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THE TOPOLOGICAL STRUCTURE OF THE SET OF STABLE
SOLUTIONS OF A DIFFERENTIAL SYSTEM

Ivo VRrkoC, Praha

(Received March 22, 1960)

It is shown that the set of points in which stable, equi-stable and uniformly
stable solutions originate, may be characterised as a G4-set.

This paper is devoted to the study of the structure of the set of stable, equi-stable
and uniformly stable solutions of the system of differential equations

(1) % - X(1, %)

n
<in vector notation, x = [xy, X5, ..., X, ], [x] = [ Y, xf), such that the compo-
i=1

nents X (¢, x) are defined in the half-space ¢ = 0 and satisfy some existence condition
(e. g., the Carathéodory conditions). The structure of this set will be studied by deter-
mining the type of the intersection of a hyperplane ¢ = const = 0 with the solutions
of (1). We will confine ourselves to the hyperplane ¢ = 0; the results obtained for this
case will also hold for any other case t = const = 0.

The necessity of the condition, i. e. the statement “If M is the set of all points in
which the stable, equi-stable or uniformly stable solutions of (1) originate then M is of
type G,”, will be proved for systems of curves more general than that of solutions
of (1).

Denote by S any system of curves which satisfies the following two conditions:

1. To any point x, and real f, there exists (at least one) vector function x() € S,
defined and continuous on some interval (t,, t,) with t; < t, < t,, and such that it
passes through x, at time #,, i. e. x(f) = X,.

2. Let x,(¢) and x,(¢) be curves of S, defined on intervals (1, t,) and (13, t,) respec-
tively. If there exists a real 7 such that x,(t) = x,(7) and t; < T < t,, then the curve
z(t) defined by

z(t) = x4(t) for t; <t=<rt,
z(t) = x,(t) for 7 St<t,
also belongs to S.
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It is easily shown that for each curve of S there exists at least one maximal domain,
which is necessarily an open interval (a, b), where a may be — oo and b may be + oo.
This interval will be termed the interval of definition. If the interval of definition of

a curve x(t) of S is (a, b) with b < + oo, then there cannot exist a finite limit lim x()
t~b-

(otherwise the curve x(f) could be prolonged through b). In other words,
o(x) = lim sup [x(x) — x(B)l > 0.
t—=b— t<a<f<b

We will now define the basic notions:

Definition 1. Let the interval of definition of a curve x(¢)e S be (Tj, T,) with
T, < 0 < T, possibly Ty = — oo or T, = + oo. Then x(7) is stable if to any ¢ > 0
there is a 6 > 0 such that if

1%(0) — x|l < o
then every curve x(f) € S which has x(0) = x is then defined on 0, T,) and satisfies
Ix(f) — x(t)] <e for 0Lt<T,.

Definition 2. Let x(¢) be a curve of S with an interval of definition (Tj, Ty), Ty <
< 0 < Ty. The curve x(1) is equi-stable if to any ¢ > 0, To (0 < T, < T;) there exists
a d(e, T,) > O such that if

15(t6) — x|l < 8(e, Ty)

for some t, € <0, Tp), then every curve x(t) € S which has x(t,) = x is then defined on
{to, T») and satisfies

[x(f) = x()| <& for t,<t<T,.

Definition 3. Let the interval of definition of a curve x(f)e S be (T3, T), Ty <
< 0 < T,. The curve x(t) is uniformly stable if to any ¢ > O there exists a 6 > 0 such
that if

Ix(to) — xI < &

for some ¢, €0, T), then every curve x() € S which has x(t,) = x is then defined on
{1y, T;) and satisfies

[X(1) = x(1)| <& for t,<t<T,.

If we put T, = + oo in these definitions, we obtain the customary definitions of
stability, equi-stability and uniform stability, i. e. definitions in which it is pre-assu-
med that the curves are defined for all ¢ > 0. Since the solutions of (1) may be defined
on a finite interval only, it seems useful to generalise the customary definitions to
curves with bounded domains in the manner of our definitions 1, 2 and 3. The case of
stable solutions defined for all ¢ = 0 will be considered separately.

Equi-stability is usually formulated in other terms: a curve x(t) € S is equi-stable if
to any real ¢ > 0, t, = O there exists a (s, 1o) > 0 such that if ||x(t,) — x(to)ll <
< 8(e, o), x(t) € S, then [|x(f) — x(t)]| < efor t = t,.
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However, if the curves are solutions of a differential system satisfying the Carathé-
odory conditions

1. For fixed x, X (f, x) are measurable in ¢.

2. For fixed t, X (1, x) are continuous in x.

3. To every o > 0 there exists a Lebesgue integrable m(7) such that |X (¢, x)| <
< m(t)for |t] < o, |x|| < «; then the two definitions of equi-continuity are equivalent.

We will also need

Definition 4. First we define T for 0 < o < 1 and real T. If T = oo, let T® =
=afl —a)for0 = a<1,and T = co0. If T < o, then let T® = «T. Next we
define sets M for 0 <« < 1l and a = 0 or a = 0. A point x belongs to M if
there exists a curve X(¢) in S which satisfies the following conditions:

1. The interval of definition of X(¢) is (T}, T,), where T, < 0 < T,, T, = a, and
the curve x(f) passes through x at time t = 0, i. e. ¥(0) = X.

2. If T > 0, let t, be any point from <0, T§?); if T{® = 0, put 7, = Oalso. To
every &, = 27" there exists a 6" > 0 such that if |x(to) — x| < 6% then any curve
x(t)e S with x(to) = x is defined on to, T;) and satisfies |x(t) — x()| < e, for
th 2t < T,

Note. All curves of S which originate in the sets M‘® satisfy a unicity condition for
increasing ¢. In greater detail, if x(t) € S and y(1) € S, if x(0) = y(0) e M{”, and if the
intervals of definition of x(t) and y() are (T, T3) and (T}, T;) respectively, then
T2 = T2 and x(1) = y(t) for 1 €0, T2).

The sets M® have the following meaning:

The set MY consists of all the points of the hyperplane ¢ = 0 in which there origi-
nate stable curves in the sense of Definition 1.

The set M%) consists of all the points of the hyperplane t = 0 in which there origi-
nate stable curves defined for all t = 0.

The set MY consists of all the points of the hyperplane ¢ = 0 in which there origi-
nate uniformly stable curves in the sense of Definition 3.

The set M1 consists of all the points of the hyperplane ¢ = 0 in which there origi-
nate uniformly stable curves, defined for all t = 0.

The set '

0
[T MG for 0 <@, < 1. lima, =1 monotonously,

n=1 n—oo
consists of all the points of the hyperplane ¢+ = 0 in which there originate equi-stable

curves in the sense of Definition 2.
The set

8

M@ for 0 < a, <1, lima, =1 monotonously,
1

n— o

1

n

consists of all the points of the hyperplane ¢t = 0 in which there originate equi-stable
curves, defined for all t = 0.
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Theorem 1. The sets M with 0 < « <1 and a = 0 or a = o are of type G,

Note. By a well-known property of Gs-sets it immediately follows that the sets
[TME™ are of type G,.")
n=1

Proof. The §-neighbourhood of ¥, i. e. the set of points x with |x — x| < §, will
be denoted by U(x, 6). To any point x € M(”) there exists a 3{"}(X) > 0 with the pro-
perty described in Definition 4, condition 2 (it was there denoted by 3¢"), and such
that

0.1) 87(x) <o(x) = lim sup Ix(w) = 3O)I, xX(0)=x, X)eS

t=Tr— t<p<v<Ty
if 6(x) > 0. Choose 65"(x) > 0 such that if
IX(to) — x(t)ll < 55%()
for arbitrary t, € €0, T{) when 73” > 0 and t, = 0 when T3 = 0, then
[x(t) — x(O)Il < 309°(x) for to<t<T,.

Theorem 1 then immediately follows from the identity

0

MP =11 ¥ U(x, 65%x)

n=1 xeM,®)

which we proceed to prove. The inclusion
MP < [T ¥ Ulx, 68(x))

n=1 xe My(®
is obvious. Let x* be a point of
(0.2) [ Y Uk ux);

n=1 xeMy®

we shall prove that then x* belongs to M®. By the existence condition the defi-
nition of S, there exists a curve x*(f) with x*(0) = x* and whose interval of definition
is (T7", T;) with T{* < 0 < T, where T} may be — oo and T; may be + co. We must
prove that

(0,3) T} >a.
The intervals of definition (T, T5) of curves x(f) € S with x(0) e M{ satisfy
(0.4) T,2a.

Since x* is in the set (0,2), there exists a point x € M{” such that x* € U(x, 65"(x))
(arbitrary n). Now, the inequality (0,3) will immediately follow from (0,4) if we prove
the following statement:

1y J. Kusinskr has remarked that for ordinary stability (i. e. for the sets M‘f")), our Theorem 1

follows from the theorem on the structure of zero sets of continuous functions. The uniformly
stable and equi-stable cases cannot be reduced to this theorem.
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Let x be a point of M, and x* a point of U(x, 85()); let x*(t), x(t) be curves of S
with x*(0) = x*, x(0) = x, and with intervals of definition (T}, T;) and (T, T,)
respectively; then Ty = T,.

Proof. Assume T, > T, (necessarily then T, < ). As X () cannot be prolonged
through 7, we must have

o(x) = lim  sup |[x(p) — x(v)| > 0.

t—’Tz— t<u<v<Tz
Since x* € U(x, 69"(x)), we have ||x* — x|| < 63(x); using the construction of 53",
and (0,1),

[x*(t) — x(1)l| < 367%(x) < 3o(x) for 0<t<T,.

Obviously for any g, vwithO0 < u<v < T,
03) 1) — O > 15(0) — 3O — 1:°(0) = 5@ — 1) — 3001 >

> 15(6) — 30)1 — 20(3).
To any 9,0 <7y < T,, there obviously exist g, v,y <u<v < T, such that
lo(x) — Ix(n) — x(v)II| < $0(x). Hence and from (0,5) we conclude

Ix*(1) = x*0) > (& = D) ox) = {50(x) .-
Thus the limit lim x*(f) does not exist, and x*(t) cannot be defined for ¢ = T,. This
T,
proves Ty < T,. The second inequality Ty > 7T, follows from condition 2 in Defi-
nition 4 (the curves x(r) mus be defined for those ¢ = 0 for which x(¢) is), and we
conclude T = T».
Now we pass to the proof that x* satisfies the second condition in the definition of

M. Since x* is in the set (0,2), we have for every n that

x*e Y Ux, 87" (x),

xeMq(®)
so that x* € U(x,, 65+ (X,)) for some x, e M{®. Take
O1(x*) = 3070 V(%) -

Let x be any point satisfying
(0,6) Ix*(to) — x|l < 8(x*) = 2505 (%,)
for some t,, where t, is arbitrarily chosen in <0, T,°®) if T,;® > 0 and t, = 0 if
T;® = 0. From (0,6) and [[x™(to) — X,(to)| < 36" "(x,) there follows

Ix — Sto)l < 8720
If we had 0 < t, < T4, then by Definition 4 we would also have

Ix(t) = X, ()] < &gy for to<t< Ty,

with x(1) € S, x(t,) = x, and (T} ,, T ,) the interval of definition of Xx,(f). But we have
already proved that T, = T, so that (see T in Definition 4) necessarily T,'® =
= T(“) Thus we have proved the following statement:
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If x is any point with
Ix*(to) — *Il < o (x*) = 160 EV(x,)
(0=t < T;YU TS® > 0and to = 0 ,'fTZ*(’) = 0, then
1%(f) = %)l < Ensr for to=t<Tou=T5.
From |lx* — X|| < 647 D(%,) there follows [[x*(fo) — X(to)ll < 30{’s "'(,) and thence
Ix%(6) — ()] < &uss for to St < T, =T

Using this result, we may reformulate the preceding statement in the following
manner:

If x is any point with
[x¥(to) — x|l < O7a(x*)
then
Ix*(t) — x(£)| < 2441 = & for to <t <T;.
Obviously this statement implies that x* satisfies the second condition in the defi-
nition of sets M, i. e. that x* e M(®.

Thus we have proved that the sets in which stable, equi-stable and uniformly
stable solutions originate, are of type G;.

The converse problem is that of constructing a differential system to a given
Gs-set in such a manner that stable solutions originate in the given set and unstable
ones in its complement. Before passing to this problem, we shall examine the topolo-
gical properties of such sets in the autonomous case.

AUTONOMOUS CASE

Let us consider the problem just mentioned for the system of differential equations

(0.6) &= X(x)

dt
in vector notation. Theorem 1 remains true, but, as will be seen, it is too weak. Much
more can be said of the sets than their Baire class. First let us take the one-dimensional
case; the situation is different for equations with or without unicity of solutions. As-
sume, then, that all solutions of

(0.7) )

satisfy unicity conditions; here f (x) is a continuous function. We will make use of the
following two assertions:

I. Let x,, x, be neighbouring zero points of f(x); then all solutions with initial
points in the open interval (x,, X,) are uniformly stable.
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II. Let x be the greatest, and x the smallest, zero point off(x). Then the solutions
with initial points in the open interval (x, + c0) are either all stable or all unstable;
a similar statement holds for (— o0, x).

Using I and 11, the following theorem may be easily proved:

Theorem 2. The set of points in which unstable solutions of (0,7) originate is com-
posed of three subsets,

1. A closed interval {x**, + ), where x** may be —co (i. e. all solutions are
unstable) or it may also be + oo (i. e. this subset is void).

2. A closed interval (— oo, x*), with x* possibly oo or — co.

3. A countable subset Q of (x*, x**) such that, if x € Q, then x is not simulta-
neously a limit point of both (— 0, x) Q and (x, ) Q.

