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GENERALIZATIONS OF THE G;-PROPERTY OF COMPLETE
METRIC SPACES

ZpENEK FroLik, Praha

(Received September 25, 1959)

The present paper is devoted to generalisations of two important pro-
perties of complete metric spaces.

The investigations of the present paper are motivated by the following
two well-known theorems:

0.1. If P is a G5-subset of a complete metric space, then for some metric ¢
for P the metric space (P, ¢) is complete. Conversely, if a subset P of a metriz-
able space R is homeomorphic with a complete metric space, then P is a G-
-subset of R.

0.2. If f is a continuous mapping from a subspace P of a metrizable space R
to a complete metric space @, then there exist a Gs-subset S of R and a con-
tinuous mapping F from S to @ such that f is a restriction of F.

In view of 0.1 we define: A Hausdorff (topological) space is said to be
a Gj-space if it is a G4-set in every one of its Hausdorff extensions, that is,
if P is a dense subset of a Haurdorff space R, then P is a G4-set in R. The con-
cept of a Gs-space is a generalization of ‘‘topological complete space’ introduced
by E. CecH [1]. In general an open (or closed, ;) subset of a G;-space may fail
to be a G;-space (see 3.3). This disadvantage disappears if we consider complet-
ely regular spaces only.

We introduce the concept of a complete sequence of open coverings. A se-
quence {B,} of open coverings is complete if for every open filter U meeting
every B, the intersection ) ¥ is non-void. A Hausdorff space possessing a com-
plete sequence of open coverings is a Gs-space. For completely regular spaces
the converse is true. This is the main result of the present paper.

Without additional difficulties G(m)-spaces can. be studied, that is, spaces
which are the intersection of m open subsets in every Hausdorff extension.
In connection with 0.2, the concept of a m-space is introduced.

In section 2 we study G/(m)-spaces, in section 3 Gs-spaces, in section 4 spaces
containing a dense G(m)-space and the final section 5 is devoted to extensions
of continuous mappings.

359



1. TERMINOLOGY AND NOTATION

The terminology and notation of J. KELLEY will be used throughout. For
convenience we shall use a few not quite usual symbols and terms which are
listed below.

The potency of a set M will be denoted by card M. The union and the inter-
section of a family U of sets will be denoted by U U and Ay U respectively.
If U is a family of sets-and M is a set then ¥ n M is used to denote the family
of all A n M with 4 in U. A system is a synonym for indexed family. For
systems we shall use a notation such as {P,; a € 4} or merely {P,}. A is the
index set of the system {P,; @ ¢ A} and its elements are indexes.

1.1. If m is a cardinal number, then an m-system is a system whose index
set is of potency m.

1.2. Centered families. A family U of sets has the finite intersection property
if the intersection of every finite subfamily is not empty. A centered family
is a family of sets having the finite intersection property. We shall use the
following lemma without further references:

1.2.1. Lemma. Let U be a centered subfamily of a family B of sets. There exists
a maximal centered subfamily € of B containing U; that s, if € is a centered sub-
family of B containing €, then € = €.

This lemma is an immediate consequence of Tukey’s lemma since the pro-
perty of being a centred family is of finite character.

1.3. All (topological) spaces will be supposed to be Hausdorff. The closure
of a subset M of a space P will be denoted by " or merely M. If U is a family
of subsets of a space P then the family of closures of all sets of & will be denoted
by U” or merely U. An open (closed) family of a space P is a family consisting
of open (closed, respectively) subsets of P. Analogous conventions will be used
for systems.

1.4. A space P is an extension of a space R if R is a dense subspace of P. If
moreover P is a regular (compact) space, then P is said to be a regular (compact,
respectively) extension of R. “Compact extension” and ‘“‘compactification”
are synonymous. The Stone-Cech compactification of a (completely regular)
space P will always be denoted by p(P).

