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BAIRE SPACES AND SOME GENERALIZATIONS OF COMPLETE
METRIC SPACES

ZpENEK FroLik, Praha

(Received February 11, 1960)

A space P is said to be a Baire space if every non-void open subset of P is
of the 2nd category in itself. In the present note Baire spaces are investigated.
Every complete metric space is a Baire space; with this in view, we introduce
in sections 2 and 3 some generalizations of complete metric spaces.

The terminology and notation of J. KELLEY ““General Topology”, are used trough-
out. For convenience, the following convention will be used: If % is a family of sets
and if B is a set, then Y N B = BN U is the family of all sets of the form 4 N B
where 4 €.

Recall that the terms “set of the Ist category” and “meager set’” are synonymous.
Of course, the terms “non-meager set” and “set of the 2nd category’’ are synonymous
too. The following simple theorem will be used without references

If P is a dense subspace of a space R, then a set M < P is meager in P if and only
if it is meager in R.

1. BAIRE SPACES

For convenience we recall definitions and some basic properties.

1.1. Definition. A Baire space is a topological space every non-void open subset of
which is non-meager. If every closed subspace of a space P is a Baire space, then P is
said to be a Baire space in the strong sense.

Note. The term “Baire space” has been introduced in [B], Chap. 9 (les espaces de
Baire). It is well-known that every complete metric space is a Baire space in the strong
sense. If a Baire space P is a dense subspace of a space R, then R is a Baire space.
There exists a metrizable Baire space which is not a Baire space in the strong sense.
Indeed, denote by = the Euclidean plane and let P be a line in 7. Let R be a countable
dense subspace of P. Since = — P is a Baire space, the space n — (P — R) = Q is
a Baire space, too. However, R is a closed subspace of Q and R is of the 1st category
in itself. Moreover, R is a Gs-subspace of Q. Thus a G-subspace of a metrizable Baire
space may fail to be a Baire space.
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The following theorem is well-known:

1.2. A space is a Baire space if and only if the intersection of every countable
family of open dense sets is a dense set.

Proof. If an open non-void set U is of the 1st category, then U = | F,, where F,,

n=1
are nowhere dense. The sets P — F, are open and dense, and their intersection is not

0
dense in P. Conversely, if {U,} is a sequence of open dense sets and if G = | U,, is
n=1
not dense, then there exists a non-void open set U disjoint with G. Putting F, =
=Un(P- U,), we obtain at once that U is of the 1st category.
Now we give a characterization of Baire spaces using properties of semi-continuous
functions. First we shall prove two propositions concerning semi-continuous func-
tions.

1.3. Proposition. Let f be a semi-continuous (real valued) function on a space P.
Let D be the set of all points of P at which f is not continuous. D is of the first cate-
gory (in P).

Proof. Let f be lower semi-continuous, say. Denote by R the set of all rational
numbers. For every r in R let ’

G, ={x;xeP,f(x)>r}.
The sets G, being open, the sets F, = G, — G, are closed and nowhere dense. If is
sufficient to prove
1.3.1. Dc UY{F,;reR}.

Let x be an element of D. There exists an ¢ > 0 such that for every neighborhood U of
x and every r € (f(x), f(x) + &) the set U N G, is non-void. If follows

‘ re(f(x),f(x) + &)= xeF,.
Thus 1.3.1 is proved.

1.4. Proposition. If a space P is of the first category in itself, then there exists
a bounded (lower, upper) semi-continuous function which is not continuous at any
point. )

Proof. There exist closed nowhere dense sets F,, n = 1,2, ..., such that P =

o0
= U F,. For each x in P put

n=1

f(x) =inf{n;xeF,}.

Put g = 1 — 1/f. Evidently, g is a bounded function on P. We shall prove that g is
lower semi-continuous. It is sufficient to show that f is lower semi-continuous; but this
is obvious since for every k = 1,2, ... we have :

k
{x;f(x) < k, xe P} = U F,.
i=1
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Moreover, f is continuous at no point of P. Indeed, if U is a non-void open subset
of P, then no finite number of sets F, cover U. In consequence, f is not bounded on U.
Clearly, the function g is continuous at no point of P, too.