Note. From 3 it follows that Q is non-dense.

The properties 1 and 2 follow from assertion IT directly. From assertion I it follows
that the points x, not in the intervals (— o0, x> and (x, o), and in which unstable
solutions originate, can only be points such that f(x,) = 0 and that f(x) is non-zero in
some one of (xo — 8, Xo) or (Xo, Xo + 6). Now we shall proceed to prove that the
conditions of Theorem 2 are also sufficient.

Let there be given a set M composed of three subsets according to conditions 1,2
and 3. Define a function f(x) thus:

f(x) = x — x** for x = x** if the first subset is non-empty (i. e. for x** < ),

f(x) = x for all x if x** = — oo,

f(x) = x — x* for x < x* if the second subset is non-empty.

The construction of f(x) in (x*, x**) will be more involved. We assume that Q is non-
empty — otherwise it would suffice to take f(x) = 0 for x* < x < x**. Now take any
closed interval J = (&, n>, & < n (possibly £ = — 0 or n = + o0) with no limit
points of Q in its interior and such that Q(&, 1) #+ 0. Define 1, and 1, in the following
manner:

a) if & (or #) is a limit point of Q(¢, n) then let 4; = & (or Ay = n);

b) if & (or 1) is not a limit point of (¢, n) and £ € Q (or n € Q) then let 4, = & (or

2y =1);

<) 1f)§ (or #) is not a limit point of Q(é n) and ¢ € Q (or n € Q) then let A, be the
least (or A, the greatest) point of the set 0(&, n).

Now define f(x) in J thus:

1) = £(n) = f(‘” ") L f(9=0 for xeJo,

A
JE) <0 for xe(s i), f(x)>0 for xe(/ll, 2;'7>_Q»

f(x)<0 for xe <A_2_2i'_’7 , 71) (this last only if # < + o).
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However, if J is a closed interval <&, 1), & < n, such that Q(&, n) = 0, then define
f(x) thus: f(&) = f(n) = 0;

d) if e Q, neQ then]etf(%ﬂ)IO’

f(x)>0for xe( ,éLG>,f(x)<0f0r x€<£‘;’7’rl>;

e)if £€Q, neQ thenlet f(x) > 0 for xe(&n);

f)if ¢€Q, neQ thenlet f(x) < 0 for xe (& n);

g) if ¢€Q, neQ thenlet f(x) =0 for xe(& 7).
In all the cases a) to g) we further require that f(x) satisfy a Lipschitz condition (with
unity constant) and be bounded in absolute value by one.

It now remains to decompose E; into a system of closed intervals (possibly de-
generate) in each of which f(x) will be defined in the manner just described. The points
of the set Q, countable by condition 3, may be arranged into a sequence Xy, X,, ...,
X,, ... Taking x,, there exists a maximal closed interval J; such that x, € J, and that
its interior contains no limit point of the sets Q, (— 0, x*), {x**, x). Next take the
first x; not in J, and repeat the construction. Continuing in this way we obtain a se-
quence of intervals J,. Every point of Q is in some J,, and from condition 3 of Theo-
rem 2 it follows that none of these intervals is degenerate. Finally, for any point x, not
in this systern of intervals nor in (— 00, x*) or {x**, + o0) there is a maximal closed .
interval J such that the intersection of its interior with the sets Q, (—oo, x*) and
{x**, +00) is empty (this interval is possibly degenerate). On these intervals J,, J we
define f(x) in the manner described above; if J is degenerate, we put f(x) = 0 on J.

The function f(x) thus defined on E, is single-valued (the intervals J,, J may have
common end-points, but f(x) is zero there) and satisfies a Lipschitz condition.

We will now prove that the corresponding equation (0,7) has the desired properties.
Obviously, solutions’ with initial points in (—oco, x*) or {x**, +c0) are unstable.
Next we must show that the solutions originating in points x, € Q are also unstable.

1. If x, is an interior points of some J, , then by construction of f(x) in J, (see
a), b), ¢)) the solution through x,, is unstable.

2. 1f x, is the right (or left) end-point of J, , then there are two alternatives,

) x,is not a limit point of QJ, ; then according to b) (or ¢)) the solution through x,,

is unstable;

B) x, is a limit point of QJ, . Then according to condition 3 of Theorem 2, there is

a ¢ > 0 such that (x, — 6, x,) Q@ = 0 (or (x,, x, + ) @ = 0). The interval (x, — J,
x,) (or(x,, x, + 9)) is thus a subset of some J, or J. By ¢), d), f) (or by b), d), e)) the
“ solution through x, is unstable.

It remains to show that all solutions with initial points x,, xo € Q, xo € (— 00, x*),
Xo € {X*¥, + oo), are uniformly stable.
If f(xo) # 0, then.uniform stability follows from assertion I or I and from bound-
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edness of f(x). However, we cannot exclude the possibility that f(x,) = 0, xo ¢ Q. By
a) to g), from f(x) < 0 for x < x, it would follow that x, € Q, contradicting our as-
sumption; thus f(x) = 0 for x < x,; similarly f(x) < 0 for x = x,. Thence we con-
clude uniform stability of the solution through x,.

Thus, in the one-dimensional autonomous case, we have succeeded in characteris-
ing the set of points in which unstable solutions originate. The following example will
show that in the two-dimensional autonomous case topological conditions are not
sufficient, and that the conditions which may serve to characterise the structure of sets
of initial points of stable solutions, become very complicated. In this example use will
be made of Theorem 3 to be proved later.

Example. Consider the set L of all points of E; with irrational coordinates. The
set L is of type G, so that, according to Theorem 3, there is a differential equation

d
_)fi = X(t’ Xl)
dt
such that X (¢, x,) = Ofor t < 0; that X(¢, x,) has continuous partial derivatives of all
orders; that solutions of this equation are defined for all ¢; that solutions with initial
points in L are uniformly stable; and that solutions originating in E; — L are un-
stable. Let M be the set of all points on solutions which originate in L. Also consider
a plane E, with coordinate axes x,, x,. The set M of the plane with axes x,, t may be
mapped into E, by the relation x, = ¢.
Next construct a system of differential equations
dx, dx,

0,9 — = Xy, X2), — = Xa(Xq, X3),
( ) ar (1 2) ar 2(1 2)

such that X, X, are continuous, that solutions originating in M are equi-stable, and
solutions originating in E, — M are unstable. Since the solutions of the original
equation have a finite first derivative, it suffices to put X,(x,, x,) = X(x4, x,) and
Xo(xq, x5) = 1.

Now map the plane E, into a plane E; with axes z,, z, thus:
zp =x1 +f(x3), 22 =2x,.
The set M will be mapped onto a set which we shall denote by M .

1. Assume that the function f has a continuous bounded first derivative. Then the
solutions of the system (0,9) are mapped onto curves in E; which are solutions of the
system

(0,10) %271 = Xy(z1 = f(22)s 22) + £(22) Xalzs — F(22), 22) = Zu(21, 23),
gdftz = Xy(z1 — f(22), 22) = Zy(24, 22) -
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Since f(x,) has a bounded derivative, the equi-stable solutions will be mapped into
equistable solutions, and unstable into unstable ones.

2. Assume that f is continuous and does not have a derivative at any point. Let us
attempt to construct functions Z;, Z, which are continuous, the solutions of (0,10)
originating in M, are equi-stable, and the solutions originating in E; — M, are un-
stable. The set M, will then be composed of uncountably many continuous curves
z4(1), z,(¢), which will not possess derivatives at any point, and which will not inter-
sect each other. Assume that such functions Z,, Z, exist. The set M is invariant with
respect to the system (0,10) (take any point [z, z,] € M,; the solution with this
initial point is stable, so that, by definition of equi-stability in the autonomous case,
all [z4(@), z,(©)] with @ = 0 are initial points of equi-stable solutions). Thus*the set
M, consists of solutions of (0,10). But M, consists of a system of non-intersecting
curves without derivatives at any point. Thus the solutions of (0,10) which originate
in M, must correspond to single points, i. e. the functions Z,, Z, must both be zero at
points of M;. Now, Lis dense in E, so that M is dense in E, and thus M, is dense in
E;. Thus we conclude that the functions Z,, Z, are identically zero in E;. On the
other hand, the solutions with initial points in E; — M are not unstable. From this
contradiction it follows that, unless the function f(x) is sufficiently smooth, systems
(0,10) with the desired properties cannot be constructed.

We have reached the following situation. The set M, consists of uncountably
many continuous curves. If these curves are sufficiently smooth, then we are able to
construct a system (0,10); if these curves are not sufficiently smooth, then we are not
able to construct a system (0,10). It becomes clear that the conditions which cha-
racterise sets in which the stable solutions originate, become rather complicated in the
autonomous case, and that in any case they are not of topological character.

Now take the non-autonomous case. In Theorem 1 we have proved that the set in
which stable, equistable and uniformly stable solutions originate is a G4-set. In order
to be able to state that this characterises the former sets, i. e. that these sets exhaust the
class of G-sets, we must, to any G,-set M, construct a differential system (1) such that
the stable (or equi-stable, or uniformly stable) solutions originate in M, and that the
unstable (non-equi-stable, non uniformly stable, respectively) solutions originate in
E — M. We may also require that the notions of stability (equi-stability, uniform
stability, respectively) correspond to solutions defined for all # > 0 (i. e. that T, = o
in Definitions 1, 2, 3), and only resort to Definitions 1, 2, 3 if we do not succeed to
construct such a system. In fact the differential system to be constructed will have its
solutions defined for all ¢ = 0. The three different cases for the three types of stability
will be lumped into one by constructing, for a given Gs-set M, a differential system
such that uniformly stable solutions originate in M and unstable solutions originate in
the complement of M. The proof of Theorem 3 becomes extremely complicated in the
three-dimensional case, and therefore will be performed for two dimensions only; the
fundamental idea of the proof applies to the poly-dimensional case also. The system to
be constructed will have one component identically zero; thus Theorem 3 is also easily
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formulated in the one-dimensional case, which, therefore, does not differ fundamen-
tally from that in many dimensions.

Theorem 3. Let M < E, be a Gy-set. Then there exists a differential equation (1)
(a vector equation with two components) such that every solution with initial point
X € M is uniformly stable, and every solution with initial point x € M is unstable.
Furthermore, the function X(t, x) has continuous partial derivatives of all orders.

First, an outline of the proof. Let M be the given G;-set in the plane E, with axes
x, y. We may assume it is the intersection of a decreasing sequence of open sets G in
E,. First, in E; (i. e. in three-dimensional space with coordinates 1, x, y) we construct
a system of two differential equations all of whose solutions are unstable; this step is
prepared in Lemma 2. Next, in GF — this is the set of points on solutions with initial
points in G — we leave a countable set of these solutions (this will serve to prove
unstability of certain solutions), cancel the rest, and construct a new differential
system in E;. This new system will have the following properties:

1. In the complement of G7 it coincides with the original system.

2. All the previously selected solutions remain solutions of the new system.

3. All the solutions of the new system are unstable again, but do not diverge very
much; more precisely, there is a previously given o > 0 such that, to any solution
x*(f) with x*(0) € GT thereisa § > 0 with sup ||x*(t) — x(¢)| < o whenever [ x*(0) —

t=0

— x(0)|l < &. This is the object of lemma 11. The construction is repeated for the sets

G3, ..., Gy, ... From lim o, = 0 it will follow that solutions originating in M = [] G

n— o n=1
are uniformly stable. As for the remaining solutions x(¢), their unstability follow
directly from the construction if x(0) is an interior point of some G, — Gy, . If
x e GF¥ — G*,, but is not an interior point, then to prove unstability, use must be
made of the curves which had been left unchanged at each step.

It is rather difficult to construct a differential system with the desired properties to
any given region G, since its frontier may be very complicated. To this end, in Lemma
8 a system of auxiliary surfaces is introduced, which decomposes G.* into countably
many tubes with simple boundaries and.in which the subsequent construction be-
comes simpler. Another system of auxiliary surfaces forces the solutions not to diverge
too far apart (Lemma 9). Finally, using Lemma 10, unstable solutions are con-
structed in these tubes.

As will be noticed, the system of differential equations

dx

ay
— = X(t,x,y), — =Y(t,x,
dt ( y) dt ( y)

to be constructed for Theorem 3 will have Y(¢, x, y) = 0, i. e. the solutions move only
in the direction of the x-axis. Obviously the proof of Theorem 3 is composed of
a series of lemmas.
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Before formulating Lemmas 1 and 2, let us consider a special case, in which the
set M consists of a single point — e. g. the origin. After a suitable transformation, the
solution passing through the origin is x = 0. This solution is to be stable, so that
[x(t) < & for ¢ = 0 if |x(0)] < &; however, all solutions with x(0) O must be
unstable. Thus we must be able to construct a differential system (1), whose solutions
with initial points in 36 < [|x|| < & are unstable and bounded: ||x(1)| < ¢ for ¢ > 0.
First we will take n = 1 and, using Lemmas 1 and 2, construct a differential equation
all of whose solutions are bounded and unstable. The following definition will be
useful.

Definition 5. Let d > 0; let ofr), A(t) be functions defined on some interval (t,, o)
(different for different pairs of functions) and with continuous derivatives of all orders.
We will say that o(r), f(¢) form a regular couple with respect to d if, for some n > 0,
a(f) + n < P(t) for t € (ty, 00) and if there is a monotone sequence t, - oo such that
aft,) + d + 1 < B(t,).

Unless explicitly remarked, all functions will be assumed to possess derivatives of
all orders.