2. G(m)-SPACES

2.1. Definition. A subset G of a space P is said to be a G(m)-subset of P, if it
is the intersection of some open m-system in P. A space is said to be a G(m)-
-space if it is a G(m)-subset of its every extension.

2.2. Definition. A system {8, ¢ I} of open coverings of a space P is said
to be complete if the following condition is satisfied:
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2.2.1. If ¥ is an open centered family in P such that A n B, == @ for each
¢in I, then O Y == 0.

If may be noticed that a space possesses a complete O-system (1-system
respectively) of open coverings if and only if it is (locally) H-closed. From the
following theorem we may conclude that a regular space possesses a complete
0-system (1-system, respectively) of open coverings if and only if it is (locally)
compact. If m = 1 is a finite potency, then P possesses a complete m-system
of open coverings if and only if it possesses a complete 1-system of open
coverings.

2.3. Proposition. Let {B,; e I} be a complete system of open coverings of
a reqular space P. Suppose that M is a centered family of subsets of P such that
M B == 0 for each vin I. Then AM == 9.

Proof. Consider the family U of all open subsets 4 of P such that 4 > M/
for some M in M. Evidently this family has the finite intersection property
and % n B, = 0 for each ¢ in I. Since {B,} is complete, the set F = AU is
non-void. In consequence, it is sufficient to show that F c AM. But this is
an immediate consequence of regularity. Indeeed, every closed subset of
a regular space is the intersection of the family of all its closed neighborhoods.
It follows that for each M in M we have M > AU = F, that is, AM > F,
which completes the proof.

2.4. Theorem. Suppose that {B,; ¢ € I} is a complete m-system of open coverings
of a space P. Then P is a G(m)-space.

Proof. Let R be an extension of P. For every open subset V of P choose and
open subset V' of R such that V' n P = V. For each ¢ in I put

U =U{IV;VeB,}
and consider the set
G=N{U;cel}.

Since G is a G(m)-subset of R if is sufficient to prove that G = P. Evidently
@G > P. Suppose the contrary, that there exists an element z in @ — P. Denote
by % the family of all open neighborhoods of . Since z € U, for each ¢, we may
choose V, e B, such that z belongs to V., that is, V. e A. The family A n P
has the finite intersection property since P is a dense subset of R. Evidently
A n P satisfies all the assumptions of 2.2.1, and hence, using the complet-
ness of {8,} we have | ¥ n P’ % 0. Choose a point y in this intersection.
Evidently z = y. R is a Hausdorff space and hence for some 4 ¢ % the point y
does not belong to the closure (in R) of the set 4. On the other hand we have

yed n Pcd®.

This contradiction completes the proof of the theorem.
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2.5. Theorem. Suppose that a reqular space R possesses a complete m-system
{B,; telI} of open coverings. Then every non-void G(m)-subset of R possesses
a complete m-system of open coverings.

Proof. Without loss of generality we may suppose that the potency of I
is exactly m. Select open subsets U, of R such that

G=U;el}.

Let ¢ € I be fixed; for each x in G choose on open neighborhood U, of x such
that U, c U, and that some V in B, contains U,. Denote by I8, the family of
al W, =U, n G, z¢@.

We shall prove that the system {I,; ¢ € I} is complete. Let U be any open
centered family in @ such that ¥ n MW, == ¢ for each ¢ in I. Consider the family
A, of all open subsets 4, of R such that 4, contains some 4 ¢ U. Evidently the
family U, has the finite intersection property. Let A, > U; be a maximal
centered family of open subsets of R. It is easy to see that U, n B, == 0 for
each ¢ in I. Using the completness of {8,} we have NU; =+ 0. Since U, is
a maximal family with the finite intersection property, this intersection
contains only one point, namely x. First we show that « belongs to ¢. Indeed,
ifW,e U 0 W, then U, e U, c Y, and U, c U,. It follows that = € G.

Now we shall prove that

2.5.1 yenNA®.

