces of type R+, or a finite number of curves from Z. ) Denote 
these curves by x = Çjt), y = уь i = 1,2. Then 

(9.6) Я(Р(Ш, yt, yt), R+) > 0 , ij = 1,2; 

(9.7) Q{P(in(t), yh yt), P(Çn(t), yb yt)) > 0 , n * m, Î = I, 2 . 

If both 

and the y-edges of О are less than n, then О is left unchanged. Assume then that at 
least one of these assumptions is not true. Decompose 0(xu x2, yi9 y2) by straight 
lines parallel to the x-axis, and passing through the end points of the fundamental 
segments Vx constituting the x-edges of the rectangle O. In these smaller rectangles we 
perform, in turn, the following construction: 

Let 0 (1 )(xx , x2, yl9 y) be the first of these rectangles. Choose t0 ^ 0 so that for 
t ^ t0 the function a(t) is sufficiently small (see Definition 9 of surfaces originating 
in x-edges of 0 ( 1 )) . For each curve x = Çn(t), y = yb i = 1, 2 consider the segment 

*) Z is the system of solutions of the system (8,1) with initial points in Z. 
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К(<ЦО), yi9 у). If there exists a curve x = &(*), У = » • / = ~* l + 3 originating in the 
other end point of this segment (this is possible only if у = J>2> *• e-if t h e rectangle О 
has not been decomposed at all, О ss <9(1))> t h e n w e construct a surface of type # + 

with boundary curves x = Ç„(t), y = y. and x = £k(f), )> = yj in such a manner that 
it originates in the segment К(<Ц0), у ь y2)- On the other hand, if no curve x = ^(t), 
у = yf originates in the other end point of V(Çn(6), yu y), then we may construct such 
a curve that satisfies (9,6) and (9,7). The surfaces thus constructed obviously satisfy 
(9,1) to (9,3). Among the surfaces which originate in the segments V(Çn(0), yi9 y2) just 
constructed, there do not occur any of the curves x = Çn(t), .y = yt (i. e. boundary 

curves of the given or constructed surfaces R+ or curves of Z). Now, the distance 
between surfaces R± and R2 does not tend to infinity; thus by further construction of 
surfaces of type R+ (with fundamental segments V(x, rju rj2) such that x is a dyadic 
rational) and by further subdivision of О by straight lines у = rjt, y1 = цх < rj2 < 
< . . . < rji = уг we can obtain that (9,5) holds for neighbouring surfaces with 

rj/(p + 1) instead of rj (p is the number of curves of Z originating in the y-edges of O), 
and that (9,1) to (9,3) hold. 

Now exclude those surfaces which have at least one boundary curve in the set Z; 
then the outer distance of neighbouring surfaces will be less than ц, and (9,4) will hold. 
In this construction each rectangle of К is decomposed into a finite number of new 
rectangles. The system consisting of these latter is denoted by K'. The x-coordinates 
of vertices of rectangles from К are again dyadic rationals, since this holds for those 
of K, and in the construction either the x-edges were prolonged or the new vertices 
were chosen with dyadic rational x-coordinates. 

In the next step there will be constructed a system of surfaces to ensure ins tab i l i ty 
of solutions. Let К by the system of rectangles constructed in Lemma 9. In the\y-edges 
of every rectangle from К there originates a finite number of curves x = £n(l), у = 
= const. These are either boundary curves of surfaces considered in Lemma 9 or 

л 

curves from the set Z. According to (9,2), (9,4), each pair of curves x = Çn(t), y = 
= const form a regular couple of functions with respect to some d > 0. According to 
Lemma 1, between any two neighbouring curves x = Çn(t), y = const we may con­
struct a system of curves x = Çl'k(t), y = const which form regular couples with 
respect to d and whose fundamental points have dyadic rational x-coordinate. Thus 
on surfaces y = const originating in the y-edges of rectangles from K, we have de­
fined systems of curves in accordance with Lemma 1. 

As in the proof of Lemma 9, consider any rectangle 0(xx , x2, yl9 y2). Decompose 
it by straight lines parallel to the x axis, passing through the end points of funda­
mental segments which constitute the x-edges of O. Thus we obtain rectangles 
C(i\xl9 x2, Ci, Ci + i)> У\ = Си Уг = Сг+1- A s shown above, construct systems of 
curves x = V'\t), y = const, originating in the y-edges of the rectangles O ( 0 . Above 
every such rectangle, connect the curves x = {'•*(*), y = Cs and x = ÇJ'l(t), y = Cs+1 
by a curve of type R if the x-coordinates of their fundamental points are equal. Such 
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surfaces are constructed starting at t such that both boundary curves are defined and 
that the functions a(f) corresponding to all near surfaces of type R+ (see Definition 9) 
are small enough to ensure that the constructed surface does not intersect the surfaces 
constructed previously. The segment V(Cl'k(0), yu y2) will be termed the fundamental 
segment of this surface. Finally, this construction is performed in all rectangles of K. 