Lemma 1. Assume that £°%t), E°'(t) are defined for t = 0 and form a regular
couple with respect to d. Then there exists a system of functions E¥X(t),i = 0,1, 2, ...,
0 < k < 2 such that:

(fi’k(t), 0 < k £2° are defined for t = i;
for t = i, &?(1) coincides with & 1(1) ;
EVM(t), EX*N(1) form a regular couple with respect to d ;

to every curve x = £ (1) there corresponds a point with coordinates x = ab?krL
t = 0 which will be termed the fundamental point of the curve x = £"**(¢); (to
clarify the situation we describe the relation between these points and curves; in
the subsequent construction, the functions £"***1(t) will be defined for all t > 0, and
the points x = a"***' t = 0 will be the initial points of these extended curves
x = éi,2k+l(t));

the ai,2k+1

(£%0), £°(0));

set a"™ = a'"'%; then to every curve x = E"X(t) there corresponds a point
x =a"* t =0, and to the curves E-*(t), &~ VX(1) identical for t = i, there corres-
ponds the same point; the last property may then be formulated thus: a'* < a***!,
i. e. the points a”* are ordered similarly to the curves é""(t).

with i 2 1, k = 0 are all the dyadic rationals in the open interval

1,k

The proof of this lemma is quite obvious. For instance, the function &'(1) is
constructed thus: let

éOO(t") 4 d + b < 501(1")
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for0<t,<t;<..<t <..limt, = co. We choose points 611(1,,)3 for even n

n—oo

let £1'(1,) satisfy
Et,) + b < EM(t), ENt) +d+ b < &0,
where b’ is sufficiently small positive; for n odd let £''(t,) satisfy
&%, +d+ b < M), V() + b < 1)

For other values of t = 1 choose ¢'*(#) in such a manner that it has continuous deri-
vatives of all orders and that

E%>t) + b < EM(1), EM(1) + b < EN(D).

Since £'°(f) = £°°(t) and £'3(1) = ¢°'(%), the functions £'°(t), £'*(1) and the functions
(1), €**(1) form regular couples with respect to d. The functions &**(t), E*3(1) are
constructed in the strips between £'°(r), £'%(t) and &''(¢), £'%(1) respectively, in the
same manner. The set of points x = a”?*** t = 0 with the desired properties is then
also constructed easily.

The point of the foregoing construction is the following: if a function X *(t, f) can
be found, with continuous partials, defined in the region t = 0, £°°(r) < & < £°'(1)
and such that £"(¢) are solutions of the differential equation

d¢
1,1 > = X*(t, &),
(1) o xn9

and if on extending the solutions £"(f) over the interval 0 < ¢ < i we have £-2**1(0) =
= a"?**1, then any two solutions &, (), &,(t) with £°°(0) < &,(0) < £,(0) < £°Y(0)
will form a regular couple with respect to d. Thus all solutions will be unstable. Such
a function X *(t, é) will be constructed in the following lemma, for the case of two
equations.

Lemma 2. There exists a function X(O)(t, X, y) defined in the half-spacet = 0, with
continuous partials of all orders and such that all solutions of the system

21) d

X ; d
~—-=X(0)t,x .__y=()
P (t, x, ), <
are bounded and unstable.

Proof. First construct the function X *(t, x) considered above. In Lemma 1 put
&%(1) = 0 and £°'(¢) = 1 for ¢ 2 0. This is a couple regular with respect to d = 2.
According to Lemma 1, there exist a system of functions éi”‘(t) of the properties
described there. In the regions t 20, x <0 and t >0, x=1 and ¢t <0 put
X*(t, x) = 0. :

The construction of X*(t, x) in the half-strip 0 < x £ 1, ¢ = 0 will proceed by
induction — the n-th step will consist in the construction in the rectangle 0 < x = 1,
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n <t <n + 1. We will require that the curves £"%() be solutions of the differential
equation
dx

2,2 — = X*(t, x
@) & ()
and that the initial point of solution &"¥(#) (prolongable over all ¢ > 0) be the point
x =a"t

First step: before constructing X *(t, x) in the first rectangle, we must define the
function £''(7) (heterofore defined for ¢ = 1) on the interval <0, 1). As already stated,
we require that:

1. £'1(0) = a''; 2. £')(t) possess derivatives of all orders; 3. £°°(1) < E''() <
kgll
< &%4(n); 4. %k@ =0 forall k = 1.
t

On the curve £''(1), the function X*(1, x) is defined in such a manner that this curve is
a solution of (2,2). The function X*(z, x) may then be extended over 0 < t < 1,
0 < x < 1 with continuous partials of all orders, using general theorems (see [1]).

Induction. Assume that X*(z, x) is already defined in the first n rectangles, i. e. on
the region 0 < ¢ < n, 0 < x < 1 (with continuous partials of all orders), and on the
curves x = EVX(1), i < n. Further assume that the functions ¢*+2¢ “1(t) with i < n are
defined for all ¢t = 0, have derivatives of all orders, satisfy & i’”‘“(O) = a"?**1 and
EL2T1(1) s a solution of (2,2) for 0 < t < n.

First we must extend the domain of definition of &"*****1(1) to all t > 0. In the
interval <0, n) identify &"*-2** (1) with that solution of (2,2) which has initial point
x = a"t1%*1 ¢t = 0. In the interval {n, n + 1> we extend the function A ()
in such a manner that it has derivatives of all orders and satisfies

én’k(l’) < é”+1’2k+1(l’) < f"’k+1(t) X
Such an extension is possible (see [1]). On the curves &"*1-***1() define X*(t, x) so

that &"* 12" (1) are solutions of (2,2). Finally X*(t, x) is extended to the region
n=t=<n+1,0=<x =<1 in such manner that it possesses partials of all orders.

We have thus defined a function X *(t, x) with partials of all orders, and with zero
values in the regions 1 = 0,x < Oandt = 0, x = 1 and ¢t < 0. In the note following
Lemma 1 it was remarked that all solutions &(r) with 0 < &0) < 1 are unstable.
Finally, let [x] denote the integral part of a real number x. In the half-space ¢ = 0
define a function X(1, x, y) by

X0, x, y) = X1, x — [x]) .
This proves Lemma 2.
The system (2,1) has the following property: )
Definition 6. Let X (t, x, y) be defined in the half-space t = 0. We will say that the

system of differential equations
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dx dy
2,2 — =X(t,x,y), — =0
(2.2) g = Xbxy), o
has property (A) in an open set G = E,, if for any point [x,, yo] and any open set G,
with [xg, yo] € G; = G there holds

inf o([1, x(2), yo], [%. x, y]) > 0
where x = x(f), y = yo, x(0) = x, is a solution of (2,2), [, x, y] is any point on
h(G,)*) and ¢ is the ordinary Euclidean distance function.

Note. The system (2,1) has property (A) in E,. The function X(t, x, y) is inde-
pendent of y, so that the course of integral curves does not depend on the y-coordinate
of the initial point. For any pair of different integral curves x(7), x*() with equal
y-coordinates of initial points, there cannot be

lim inf |x(¢) — x*(¢)] = 0
t—> o

since they form a regular couple with respect to d.

Before passing to the formulation and proof of Lemma 8, some auxiliary lemmas are
necessary. The following one is concerned with decomposition of an open set into
a system of rectangles with a special property.

Lemma 3. Any open set G in E, can be decomposed into a countable system of
rectangles in such a manner that their interiors are disjoint, the limit points of the
system are precisely the boundary points of G, and the x-coordinates of their vertices
are dyadic rationals.

Construction. For positive integral n let G, consists of those points of G whose
distance from the boundary of G is greater than 1/2". For integers n, m let K, ,
be the rectangle with vertices [n, m], [n,m + 1],[n + 1, m],[n + 1, m + 1]. Let K"
be the system of those K,f,,,, whose closure is in G;. More generally, let K,"‘m be the
rectangle with vertices

n m n m+ 1 n+1 m n+1 m+1
21—1’ 21—1 ’ 21—1’ gi-1 ’ 21—1 ’ 21~1 ? 21-1 ’ 21—1 ’

and let K' consist of those rectangles K} ,, whose closures are in G,, and which are not
subsets of any rectangles from K!, ..., K'~!. Finally, let the system K be the union of
the systems K*, K2, ..., K", ...

The following notation will be useful.

Definition 7. O(xy, X, ¥, y2) (x; £ X5, y; < y,) denotes the rectangle with
vertices [xy, y1], [*1, Y21 [X2, ¥1], [X2, y2]- The segment joining points [x,, y,],
[x1, y2] (points [x, y1], [x2, y,]) will be termed the front (end, respectively) x-edge

. T~
2) k(G) is the boundary of G. The set 4(G) consists of points on solutions of (2,2) with initial
points on A(G).
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of the rectangle O. Similarly, the segment joining points [xy, y,], [x,, y,] (points
[*1, y2]s [¥2, y2]) will be termed the front (end) y-edge of O.

Note to Lemma 3. In each rectangle (square) of the system K, consider the points
which lie on one third and two thirds of each y-edge. Denote the set of these points
by Z. Let us state explicitly some important properties of this set.

1. No point of Z lies on an x-edge of any rectangle of the system K.

2. Every point on the boundary of G is the limit point of pairs of points from Z
with equal y-coordinates and such that their distance converges to zero.

3. No point of G is a limit point of Z.

Not to have to repeat this list, we formulate the following definition.

Definition 8. A set Z will be said to have property (B) in G with respect to the
system K, if K is a system of rectangles which satisfies, in G, the conditions of Lemma
3, if the conditions 2. and 3. just listed are satisfied, and if the x-coordinates of points
of Z are not dyadic rationals (thence follows condition 1).

For the purposes of lemmas to follow, we will use the following notation. Let there
be given two functions x,(7), x,(t) defined for all ¢ = 0 and such that x,(0) = x,(0),
and also a pair of real numbers y, < y,. The surface x(t, y), as a function of t, y, de-
fined in the set =0y, <y =<y, by x(t y)=x,(r) will be denoted by
P(x4(?), y1, ¥2)- The surface x(t, y), defined in the set t 2 0, y; < y < y, by

x(t, y) = x4(¢) +

xX5(t) — x4(t) (y = 1)
Y2 =1

will be called of type R and denoted by R(x,(t), x,(t), y1, ¥,)- The curves [1, x,(1), y,],
[7, x5(t), y2] for ¢ = 0, will be termed boundary curves (front, end). Note that
x(t, y) has continuous partials of all orders. Let R(x,(t), x5(t), v, y,) be arbitrary.
Consider the following two surfaces. Set x,(t) = min (x,(1), x,(t)), xp(t) =
= max (x,(7), x,()), and denote the surfaces P(x,(t), 1, y,), P(xp(?); ¥1, y2) by
P'(R), P*(R) respectively. If we move in the direction of the x-axis, then the surface R
lies between the surfaces P'(R), P*(R) and these latter surfaces act as a type of buffer.
Note however, that P(R), P*(R) do not necessarily possess partial derivatives.

If S, N are arbitrary sets in E5, then the distance between S and N is defined by

Q(Sa N) = infg([tla X1s yl]’ [tZs X2, yZ])
with [, x,, y;] an arbitrary point of S, and [, x,, y,] an arbitrary point of N;
o is the usual Euclidean distance-function.

Finally, the segment V(xo, y1, ¥2) is the set of points [0 Xg, y] with y; £ ¥ = ya;
the points [0, x,, y;] and [0, x, y,] are the end points of the segment V(Xo, V1, V2)-
The fundamental segment of a surface P(x,(1), yy, y,) or R(x,(t), x,(f), y1, y2) is the
segment V(x,(0), ¥4, y,) (recall x,(0) = x,(0)).

We may now formulate the following lemma.
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Lemma 4. Let P(x,(f), yy, ¥,) be a surface and N a set such that o(P(x(t), y1, Va)s
N) > 0. Then there exists a Aa > 0 such that for the surface P(x(t), y1 — Ax,
Y2 + Aa) there again holds o(P(x4(t), y1 — Aa, y, + Ax), N) > 0.

The proof is obvious.

Now we shall proceed to the construction of the auxiliary surfaces. For the sake of
clarity the construction is divided into several lemmas.

Lemma 5. Assumptions: Let there be given a system of differential equations
dx dy

5,1 — =X(t,x,y), —=20

(5.1) 5 = X6xy), o

an open set G < E, and a finite number of segments
V1 = V(xly ,V1, )’2), ey I/n = V(xm y19 }’2),

X*¥ <X <...<x, xFF Vl cG,..,.V,=G.
Let there be given surfaces

Pi = P(xli(t)’ Y1 Y2): ey P:x = P(xni(t)a yla yZ) >

xi(0) = x5 xq(f) E x0(1), i=1,2

(xki(t) need not possess derivatives) with the following properties:
(5,2) oPLHG) >0, k=1,...n i=122)
(53) oPLP)>0, k+1, 1sk=<n, 1<I<n, ij=12.

Let there be given a segment V,., = V(0, y(, y,), x* £ 0 < x**, V,,, = G diffe-
rent from all the preceding segments, and such that for the surface P(cr(t), Vi yz)
there holds :

(54) e(P(a(t), y1, y2), h(G)) > 0
where x = o(t), y = 3(yy + y2) is a solution of (5,1) with initial point x = o,
y =301 + y2)-

Conclusion. There exists a surface P(x(t), y,, y,) originating in the segment
V.1 such that x(t) has derivatives of all orders and

—~

(5,5) o(P(x(t), ¥4, y,), h(G)) > 0,

(5.6) o(P(x(?), y1» y2), P) > 0
for k=1,...n i=12.
Proof. If the surface P(o(r), ¥y, ¥,) satisfies the inequality (5,6), then it suffices

3) h(G) is the boundary of G, A(G) is the set of points of solutions of (2,2) with initial points
in A(G).
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to put x(t).= o(t). However, P(a(t), y,, y,) may have zero distance from some of the
surfaces P,. In that case, put

ySmingP, P}), k+1, 1<ks<n, 151<n
y < ming(P, h(G)), k=1,...n, i=12,
ng(Vk’V;l+1) k=1,--"n

Using (5 2), (5,3) and the fact that V,,, does not coincide with any of the V,
k=1,. n) we may choose y > 0. Now take the least T such that, for some k, i,

(57) 0 ([T o7), %ﬁ] : [T % T), X—‘%D -1,

where the point [ T; x, (T), 3(y1 + »,)] belongs to the surface P, = P(x, (1), vy, y,)-
Using the properties of y, there is at most one such pair of indices i, k.