As an immediate consequence of 1.3 and 1.4 we obtain:

1.5. Theorem. A space P is of the 2nd category if and only if every semi-continuous
function on P is continuous at least at one point of P.

1.6. Theorem. A space P is a Baire space if and only if the set of points of conti-
nuity of every (bounded) semi-continuous function is dense in P.

Proof. From theorem 1.5 we obtain at once that the set of all points of continuity
of a semi-continuous function on a Baire space P is dense in P. Conversely, suppose
that P is not a Baire space. There exists a non-void meager open subset U of P.
By 1.4 there exists a bounded semi-continuous function f on U which is continuous at
no point. Since U is open, there exists a bounded semi-continuous function g on P
such that f is the restriction of g to U. This g is continuous at no point of a non-void
open set.

1.7. Theorem. If P is a non-meager space, then the following assertion holds:

1.7.1. If @ is a family of lower semi-continuous functions on P such that for every
X € P the set of all f(x) (where f e <1>) is bounded, then there exists a non-void open
subset U of P and a real-number k such that

1.7.2. - yeU, fed=f(y) k.

Conversely, if P is of the Ist category in itself, then there exists a lower semi-
continuous function f on P such that f is non-bounded from above on every non-void
open subset of P.

Proof. First let us suppose that @ is a family of lower semi-continuous functions on

a space P of 2nd category in itself. Moreover, suppose that for each x in P the set of

all f(x), f € @, is bounded from above. For every n = 1, 2, ... denote by F, the set
{x; xeP, fe®=f(x) < n}.

Evidently the sets F, are closed. P being of the 2nd category in itself, there exists a po-

sitive integer k such that the interior U of F, is non-void. Evidently 2.7.2 is satisfied.

To prove the second assertion it is sufficient to consider the function f from the
proof of 1.4. This function is lower semi-continuous and is bounded from above on no
non-void open subset of P. The proof is complete.

From 1.7 we deduce at once:
1.8. Theorem. If P is a Baire space, then the following assertion holds:
1.8.1. If @ is a family of lower semi-continuous functions on P such that for each x

in P the set {f(x); fe ®} is bounded from above, then for every non-void open
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subset U of P there exists a non-void open subset V of U and a positive integer k such
that

yeVifed=f(y) <k
Conversely, if P is not a Baire space, then there exists a lower-semicontinuous

function f on P and a non-void open subset U of P such that for every non-void open
subset Vof U
sup {f(x); xeV} =

1.9. Evidently, any open subspace of a Baire space is a Baire space. As we know
from 2.2, a Gs-subset of a Baire space may fail to be a Baire space. On the other
hand, every G4-subset of a Baire space in the strong sense is a Baire space in the strong
sense. Indeed, let G be a Gs-subset of a Baire space in the strong sense P. Let F be
a closed subspace of G. Evidently F is a dense G;-subset of F¥ which is a Baire space
in the strong sense. Thus F is a Baire space.

Invariance of the property of being a Baire space under mappings. The space of all
rational numbers is a continuous image of the countable infinite discrete space. Thus,
the continuous image of a Baire space may fail to be a Baire space. A mapping of
a space P to a space Q is said to be open if the image of every open set is an open set.
The image of a Baire space under an open mapping may fail to be a Baire space.
Indeed, let us define a topology U for the real line P in the following way: A € ¥ if and
only if for each x in A there exists the usual (Euclidean) neighborhood U of x such
that all rational numbers of U belong to A.

Evidently, the 1dent1ty mapping ¢ from (P, %) onto P (in the Euclidean topology) is
continuous. Thus ¢ ~* is open. But P is a Baire space in the strong sense and (P, 2A)
contains the space of rational numbers as an open subspace. Of course it is possible
to give an example with (P, %) metrizable. For instance, let R be an open square in the
Euclidean plane 7= and let P, R = P = R, be a subspace of = such that P — R is
homeomorphic with the space of rational numbers. Making the topology of P finer in
such a way that P — R becomes open, we obtain a space (P QI) satlsfymg our re-
quirements.