Note that the surfaces just constructed — to be denoted by N — have the following 
property: 

(10,1) If, in the direction of the positive x axis, the fundamental segment V(R) of 
the surface R is before (behind) the fundamental segment V(N) of some 
surface N, then the whole surface R is before (behind) the surface N. 

Similarly: if x = <Ц0), у = yt is the fundamental point of the curve x = £„(*), 
л 

у = у i which is either a boundary curve of some R or a curve of Z, and if the point 
x = £„(0), у = ytis before (behind) the fundamental segment V(N)9 then the whole 
curve x = <Цг), у = yt is before (behind) the surface N. As in the note to Lemma 8, 
the surfaces of type R just constructed may be replaced by surfaces of type R +. We 
formulate our conclusions in the fo l lowing lemma. 

Lemma 10. Given a system of surf aces according to Lemma 9, there exists a system 
of surfaces N (these are of type R +, but are defined only for t ^ t0, with t0 possibly 
varying for different surfaces) which, together with the given surfaces, satisfy 
(9,1) to (9,5), (10,1) and such that the boundary curves of the surfaces N form 
a system of curves which satisfies the assumptions of Lemma 1. 

Proof. According to the foregoing construction, the system of surfaces N together 
with the system of surfaces Rn

+ satisfies (9,1) to (9,3), (9,5), (10,1). To prove (9,4), note 
that as a consequence of property (B), the x-coordinates of points of Z are not dyadic 
rational, while the fundamental segments V(x, yl9 y2) of surfaces N have x dyadic 
rational (/. e. the points of Z are not on itib fundamental segments of surfaces N), 
From (10,1) then (9,4) follows easily. 

The meaning of property (10,1) is that it allows us to extend the domains of defi­
nition of surfaces N, viz. t ^ tn, у e (y{"\ y(

2
n)}, to half-strips t ^ 0, у е <y("\ y2

n)}y 

while preserving properties (9,1) to (9,4). We will describe in brief such a constructions 
for some given surface Nt. Consider the fundamental segment ^iVj) of this surface, 
It lies in some rectangle О of the system K'. Denote by Su S2 the surfaces which 
originate in the front and rear edges of O. The surface Nt is to be prolonged so as to 
remain between St and S2. This will render properties (9,3) and (9,4), except for the 

curves of Z5) with initial points on O. If the segment V(N1) has a common front (rear) 
end point with the fundamental segment of some surface JR„+, then by construction,, 
the boundary curve of this surface coincides with the curve £l,k(t) corresponding to* 
this end point. Thus for the boundary curve of N1 there must be chosen the boundary 

- л 
D) The definition of Z is in Lemma 8. 
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curve of the surface R*. We will then have (9,1) and (9,4). On the other hand, if the 
segment V(N1) does not have a common end point with the fundamental segment of 
any of the surfaces JR*, then the boundary curves of N (i. e. the curves £l'k(t)) are to be 
prolonged over all* ^ 0 in such a manner that they intersect no curve of Z and no 
boundary curve of any surface R* with initial point in O. According to properties 
(9,1) to (9,4) of the system of surfaces R*, such a prolongation is possible. 

The next lemma has already been described in greater detail; it forms the inductive 
step in the proof of Theorem 3. 

Lemma 11. A s s u m p t i o n s : Given a system of two differential equations 

(11.1) ^=Х^,х,у), ^ = 0 
dt at 

and an open set Gi9 Gx с E2. The solutions of (11,1) are bounded and have property 
(A) in Gx. There is given a system of rectangles Kx and a set Z1 such that Zx has 
property (B) in Gx with respect to Kt. The solutions of (11,1) with initial points in 
x-edges of rectangles of Kl constitute surfaces of type R+ (single surfaces will be 
denoted by R*). 

Conc lus ion . To every open set G2, G2 c: Gl9 and every rj > 0 there may be 
constructed a function X2(t, x, y), a system of rectangles K2 and a set Z2 with the 
following properties: 

K2 is finer than K1 in G2 , 
the y-edges of rectangles of K2 have lengths less than ц9 

the set Z2 has property (B) in G2 with respect to K2, 
the function X2(t, x, y) is defined for t ^ 0 and has continuous partials of all 

orders, 

(11.2) X2(t, x, y) = Xt(t, x, y) in E2- G2, 

(11.3) X2(t9x9y) = Xi(t,x9y) in 3 ( 0 ^ r ^ [ { ] ) 6 ) . 
it,x,y-\ 

(11.4) The surfaces of type R+ which originate in the x-edges of rectangles 
from Kt are again composed of solutions of the differential system 