Suppose this is not true. Then for some 4 ¢ % we have y non ¢ 4%, and con-
sequently y does not belong to A® since y € G. The space R is regular and hence
there exists a closed neighborhood F of the point y such that F n A% = 0.
But the set R — F is open and contains 4 ¢ U, and consequently, according
to the definition of U, we have that B — F belongs to ;. It follows that
y ¢ R — F®. But this is impossible since F is a neighbourhood of . This contra-
diction completes the proof.

2.6. Suppose that a regular space R possesses a complete m-system {B; e I}
of open coverings. Every closed subspace F of R possesses a complete m-system
of open coverings.

Proof. We shal prove that the m-system

(B.nF; e}

is complete. Let U be an open centered family of F such that & n (B, n F) == ¢
for each ¢ in I. Consider any maximal centered family U, > U of subsets of R.
Clearly the intersection 8, n %, is non-void for each ¢ in I, and hence, using
the completness of {8,} we have by 2.3 that M UT = 0. Hence U U~ = 0.
But F is closed in R and consequently M* = M" for M c F. It follows that
N %% = N Y. The proof is complete.
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In 3.3 we shall show that the assumption of regularity of the space R in
2.5 and 2.6 is essential.

2.7. Theorem. Suppose that a regular space R possesses a complete m-system
of open coverings. The following properties of a subset M of R are equivalent:

(1) M is a G(m)-space.

(2) M possesses a complete m-system of open coverings.

(3) M is a G(m)-subset of M® (that is, M is the intersection of a closed and of
a G(m)-subset of R).

Proof. According to the definition 2.1 of G(m)-spaces we have that (1)
implies (3). Combining theorems 2.5 and 2.6 we obtain that (3) implies (2).
By theorem 2.4 we have that (2) implies (1). The proof is complete.

2.8. Theorem. The following properties of a completly regular space P are
equivalent:

(1) P is a G(m)-space.

(2) P possesses o complete m-system of open coverings.

(3) P is a G(m)-subset of B(P).

(4) P is a G(m)-subset of some completely reqular G(m)-space.

Proof. Since a compact space is a G(0)-space, by theorem 2.7 the conditions
(1), (2) and (3) are equivalent. By 2.4 condition (2) implies (4). If P is a G(m)-
-subset of some completely regular G(m)-space R, then P is a G(m)-subset
of B(R), and hence, by 2.7 (4) implies (2). The proof is complete.

2.9. Theorem. Let {P,; b € B} be a non-void system of completely regular spaces.
Suppose that P, is a G(m,)-space. Then the topological product

2.9.1 P = X{P,;beB}
1s a G(m)-space for
2.9.2 m = 2{m,; b e B} .

Proof. Select compact extensions K, of P,. Put
K = X{K,;be B} .

For each b in B there exists a family U, of open subsets of K, such that the
potency of U, is < m, and N Y, = P, (if m, = 0, then Y, = ¥ and by the usual
convention Y, = K, = P,). Denote by =, the projection of K onto K,
(that is, 7, is a map) and consider the space

2.9.3 P'=0N{x"TAL A %)

beB
Evidently P’ 5> P. On the other hand, supposing that some xz = {z,} belongs
to £’ — P we obtain immediately that z, e K, — P, for some b, in B. Thus
s, 3= 0 and there exists an 4 ¢ U, such that , non e 4. Thus xnon e 7;, 141>
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D P’. This contradiction proves P = P’. The intersection in 2.9.3 is taken
over a set of potency = m. Thus P is a G(m) subset of the compact space K.
It follows that P is a G(m)-space.

The preceding proof does not use the characterisation of completely regular
‘G(m)-spaces by complete m-systems open coverings. On the other hand this
proof uses the existence of compactifications of completely regular spaces and
the Tychonoff theorem on the topological product of compact spaces. We
shall give a direct proof.

2.10. Theorem. Let {P,; b e B} be a non-void system of spaces. Suppose that
the space P, possesses a complete my,-system of open coverings {B,; tel,}. (We
assume that the system {I,; b € B} s disjoint.) Then the topological product 2.9.1
-possesses a complete m-system of open coverings with m given by 2.9.2.