However, the following theorem holds:

1.10. Let ¢ be a continuous and open mapping of a space P onto a space Q. If P is
a Baire space, then Q is a Baire space.

Proof. Let f be a semi-continuous function on Q. The function g = f(¢) is semi-
continuous. By 1.6 the set F of all points at which g is continuous, is dense in P. By
continuity of @, ¢[ D] is dense in Q. Since ¢ is open, f is continuous at every point of
@[ D]. By 1.6. Q is a Baire space.

Now we proceed to investigate the topological product of two Baire spaces. I do not
know if the topological product of two Baire spaces is a Baire space. It is well-know
that if P and Q are Baire spaces, and if moreover P is separable and metrizable, then
the topological product P x Q is a Baire space.
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This theorem has the following generalization:

1.7. Theorem. The topological product of two Baire spaces is a Baire space provi-
ded that one of them contains a countable dense subset N such that every point of N
is of a countable character (t. e. every point of N posseses a countable complete
neighborhood system).

To prove 1.7 it is sufficient to prove the following theorem:

1.8. Theorem. Let P and Q be non-meager spaces. Moreover, suppose there exists
a countable dense subset N of P such that every point of N is of a countable cha-
racter. Then the topological product P x Q is a non-meager space.

Proofof 1.8. Let us suppose that there exist spaces P and Q satisfying the assumpt-
ions of 1.8, and such that P x Q is a meager space. Thus there exists a sequence
{F,} of closed nowhere dense subsets of R = P x Qsuchthat Y{F;; k =1,2,...} =
= R. For each n in N let {U(n, k); k = 1,2, ...} be a local base at the point n. Put

Y(n, k,s) = {y;yeQ, Un, k) x (y) = F},
Y=U{Y(n k,s); neN, (k,s =1,2,...)}.

The sets F, being closed and nowhere dense (in R), the sets Y(n, k, s) are closed and
nowhere dense (in Q). It follows that the set Yis of the first category in Q. Therefore
we may choose a point y, in Q — Y. Consider the space P, = P X (y,) (homeo-
morphic with P). The sets F; = F, P, are closed and cover the non-meager space
P,. Hence there exists an s such that Int F; = U # 0. The set N x (y,) being dense -
in P, there exists an n in N such that (n, ¥o) € U. Since U is open there exists a neigh-
borhood U(n, k) of n such that U(n, k) x (y,) = U. It follows that y, € Y(n, k, 5) =
< Y. But y, has been choosen in Q — Y. This contradiction completes the proof.

In the third section we shall introduce a class of spaces (countably complete spaces)
contained in that of Baire spaces and such that the topological product of an arbitrary
indexed family spaces of this class is again a member of this class. In the third section
we give a further generalization, by introducing the concept of an almost countably
complz:te space. The class O of all almost countably complete spaces has the following
properiies:

1. P O, R regular, P = R imply R € O.

P € O, P regular, R a dense Gs-subset of P imply R € O.

. If every x € P has a neighborhood belonging to O, then P belongs to O.

. If aregular space P belongs to O, then every open subset of P belongs to O.
. If a regular space P belongs to O, then P is a Baire space.

6. If {P,;;ae A} is a family of spaces from O, then the topological product
X{Pa, a € A} belongs to O.

7. If {P,; a e A} is a family of spaces from O, then the cartesian product X{P,;
a € A} in the box-topology is a space from O.

We have proved that the class of all Baire spaces possesses the properties (1) —(5).
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The question concerning the topological product of two Baire spaces in the strong
sense is more simple. Indeed, every regular countably compact space is a Baire space
in the strong sense. According to [2], theorem 2.6, every separable metrizable space
may be embedded as a closed subspace into the topological product of two comple-
tely regular countably compact spaces. Embedding the space of all rational numbers
in the topological produet of two completely regular countably icompact spaces, we
obtain at once that the topological product of two (completely regular) Baire spaces in
the strong sense may fail to be a Baire space in the strong sense.