(11.5) ^ = X2(t,x,y), ^ = 0 . 
at at 

Let us denote by Z the set of solutions of (11,1) with initial points in the set Z, 
л 

Z = Zx + Z2. The curves of Z are again solutions q/ (11,5). 
The solutions of (11,5) with initial points on the x-edges of rectangles from K2 

constitute surfaces of type R+ which satisfy (9,1) to (9,5). All the solutions of (11,5) 
with initial points in any given rectangle О е K2 are uniformly unstable, i. e. to 

[x] is the integral part of x. 
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every rectangle О e K2 there exists an a > 0 such that for any pair of solutions 
x = xx(t), У — У\ and x = x2(t), у = Ух (with coinciding y-components) with initial 
points in 0 , there holds 

sup |xx(r) — x2(t)\ > oc. 

The solutions of (11,5) are bounded and have property (A) in G2. 
Proof. First apply Lemma 8 to obtain a set Z2 and a system of rectangles K', with 

surfaces of type R originating in the front x-edges of these rectangles and having the 
properties described in the lemma. Using the note to Lemma 8, these surfaces of 
type R are changed to surfaces of type R+. Next, apply Lemma 9 to obtain a system of 
rectangles K2 such that in the x-edges of these rectangles there originate surfaces of 
type R+ satisfying (9,1) to (9,5). The surfaces thus constructed using Lemmas 8 and 9 
will be denoted by PR* (these are the auxiliary surfaces). Finally apply Lemma 10 to 
obtain a system of surfaces N to be used in the proof of instability (surfaces of this 
system will be denoted by NR*). To distinguish between the given surfaces of type R* 
and the remaining ones, denote by DR* the surfaces of the assumptions in this lemma. 
Also choose a sequence of integers tn\ tx > [1/rç], tn+1 = tn + 1, which will be made 
to correspond to the rectangles from K2. 

We now proceed to define the function X2(t, x, y). In order to satisfy (11,2) to 
(11,4), (11,6), put 

Xi(t, *> У) = Xi(t, *> У) 

on the sets E2 - G2, 3 (0 ^ t й [1/*/]), Z and on the surfaces DR*. 

To satisfy (11,7), on each surface PR* put 

(11,8) Х2{их,у) = Щ ^ for t^tn + l 
dt 

where x(t, y) is the functional description of the surface PR* ; tn is the integer which 
has been made to correspond to the rectangle from K2, in whose front x-edge the 
given surface PR* originates. The identity (11,8) then means that, starting from some 
instant, the surfaces PR* will consist of solutions of (11,5). 

Similarly define X2(t, x, y) on every surface NR* by the identity (11,8), but only 
for t ^ tm + тп + 1 (here tm is the integer corresponding to the rectangle containing 
the fundamental segment of NR*, and z„ is an integer such that NR* is defined for 
t ^ т„). Thus the function X2(t, x, y) has been defined on the sets 

Е Г ^ , З (Out* [i//?]), z , DR: 
lt,x,yl 

— these constitute a connected set — and also on the surfaces PR*, NR*. Using 
property (B), since the sequence tn and xn diverge to infinity, the union of these sets is 
closed. It is required to extend the function X2(t, x, j;) over the complete half-space 
t ^ 0 in such a manner that it have continuous partials of all orders, that (11,7) hold, 
and that the solutions with initial points on a fundamental segment of any NR* 
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entirely belong to the surface JVJRW
+. The construction of such a function X2(t, x9 y) 

will be performed in several steps. 
Obviously X2(t, x, y) = Xx{t, x, y) in the parallellepiped 0 ^ t :g tx. We proceed 

to define X2(t, x, y) in tx ^ t ^ t± + 1. However, first we must extend the domain of 
definition of some of the surfaces NR* to the half-strip t ^ 0, and change the surface 
PRÎ somewhat (PRX is the surface on which X2(t9 x, y) has been defined for t ^ 
^ tx + 1). Next consider those surfaces JV7?* on which X2(V, x, j ) is defined for 
t ä *i + 1. There is at most a finite number of such surfaces (possibly none); denote 
them by NRX9 ..., NR£. The integral curves of the system (11,5) which have initial 
points on the fundamental segments V{PR±), V(NRf), ..., V(NR£), constitute sur­
faces defined for 0 ^ t ^ t±; denote them by PR[, NR'l9 ..., NR'k. According to pro­
perty (10,1), the surfaces PR[ and PRX, and also NR[ and NR*, may be connected in 
the parallellepiped tt ^ t ^ £ x + 1 in such a manner that the resulting surfaces are of 
type R+, in the parallellepiped 0 ^ t ^ tt they coincide with the surfaces PR[, 
NR'l9..., NR}, respectively, and in the half-space t *> ^ + 1 they coincide with the 
surfaces PJR^, iVJR ,̂ ..., NJR^ respectively (considered as functions xt(t, y) they have 
continuous partials of all orders and satisfy (9,1) to (9,4) — cf. the note to Lemma 11 
to follow). In order to satisfy (11,7), on the just constructed parts of surfaces put 