Proof. Denote by I the union of all sets I,. For each ¢ in I we define an
open covering B, of P as follows: there exists a b in B with ¢ e I,; put B, =
= 71;'[®B,]. (Of course =, is the projection of P onto P,). We shall prove that
{®B,; v e I} is a complete m-system of open coverings of P. Clearly it is sufficient
to prove completness only. Let % be a maximal open centered family of P
with % 0 B, = 0 for each ¢ in I. We have to show that ¥ == @. First notice
that for every fixed b ¢ B the set 7,[ Y] = U, is a maximal open centered family
in P,, and that B, n U, &= @ for each ¢ in I,. It follows that for each b in B
we have MU’ = @. Choose a point z, in this intersection. It is easy to show
that the point = {x,} belongs to AY. Indeed, if V is an arbitrary canonical
open neighborhood of x, namely

V= nl ”b_,l[Vj]
=
where V; is an open set containing ,,, then n,,”j_l[Vj] ¢ U as we had noted above,
and hence by maximality of ¥, V belongs to U. Thus V meets every 4 in U.
The proof is complete.

2.11. Definition. A space is said to be an exact G(m)-space if it is a G(m)-
-space and it is not a G(n)-space for any n < m.

2.12. Theorem. If m is either an infinite cardinal number or m = 0, 1, then
there exists a completely regular exact G(m)-space. For m = 2, 3, ... there exist
no exact G(m)-spaces. '

Proof. The second assertion is obvious since the intersection of a finite
number of open sets is an open set. A space is an exactly G(0)-space if and
only if it is a G/(0)-space, and consequently, in the case of completely regular
spaces, if and only if it is compact. A completely regular space is an exact
G(1)-space if and only if it is locally compact and non-compact. Hence the
existence of exact G(1)-spaces is obvious. If m is a infinite cardinal number
and if P is an exact G(1)-space, then the cube P™ is an exact G(m)-space.
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In the remainder of this section we shall investigate the concept of a complete
isystem of open coverings. We shall shaw that there holds a generalisation of the
«Cantor theorem for complete metric spaces.

2.13. Proposition. Let {8, te I} be a complete system of open coverings of
-a reqular space R. Suppose that MM is a centred system of subsets of R such that
Jor each vin I there exist a M ¢ W and a finite subfamily W, of B, which covers M.
Then A\ M == 0.

Proof. Without loss of generality we may assume that I is a maximal
family possessing the finite intersection property. By 2.3 it is sufficient to
prove that for each ¢ in I the intersection B, n M is non-void. For a fixed
¢ eI choose M e M and a finite U, ¢ B, such that U, covers M. We shall prove
that some U in U, belongs to M. Suppose the contrary. According to maximality
of M the sets B — U with U e U, belong to M. It follows that the set N{R — U;
U € U} belongs to M. But this is impossible since

MoN{ER—U;Uecl}=M—-UU =9 .
and M has the finite intersection property. This contradiction completes the
proof.

The preceding proposition may be stated in the following manner.

2.14. Theorem. Suppose that {B,; ¢ € I} is a complete system of open coverings
-of a reqular space R. For each v in I let W, be the familly of all unions of finite sub-
Jfamilies of B,. Then {Ul; « € I} is a complete system of open coverings of R.

2.14. Theorem. Let {B,; te I} be a system of open coverings of P satisfying
the following two conditions 2.14.1 and 2.14.2.

2.14.1. If K is a closed subspacc of P and if for each ¢ in I theve exists a V,
in B, with K c V, then K is a compact space.

2.14.2. For every centered system {F ; ¢ € I} of closed subsets of P such that
foreach ¢inI F,c V, forsome V,in B, the intersection A {F,; ¢ e I} is non-void.
Then the following condition 2.14.3 is satisfied:

2.14.3 If § is a centered family of closed subsets of P such that for each ¢ in I
there exists F, e Fand V, e B, with F', c V ,, then ONT =+ 0.