It is well-known that every complete metric space is a Baire space in the strong
sense. The topological product of un uncountably infinite family of complete metric
spaces may fail to be a Baire space in the strong sense. Indeed, every separable metri-
zable space may be embedded as a closed subspace into the topological product of an
indexed family of real lines (e. g. see [4]).

2. COUNTABLY COMPLETE SPACES

In this section we shall introduce two generalizations of complete metric spaces.

2.1. Definition. Let {2, } be a sequence of open families') in a space P. The sequence
{U,} is said to be countably complete if for every centred sequence of sets {4,,},

where 4,, € Q[,,k, the set n A, is non-void. The sequence {2,} is said to be strongly
countably complete if the followmg condition is satisfied.
2. 1 1. If {F,} is a centered sequence of closed subsets of P and if every F, is con-

tamed in some 4, € ¥U,,, then the set n F, is non-void.

n=1

2.2. Note. In [3], the concept of a complete sequence of open coverings was intro-
duced. A sequence {U,} of open coverings of a space P is said to be complete if the
following condition is satisfied:

2.2.1. If § is a centered family of closed subsets of the space P such that for every
n=1,2,...some F, € § is contained in some 4, € U, then NF + 0.

Now we recall theorem from [3]:

2.2.2. Theorem. A strongly countably complete sequence of open coverings of
a regular space P is complete if and only if the following condition is satisfied:

If F is a closed subspace of P and if for every n = 1, 2, ... there exists a finite sub-
family B, of U, such that the union of the family B, contains F, then F is a compact
space.

1) An open family is a family consisting of open sets.
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2.3. Definition. A space P is said to be countably complete if there exists a countably
complete sequence of open bases for P. P is said to be strongly countably complete if
there exists a strongly countably complete sequence of open coverings of P.

It is easy to see that, every regular strongly countably complete space is a countably
complete space. By [3], theorem 2.8, a completely regular space P possesses a comple-
te sequence of open coverings if and only if it is a Gs-space, i. e. if P is G; in every
compactification. There exists a completely regular strongly countably complete
space which is not a Gs-space. Indeed, according to.[3], example 3.10, there exists
a completely regular countably compact space which is not a Gs-space. On the other
hand the following theorem is true.

2.4. Theorem. Every metrizable countably complete space is a Gg-space.

Proof. Let {%,} be a complete sequence of open coverings of a metrizable space P.
Let ¢ be a metric for the space P. Without loss of generality we may assume that the
diameters of sets from U, are less than 1/n. Let (P*, ¢*) be the complete envelope of
the metric space (P, ¢). We may assume that P = P*. It is sufficient to show that P is
a Gs-subset of P*, since P*is a Gg-space. For every open subset 4 of P choose an open
subset A’ of P* such that A’ N P = A. Put

24.1. U, =U{4;4e,},
2.4.2. G=NU;n=12.1}.

To prove 2.4, it is sufficient to show that G = P. By 2.4.1 and 2.4.2 we have
P < G. Let us supposc that there exists a point x in G — P. Choose 4, in U, (n =
= 1,2, ...) such that x € 4. The diameters of 4, being less than 1/n(n = 1,2, ...) we
have at once that

2423 N{AL; "= 1,2,..} = (x).

Since the point x is an accumulation point of P, the sequence {4,} is centered. In
consequence

2.4.4. N{Al; n=1,2,..} £0.
Since x ¢ P, 2.4.4 contradicts 2.4.3. Thus the proof is complete.
Evidently:

2.5. Locally countably H-closed spaces are countably complete; locally countably
compact spaces are strongly countably complete. Every closed subspace of a strongly
countably complete space is strongly countably complete.

2.6. Proposition. Every open subset of a regular countably complete space is
a countably complete space.

Proof. Let {2,} be a countably complete sequence of open bases for a regular
space P. Since U is a non-void open subset of P, for every n = 1, 2, ... denote by B,
the family of all 4 € A, for which A < U. It is easy to show that {%B,} is a countably
complete sequence of open basis for U.
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2.7. Proposition. Every G-subspace of a regular strongly countably complete
space is a strongly countably complete space.