at 

The function X2(t, x, y) is thus defined on a closed set, and can be extended to the 
complete parallellepiped tx ^ t ^ t1 + 1 with continuous partials of all orders. 
The construction in all the other parallellepipeds n S t й n 4- 1 proceeds in an 
entirely similar manner. Thus we obtain a function X2(t, x, y) defined in the complete 
half-space t ^ 0, with continuous partials of all orders, and satisfying (11,2) to (11,4), 
(11,6), (11,7). We will show that all solutions with initial points in any given On e K2 

are uniformly unstable. 
Let x = x^t), у = y± and x = x2(t), у = yt be two solutions of the system (11,5) 

with initial points in On = 0(x[n\ x2
n\ y["\ y2

n)). Take dyadic rational 1хЛг with 
xx{0) < ix < ii < x2(0). In the segments V(Çl9 y[n\ y?)9 V(Ç29 y[n\ y(

2
n)) there origi­

nate surfaces NRX9 NR2 of type N, whose front (rear) boundary curves 

х = Ш> y = y(in)> * = №> y = y? 
(x = ni(i), у = y(

2
n), x = rj2(t), у = y2

n)) 

form a regular couple of functions with respect to dx (d2), these latter numbers being 
independent of ÇX9 £2 (see the last proposition in Lemma 10). 

1. Assume t h a t у(
г
п) Ф yt Ф y{

2\ To the surfaces NRX, NR2 there corresponds 
a T such that y("} + <x(t) < yt < y2

n) — a(t) for t ^ т (see Definition 10). Since the 
curves 

x-fc(*). У-№, x = Ç2(t), y = y™ 
(x = r,1(t), y = y2

n), x - i f c ( t ) , y = y2
n)) 
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form regular couples with respect to dx (d2), there exist тх ^ т, т2 ;> т such that 
£2(^1) > £i(?i) + du ^2(^2) > П^г) + di- S i n c e the solutions x = x^r), 3; = yu 

x = x2(j), y = yx do not intersect NRX, NR2, it immediately follows that 

x2(t) ^ t2(t) + MO - U*)) 

xx(0 ^ ^(0 + W ) - fi(0) 

У2
Л) - y[n) 

Уг - У? 
y? - у? 

and 

x2(o - xl(() ̂  («a(o - m • $ - & + ыо - *(0) • ^ Ê 
У2 — .Vi Уг — / 1 

If 

/г < * й 
put t = тг to obtain X2(T1) — x ^ ^ ) g: - 1 ^ . If 

„(и) j _ „00 
^ )>i < /2 

371 + j 2 < v, < v("> 
2 

put £ = т2 to obtain х2(т2) — хх(т2) ^ ^d2 . 

2. Assume t h a t yx = j (
1

n ) (or yx = J/2
T)). Then, using regularity of the boundary 

curves with respect to dx (d2) (see Lemma 10), we have 

sup \x2(t) — xx(f)| ^ min (du d2) . 

Thus in both cases, 
sup \x2(t) - xx(t)\ > \ min (du d2) . 

The solutions of (11,5) are bounded. In the set E2 — G2, the systems (11,5) and (11,1) 
coincide, and in G2 there remain unchanged the surfaces DR* which consist of solu­
tions of the original system (11,1). 

It remains to prove that the system (11,5) has property (A) in G2. Take any open 
G с G2, and any point [0, x0, j 0 ] e G. Consider the square К = O(x0 — a, x0 + a, 
Уо — a? Уо + a ) w i t n center [x0, y0] and such that К с G. 

The integral curves of (11,5) with initial points on the front (rear) x-edges of К 
constitute surfaces; denote them by Sx (S2). Using Definition 2, and since the second 
component of the differential system is zero, it suffices to prove that 

Q(P(x(t), y0, y0), St)>09 i = 1, 2 

where x = x(t), у == y0is the solution of (11,5) with initial point x = x0, у = y0, and 
where P(x(t), y0, Уо) denotes in fact the curve x = x(t), у = y0. 