Proof. Suppose that §, F, and V, satisfy the assumptions of 2.14.3. Without
loss of generality we may assume that § is multiplicative, that is, the inter-
section of every finite subfamily of § belongs to §. Put

K=QnN{F;cel}.

According to condition 2.14.1 the space K is compact and by 2.14.2 it is non-
-void. In consequence it is sufficient to show that the family § n K has the
finite intersection property. Choosing ¥ in § we have by 2.14.3.

N{FnF;iel} +=0.
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But this intersection is contained in K. Thus ' n K = ¢. Since § is multiplica--
tive, it follows that § n K has the finite intersection property. The proof is
complete.

Note. In 3.10 we shall show that neither 2.14.1 nor 2.14.2 alone implies.
2.14.3.

3. (,-SPACES

In this section we shall study in detail G(%,)-spaces. In accordance with the-
usual terminology we shall call them G/;-spaces.

3.1. Definition. A space P is said to be a F-hereditary G;-space if every closed
subspace is a Gg-space. A space is said to be a feeble Gy-space if it is regular and
is a Gs-subset of every regular extension.

Examples. A regular R-closed space is a feeble Gs-space. A hereditady
H-closed space is a F-hereditary Gs-space. Recall that a space P is H-closed
§f P is the unique extension of P. It is easy to see that P is a H-closed space if’
and only if every open covering of P contains a finite subfamily which covers
a dense subset of P. Analoguously a regularspace P is R-closed provided that P
is the unique regular extension of P. For more detailed information see [2].

We shall prove that a closed (open) subspace of a Gs-space may fail to be
a (s-space. First we prove.

3.2. Lemma. Suppose that (K, t) is a H-closed space. Let M, and M, be disjoint
dense subsets of K with M, v M, = K. There exists a topology 7, for the set K
such that (K, ©,) s a H-closed space, M, is closed in (K, ©,) and the topologies T
and ©, agree on the sets M, and M,. ‘

Proof. We define the topology 7; as follows: If x € M,, then U c K is a 7~
-neighborhood of x if and only if U is a 7-neighborhood of x; if x ¢ M,, then
U c K is a neighborhood of the point « if and only if U n M, is a neigborhood
of x in the space (M,, 7). Evidently 7, is a topology and it agrees with 7 on both
M, and M,. The set M, is 7,-open. It remains to show that (K, 7,) is a H-closed
space. Clearly

321. zeM,, NcK = [zery[N]=2xet[N]].
Now we shall prove
3.2.2. If U is 7,-open, then 7[U] = 7,[U].

By 3.2.1 it is sufficient to show that x e M, n t[M] = x e 7,[U] . Let x be-
longs to M, n t[M]. Choose a 7,-open neighborhood V' c M, of z. According:
to the definition of 7,, there exists a r-open subset V such that

xeVnMycV'.

The set V is t-open and hence 7,-open. If follows that the set V n U is 7,-open.
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“This set is non-void, since z € T[U]-and V is a r-neighborhood of x. The set M,
is dense in (K, 7,), and consequently

VaUnM,=%+90.

Thus the set V' n U containing V n U n M, is non-void. Hence z e 7,[U].
‘The proof of 3.2.2 is complete.

We shall also need the following assertion:
(3.2.3.) If U is t,-open, then int, 7,{U] > U.

If xe U n M,, then U is a z-neighborhood of x and hence zeint, U c
. int, 7,[U]. Now suppose that x e M, n U. According to the definition of
7, there exists a t-open set V such that x ¢ V n M, c U. We shall prove that
V c 7,[U]. The set M, is dense in (K, t) and hence the set V n M, is dense in
V (in the topology 7). Since V n M, is 7,-open we have, according to 3.2.2,
[V o M,] = <[V n M,] and consequently

VetV o M, =V n M, cr[U].
iSince x € V, we have z e int, 7,{U]. The proof of 3.2.3 is complete.