Proof. Let {U,} be a strongly countably complete sequence of open coverings of
a regular space P. Let U,, n = 1, 2, ..., be open subsets of P and let
2.7.1. 0+G=N{U;n=1,2..1.
Without loss of generality we may assume
Ae,, Bopen, Bc A=Bed,.
Denote by 2 the set of all A’ € U, such that for some Ain%,, A’ = 4 n U,. Put
B,=WwNnNG (n=12..).

We shall prove that {&,} is a strongly countably complete sequence of open coverings
of G. Suppose that {F,} is a centered sequence of closed subsets of G such that for
every n = 1,2, ... some B, € B, contains F,.

Choose A4, in U, and A4, in Y, such that

B,=Gn A, A,cA,NnU,.
The sequence {F} is centered and FY = A,. Thus
F=N{F;n=12..)%+0.
Since F, = U, by 2.7.1 we have F = G. Also F is closed in G, so that F < F

ns

n=1,2,... Thus F = ( F, & 0, which establishes 2.7.

n=1
2.8. A space P is said to be locally countably complete if and only if every x € P
has a neighborhood which is a countably complete space.

2.9. Proposition. Let P be a locally countably complete regular space. There
exists an open dense countably complete subspace of P.

Proof. Let U be the family of all non-void open countably complete subspaces of P.
By 2.6 we have

2.9.1. B+ 0 open, Bc AcU=Be.
Let B be a maximal disjoint subfamily of 2. Let R be the union of 8. From the maxi-
mality of % and from 2.9.1 we have at once that R is a dense subspace of P. Evidently
R is an open subset of P. We shall prove that R is a countably complete space. For
every B in B let

{U(B); n=1,2,...}
be a countably complete sequence of open bases of B. Evidently
{N{Y,(B); BeB}; n=1,2,...}

is a countably complete sequence of open bases of R.

2.10. Theorem. The topological product of an arbitrary indexed family of count-
ably complete spaces is a countably complete space.
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Proof. Let {P,; a e A} be a non-void indexed family of countably complete spaces
and let
¢+ P=X{P,; acA}.
For every a in A let {U; n =1,2,...} be a countably complete sequence of open
bases of P,. Denote by =, the projection map of P onto P,. Let %, (n = 1, 2, ...) be the
family of all sets of the form
' [By] ... on'[Bi] s
where k = 1,2, ..., a; are element of 4, a; + a;, and B; € ;. Evidently every family
91, is an open base for P. We shall prove that the sequence {2l,} is countably complete.
Let {n,} be an increasing sequence of positive integers. Let {C,,}, where C, € ¥, , be
a centred sequence. We have

g
C, = X{Cy; ac A}
where either C;, = P, or C; e ;. By countably completness of {2}, for each a in 4
we have
N(C; k=1,2.)+0.
Choose a point x, in this intersection.

The point {x,; a € A} belongs to N énk. Thus the proof is complete.
k=1

2.11. Definition. Let {P,; a € A} be an indexed family of spaces. Let P = X{P,;
a € A} be the product of the indexed family of sets {P,; a € A}. Then the family of all
sets of the form X{U,; a € A} where U, are open in P,, is an open base for the box-
topology for P.

By the similar arguments as in 2.10 it can be proved that

2.12. Box-toplogy product of an indexed family of countably complete spaces is an
countably complete space.

2.13. Topological product of two strongly countably complete spaces may fail to be
strongly countably complete. Moreover, by [2], Theorem 2.5, every separable metri-
zable space may be embedded as a closed subspace in the topological product of two
countably compact completely regular spaces.

3. ALMOST COUNTABLY COMPLETE SPACES

3.1. Definition. An open almost-base for a space P is a family U of open subsets
of P such that every non-void open subset of P contains some non-void 4 € 9. A space
is said to be almost countably complete if there exists a countably complete sequence
of open almost-bases for P.

By a similar argument as in 2.6 we may prove

3.2. Proposition. Every open subspace of a regular almost countably complete
space is an almost countably complete space.
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3.3. Proposition. Suppose that R is an almost countably complete dense subspace
of a space P. Then P is an almost countably complete space.