Assume i = 2 (the case i = 1 has a similar proof). In [1] there is perfomed the
construction of a function x*() with continuous derivatives of all orders and such that
for t >0

x2(t) + 3y < x*(1) < x,.,(t) + 2y

(xx.2(7) need not be differentiable). In the same paper it is shown that there exists
a function x() and a & > 0 such that x(z) has continuous derivatives of all orders and

x(t)=o(t) for 0S¢t =T, x(t)=x¥t)fort=T+9,
Xeot) + 3y < x(f) < x,,(t) + Sy for T<t<T+36.

We will now demonstrate (5,6) for the surface P(x(t), yy, y,). First take | = k, i = 2;
thus we shall prove

e(P, P(x(1), y1, ¥2)) > 0,
where k is that index for which (5,7) holds. According to (5,7),
x(t) =o(t) = x,5(t) + 37 for 0<t<T
and
x(t) = x;5(f) + 37 for t=T.

This implies the inequality to be proved. Since
X 1(1) S x0(f) < x,‘,z(t) + %V < x(t) >
the inequality (5,6) also holds for I = k, i = 1.

For the remaining indices | # k, i = 1, 2, the inequality (5,6) is proved thus: by
(5,7), in 0 < ¢ < T there holds

Xe2() = x(Ol 23y, Ik, 1<1<n, i=12,
and for ¢t > T there holds |x; ,(f) — x(1)| < 27. From this and (P}, P?) > 7, | 4 k
there easily follows (5,6). .
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Now let us prove (5,5). Intheset0 <t < T,y, < y £ y,, the surface P(x(t), Vis Yz)
coincides with P(a(t), y;, y;). Using (5,4), the part of P(x(t), y,, y2) which lies

—~—

above 0 <t < T, y; £y =y, has a positive distance from h(G). Inthesett > T
y1 £y £y, there holds x; 5(7) + 37 < x(f) < x;5(f) + 27, so that as

o(PLH(G) 2 7,

this part of the surface also has a positive distance from h(G). Thus both parts of the

.. . <
surface have a positive distance from h(G), i. e.

o(P(x(1), y1, y2), h(G)) > 0.
This proves Lemma 5.
In the following Lemma 6 we will consider a more complicated case.

Lemma 6. Assumptions: Let there be given a differential system (5,1), an open
set G < E,, a rectangle O(x*, x**, y,, yl), and three groups of segments:

1. segments V; = V(x;, yo, ¥1), I =1,..,m x* S x;, S x*, yo <y, V=G
(disjoint and contained in the rectangle O(x*, x**, y,, y;)),

2. segments Vy, = V(Xp, Y_po Vo), @ =1+ 1,...m, x* < x, < x**, y_, < y,,
V, = G (disjoint),

3. segments V, = V(x,, yy, Vhs=m+ 1, .., rx* <x, S x¥* y, <y, V, <G

(disjoint).
In these segments there originate surfaces Ry, ..., R,, which satisfy
(6,1) o(P(R).HG) > 0 for k=1,...r i=12.

The next assumption will be denoted by (6,2):

6,2)  If the segments V,,V, (I =1,...n, ¢ =n+1,...,m) or the segments
Vi, Vs (l =1,..,n,s=m+1,..., r) have a common end point, then the
surfaces Ry, R, or Ry, R respectively, have a common boundary curve.

If the segments Vi, V,, (k = 1,...,r, h = 1,...,7) are disjoint, then

(6,3) o(P'(Ry), PI(R))>0, i,j=1,2.

Let there be given a segment V,41 = V(o, o, yl), V..1 < G, different from all the

segments V, (1 = 1, ..., n) (it may have a common end point with the segments V,,
=n+1,...,m, V, s=m+1,...,r)such that

64 o(P(o(t), yo, 1), H(G)) > 0

where x = a(t), y = %(y0 + yl) is a solution of (5,1) with initial point x = o,
y =330 + »1)-
Conclusion. The segment V,+1 can be decomposed into five segments

VOO Mo Ner1)s Yo =N SH S oo £ =Yy,
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in which there originate surfaces R\, with

—
(6,5) o(P(R),), h(G)) >0, e=1,..,5,i=12.
(6,6)  If the segment V, . has a common front point (or rear point) with some
segment Vi, k = 1,..., r, then the surface R(Y, (or R}, respectively) has
a common boundary curve with the surface R, originating in the segment
V.
If the segment V, . is disjoint with V,, k = 1, ..., r, then

(6,7)  o(P(R,), P(RY)) >0 for k=1,...,r,e=1,...,5 i,j=1,2.
(6,8) The surfaces R, R\ have common boundary curves .

Let us make some remarks before passing to the proof of Lemma 6. The relation of
the rectangle O(x*, x**, y,, ) to the segments V, is the following: the segments of
the first group lie in the rectangle, the segments of the second and third groups lie
outside this rectangle and intersect it in a single point only. The significance of this
rectangle, unimportant for the proof of Lemma 6, will appear in Lemma 8. In order
to prevent possible misunderstanding, we emphasise that the inclusion O(x*, x**,
Vo> yl) < G need not hold, and that the points x, (k =1,..., r) need not be ordered
by magnitude. We do not even exclude the case that to some x; (1 < I < n) there is
agors(n+1=<g=<mm+1=<s< r)suchthatx, = X, O X; = X,.

Proof of Lemma 6. Using Lemma 5, we construct a surface P(x(t), yo, ;) which
has

(6’9) Q(P(x(t)’ Yos J’1)’;’TGJ)) >0,
(6,10) - o(P(x(?), yo» ¥1)s P(R)) >0, I=1,...,n.

This surface P(x(1), yo, y,) may, however, intersect the surfaces R, or R, (¢ = n + 1,
eomys=m+1,..., r) in the sense that their boundary curves intersect. In such
a case we must change the boundaries of the surface P(x(t), yg, »)-

Assume, then, that for some g, n + 1 < g < m,

e(P(x(1), yo. y1), P(R,)) = 0

(the case of an s, m + 1 < s < r, is similar).

According to Lemma 4, to every surface

Pi(Rq)zp(éqi(t)’y—qayO)’ q=n+1""7m5 l=172
there exists an &, > 0 such that
o(P(Et), y=g — @ yo + 00), H(G)) >0, g=n+1,...m, i=12

(€3(#) is the minimum, and &Z(f) the maximum, of the functions that describe the boun-
dary curves of the surface R,; see Definition 4).

Take a > 0 with & < o}, & < 3(y; — o). Define surfaces P} ;, k = 1, ..., m, thus:
If the segment V(x;, Yo, Yo + @), 1 < I < nhas no common end point with any of the
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segments V,, g = n + 1,..., m then let P}, be that part of Pi(R,) which originates in
the segments V(x;, Yo, Vo + «). If however V(xy, yo, Yo + a), 1 <1< n, has acom--
mon end point with some V,, n + 1 < g < m, then let P ; = P(ni(1), Yo, yo + @),

where
. 2 2
nt(t) = min (£1(0), EX0), n¥() = max (E3(0), EX(1) -
For g = n + 1, ..., m, if ¥, has no common end point with any of the segments V,,
1 <1 £ n, then set _
P;y = P(E()s yos Yo + ) .

According to (6,1),
(6,11) oPLHG) >0, 1sksm i=12,
and according to (6,3),
(6,12) o(Pi,, Pi,) >0 for k+h 1<k<m 1<h<m ij=12.

There are now two cases. ‘

a) The segment V,.; = V(o, yo, yl) does not intersect any V,, g =n + 1,
..., m. Then, using Lemma 5, there exists a surface P(?c(t), Yo, Yo + &) with

(6,13) o(P(x(1), yo» o + %), H(G)) > 0, _
(6,14) o(P(X(1); Yoo yo + @), PL) >0, 1 <k<m,i=12.

The segments ¥, of Lemma 5 are those of the segments V(x;, yo, yo + @), I = 1,...,n
and V(xq, Yo» Yo + @), ¢ = n + 1,..., m that are not in the first group. According
to (6,11), (6,12) and (6,4) respectively, the inequalities (5,2), (5,3) and (5,4) subsist.

b) The segment V,,; intersects some V,, n + 1 < g < m, in which there origi-
nates the surface R,. If the boundary curves of R, are 2, (t), 23(f), we may write

Rq = R(’{;(t)’ /ltzl(t)’ Y- yO) .
Set ?c(t) = 22(f). Then the surface P(JAc(t), Yos Yo + &) will satisfy (6,13) and (6,14).
Indeed, if there were .

o(P(2(t). yor yo + @), H(G)) = 0,
then we would also have .
o(P(E(). yor yo + 2). H(G) = o(PL H(G)) = 0
for some i, where
&q(1) = min (2,(0), 25(1)) »  &(1) = max (4(0), 25(0) 5
but, by construction of «, this is impossible. Similarly for (6,14): if there were
o(P(AZ(), Yos Yo + @), PL) = 0
forsome k, 1 £ k < m, k # q,and i = 1, 2, then we would also have
e(Pip Pay) = 0

for some j, in contradiction with (6,12).
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Now set y = Yo, 12 = Yo + %{x, N3 = Yo + %oc, N4 = Y1, a construct the surfaces

R,(.l*.)l = P(./)E(t), N1 ’12) ’ Rp(‘i)l = R(;C(t)9 X(l), M2, '73) ’ Rr(‘i)l = P(X(t)’ N3, 11*) *
By construction of R}, (see b)), (6,6) is evidently satisfied, and the surfaces R,
R%* Y have a common boundary curve. Using (6,9) and (6,13), we see that (6,5) is

satisfied. If
o(P(x(1), ¥o» ¥1)s P(R)) >0 for s=m+1,..,r, i=12,
then (6,7) for e = 31is a consequence of (6,10). The inequality (6,7) for e = 2 is a con-
sequence of (6,10) and the fact that the domains of definition of the surfaces P(R%,
is 20,9, <y = n; and those of the surfaces P(R,) or Pi(R,) are t 2 0, y_, <
Sy=<yo<mnandt=0,n; <y <y y,respectively. The inequality (6,7) for
e = 1isa consequence of (6,14). If there were o(P(x(1), yo, ¥1), P'(R;)) = 0for somess,
s=m+1,...,r,i =1, 2, then it would be necessary to change the rear boundary of
P(x(t), yo, ¥1) in a similar manner.
In the following lemma we shall weaken the assumption (6,4).

Lemma 7. Make all the assumptions of Lemma 6 except that (6,4) is replaced by

(7,1) - V(a, Yo, Y1) cG.
- - Assume that the system (5,1) has property (A) in the open set G. Then the conclusions
of Lemma 6 hold, with the following changes: The segment V(a, yo, y,) can be
decomposed into a finite system of subsegments V2, ..., V&, in which there origi-
nate surfaces R™Y,, ..., R®), with the properties described in Lemma 6. (There their
number was reduced to five.) .
Proof. Using property (A), the segment V(o, y,, y;) may be decomposed into
a finite set of segments

V(‘T, ’11,'12),--» V(a, ’11”11+1)9 Yo =M1 <M < .e. <Ny <Mty =1

in such a manner that the surfaces P(0,(1), 1y, nx+1) (Where x = a,(t), y = 3(n, +
+ M+ 1) is a solution of (5,1) with initial point x = o, y = 3(, + 7,4 ,)) satisfy

(7,2) o(P(ai(t), i s 1), B(G)) > 0.
Consider, in turn, the rectangles O(x*, x**, 1y, 1), O(x*, x**, 15, 13), ...,
O(x*, X** 1,, Ny+1)- By (7,2), in each of them (6,4) holds, and the construction of
Lemma 6 may be performed.

Before formulating Lemma 8, another definition will be necessary.

Definition 9. A surface (a function x(¢, y) in variables f, y) defined in the half-strip
120,y £y =< y,, willbe termed of type R™ if there exist a real ¢, = 0 and a funct-
ion «(t) > 0 with lim () = 0, with derivatives of all orders, and such that for t > 1,

t— o0

there holds o(f) < 2(y, — y,) and
x(t,y) = At,y) for y; + aty Sy Sy, — o),
min (x,(7), A(t, y)) < x(t, y) £ max (x,(1), A(t, y)) for y, <y <y, + oft),
min (x5(), (¢, y)) < x(t, y) < max (x;(1), A1, y)) for y, —oat) Sy £ y2,
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where

A, y) = (1) + "2(’) 1(‘) = 91)s () = x(6yn), ) = x(t )

2

with x(t, y) possessing partlals of all ordersint >0, y; < y < y,, and such that
*x(t, y) _
ay*
If several such surfaces are considered simultaneously, we will denote them by
RY,..,R,,...
Note to Definition 9. We will perform the construction of a surface of type R*,
given a fundamental segment V(x,, y;, y,), the boundary curves x,(f), x,(t) (with
x4(0) = x,(0) = x,, defined for all ¢ = 0) the function of(r) and the ¢, = 0.

Set
x(1, y) = x,(1) + M I:Cl(yl, v+ oc(t)) ’ '[ f(n, y, yy + off))dndé +

=0forkz1l,y=y,i=1,2.