Let i = 2 (the proof for i = 1 is similar). Take dyadic rational £ l5 £2 with x0 < 
< { < <J2 < x0 + a. The system of rectangles K2 decomposes the segments 
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y{jtu У о — а
? У о + а)> г = 1, 2, into a finite number of subsegments, in which there 

originate surfaces NR£(i\ i = 1,2. The surfaces NR^(l\ NR?(2) have a positive 
distance (see Lemma 10). Set 

a = min Q(NR£(1\NRÏ(2)). 
k,l 

Since solutions are uniquely determined by their initial points, the solution x = x(f), 
y = y0, i. e. the curve with initial point x0, Jo? will lie entirely in front of the surfaces 
NR£(1); the surface S2 will lie behind the surfaces NR?{2). It follows that 

g(P(x(t), y0, y0), S2) ^ min Q(NR^1\ NR^2)) = a > 0 . 
M 

This concludes the proof of Lemma 11. We must however still formulate the note 
concerning the process of connecting surfaces which was used in the proof of Lem­
ma 11. 

N o t e to L e m m a 11. Let there be given a system of differential equations (11,1), 
and an open set G с E2. Further, let there be given a system of rectangles К and a set 
Z such that Z has property (B) in G with respect to K; and also a system of surfaces of 
type R+ with the following relation of their fundamental segments to the x-edges of 
rectangles of K: Either the fundamental segment is composed of a finite number of 
x-edges of rectangles from K, or the fundamental segment is part of some x-edge. 

The system of surfaces of type R + is divided into two groups: 
1. A system of distinguished surfaces, to be denoted by SR*, which are composed 

of integral curves of the system (11,1). 
2. The remaining surfaces, to be denoted by LR*, and which need not be composed 

of integral curves of (11,1). The system of all these surfaces satisfies (9,1) to (9,4). Z is 
the system of solutions of (11,1) with initial points in Z. 

Assume that there is a real t0 > 0 and a function X2(t, x, y) defined on E2 — G and 
3 (0 ^ t й t0) such that 

lt,x,y-\ 
Xi(t, x, y) = Xx(t, x, y) 

in E2 — G, on the surfaces SR+ (if X2(t, x, y) is defined there), and on the curves of 

the system Z. Take any one of the surfaces LR* denote it by LR + , and its fundamental 
segment by VLX, The integral curves of the system 

— = X2(t, x,y), -j- = 0 
at at 

which have initial points on KLX are defined for 0 ^ t ^ t0, and constitute a surface 
which we will denote by U. Since the surfaces SR„ are also composed of integral 
curves of this latter differential system (since X2{t, x, y) = Xx(t, x, j;) on these sur­
faces), the system of surfaces SR„ and U satisfy (9,1) to (9,4) on the interval 0 ^ t ^ 
^ t0. The problem is to connect the surfaces U and LRX, i. e. to construct a surface / 
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of type R+ which coincides with LR+ for t ^ t0 + 1, and coincides with (7 for 0 ^ 
^ t ^ t0, and retain properties (9Д) to (9,4). We will assume that the front point 
of the fundamental segment LV\ is the rear point of the fundamental segment SFof 
some surface SR„ , and that the rear point of LVT lies on no fundamental segment of 
any SR*. The other cases are quite similar. Using (9,1), the surfaces SR*, LR+ have 
a common boundary curve. Since U and SK* are composed of solutions of the new 
differential system, they also have a common boundary curve. Since (9,1) is to hold 
for the surface J also, the surfaces J and LR+ must have a common boundary curve. 
Let Xi(t, y), x2(t, y) be the functional descriptions of the surfaces U, LR± respectively. 
Thus we must have xx(t, yt) = x2{t, 3̂ 1), where y1 is the y -coordinate of the front 
point of the segment LVX. Consider the set of points [t, x, y]: 0 ^ t ^ t0, y1 ^ y rg 
= У21 x i ( ^ У) = x = x2(^ )>)• This set is bounded, from the front, by the surface U, 
and from behind by the surface LR±. Since both these surfaces satisfy (9,3) and (9,4), 
and since xx(0, y) — x2(0, y) = x* (they have a common fundamental segment), this 

set is disjoint with h(G) and Z. It can be shown that there is a ô > 0 such that a ô-

neighbourhood of this set is disjoint with h(G) and Z. There obviously exists a conti­
nuous function x(t, y) such that 

x(t9 y) = x2(t, y) for t ^ t0 + Ö , y1 й У й У г , 
% >') = *i(*, У) for 0 й tu t0 , ух ^ у g >>2 , 

x(t, yt) = xx(t, yt) = x2(f, j 2 ) , 

and that the points [f, x(f, y), y] with *0 ^ t ^ f0 + <5, y{ S У й У г are in the 
^-neighbourhood of the above set. The function x(t, y) describes a surface Jx with 
properties (9,1), (9,3), (9,4). However, (9,2) need not be satisfied, since this surface 
might intersect some surface SR+. In any case, it intersects at most a finite number of 

surfaces SR+, say SR± , ..., SRp (since the limit points of surfaces SR+ are in h(G)). 
Consider first the surface SR± . 