Proof. Let {%,} be a countably complete sequence of open almost-bases of R. For
every n = 1, 2, ... denote by B, the family of all open subsets U of P with U n R €
e,. If V & 0 is an open subset of P, there exists an 4 in B, such that U = ¥V n R.
By definition of B, there exists a non-void set B in B, such that A < B < V. Thus B,
is an open almost-base for P. Since R is a dense subspace of P we obtain at once that
a family U of open subsets of P is centered if and only if the family R n ¥ is centered.
Thence we conclude that {®,} is a countably complete sequence. The proof is com-
plete.

By a similar argument as in 2.9 we may deduce from 3.2 that a locally almost
countably complete space contains an open dense subspace which is almost countably
complete. From this fact and from 3.3 we have at once:

3.4. Theorem. Every regular locally almost countably complete space is an almost
countably complete space.

3.5. Theorem. Every dense Gs-subspace of a regular almost countably complete
space is an almost countably complete space.

Proof. Let {,} be a countably complete sequence of open almost-bases of a regular
space P. Let U, (n = 1, 2, ...) be open subsets of P and let

G=N{Ug;n=1,2.)
be a dense subset of P. Denote by B, (n = 1, 2, ...) the family of all sets of the form
AN G, where A e A, and 4 = U,. Evidently every 9B, is an open almost base of G. It

is easy to show that {¥8,} is a countably complete sequence.
As in 2.11 and 2.13 we can prove:

3.6. Theorem. The topological product of almost countably complete spaces is an
almost countably complete space. The Cartesian product in the box-topology of
almost countably complete spaces is an almost countably complete space.

3.7. Theorem. Every regular almost countably complete space is a Baire space.

Proof. Let P be a regular almost countably complete space and let U, (n =1,2,..)
be an open dense subset of P. Put G = N U,. It remains to prove that U N G + 0

n=1
for every non-void open subset U of P. Let {2,} be a cougtably complete sequence of
open almost bases of P. The space P being regular, there exist 4,e A, (n = 1,2, ...)
suchthat 4, = U n U, and 4, = 4,_; n U, (k =2, 3, ...). By countable complete-
ness of {U,} we have
F=NA4; k=12.1+0.

But F < U N G. Thus the proof is complete.

3.8. Theorem. Every metrizable almost countably complete space P contains
a dense countable complete space R. (R being metrizable, R is a Gs-space).
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Proof. Let {9,} be a countably complete sequence of almost bases of a metrizable
space P. Let ¢ be a metric for P. For every k, n = 1, 2, ... denote by A¥ the family of
all 4 € Y, such that the diameter of 4 is < 1/k. Put

W=, Uy =04 AeU;).
For every p = 2 denote by 2, the family of all 4 € A} for which
p— ) 1
Ac[N U{B; BeU}]n U,_,
k=1
and put
U,=U{4; 4e¥,}.

By induction it is easy to prove that U,, p = 1, 2, ..., are dense subspaces of P. Since
U, is open, from theorem 3.7 we have that

G=NU;p=12..}
is a dense subspace of P. Put
B,=WnNG (n=12,..).

By construction, for every n the family B, is an open base for G. Indeed, the sets
A € U, of diameter less than 1/k cover G for k = 1,2, ...

It remains to prove that the sequence B, is countably complete. Suppose B,, € B,
(k =1,2,...) and let the sequence {B, } be centered. Choose 4, in U such that
B, = A, N G.Thesequence {I,} being countably complete (and U, = U,), we have .

&+ F=NA4A; k=1,2..}.

But for every k = 2 AF < U, _,, and consequently F = G. Since G is a dense subset
of P and 4,, open, B,, is a dense subset of 4,, . It follows that for every k,

Fc A cﬁnk=l§”k.

ny

Since F = G and B, < G, F is contained in Bj. Thus G is a countably complete
space.

3.9. Corollary. There exists a metrizable Baire space which is not almost count-
ably coiwplete.

Proof. There exists a metrizable Baire space which contains no dense G;-space.