2

Colyi ys + oc(t))ﬁ f nf(n, yi> i + 1)) dn dé]

for y, <y <3y, + yz); t =1y, and x(t, y) = x,(t) + x,(t) — x(t, y; + y, — y)
for 3(y, + y,) < ¥y < y,, t = 1o, where the function f is defined as follows (denoting
the second and third variables by u, v). It suffices to define f(n, u, v) for u < v, by

fln, u,v) = Mm@ for 4 <y <,
f(i’],u,l))zO f0r ﬂéu or ﬂzl}
[t is easily shown that
x <t,l (v, + Yz)) _ xa(t) + xo(1) and Ox(t, y) _ xa(t) = x4(t)
2 2 ay Yao— W1

for y, 4+ ot) £ y £ y, — a(t). The C,(u, v) and C,(u, v) are determined by the
system of equations

C,y(u,v) j £, 0) dn + Cafu, 0) j 0,0 dn = 1,

Cy(u, U)J Sf(n, u,v)dndé + Cy(u, U)ff nf(n,u,v)dndé =v —u.

Since for u < v the determinant of the system,

jf(n,u v)dn, Junf(n,u v) dn

Jff(n,u v)dp d¢, fjnf(n,u v)dndé

- f “ j w001, 00) (€~ ) d 4
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is non-zero, the coefficients C,(u, v), C,(u,v) are determined uniquely and have
continuous partials of all orders for u < v. Since x (1), x,(1), «(t) also have continuous
derivatives of all orders, it follows that the function x(t, y) has continuous partials of
all orders. From the above relations it easily follows that

x,(1) — x,(2) (
V2 —

1

x(t, y) = x,(1) + y = ¥1)

for t = to, y; + o(t) < y <y, — «(1). Since the function
y (& Y
o(t, y) = Cy(u, v)J J f(n,u,v)dndé + C,(u, v)j J n f(n, u, v) dn d¢
dot, y)
2

has at most one zero point of the second partial derivative p
y

in the open

interval (u, v), we have
0soty)sy—u;

thence we conclude the inequalities of Definition 9. In addition, from the expression
k )
for x(t, y) it easily follows that -a-—%(t’k—}) =0fork=1,y=y,i=1,2t=0.
y

Lemma 8. Assumptions: There is given a system of differential equations

(8,1) %——-X(t,x,y), i“Y=O,

dt dr
and an open set G, < E,. The system (8,1) has property (A) in G,. There are given
a system of rectangles K, and a set Z, such that Z, has property (B) in G, with
respect to K. The solutions of (8,1) with initial points on the x-edges of rectangles
of K, generate surfaces of type R* (single surfaces of this system will be denoted
by R,).

Conclusion. To every open set G, < G, there can be constructed a system of
rectangles K, and a set Z, such that Z, has property (B) in G, with respect to K,
and that there exist surfaces L, originating in the x-edges of rectangles of K, with
the following properties:

If the x-edge of a rectangle of K, is not a subset of an x-edge of some rectangle of
K, then the surface L, originating in this edge is of type R (see Definition 8, p. 277).

If it is such a subset, then the surface L, is part of one of the surfaces of type R*
mentioned above.

(8,2)  If V,, V,(fundamental segments of the surfaces L,, L,) have a common end
point, then the surfaces L,,, L, have in common the boundary curve with this
point as initial.

If v,, V, are disjoint, then

(8,3) oL, L)>0.
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Finally, there hold

(8.4) oLy, W(G2)) > 0,
(8,5) o(LnZ) > 0

whereZ = Z, + Z, and 2 is the system of solutions of (8,1) with initial points in Z.

Proof. First note that the surfaces R, (generated by integral curves of the system
(8,1) with initial points on x-edges of rectangles of K,) have the properties (8,2), (8,3),
(8,5) with Z replaced by Z,; this is a consequence of property (A) and of the conti-
nuous dependence of solutions on the initial point.

Denote by K" a system of rectangles which is finer than the system K, and simul-
taneously finer than the system obtained by decomposing G, according to Lemma 3
(the rectangles of K are the intersections of rectangles from K, with the rectangles
obtained by application of Lemma 3).

For the system K, construct the set Z, according to the note to Lemma 3. Now
number by positive integers the front x-edges of those rectangles from K*) in which
the surfaces R do not originate (i. e. the edges which are not subsets of x-edges of
rectangles from K,).

Construction of the first auxiliary surface. Let the first front x-edge
V(xy, yi7, ¥5") belong to the rectangle 0,(05, 69, 7", n$”) € K,. Use Lemma 7,
with

(G,—2).3 (0P <x< 0Y)
[x,y]

instead of G, and O(@(, @, y{", yi") instead of the rectangle O(x*, x**, yo, y;)-
If y{V = n{ (or y§P = n%”), then for the surfaces originating in segments V,,
g=n+1,..,m(orV,s=m+1,...,r)in Lemma 7, take the curves

x = gq(z) S =M (or y =P

which are the boundary curves of surfaces R, , and whose fundamental points are on
an y-edge of the rectangle
06, 09, 3, )
According to Lemma 7, the segment V(x;, y{", y$"’) decomposes into a finite set of
segments
V(%1 G Cer ) » N=0L<G<.. <l =y;
in the individual segments V(x;, (s, {x+1) there originate surfaces R{ with
o(P(RP), ﬁ(\éj) >0, k=1,...,my, i=12.
Either the curve
x=&(), y=yP (ory=y)
is a boundary curve of the surface R{" (or R{"™"), or
o{P(RE), PEE(0), 10, 54)) > 0
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where P(£,(1), y“), ¥i) is really the curve x = &(1), y = y{". By definition of G, of
surfaces of type R*, and from the last two inequalities, we easily conclude that

RP, R¥*Y have a common boundary curve ,
o(P{(RY), h(G,)) > 0, o(P(RP), Z2)>0, k=1,...,my, i =1,2,
either R, R, have a common boundary curve or
o(P(RP),R)>0, k=1,..,my, i=12.

From the system K we form a new system K® by subdividing all rectangles of
K™ by straight lines y = {,, k = 1, ..., m,.

Induction. Now assume: The set G, is decomposed by a system of rectangles
K™, where K™ is finer than all the systems K™, ..., K and every rectangle of K*)
has been subdivided into a finite number of rectangles. The system K™ decomposes
each of the first n x-edges Vi, k = 1, ..., n, into subsegments V™, s =1, ..., p™, in
which there originate surfaces R, k= 1,...,n, s = 1, ..., p{” with the followmg
properties (V> is the fundamental segment of the surface R(s) according to Defini-

tion 4 of surfaces R and to the construction presently being performed, an index n at
R would be superfluous):

(8,6) If V™, V4™ have a common point, then the surfaces R, R have in
common the boundary curve with this point as initial;

(8,7) if y&m, y{*" are disjoint, then
o(Pi(RY), P(RP?)) > 0;

for every surface RS, k = 1,...,n,s = 1, ..., p{™ there hold

(88) o(P(RY), H(G>) > 0,
(8,9) o(P(R®), Z) > 0;

(8,10) if ™, ¥,* have a common point, then the surfaces R, R;" have in com-
mon the boundary curve with this point as initial;

(8,11)  if ¥&m™, V" are disjoint, then
e(P(RY), Ry) > 0.
For the inductive step we further assume:

- (8,12)  The system K decomposes the (n + 1)-st front x-edge of a rectangle from
K™ into ¢ subsegments such that:
If we denote

0]
Va1t = V(iwrs, it i), I=1..,0+1,
then for every segment

(s,n) _ S0 s+1,n
V™ = V(g uSm, petts ), (k=1,.c,n, s=1,..,p"
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and strip
H=3 (i <y < imiD)

+1
[x.y]
there holds the following relation:
«) either all the points [y, y], 1521 < » < 11", lie on the segment yem,
@) or the segment V™ has precisely one point in common with H s
v) or finally ¥, and H are disjoint.
The auxiliary surface originating in the segments VY, will be constructed in turn.
First, using Lemma 7, construct the surfaces originating in the segment V.
If V1, is in the rectangle
o(e1", 5", 1™, n3")
then in Lemma 7 we take the set
(G, — Z2).3(6%" <. x < O%")
for the set G, and the rectangle
0(@(1"')’ @(ZM)a uﬁl-l-)la “512-1-)1
for the rectangle O(x*, x**, y,, y,) considered there. The surfaces R{", k = 1, ..., n,
s=1,..., p{”, and R; already constructed are grouped according to the property
«), B) or y) in (8,12) that they satisfy. Those R that satisfy o) are placed in the first
group, i. e. the group of surfaces whose fundamental segments are of the form
V(x4 Yo, ¥1)> k = 1, ..., n. The surfaces that satisfy p) are placed in the second and
third groups; those that satisfy ) are not considered at all. If

1 _ o ( 2) _ (
Hni1 = 7’[1m) (Or ﬂf‘+)1 = ’12m)

then the boundary curves of surfaces R, ,

x =&, y=n" (ory=n{

whose fundamental points are on an y-edge of the rectangle 0(0{™, @37, u{V,, u?)),
are also placed in the second and third groups of Lemma 7 (as in the construction of
the first surface). According to Lemma 7, the segment V(y,y, ui%y, u(¥;) decom-
poses into a finite number of subsegments

V(¥at 15 oo Cer1) > p =0 <G <o <y = w2y
in the individual segments there originate surfaces R}, such that:
. —~
o(P(REY,), h(G) >0, s=1,..,u,i=12;

(8,13)  If VL, (or ¥¥,) and V" have a common point, then the surfaces Ry
(or R ;) and R{” have a common boundary curve;

(8,14)  If V3, V™ are disjoint, then
o(P(REL,), P(RP) >0, s=1,..,u, k=1,..,n, I=1,..,p", i,j=1,2;

(8,15)  Each couple of surfaces R’ ;, R, have a common boundary curve.
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As in the construction of the first auxiliary surface, we conclude that

(8,16) o(P(RO),), WG) > 0, s=1,..,u i=12;
(8,17) o(P(RY),), Z) > 0.

(8,18)  If ¥y, ¥,' have a common point, then the surfaces R ;, R, have a com-
mon boundary curve;

(8,19) If V4, V" are disjoint, then
o(P(R}1), Ry) > 0.

The segments V.2, ... V{9, are dealt with in precisely the same manner. Thus we
obtain a decomposition of V,, into a finite number (p{""’) of subsegments, in
which there originate surfaces R’ |, s = 1, ..., p{"/|"’ with properties (8,13) to (8,19)),
possibly after renumbering). Taking into account (8,13) to (8,19), we see that (8,16)
and (8,11) hold for n + 1 also.

It remains to define K”* and to show that (8,12) holds for n + 1. The segment

V,+1 has been subdivided into p"f'’ subsegments

' ! (1+1 +1
V(Vn+1a u'(t-i)-l,llpﬂ»l))’ I=1,.., Pf;"+1)~

The straight lines
(8’20) V y=u, I=1,.., PE."++11) +1

decompose the rectangles of K™. Those rectangles from K™, in whose both x-edges

there originate surfaces already constructed, are left unchanged; the remaining

rectangles are subdivided by the straight lines mentioned; the resulting system is

denoted by K"*". By construction, property (8,12) holds for K™** also. Let us

show that the sequence of systems K™ subdivides every rectangle of K*) into a finite

number of parts, i. e. that to every rectangle of K*) there is an index n, such that
K™ with n > ny do not subdivide this rectangle.

Let the integer associated with the front x-edge of this rectangle be k;; the rear
x-edge is decomposed into a finite number of front x-edges of rectangles of K*); to
these then corresponds a finite set of positive integers k, ..., k,. According to (8,20)
we may then put n, = max (ky, ..., k,). The sequence K defines a limit system of
rectangles, which we denote by K,. By construction, in those x-edges of rectangles of
this system that are not subsets of x-edges of rectangles of K, there originate surfaces
R satisfying (8,2) to (8,5).

If an x-edge of a rectangle of K, is a subset of an x-edge of some rectangle of K,
then the solutions of (8,1) with initial points on this x-edge form, by assumption,
a surface of type R™; this is the surface which will be denoted by L,. It remains to
prove that these latter surfaces together with the surfaces R already constructed,
satisfy (8,2) to (8,5).

As has been mentioned at the beginning of this proof, and by (8,10), (8,11), evi-
dently (8,2) and (8,3) hold. Since the fundamental segment V'* of R* is in G, and by
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property (A), the relation (8,4) holds. It was mentioned that (8,5) holds if Z is replaced
by V4 1; all that there remains to prove is that

o(R*,Z,) > 0.

Since the fundamental segment V'* of the surface R is a subset of G,, no point of V*
is a limit point of Z,; using property (A), we obtain this last inequality.

Note also the following property: if the x-coordinates of vertices of rectangles
from K, are dyadic rationals, then so are the x-coordinates of vertices of rectangles
from K,; this is so since, except for the application of Lemma 3, all the subdividing
lines were parallel to the x-axis.

Note to Lemma 8. All the surfaces constructed in Lemma 8 were such that if
they are described as functions x(z, y) of variables ¢, y then they have continuous
derivatives of all orders. However, if two of these surfaces have a common boundary
curve, they need not have a common tangent plane along this curve. In the sequel it
will be required that these surfaces consist of solutions of the system (8,1) with
X(1, x, y) having continuous derivatives of all orders. Thus it will be necessary to
change these surfaces in the neighbourhood of common boundary curves so as to
obtain surfaces sufficiently smooth. Such surfaces are of type R*. Using the note to
Definition 9 we may successively change our surfaces in such a manner that we obtain
surfaces of type R*, leave the boundary curves unchanged, and preserve properties
(8,2) to (8,5).

In the next lemma, a system of surfaces will be constructed, such that the distance
between them does not increase overmuch. The point is that if we also construct
a differential system whose solutions do not intersect the surfaces of this system, then
the distance between solutions will not increase overmuch also. However, a different
notion of distance than the one used heretofore will be introduced.