Set 

a[ = min [Q(SRÎ, Hfi)), Q(SRÎ, Z), Q(SRÎ, SR*\ Q(SR+, LR*)] > О 

for all indices к except such that the fundamental segments V(SR+) and V(SR^) 
intersect. Replace every point on the surface x(t, y) whose distance from SR± is less 
than ~<xu by a point with the same t, y-coordinates and whose x-coordinate is ~ot1 

less or greater than that of the corresponding point on SR±, and which lies on the 
same side of SR± as the original point. The surface J2 thus constructed, together with 
the remaining surfaces except SR2, ..., SRp, satisfies (9,1) to (9,4). On performing 
a similar construction with all the surfaces SR2 , ..., SRp in turn, we finally obtain 
a surface which satisfies (9,1) to (9,4). However, the resulting surface need not have con­
tinuous partials; but it does have a positive distance in t0 ^ t fg t0 + 1, yt :g y rg y2 

from all the surfaces SR* except those with which it has a common boundary curve. 
Using [1], we may approximate our surface by a surface having continuous partials of 
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all orders (as a function of t, y). If the surface constructed above has a common 
boundary curve with some surface of type SR+ then this curve, as a function of t, has 
continuous derivatives of all orders. The surface LR± is then included into the group 
of surface SR„ , and the construction is repeated for the remaining surfaces LRU . 
When applying this note in the proof of Lemma 11, the surfaces PR±, NR±, ..., NR^ 
for which the process of connection is to be performed, are put into the group LR+, 
and DR* together with those of the surfaces PR* and NR+ for which the process of 
connection has already been performed, are put into the group SR+. In addition it is 
necessary to remark that according to the construction following Lemma 10, and using 
property (10,1), the domains of definition of the surfaces N may be extended in the 
manner necessary for the application of this note. 

With this the proof of Lemma 11 is def in i te ly comple ted , and the preparations, 
of the proof of Theorem 3 are concluded. 

As has already been mentioned, the set M is the intersection of a decreasing se­
quence of open sets G*, n = 1, 2, . . . The proof is performed by induction. Obviously 
we may add the set G* = E2 to the sequence G*. The O-th step in the induction process 
has been prepared in Lemma 2. We obtain a differential system 

^-#°Kt,'x,y), ^ = 0 
dt dt 

with property (A) in E2 (see note (2,1)); all of its solutions are bounded and uniformly 
unstable. 

For the sake of clarity, let us also perform the first step, applying Lemma 11. Take 
the set G^. For the set G1 of Lemma 11 take E2; for the system Kx of Lemma 11 take 
the system of squares with integral coordinates of vertices. The set Z ( 0 ) to this system 
Kx is constructed according to the note to Lemma 3. For the set G2 of Lemma 11 take 
Gf, and choose rji = \. Using Lemma 11, construct a function X^\t, x, y), a system 
of rectangles K(1\ and a set Z ( 1 ) which has property (B) in G* with respect to K b and 
such that (11,2) to (11,4), (11,6), (H,7) are satisfied. The solutions of the system 

%-X«Kt,x,y), ^ = 0 
dt ш dt 

are bounded and have property (A) in G*. For the next inductive step set Zx = Z ( 0 ) -b 
+ Z (1 ) . 

I n d u c t i o n . Assume that to the set G* there have been constructed: a function 
Xin\t, x, y), a system of rectangles K(n) and a set Zn with property (B) in G* with 
respect to K{n\ The solutions of the system 

(12,1) - « # • > ( * , * , * ) . ^ = 0 
dt dt 

are bounded and have property (A). The solutions of this system with initial points on 
the x-edges of rectangles from iC(n) constitute surfaces of type R+ and satisfy (11,2) to 
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(11,4), (11,6), (11,7). Zn is the system of solutions of (12,1) with initial points in Z„. 
Next, apply Lemma 11 again. For the set Gx of the Lemma take G*; for the system K, 
take K(n); for the set Zx take Zn; for the set G2 of the Lemma take G*+1, and choose 
tjn = 1/2". On applying Lemma 11 we obtain a function Xin+1)(t, x, y)9 a system of 
rectangles K(n+1) and a set Z(n+i)(Zn+l = Z(n + 1) + Zn) which satisfy the assumptions 
of Lemma 11. Among these we emphasise the properties (11,2) to (11,4), (11,6), (11,7), 
and that the solutions of the differential system 

dr d* 

are bounded and have property (A) in G*+1. Since 

J1n_ 

and since lim цп = 0, there exists a limit function X(t, x, y) defined in the complete 

X(n+i)(t, x, y) = X(n\t, x, y) in 3 (OSt ^ 
lt,x,yV 

half-space and with continuous partials of all orders. Let us now show that the diffe­
rential system 