Now it is easy to see that (K, 7,) is a H-closed space. Let {U} be any open
covering of (K, 7;). We have to show that some finite subfamily of { U} covers
a dense subspace of (K, 7). According to assertion 3.2.3 the family {int, 7,[U]}

is an open convering of (K, 7). (K, 1) is a H-closed space and consequently
there exist U,, ..., U, in {U} such that

0 tfint, 7, [U]] = K .
According to 3.2.2 -
zlint, 7,[U]] = 7 [int, 7,[U]] .
Since int, 7,[U] c 7,[U], we have
zlint, 7,[U]] ¢ 7,[7,[U]] = 7,[U] .

In consequence U 7,[U;] = K. The proof of the lemma is complete.
k=1

3.3. Examples. An open (closed) subset of a Gy-space may fail to be a Gs-space.
Proof. Denote by R the space of all rational numbers in the closed interval
<0, 1) (with its usual topology). It is well-known that R is not a G;-subsef
of (0,1>. Thus R is not a Gs-space. According to 3.2 the space R may be
embedded as an open (closed) subspace of some H-closed space. The proof
is complete.
Recall that a family U of subsets of a space is said to be regular provided
“that for each 4 in ¥ there exists an 4, ¢ U such that 4, c int 4.

3.4. Definition. Let {8,;n =1,2,...) be a sequence of open coverings
of a space P. The sequence {$,} is said to be complete in the strong sense if
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for every centered family I of subsets of -P such that M n B, == @ for each
n =1, 2,... the intersection () M is non-void. The sequence {8} is said to be
" feebly complete provided the following condition is satisfied:
If A is a centered regular family of open subsets of P such that Y n B, = ¢
for each n = 1,2, ..., then | U == 0.

Note. According to 2.3, every complete sequence of open coverings of a regu-
lar space is complete in the strong sense.

The proof of the following theorem is quite simple and may be left to the
reader.

3.5. Lemma. Suppose that {8,} is a complete in the strong semse sequence
of open coverings of a space P. If F is a closed subset of P, then the sequence
{8, n F} is also complete in the strong sense. Thus (by 2.4) P is a F-hereditary
Gs-space.

3.6. Proposition. Suppose that there exists a feebly complete sequence {8} of
open coverings of a regular space P. Then P is a feeble Gy-space.

Proof. The proof is quite analoguous to that of 2.4. Given a regular extension
R of P we have to shaw that P is a Gs-subset of R. For every open subset V of P
choose an open subset V' of R such that V' n P =V. For n = 1,2, ... put

U, =U{V;VeB,).

It is sufficient to show P = A{U,;n =1, 2, ...}. Denoting this intersection
by G we have P c @. Suppose that there exists an element x of ¢ — P. Denote
by U the family of all open neighborhoods of the point x. The space R is regular,
and consequently ¥ is a regular family. Evidently U n P is a regular centered
family in P and Y n B, =0 for each n =1,2,.... Hence A U n P == .
Choose a point y in this intersection. Clearly x ==y and hence there exists
an A e U such that y does not belong to A4; this is impossible since y ¢ 4.
This contradiction completes the proof.

3.7. Proposition. Suppose that a reqular space P possesses a feebly complete
sequence {B,,} of open coverings. Then every open subspace U of P possesses a feebly
complete sequence of open coverings.

Proof. For every n = 1, 2, ... denote by B, the family. of all open subsets V*
of P such that for some V ¢ B, the inclusion ¥’/ c V n U holds. It is easy to see
that {8,} is a feebly complete sequence of open coverings of U.