Definition 10. Let S;(x = x,(t, )), So(x = x,(t, y)) be two surfaces defined over
the set t 2 0, y; < y < y,; then their outer distance on the half-line t = t, is
defined as

QE%O),'FOO)(SI’ SZ) = sup le(t5 y) - xl(t’ Z)l for t g t05 y €<y1, y2> s Z E<y15 .}72> .

Lemma 9. Assumptions: There is given a differential system (8,1) and an open
set G. The solutions of (8,1) are bounded and the system has property (A) in G. There
is given a set Z and a system of rectangles K such that: Z has property (B) in G with
respect to K, the x-coordinates of vertices of rectangles from K are dyadic rationals,
and in the x-edges of these rectangles there originate surfaces of type R* which
consist of integral curves of the system (8,1). The fundamental segments V of these
surfaces of type R* and the x-edges of rectangles from K have the following relation:

Every x-edge of any rectangle from K either consists of a finite number of funda-
mental segments of these surfaces, or it is a subset of some fundamental segment.
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These surfaces of type R* have the following properties:

(9.1) If Vy, V,, (fundamental segments of surfaces R,, R,") have a common end-
point, then R}, R} have in common the boundary curve with this point as
initial.

If V,,, V, are disjoint, then

(9,2) o(R,,R,) >0,
(9,3) o(RY, H(GY) > 0,
(9.4) o(R},Z)>0.

Conclusion. To every positive real n there exists a system of rectangles K’,
finer than K, and such that: every rectangle of K consists of a finite number of
rectangles from K'; the x-coordinates of vertices of rectangles of K’ are again dyadic
rationals; the lengths of y-edges of rectangles of K' are less than n; in the x-edges
of rectangles from K’ there originate surfaces of type R* which, together with the
given surfaces, again satisfy (9,1) to (9,4); for every rectangle, if R{ (R3) is the sur-
face originating in the front (rear) x-edge, then

(935) Qéfo),oo)(Rra R;) < 11

(to may vary for different rectangles).

Proof. Use positive integers to number the rectangles from K. In each in turn
perform the following construction. Denote the n-th rectangle by O(xy, X5, V1, ¥2)-
In its x-edges there originate a finite number of surfaces of type R™; in its y-edges
there originate either boundary curves of the remaining or newly constructed (in

preceding steps) surfaces of type R, or a finite number of curves from 2.4) Denote
these curves by x = £,(), y = y;, i = 1, 2. Then

(9’6) Q(P(én(t)’ YVis yi)’ R;—) > O > 19] = 1’ 2 5
(9’7) Q(P(én(t)’ Vis yi): P(ém(t)n Vi yz)) > 0 s, N 4: m, i = 1, 2 .
If both .

Qlioo(Ri> R3) > 1

and the y-edges of O are less than #, then O is left unchanged. Assume then that at
least one of these assumptions is not true. Decompose O(x;, X,, y;, ¥,) by straight
lines parallel to the x-axis, and passing through the end points of the fundamental
segments V, constituting the x-edges of the rectangle O. In these smaller rectangles we
perform, in turn, the following construction: '

Let OY(xy, x,, y1,7) be the first of these rectangles. Choose o, = 0 so that for
t Z to the function off) is sufficiently small (see Definition 9 of surfaces originating
in x-edges of O™). For each curve x = ¢(t), y = y,, i = 1,2 consider the segment

A
4) Z is the system of solutions of the system (8,1) with initial points in Z.
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V(£,0), i, 7). If there exists a curve x — &(1), y = ypj = — 1+ 3originating in the
other end point of this segment (this is possible only if y = y,, i. e. if the rectangle O
has not been decomposed at all, 0 = 0"), then we construct a surface of type R*
with boundary curves x = (1), y = y, and x = (1), y = y; in such a manner that
it originates in the segment ¥(&,(0), y,, ¥2)- On the other hand, if no curve x = &(t),
y = y; originates in the other end point of V(,(0), y,, y), then we may construct such
a curve that satisfies (9,6) and (9,7). The surfaces thus constructed obviously satisfy
(9,1) to (9,3). Among the surfaces which originate in the segments V(&,(0), y,. y,) just
constructed, there do not occur any of the curves x = £,(f), y = y; (i. e. boundary

curves of the given or constructed surfaces R* or curves of 2) Now, the distance
between surfaces R; and R; does not tend to infinity; thus by further construction of
surfaces of type R* (with fundamental segments V(x, 1y, 1) such that x is a dyadic
rational) and by further subdivision of O by straight lines y = n;, y; =1, < 1, <
< ...<n, =y, we can obtain that (9,5) holds for neighbouring surfaces with

n/(p + 1) instead of 5 (pis the number of curves of Z originating in the y-edges of O),
and that (9,1) to (9,3) hold. .

Now exclude those surfaces which have at least one boundary curve in the set Z;
then the outer distance of neighbouring surfaces will be less than 7, and (9,4) will hold.
In this construction each rectangle of K is decomposed into a finite number of new
rectangles. The system consisting of these latter is denoted by K'. The x-coordinates
of vertices of rectangles from K are again dyadic rationals, since this holds for those
of K, and in the construction either the x-edges were prolonged or the new vertices
were chosen with dyadic rational x-coordinates.

In the next step there will be constructed a system of surfaces to ensure instability
of solutions. Let K by the system of rectangles constructed in Lemma 9. In the y-edges
of every rectangle from K there originates a finite number of curves x = én(t), y =
= const. These are either boundary curves of surfaces considered in Lemma 9 or

curves from the set Z. According to (9,2), (9,4), each pair of curves x = &,(1), y =
= const form a regular couple of functions with respect to some d > 0. According to
Lemma 1, between any two neighbouring curves x = £,(t), y = const we may con-
struct a system of curves x = £"¥(t), y = const which form regular couples with
respect to d and whose fundamental points have dyadic rational x-coordinate. Thus
on surfaces y = const originating in the y-edges of rectangles from K, we have de-
fined systems of curves in accordance with Lemma 1.

As in the proof of Lemma 9, consider any rectangle O(xy, X, y;, ¥,). Decompose
it by straight lines parallel to the x axis, passing through the end points of funda-
mental segments which constitute the x-edges of O. Thus we obtain rectangles
OP(xy, X3, {3 Civ1)> ¥1 = {is Y2 = (o4q. As shown above, construct systems of
curves x = £"¥(), y = const, originating in the y-edges of the rectangles 0'”. Above
every such rectangle, connect the curves x = (1), y = { and x = &7Y(1), y = {4,
by a curve of type R if the x-coordinates of their fundamental points are equal. Such

292



surfaces are constructed starting at ¢ such that both boundary curves are defined and
that the functions «() corresponding to all near surfaces of type R* (see Definition 9)
are small enough to ensure that the constructed surface does not intersect the surfaces
constructed previously. The segment V(£"%(0), y,, y,) will be termed the fundamental
segment of this surface. Finally, this construction is performed in all rectangles of K.

Note that the surfaces just constructed — to be denoted by N — have the following
property:
(10,1) If, in the direction of the positive x axis, the fundamental segment V(R) of

the surface R is before (behind) the fundamental segment V(N) of some
surface N, then the whole surface R is before (behind) the surface N.

Similarly: if x = &,0), y = y; is the fundamental point of the curve x = &,(1),

y = y; which is either a boundary curve of some R or a curve of ﬁ, and if the point
x = £,(0), y = y; is before (behind) the fundamental segment V(N), then the whole
curve x = (1), y = y; is before (behind) the surface N. As in the note to Lemma 8,
the surfaces of type R just constructed may be replaced by surfaces of type R*. We
formulate our conclusions in the following lemma.

Lemma 10. Given a system of surfaces according to Lemma 9, there exists a system
of surfaces N (these are of type R™, but are defined only for t = t,, with t, possibly
varying for different surfaces) which, together with the given surfaces, satisfy
(9,1) to (9,5), (10,1) and such that the boundary curves of the surfaces N form
a system of curves which satisfies the assumptions of Lemma 1.

Proof. According to the foregoing construction, the system of surfaces N together
with the system of surfaces R, satisfies (9,1) to (9,3), (9,5), (10,1). To prove (9,4), note
that as a consequence of property (B), the x-coordinates of points of Z are not dyadic
rational, while the fundamental segments V(x, y;, y,) of surfaces N have x dyadic
rational (i. e. the points of Z are not on the fundamental segments of surfaces N).
From (10,1) then (9,4) follows easily.

The meaning of property (10,1) is that it allows us to extend the domains of defi-
nition of surfaces N, viz. t = t,, y € (3", pS>, to half-strips t > 0, y € (4P, yI>,
while preserving properties (9,1) to (9,4). We will describe in brief such a construction
for some given surface N,. Consider the fundamental segment V(N,) of this surface.
It lies in some rectangle O of the system K'. Denote by S;, S, the surfaces which
originate in the front and rear edges of O. The surface N, is to be prolonged so as to
remain between S, and S,. This will render properties (9,3) and (9,4), except for the

curves of Z *) with initial points on O. If the segment V(N,) has a common front (rear)
end point with the fundamental segment of some surface R, then by construction,
the boundary curve of this surface coincides with the curve £"(¢) corresponding to
this end point. Thus for the boundary curve of N, there must be chosen the boundary

5) The definition of Z is in Lemma 8.
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curve of the surface R, . We will then have (9,1) and (9,4). On the other hand, if the
segment V(N,) does not have a common end point with the fundamental segment of
any of the surfaces R, , then the boundary curves of N (i. e. the curves £"¥(f)) arc to be
prolonged over all ¢ > 0 in such a manner that they intersect no curve of Z and no
boundary curve of any surface R, with initial point in O. According to properties
{9.1) to (9,4) of the system of surfaces R, such a prolongation is possible.

The next lemma has already been described in greater detail; it forms the inductive
step in the proof of Theorem 3.

Lemma 11. Assumptions: Given a system of two differential equations

dx dy
11,1 — = X4t,x,y), — =0
(1L.1) dt it 0) dt

and an open set Gy, G, <= E,. The solutions of (11,1) are bounded and have property
(A) in G,. There is given a system of rectangles K, and a set Z, such that Z, has
property (B) in G, with respect to K,. The solutions of (11,1) with initial points in
x-edges of rectangles of K, constitute surfaces of type R* (single surfaces will be
denoted by R,).

Conclusion. To every open set G,, G, = Gy, and every n > 0 there may be
constructed a function X,(t, x, y), a system of rectangles K, and a set Z, with the
following properties:

K, is finer than K, in G, ,

the y-edges of rectangles of K, have lengths less than n,

the set Z, has property (B) in G, with respect to K,

the function X,(t, x, y) is defined for t = 0 and has continuous partials of all
orders,

(11,2) X,(t,x,y) = X4(t,x,y) in m,
(11,3) X,(t, x, p) = X4(t, x, y) in : 3 ](0 <t<[3)9.
t,x,y

(11,4) The surfaces of type R™ which originate in the x-edges of rectangles
: from K, are again composed of solutions of the differential system

: dx dy
11,5 — = X,(t,x,y), — =0.
(1L5) dt ot x.3) dt
Let us denote by Z the set of solutions of (11,1) with initial points in the set Z,
Z =Z, + Z,. The curves of% are again solutions of (11,5).

The solutions of (11,5) with initial points on the x-edges of rectangles from K,
constitute surfaces of type R™ which satisfy.(9,1) to (9,5). All the solutions of (11,5)
with initial points in any given rectangle O € K, are uniformly unstable, i. e. to

[x] is the integral part of x.
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every rectangle O € K, there exists an o > 0 such that for any pair of solutions
x = x,(t), y = yy and x = x,(1), y = y; (with coinciding y-components) with initial
points in O, there holds

sup [x,(t) — x,(7)] > o

120

The solutions of (11,5) are bounded and have property (A) in G,.

Proof. First apply Lemma 8 to obtain a set Z, and a system of rectangles K’, with
surfaces of type R originating in the front x-edges of these rectangles and having the
properties described in the lemma. Using the note to Lemma 8, these surfaces of
type R are changed to surfaces of type R*. Next, apply Lemma 9 to obtain a system of
rectangles K, such that in the x-edges of these rectangles there originate surfaces of
type R satisfying (9,1) to (9,5). The surfaces thus constructed using Lemmas 8 and 9
will be denoted by PR, (these are the auxiliary surfaces). Finally apply Lemma 10 to
obtain a system of surfaces N to be used in the proof of instability (surfaces of this
system will be denoted by NR, ). To distinguish between the given surfaces of type R*
and the remaining ones, denote by DR’ the surfaces of the assumptions in this lemma.
Also choose a sequence of integers #,: t; > [1/n], t,+1 = t, + 1, which will be made
to correspond to the rectangles from K,.

We now proceed to define the function X,(#, X, y). In order to satisfy (11,2) to
(11,4), (11,6), put

X,(t, x, y) = X,(t, x, y)

— T ~—— ~
on the sets E, — G,, 3 (0 <t < [1/q]), Z and on the surfaces DR,.
[t,x,y]
To satisfy (11,7), on each surface PR, put

(11,8) X,(t,x, ) = _69((;_,)1) for t>1t,+1
t

where x(z, y) is the functional description of the surface PR,’; t, is the integer which
has been made to correspond to the rectangle from K,, in whose front x-edge the
given surface PR, originates. The identity (11,8) then means that, starting from some
instant, the surfaces PR, will consist of solutions of (11,5).