(12,2) ^=X(t9x,y)9 ^ = 0 
at at 

satisfies the assumptions of Lemma 3. 
cc 

First we prove that solutions with initial points in the set M = J"] G* are uniformly 
n = 0 

stable. Take any point [x0, y0] e M and any г > 0. To this г there is an index n0 such 
that 2rjno < s. The set G*0 decomposes into a system of rectangles K{n°\ Assume that 
the selected point [0, x0, y0] is in one rectangle 

Ог ^0(х[1\х^\у[1\у[н)еКм 

only (i. e. that it is an interior point; in the general case, it may belong to at most four 
rectangles — the proof is then analogous). Next take a sufficiently large index пг > n0 

such that for the rectangle 

02 = 0(x[2\ x(
2

2\ y[2\ / />) e K^ , [0, x0, y0] e 02 

there holds y[1} < y[2) < j (
2

2 ) < y(
2
1} (again we only consider the case that the point 

belongs to one rectangle only, the other cases being similar). Such an index nt always 
exists, since for n > n0 the system K{n) is finer than the system K(n°\ and since the 
lengths of y-edges of rectangles from K(n) are less than цц = 1/2" (see the assumptions 
in Lemma 11). The surfaces composed of solutions of the differential system 

d* v dt 

with initial points on the front and rear x-edges of the rectangle Ot are of type R+; 
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denote them by JR^, R2 respectively. According to Lemma 11, they are also composed 
of solutions of every system (12,1) with n ^ n0 and thus of solutions of the system 
(12,2) also. 

Denote by JR^, R% the surfaces composed of solutions of the differential system 
(12,1) with n = fii which have initial points on the x-edges of the rectangle 02. Using 
property (11,7) (and its consequence (9,2)), we obtain 

Q(R + 9Rt)>09 Q(RÏ,R:)>0. 

Set 
Sx =min[ 6 (Ä 1

+ , J R 3
+ ) , e (Ä 2

+ ,Ä; ) ] . 

To the rectangles Ol9 02 there exist tu t2 such that 

(?(<2)*boo)(Äl+VÄ2) < Пп0 , É?(<2)
ï2,oo), (*3 + , К) < Ппх > 

according to (9,5) (see property (11,7)). 
Set T = max (tl912). Let [Tl9 Ç9 rf\, 7\ ^ т, be any point whose distance from the 

solution x = x0(t)9 у = y0 (x0(0) = x0) is less than Sl9 i. e. 

i(x0(Tl) - tf + (r, - y0ff < S, . 
Since the solution x == x0(t), у = y0 remains in 02 (the surfaces R^", R% are compo­
sed of solutions of (12,2)), the point [Tl9 £, rß is in the set Ox; therefore the solution 
x = Ç(t)> У = Ц of (12,2) with this point as initial also remains in Ov Since 

e(<2U)(Äi+* «a ) < Пп0 , 
we have 

i(x0(t) - Ç(t))2 + (t]- y0ff < Ппо <е for г к 7\ . 

We have thus proved uniform stability for t ^ т. Since solutions vary continuously 
with the initial conditions, we may choose ô > 0 such that 

[(x0(t) - Ç{t))2 + (r, - y 0 ) 2 ]* < Ô, for T2^tur 

whenever 

[(*0(r2) - Z(T2)Y + (r, - y0f]* < 5 . 

By choice of dx we must have 

[(xo(0 - ф))2 + {n - y off <rino<s for t^T 

also. This p roves the un i fo rm s t ab i l i t y of the solution x = x0[t)9 y = y0. 
It remains to show that the solutions with initial points [x0, >'0] e M are unstable. 

There is an n with [x0, y0~] e G* - G*+1. There are then two cases. 

1. The point [x0, y0] is no t a b o u n d a r y p o i n t of G*+1; thus it is an interior 
point of the set G* - G*+1. By construction of X(t9 x, y)9 we have X(t9 x9 y) =?= 
= X(n\t9 x9 y) in the set E2 - G*+1 (E2 - G*+1 is the set of solutions of (12,1) with 
initial points in E2 - G*+1); and the construction of X{n\t9 x9 y) was such as to obtain 
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unstable solutions originating in G* (see Lemma 11). Since \t, X\(i), yî\ sGn — G*+1, 

\t, x0(t), y0~] e G* — G*+1, the following constructions do not change this situation. 