Added in proof: See the paper of Oxtoby, Fund. Math. 1961, Nr. 1.
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Pe3ome

IMPOCTPAHCTBA B3PA 11 HEKOTOPBIE OBOBIIEHMA ITOJTHBIX
METPUYECKUX ITPOCTPAHCTB

3JEHEK ®POJIMK (Zdenék Frolik), ITpara

Tomnosoruueckoe IPOCTPaHCTBO P HaspIBaeTCs MPOCTPAHCTBOM Bapa, €CIIun
BCAKOE€ HEMYCTOC OTKPBITOC U < P siBisieTcs MHOXECTBOM BTOpOI>'I KaTeropuu.

B nepBoii yacTu naetcs onpeneneHue NpocTpaHcTs bapa npu nomoluu noJyHenpe-
DPHIBHBIX (YHKIHH. ABTODPY HEHM3BECTHO, SIBJISICTCS JIM TOMOJIOTHYECKOE MPOM3Beie-
HUE JBYX npocTpaHcTB bapa onsite mpoctpancTBoMm bapa. B craThe mokaswiBaeTs
craenyroliee 00001IeHHE KIACCHYECKOH TEeOpeMBI:

Ecau P u Q — npocmpancmea bspa u ecau P codepyucum niomuoe cuemHoe MHO-
oicecmeo N maxoe, umo 6caxkas mouka muoxcecmea N umeem cuemuwiii xapaxmep,
mo monoaoeuyeckoe npousgedenue P x Q asasemca npocmpancmeom bapa.

Bo BTOpOIf yacTu onpedeseHbl cuemHo noanvle npocmpanmea. Oxa3bIBaeTcs, 4TO
METPU3YyEeMOEe NPOCTPAHCTBO P CYETHO IOJHO TOTJa M TOJBKO TOIZA, €CIIU OHO
sBisieTcst G4-POCTPAHCTBOM, (MHAue TOBOpPS,, €CJIM OHO IIOJHO IIPU HEKOTOPOii
MeTpu3anuu). Besikoe peryiisipHoe CYETHO IOJHOE NPOCTPAHCTBO SIBJISIETCS TPO-
cTpaHCTBOM b3pa M TONOJIOrMYecKoe NPOM3BEIEHHE CYETHO MOJIHBIX MPOCTPAHCTB
SIBJISIETCS. CYETHO IOJIHBIM IIPOCTPaHCTBOM.

B TpeTheil 4aTH ompeesieHBI T. Ha3. noumu cuemHo no.mvle npocmpancmea. Ce-
Me#cTBO O BCeX MOYTH CYETHO MOJHBIX MIPOCTPAHCTB HMeEET ClleyIoIIne CBOHCTBA:

1. Bcsakoe pezyaaproe npocmparcmeo uz O sasasemcs npocmpancmeom bapa.

2. Tonoaozuueckoe npouszsedenue 060t cucmemsl npocmpancmé uz O npunao-
aexcum O.

3. Bcakoe omkpuimoe noonpocmpaHcmeo 6CAKO20 pe2yAAPHO20 NPOCMPAHCIEA U3
O npunadaexncum cemeiicmsy O.

4. Ecau nekomopoe npocmparcmeo u3 O A647emca HAOMHBIM 6 NPOCMpAHCmee
P, mo P moace npunadasexcum cemeiicmgy O.

5. Ecau 045 8cAKOU MOYKU X pe2yAapHo20 npocmpancmeéa P nekomopasa okpecm-
HOCMb MOYKU X npunadiexncum cemeiicmgy O, mo camo npocmpancmeo P npunadae-
arcum cemeticmey O.

6. Bcakoe naomuoe Gz-noOnpoCcmpancmeo pezyasapHozo npocmparcmea uz O npu-
Haoaexncum cemeiicmey O.

7. Ecau Pe O mempuszyemo, mo cywecmgyem niomuoe R < P, sgiaroweecs
Gs-npocmpancmeom, m. e., cywecmeyem MempuKa ¢ max, 4mo mempuyecKoe npo-
cmpancmeo (R, @) noano.
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