Similarly define X,(#, x, y) on every surface NR; by the identity (11,8), but only
for ¢ 2 t, + 1, + 1 (here t, is the integer corresponding to the rectangle containing
the fundamental segment of NR,", and 7, is an integer such that NR;" is defined for
¢t 2 1,). Thus the function X,(t, x, y) has been defined on the sets

N~ ~
E;—G,, 3 (0=t=[ln]), Z, DR/
[t,x,y] ’

— these constitute a connected set — and also on the surfaces PR, NR; . Using
property (B), since the sequence t, and 7, diverge to infinity, the union of these sets is
closed. It is required to extend the function X,(t, x, y) over the complete half-space
¢ = 0in such a manner that it have continuous partials of all orders, that (11,7) hold,
and that the solutions with initial points on a fundamental segment of any NR
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entirely belong to the surface NR, . The construction of such a function X,(1, x, y)
will be performed in several steps.

Obviously X,(1, x, y) = X,(#, x, y) in the parallellepiped 0 < ¢ < t,. We proceed
to define X,(t, x, y) int; <t <t + 1. However, first we must extend the domain of
definition of some of the surfaces NR; to the half-strip 1 = 0, and change the surface
PR{ somewhat (PR is the surface on which X,(t, x, y) has been defined for ¢ =
> t; + 1). Next consider those surfaces NR, on which X,(1, x, y) is defined for
t = t; + 1. There is at most a finite number of such surfaces (possibly none); denote
them by NR;, ..., NR; . The integral curves of the system (11,5) which have initial
points on the fundamental segments V(PR{), V(NRY), ..., V(NR)’), constitute sur-
faces defined for 0 < t < ¢,; denote them by PR}, NRj, ..., NR;. According to pro-
perty (10,1), the surfaces PR} and PR}, and also NR; and NR;, may be connected in
the parallellepiped t; < t < #; + 1in such a manner that the resulting surfaces are of
type R*, in the parallellepiped 0 < ¢ < t; they coincide with the surfaces PR},
NR, ..., NR; respectively, and in the half-space t = f; + 1 they coincide with the
surfaces PR{, NRY, ..., NR; respectively (considered as functions x(t, y) they have
continuous partials of all orders and satisfy (9,1) to (9,4) — ¢f. the note to Lemma 11
to follow). In order to satisfy (11,7), on the just constructed parts of surfaces put

axi(ts y)
o

The function X,(t, x, y) is thus defined on a closed set, and can be extended to the
complete parallellepiped ¢, <t < ¢, + 1 with continuous partials of all orders.
The construction in all the other parallellepipeds n <t < n + 1 proceeds in an
entirely similar manner. Thus we obtain a function X,(t, x, y) defined in the complete
half-space t = 0, with continuous partials of all orders, and satisfying (11,2) to (11,4),
(11,6), (11,7). We will show that all solutions with initial points in any given O, € K,
are uniformly unstable.

Let x = x,(t), y = y; and x = x,(t), y = y, be two solutions of the system (11,5)
with initial points in 0, = O(x{”, x{", y{”, y§”). Take dyadic rational &;, &, with
x1(0) < &; < & < x,(0). In the segments V(&,, y{", y3°), V(&2 ¥, ¥5”) there origi-
nate surfaces NR;, NRJ of type N, whose front (rear) boundary curves

x=&@), y=y", x=5@0), y=y"

(x=m(), y=», x=m(), y=»_)
form a regular couple of functions with respect to d, (d,), these latter numbers being
independent of &, &, (see the last proposition in Lemma 10).

1. Assume that y{” % y, * y%. To the surfaces NR{, NR; there corresponds
a 7 such that y{” + a(t) < y; < »$” — oft) for t = © (see Definition 10). Since the
curves ’

Xl(ts X, y) =

X = él(t): )’ = y(ln)’ X = fz(t), y = y(ln)
(x=mn(t), y=yP, x=mn(t), y=yP)
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form regular couples with respect to d; (d,), there exist T, = 7, t, = 7 such that
Ex(ty) > &i(ty) + dy, ny(t2) > ny(1,) + d,. Since the solutions x = x,(1), y = yy,
x = x,(t), y = y, do not intersect NRy, NR;, it immediate]y follows that

SOE MO+%®—@®)TTjE’

x() = M+w@—¢m>7;:%,
and
_ ( )
(I) - xl(t) Z (52(0 - ql(t)) (n) (n) + (nl(t) - nl(t)) (")—,V") .

If
0
it y
<NhET—F,
' 2
put ¢ = 7, to obtain x,(t;) — x,(t;) = 3d,. If

¥+

2

P

<y <P

put t = 1, to obtain x,(1,) — x4(t,) = 3d,.

2. Assume that y; = y{” (or y; = y%”). Then, using regularity of the boundary
curves with respect to d, (d,) (see Lemma 10), we have

sup [x5(f) — x,(¢)| = min (dy, d;) .

Thus in both cases,
sup |x,(1) — x4(¢)] > 3 min (d,, d) .
120

The solutions of (11,5) are bounded. In the set IZ_—\G/Z, the systems (11,5) and (11,1)
coincide, and in G, there remain unchanged the surfaces DR, which consist of solu-
tions of the original system (11,1).

It remains to prove that the system (11,5) has property (A) in G,. Take any open
G < G,, and any point [0, x,, yo] € G. Consider the square K = O(xo — o, xo + @,
Yo — &, Yo + ) with center [xo, yo] and such that K = G.

The integral curves of (11,5) with initial points on the front (rear) x-edges of K
constitute surfaces; denote them by S, (S,). Using Definition 2, and since the second
component of the differential system is zero, it suffices to prove that

o(P(x(1), yo, o), ) > 0, i=1,2 |
where x = x(f), ¥ = yo is the solution of (11,5) with initial point x = Xo, ¥ = y,, and
where P(x(1), Yo o) denotes in fact the curve x = x(1), y = y,.
Let i = 2 (the proof for i = 1 is similar). Take dyadic rational £;, &, with x, <
< & < & < xo + o The system of rectangles K, decomposes the segments
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V(i yo — @, yo + @), i = 1,2, into a finite number of subsegments, in which there
originate surfaces NR, ?, i = 1, 2. The surfaces NR; ", NR,® have a positive
distance (see Lemma 10). Set

o = min Q(NR,:L(”, NR/®).
K,

Since solutions are uniquely determined by their initial points, the solution x = x(¢),
Yy = Yo, i. e. the curve with initial point x,, ¥o, Will lie entirely in front of the surfaces
NR;™; the surface S, will lie behind the surfaces NR;"?, It follows that

o(P(x(1), yos ¥o), S,) = min o(NR, P, NR®) =« > 0.
kol

This concludes the proof of Lemma 11. We must however still formulate the note
concerning the process of connecting surfaces which was used in the proof of Lem-
ma 11. .

Note to Lemma 11. Let there be given a system of differential equations (11,1),
and an open set G = E,. Further, let there be given a system of rectangles K and a set
Z such that Z has property (B) in G with respect to K; and also a system of surfaces of
type R* with the following relation of their fundamental segments to the x-edges of
rectangles of K: Either the fundamental segment is composed of a finite number of
x-edges of rectangles from K, or the fundamental segment is part of some x-edge.

The system of surfaces of type R* is divided into two groups:

1. A system of distinguished surfaces, to be denoted by SR;", which are composed
of integral curves of the system (11,1).

2. The remaining surfaces, to be denoted by LR, , and which need not be composed

of integral curves of (11,1). The system of all these surfaces satisfies (9,1) to (9,4). Zis
the system of solutions of (11,1) with initial points in Z.

T
Assume that there is a real 7, > 0 and a function X,(, x, y) defined on E, — G and

3 (0 <t < t,) such that
[t,x,y]

Xz(t, X, y) = Xl(t) X, y)
in Ez\—?}, on the surfaces SR, (if X,(t, x, y) is defined there), and on the curves of

the system ZA Take any one of the surfaces LR, denote it by LR}, and its fundamental
segment by VL,. The integral curves of the system

d d

hx=X2(t’xsy)9 l;—"o

dt dt
which have initial points on VL, are defined for 0 < ¢t < t,, and constitute a surface
which we will denote by U. Since the surfaces SR, are also composed of integral
curves of this latter differential system (since X,(t, x, y) = X,(t, x, y) on these sur-
faces), the system of surfaces SR, and U satisfy (9,1) to (9,4) on the interval 0 < ¢ <
< to. The problem is to connect the surfaces U and LR}, i. e. to construct a surface J
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of type R which coincides with LR{ for t > t, + 1, and coincides with U for 0 <
< t < 1o, and retain properties (9,1) to (9,4). We will assume that the front point
of the fundamental segment LV, is the rear point of the fundamental segment SV of
some surface SR;", and that the rear point of LV, lies on no fundamental segment of
any SR, . The other cases are quite similar. Using (9,1), the surfaces SR,’, LR have
a common boundary curve. Since U and SR,/ are composed of solutions of the new
differential system, they also have a common boundary curve. Since (9,1) is to hold
for the surface J also, the surfaces J and LR; must have a common boundary curve.
Let x,(t, y), x,(t, y) be the functional descriptions of the surfaces U, LR{ respectively.
Thus we must have x,(t, y,) = x,(, y,), where y, is the y-coordinate of the front
point of the segment LV . Consider the set of points [t,x, y]: 0 < t < t5, y; < y <
< 3, x4(t, ¥) £ x £ x,(¢t, y). This set is bounded, from the front, by the surface U,
and from behind by the surface LR{ . Since both these surfaces satisfy (9,3) and (9,4),
and since x,(0, y) = x,(0, y) = x* (they have a common fundamental segment), this

set is disjoint with h(G) and Z. Tt can be shown that there is a 6 > 0 such that a -
neighbourhood of this set is disjoint with h(G) and Z. There obviously exists a conti-
nuous function x(z, y) such that

x(t,y) = xy(t,y) for t=to+3, yy Sy=y,,

x(t,y) = xy(t,y) for 0L t=<ty, ySy=y,,

x(t, .Vl) = xl(t, )’1) = xz(t, YZ) ,

and that the points [1, x(1, y), y] with t, £t <ty + 3, yi < y < y, are in the
d-neighbourhood of the above set. The function x(¢, y) describes a surface J, with

properties (9,1), (9,3), (9,4). However, (9,2) need not be satisfied, since this surface
might intersect some surface SR*. In any case, it intersects at most a finite number of

surfaces SR*, say SRY, ..., SRy (since the limit points of surfaces SR* are in/hzé)).
Consider first the surface SR; .
Set

oy = min [o(SRY, W(G)). e(SRT, Z), o(SR}. SRY), o(SR}, LRF)] > 0

for all indices k except such that the fundamental segments V(SR{) and V(SR,")
intersect. Replace every point on the surface x(t, y) whose distance from SR{ is less
than %ocl, by a point with the same ¢, y-coordinates and whose x-coordinate is %al
less or greater than that of the corresponding point on SRy, and which lies on the
same side of SR} as the original point. The surface J, thus constructed, together with
the remaining surfaces except SR;, ..., SRy, satisfies (9,1) to (9,4). On performing
a similar construction with all the surfaces SRy, ..., SR, in turn, we finally obtain
a surface which satisfies (9,1) to (9,4). However, the resulting surface need not have con-
tinuous partials; but it does have a positive distance inty <t < to + Ly, S y < y,
from all the surfaces SR, except those with which it has a common boundary curve.
Using [1], we may approximate our surface by a surface having continuous partials of
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all orders (as a function of ¢, y). If the surface constructed above has a common
boundary curve with some surface of type SR* then this curve, as a function of ¢, has.
continuous derivatives of all orders. The surface LR is then included into the group
of surface SR, and the construction is repeated for the remaining surfaces LR, .
When applying this note in the proof of Lemma 11, the surfaces PR;, NRy, ..., NR;
for which the process of connection is to be performed, are put into the group LR™,
and DR, together with those of the surfaces PR, and NR, for which the process of
connection has already been performed, are put into the group SR*. In addition it is
necessary to remark that according to the construction following Lemma 10, and using
property (10,1), the domains of definition of the surfaces N may be extended in the:
manner necessary for the application of this note.

With this the proof of Lemma 11 is definitely completed, and the preparations.
of the proof of Theorem 3 are concluded.

As has already been mentioned, the set M is the intersection of a decreasing se-
quence of open sets G, n = 1, 2, ... The proof is performed by induction. Obviously
we may add the set G5 = E, to the sequence G, The O-th step in the induction process.
has been prepared in Lemma 2. We obtain a differential system

dx dy

—=X(O)t,X,y, — =0

dt ( ) dt

with property (A) in E, (see note (2,1)); all of its solutions are bounded and uniformly
unstable.

For the sake of clarity, let us also perform the first step, applying Lemma 11. Take
the set G*. For the set G, of Lemma 11 take E,; for the system K, of Lemma 11 take
the system of squares with integral coordinates of vertices. The set Z() to this system
K is constructed according to the note to Lemma 3. For the set G, of Lemma 11 take
GY, and choose 7, = 3. Using Lemma 11, construct a function X™(t, x, y), a system
of rectangles KV, and a set Z") which has property (B) in G} with respect to K, and
such that (11,2) to (11,4), (11,6), (11,7) are satisfied. The solutions of the system

dx dy
— =XD,x,y), <=0
dt ( ) ) dt

are bounded and have property (A) in G}. For the next inductive step set Z, = Z(¥ +

+ zW,
Induction. Assume that to the set G, there have been constructed: a function

X™(t, x, y), a system of rectangles K™ and a set Z, with property (B) in G} with
respect to K™, The solutions of the system
dx dy
(12,1 - = X(") ty X, y T T 0
) _ dt ( ) dt

are bounded and have property (A) The solutions of this system with initial points on
the x-edges of rectangles from K™ constitute surfaces of type R* and satisfy (11,2) to

300



(11,4), (11,6), (11,7). Z, is the system of solutions of (12,1) with initial points in Z,.
Next, apply Lemma 11 again. For the set G, of the Lemma take G¥; for the system K,
take K®; for the set Z, take Z,; for the set G, of the Lemma take G*,,, and choose
fl. = 1/2". On applying Lemma 11 we obtain a function X" * (1, x, ), a system of
rectangles K“*Vand aset Z"*"(Z,,, = Z"*" + Z,) which satisfy the assumptions
of Lemma 11. Among these we emphasise the properties (11,2) to (11,4), (11,6), (11,7),
and that the solutions of the differential system
dx

D xerg k), Y=o
4 (t, x,y) t

[a%

are bounded and have property (A) in G, . Since

X"V, x, y) = X™(t,x,y) in 3 <0 St= [i]>

[z,x,y] Ha

and since lim 5, = 0, there exists a limit function X(t, x, y) defined in the complete

half-space and with continuous partials of all orders. Let us now show that the diffe-
rential system
dx dy
12,2 ) —=Xt,x,y), —=0
( ) dt ( ) dt A

satisfies the assumptions of Lemma 3.