2. The point [x0, y0~\ is a l imi t po in t of the set G*+1; it then belongs to some 
rectangle О еК(п\ According to Lemma 11, the solutions of the system (12,1) are 
uniformly unstable in O. Further, the point [x0, y0~] is on the boundary of G*+1, so 

that it is the limit point of pairs of points from the set Z "̂ + 1 \ The curves of Z^" + 1^ are 
solutions of (12,1), so that by Lemma 11 they are also solutions of the differential 
system (12,2). Now consider only those pairs of points from Z ("+ 1 ) which are in the 
rectangle O. The point [x0, y0~] is thus a limit point of a certain sequence of pairs of 
points from the set Z{n+1) with equal j;-coordinates; the solutions of the system 
(12,2) with these points as initial have, using their uniform instability, an outer distan­
ce greater than a certain a > 0 corresponding to the rectangle O. This implies insta­
bility of the solution x = x0(i), у = yQ. 
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Р е з ю м е 

ТОПОЛОГИЧЕСКАЯ СТРУКТУРА МНОЖЕСТВА 
УСТОЙЧИВЫХ РЕШЕНИЙ 

ИВО ВРКОЧ, (Ivo Vrkoc) Прага 

В этой статье исследована структура множества устойчивых, эквиустоичивых 
и равномерно устойчивых решений системы дифференциальных уравнений (1) 
(написаны при помощи векторов), которые выполняют какое-нибудь требова­
ние для существования решений. (Например, условие Каратеодори.) Это ис­
следование можно провести с различных точек зрения. Здесь я буду выше 
упомянутые множества устойчивых, эквиустоичивых и равномерно устойчивых 
решений исследовать так, что определю структуру начальных точек этих реше­
ний. Начальные точки будут при этом находиться в многообразии t = 0. 
Наверно можно многообразие t = 0 заменить любым многообразием t = 
= const. 

Пусть Л^1} — множество всех точек в многообразии t = 0, из которых выходят 
устойчивые решения данного дифференциального уравнения (1), N(

a
2) — множест­

во всех точек, в многообразии / = 0, из которых выходят эквиустойчивые ре­
шения данного дифференциального уравнения (1) и N(

a
3) — множество всех точек, 
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в многообразии t = 0, из которых выходят равномерно устойчивые решения 
данного дифференциального уравнения (1); при этом если все эти решения 
подчинены требованию, чтобы были определены для всех t ^ О, то положим 
а — оо и если только требовать, чтобы были определены на некотором про­
извольном конечном промежутке <0, Т) то положим а = 0. В статье доказы­
вается эта теорема: 

Теорема 1. Все множества N(
a
l\ i = 1, 2, 3, а = 0 или а — оо, являются мно­

жествами типа Gô. 

Эта теорема доказывается для более общих систем кривых, чем решения 
дифференциальных уравнений если устойчивость, эквиустойчивость и равно­
мерная устойчивость определена соответствующим образом. 

Однако этим незавершена характеристика этих множеств. Для того, чтобы 
мы могли утверждать, что упомянутые множества характеризованы, необхо-

. димо построить к любому множеству N типа Gô дифференциальное уравнение 
(1) так, чтобы из множества N выходили устойчивые или эквиустойчивые или 
равномерно устойчивые решения и при этом из дополнения этого множества 
N выходили решения, которые не являются устойчивыми или эквиустойчивыми 
или равномерно устойчивыми. В соответствии с известными соотношениями 
между устойчивостью, эквиустойчивостью и равномерной устойчивостью 
можно эти три случая свести к одному случаю. 

Теорема 3. Какое бы ни было множество N типа Gô существует дифферен­
циальное уравнение (1), компоненты правых частей Xt(t, x) которого имеют 
частные производные всех порядков по переменным t, xl9 ..., х^ такие, что: 

1. Из множества N выходят равномерно устойчивые решения. 
2. Из множества Е — N выходят неустойчивые решения. 
Эта теорема доказана в двумерном пространстве. Для случая «-мерного про­

странства суть доказательства остается правильной, но уже для п = 3 оно 
станет слишком громоздким. Система построена так, что правая часть од­
ного дифференциального уравнения, тождественно равна нулю. Из этого 
вытекает, что теорему 3. можно легко сформулировать и для случая одного 
дифференциального уравнения. 

Формулированная проблема частично разрешена также в автономном случае. 
Для случая одного дифференциального уравнения имеет место теорема: 

Теорема 2. Множество точек, из которых выходят неустойчивые решения 
уравнения dxjdt = f(x) характеризовано тем, что оно состоит из трех частей: 

1. Из полузамкнутого интервала <х**, оо), при этом х** может быть равно 
х** = — оо (т. е. все решения неустойчивые) или может быть равно + оо (т. 
е. эта часть отсутствует). 
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2. Из полузамкнутого интервала (— оо, х*>, опять может быть х* = — оо 
илих* = + оо. 

3. Из счетного множества Q точек, расположенных в промежутке (х*9 х**), 
которое имеет это свойство: Если х е Q, то точка х не может быть одновре­
менно предельной точкой множеств (— оо, х) Q, (х, оо) Q. 

Приведенный п р и м е р показывает, что уже в двумерном автономном слу­
чае нельзя ограничиться условиями топологического характера, и характер 
условий, при помощи которых мы могли бы определить структуру этого 
множества, очень сложный. * 
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