Note. I do not know whether the assumption “U is open’ may be replaced
by the assumption that U is a Gs-subset. In the case of a positive answer the
following theorem is true: A regular space is a feeble Gs-space if and only if it
possesses a feebly complete sequence of open coverings.
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3.8. Theorem. Suppose that a regular space P possesses a complete sequence:
of open coverings. The following conditions on a subspace M of P are equivalent:

3.8.1. M possesses a feebly complete sequence of open coverings.

3.8.2. M possesses a complete sequence of open coverings.

3.8.3. M possesses a complete in the strong sense sequence of open coverings.
3.8.4. M is a Gs-subset of M".

3.8.5. M s a feeble Gs-space.

3.8.6. M s a Gs-space.

3.8.7. M s a F-hereditary Gs-space.

The proof is an immediate consequence of Theorem 2.7 and propositions:
3.5 and 3.6. '

3.9. Theorem. A metrizable space P is a Gy-space if and only if there exists
a metric o for the space P such that (P, p) is a complete metric space.

Proof. First suppose that (P, g) is a complete metric space. Forn =1, 2, ... .
let B, be an open covering of P such that the diameters of elements of B, are

1 . .
= Pt It is easy to see that the sequence {8,} is complete. Conversely, suppose

that a metric space (P, ) is a Gs-space. Let (P*, ¢*) be the completion of
(P, ¢). There exist open sets U,, n = 1, 2, ..., such that

P=nN{U;n=12..7}.
Denote by f,(x) the distance of a point z of P to the set P* — U,. For z and ¥
in P put
@)1= — [fal®)]™]
L+ [[fu@)]7t — [ful)] 7

Evidently the metrics ¢ and p are topologically equivalent and (P, o) is.
a complete metric space. The proof is complete.

- 1
0@, y) = glz, ) + > 5
n=1

3.10. Examples relating to 2.14. No one of conditions 2.14.1 and 2.14.2 is
sufficient for {&,} to be a complete system of open coverings.

The condition 2.14.1 is not sufficient. Let (P, ¢) be a metric spaces which
is not a Gj-space. For n = 1, 2, ... let B, be an open covering of P consisting

of sets of diameters =< 1. Evidently the condition 2.14.1 is satisfied since
n

every such set contains at most one point. On the other hand the sequence
{®,} is not complete since P is not a Gs-space.

The condition 2.14.2 is not sufficient. If P is a countably compact space,
then for every sequence {W,} of open coverings of P the condition 2.14.2 is
satisfied in a trivial manner. Consequently, it is sufficient to prove the follow-
ing proposition.
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3.11. There exists a completely regular countably compact space which is not
a Gs-space. First we prove the following lemma:

3.12. Lemma. A regular space P possesses no complete sequence of open coverings
-provided that it has the following two properties 3.12.1 and 3.12.2.

3.12.1. P contains mo infinite compact subset.

3.12.2. P contains at least one point x which is not a Gs-point (that means,
the one-point set (x) s not a Gy-set).

Proof. Suppose that there exists a complete sequence {$3,} of open covering
of a regular space P possessing the properties 3.12.1 and 3.12.2. Choose a point
in P which is not a Gs-point. For each n = 1, 2, ... choose a set V, in 8B,
containing the point x. Since the space P is regular we may select neighborhoods
U, of x with U,cV,, n=1,2,.... By theorem 2.14 (condition 2.14.1) the

intersection K of all the U, is a compact space. K contains the Gy-set G = A U,

n=1
containing x. According to our choice of z, @ is an infinite set. This contradicts
the condition 3.12.1 and completes the proof of 3.12.

Proof of the proposition 3.11. By 3.12 it is sufficient to construct
a countably compact completely regular space P possessing the properties
3.12.1 and 3.12.2. By [1], theorem 3.1.5 or [2], theorem, there exists a countably
infinite compact space P, N c P c f(N) with card P < 2%, where N is the
countable discrete space. Since every infinite closed subset of #(IV) has potency
22" the space P contains no infinite compact set. Hence 3.12.1 holds. No ideal
point of P, (that is, no point in P — N) is a G4-set. Indeed, since P is countably
compact, every Gy-point is of countable character. But no ideal point is of
countable character.*)

Another proof of the proposition 3.11. By [1], theorem 3.1.6 or [2],
theorem 2.6, there exist disjoint countably compact dense subspaces P and @
of B(N) — N, where N denotes the countable infinite discrete space. From the
following theorem we can conclude that at least one of the spaces P and @ is
not a G4-subset of f(N) — N.