First we prove that solutions with initial points in the set M = [] G are uniformly
n=0

stable. Take any point [x,, yo] € M and any & > 0. To this ¢ there is an index n, such

that 21, < e. The set G decomposes into a system of rectangles K'". Assume that

the selected point [0, x,, yo] is in one rectangle
0, = 0[P, x4, 47, 15 € K

only (i. e. that it is an interior point; in the general case, it may belong to at most four
rectangles — the proof is then analogous). Next take a sufficiently large index n; > nq
such that for the rectangle

02 = 0(x(12)5 X<22), y(12)9 .)’(22)) € K(nl) ’ [0’ X0, yO] € 02
there holds y{"’ < y{® < y{» < J§" (again we only consider the case that the point |
belongs to one rectangle only, the other cases being similar). Such an index n, always
exists, since for n > n, the system K™ is finer than the system K and since the

lengths of y-edges of rectangles from K™ are less than , = 1/2" (see the assumptions

in Lemma 11). The surfaces composed of solutions of the differential system
dx dy
— =X" x,y), <=0
dt ( ) dt

with initial points on the front and rear x-edges of the rectangle O, are of type R*;
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denote them by R}, R; respectively. According to Lemma 11, they are also composed
of solutions of every system (12,1) with n = n, and thus of solutions of the system
(12,2) also.

Denote by Ry, R; the surfaces composed of solutions of the differential system
(12,1) with n = n, which have initial points on the x-edges of the rectangle O,. Using
property (11,7) (and its consequence (9,2)), we obtain

o(R{,R7) >0, oR;,R)>0.
Set
To the rectangles O, O, there exist t,, t, such that .
Q(<2)tl,oc)(Rr— > R;) < ’7n0 > Q(<2)tz,w) > (R;-9 R:) < '7»1 >
according to (9,5) (see property (11,7)). ‘

Set T = max (t,, t,). Let [Ty, & n], Ty = 7, be any point whose distance from the

solution x = xo(t), y = yo (xo(0) = x,) is less than d,, i. e.

[(xo(Ty) — &+ (n— YO)Z]% < ;.

Since the solution x = x,(t), y = y, remains in O, (the surfaces R3, R; are compo-
sed of solutions of (12,2)), the point [T, &, n] is in the set O,; therefore the solution
x = §(t), y = n of (12,2) with this point as initial also remains in O,. Since

(2 + +
Q<)1:,oo)(R1 ) RZ) < ’7"0 s
we have

[(xo(t) = &) + (n — yo)*TF <my, <& for t=T,.

We have thus proved uniform stability for ¢ = t. Since solutions vary continuously
with the initial conditions, we may choose 6 > 0 such that

[(xo(t) = &) + (1 — yo)*]* <6, for T, St<<
whenever
[(xo(T2) = &(T2))* + (n = yo)*]* < 3.
By choice of §; we must have o
[(xo(t) = &) + (n — yo)’]* <my, <& for t=1
also. This proves the uniform stability of the solution x = x4(t), y = y,.

It remains to show that the solutions with initial points [X,, yo] € M are unstable.
There is an n with [xo, y,] € GF — Gy, . There are then two cases.

1. The point [xo, yo] is not a boundary point of G}, ; thus it is an interior
point of the set G, — G, ,. By construction of X(t,x, y), we have X(t,x, y) =

(n) . —_—  —— T —— . . .
= X"(t, x, y)in the set E, — G.¥,; (E, — G, is the set of solutions of (12,1) with
initial points in E, — G,%, ,); and the construction of X™(1, x, y) was such as to obtain
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unstable solutions originating in G (see Lemma 11). Since [, x4(1), y1] € G, — G4,

[, xo(t), yol € GF — G.,, the following constructions do not change this situation.

2. The point [x,, yo] is a limit point of the set G, ,; it then belongs to some
rectangle O € K™. According to Lemma 11, the solutions of the system (12,1) are
uniformly unstable in O. Further, the point [X,, yo] is on the boundary of G¥, |, so

that it is the limit point of pairs of points from the set Z"* V), The curves of 70D are
solutions of (12,1), so that by Lemma 11 they are also solutions of the differential
system (12,2). Now consider only those pairs of points from Z®* 1) which are in the
rectangle O. The point [xo, Vo] is thus a limit point of a certain sequence of pairs of
points from the set Z"*! with equal y-coordinates; the solutions of the system
(12,2) with these points as initial have, using their uniform instability, an outer distan-
ce greater than a certain o > 0 corresponding to the rectangle O. This implies insta-
bility of the solution x = x(1), y = y,.
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Pe3romMme

TOIIOJIOTUYECKASI CTPYKTYPA MHOXECTBA
VCTOMYMBBIX PEIIEHUI

MBO BPKOY, (Ivo Vrko¢) Ilpara

B oTOl cTaThe MCCeIOBaHa CTPYKTYypa MHOXECTBA YCTONYHMBBIX, SKBHYCTOHYMBBIX
U PaBHOMEPHO YCTOMYMBBIX pelueHuii cucTemMbl mudpdepenunanpHbix ypaBHeHuH (1)
(HanucaHbl P IOMOLIK BEKTOPOB), KOTOPBIC BHIMOJHSIOT Kakoe-HHOyOs TpeboBa-
HHe [UIs cywecTBoBaHus perieHuit. (Hampumep, yciaosue Kapateomopu.) 1o uc-
CJICZIOBAHME MOXHO IPOBECTH C DAa3JIMYHBIX TOYEK 3peHus. 3mech g Oymy Bbimle
YHOMSIHYThIE MHOXECTBA YCTOWYMBBIX, IKBUYCTOMYMBEIX 1 PABHOMEPHO YCTOWYMBBIX
PeLUeHNii HCCIIeq0BaTh TaK, YTO ONPENENI0 CTPYKTYPY HayasbHbIX TOYEK 3TUX pelle-
Huit. HavanbHble ToYkM OyAyT NMPH 3TOM HAaXOOMThCsi B MHoroobpasum f = 0.
Hasepro MoxHO MHOroobOpasue 7 = 0 3aMeHUTb JIOOBIM MHOroodpasueM ¢ =
= const. ’

Iycts N — MHOXecTBO Bcex Touek B MHOT00Gpasuu ¢ = 0, 3 KOTOPBIX BHIXOIAT
yCTOMYMBEIE pelleHyst JanHoro AnddepenHnunantsHoro ypasHenus (1), N ) _ MHOXecT-

BO BCEX TOYEK, B MHOroo6pasuu = 0, U3 KOTOPBIX BBIXOISAT 9KBUYCTONYMBBIE pe-
1eHust anHoro auddepennuanbHoro ypasrenus (1) u N — MuoXecTBO Beex Touek,
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B MHOroo6pasuu ¢ = 0, U3 KOTOPBIX BBIXOAST PABHOMEPHO YCTOWYMBBIE PELICHHS
naHHOTO nuddepeHnuanbHOro ypapHeHHs: (1); OpU 3TOM €CiiM BCe 3TH pPelleHHs
MOJYMHEHBI TPeOOBaHUIO, YTOOBI OBLIM OmMpenesieHbl s BeeX ¢ = 0, TO MOJIONKHUM
a = 00 U eCH TOJbKO TpeOoBaTh, YTOOBI OBLIM OMNpEeeHbl HA HEKOTOPOM IpOo-
U3BOJILHOM KoHeYHOM mpomexyTke {0, T) To momoxuM a = 0. B ctathe moxassi-
BAeTCsl 3Ta Teopema:

Teopema 1. Bce muoncecmea NP, i = 1,2,3, a = 0 uau a = oo, asaawomes mHo-
acecmeamu muna Gg.

Ota Teopema mokasbIBaeTCs s Oojee OOIUMX CHCTEM KPUBBIX, YEM PpELICHHS
nuddepeHIMaTbHBIX YpaBHEHUI €CIM YCTOWYMBOCTb, 3KBHYCTOHYMBOCTH U PaBHO-
MepHasi yCTOHYMBOCTb OMpE/IeIeHa COOTBETCTBYIOLIUM OOpa3oM.

OpnHako 3THUM He3aBepllleHa XapaKTepHCTUKa 3TUX MHOXeCTB. [[ns Toro, 4yroOsl
Mbl MOIJIH YTBEPXAATh, YTO YMOMSHYTbIE MHOXECTBAa XapaKTepH30BaHbI, HEOOXO-
. IMMO IOCTPOUTH K Jro6oMy MHOXecTBy N Tna G, muddepeHnanisHoe ypaBHEHHE
(1) Tak, 4TOOBI M3 MHOXecTBa N BBIXOIMIIA YCTOWYUBBIE MM SKBUYCTONYMBBIC WITH
PaBHOMEPHO YCTONYMBBIE PELIEHUS U IPH 3TOM U3 JONOJHEHUS] 3TOTO MHOXECTBa
N BBIXOIMIIH PellIeHHs, KOTOPbIE He SBJISIFOTCS YCTOWYUBBIME UIIH 3KBUYCTOHYMBBIMU
WJII PaBHOMEPHO YCTOWYMBBIMH. B COOTBETCTBMM C M3BECTHBIMH COOTHOILEHUSIMH
MeXIy YCTONYMBOCTBIO, 3KBHYCTOMYMBOCTBIO M PaBHOMEPHON YCTOHYUBOCTHIO
MOHO 3TH TPHU CJIy4asi CBECTH K OJHOMY CIIy4aro.

Teopema 3. Kaxoe 6vt Hu 6v110 mHodcecmeo N muna Gs cywecmeyem oudpepen-
yuaavhoe ypagnenue (1), komnonenmwr npasvix uacmeii X(t, X) xomopozo umerom
yacmHeie NPOU3BOOHbIE 6CeX NOPAOKO8 NO NepeMEeHHbIM t, X, ..., X, MaKue, umo:

1. U3 muooxcecmea N 6b1x00am pagHomepro ycmoiiuugvle peuleHus.
2. U3 mHoncecmea E — N evixo0sam Heycmotiuugvle peuleHus.

OTa TeopeMa [oka3aHa B IBYMEPHOM IIpoCcTpaHcTBe. [Jis cirydast n-MepHOTO mpo-
CTpaHCTBa CyThb [OKa3aTelbCrBa OCTaeTCsl MpPAaBHJIBHON, HO yXe I # = 3 OHO
CTaHeT CIMLIKOM rpoMo3akuM. CHcTema IOCTpoeHa Tak, YTO IpaBas 4acTh OJ-
Horo nuddepeHNNaNbHOIO YpaBHEHMS. TOXKICCTBEHHO paBHAa Hymwo. W3 sToro
BBITEKAET, YTO TEOpPeMy 3. MOXHO JIETKO chOpMYJIUPOBATh U IJISA CJydYas OIHOIO
nupdepeHInaIbHOro ypaBHEHUSI.

®opMyarpoBaHHas MpobirleMa YaCTUYHO pa3pellleHa TaKXke B aBTOHOMHOM CITydae.
Jutst ciyyast omHoro nuddepeHnHaIbHOTO yPaBHEHHS MMEET MECTO Teopema:

Teopema 2. MHoxcecmso mouek, u3 KOMOPbIX 8bLX00AM HEYCMOUYUGble PeuleHUs
ypasnenus dx[dt = f(x) xapakxmepuzosano mem, umo oHO cocmoum u3 mpex dacmeil:

1. M3 noaysamxuymozo unmepsaia {x**, o), npu smom x** moxcem 6vimo pasno
x** = — 00 (m. e. 6ce pewenua neycmotiuugoie) uiuw mMoxcem 6vimo pasno + oo (m.
e. ama uacme omcymcmeyem).
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2. H3 noaysamknymozo unmepsasa (— o0, x*>, omsgTh MOXKET OBITH Xx* = — o0
um x* = + oo.

3. U3 cuemnoz20 muoxcecmsa Q mouex, pacnoaoncennvix 8 npomexscymre (x*, x**),
Komopoe umeem 3mo ceoticmeo: Ecau x € Q, mo mouka x ne moxcem 6vimb 00HO8pE-
MEHHO npedeabHol moukoii mHoxcecms (— oo, x) Q, (x, o) Q.

IIpuBeneHHBIM NpPUMED NOKA3bIBAET, YTO YK€ B JIByMEPHOM aBTOHOMHOM CJly-
Yae HeJIb3si OTPAHUYUTHCSI YCIOBMSIMM TOIOJIOTMYECKOIO XapakTepa, U XapakTep
YCJIOBUH, MPU TMOMOLIM KOTOPBIX MBI MOTJM OBl ONpENeINTh CTPYKTYpy I3TOIO
MHOXECTBA, OYE€Hb CJIOXKHBIH. '

305



		webmaster@dml.cz
	2020-07-02T18:53:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