3.13. Theorem. Suppose that a reqular space P possesses a complete sequence
{B,} of open coverings. Then the intersection of every countable family of open
dense subsets of P is a dense subset of P. It follows that P contains no two disjoint
dense Gy-subsets.

Proof. Let {U,} be a sequence of dense open subsets of P. Given a non-void

*) Suppose that a point ¢ P — N is of countably character. It is easy to see that there
exists a continuous function f on P with f(x) = 0 and f(y) > 0 for y ¢ P — (x). Evidently
the continuous function g(¥) = sin (f(¥))~! on P — («) has no continuous extension to P;
but this is impossible.
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open subset W of P, we can construct by induction sequences {V,} and { W}
of non-void open subsets of P such that V, e %,, V, > W, and

WopacW,cWnU,.

The sequence {®B,} is complete and hence A W, = A W, = 9. Evidently

n=1 n=1

WaonU,>N W,. The proof is complete.

n=1 n=1

3.14. Theorem. Let {P,; b ¢ B} be a non-void system of non-void completely

regular spaces. Suppose that P, is an exact G(my)-space with m, = 8,. Put

P =X{P,;beB} and m = Z{m,; beB}.
If m == 0 is a finite cardinal number, then P is an exact G(1)-space. In the other
case the space P is an exact G(m)-space.

Proof. By Theorem 2.9 the space P i> a G/(m)-space. Put

B, = {b;beB,m, = 0}, B, =B — B;;
P, =X{P;beB;} (1=1,2).
First let us notice that in the following special cases the theorem holds.

3.14.1. If K is a compact space and R is an exact G(m)-space, then K X R
is an exact G(m)-space.

3.14.2. Suppose that @ is a space and R is an exact G(m)-space. If @ X R &= 0
is a G(n)-space, then n = m.

From 3.14.1 a 3.14.2 and from the evident equality m = Z{m,; b € B,} we
see that B, = ¢ may be assumed without loss of generality. First suppose that
the set B, = B is finite. Either m, = 1 for each b in B or there exists a b e B
with m, = %,. In the first case according to Theorem 2 P is a G/(n)-space with
n == 0 a finite cardinal. By 3.14.2 P is an exact G(1)-space. In the other case
by 3.14.2 P is an exact G(X,)-space.

Now suppose that B is infinite. Since 0 << m, =< ¥,, we have m = card B.
The following lemma completes the proof.

3.15. Lemma. Let {R,; b € B} be a system of topological spaces, P, c R,.
R = X{Ry;beB} and P = X{P,beB}.

Suppose that P is non-void and R, — P, == @ for each b in B. Let G be a G(n)-
-subset of R contasning P with 0 < n < m = card B = %,. Then G — P == ¢.

Proof. There exists an open n-system {U,; a ¢ A} in R with
G=MN{Usacd}.

Choose a point = {x,} in P. For each a in 4 we can choose a finite subset
B, of B such that
xe H, = X{Hy(a);be B} c U,
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where H,(a) is open in R,, b ¢ B, and H,(a) = R, for b non ¢ B,. Put
H=nN{Hzaed}.
Since H c G it is sufficient to show that H — P &= 0. Put B, = U{B,; a ¢ 4}.
Since n << m we have B — B, 7 . Choosing ¥, € R, — P,, consider the point
z = {z,} where
s xyforbeBy,
% —< y,forbe B — B, .

Clearly z e H — P. The proof of the lemma is complete.

4. SPACES CONTAINING A DENSE G(m)-SPACES

In this section we introduce the concept of a complete system of families
of subsets of a topological space.

4.1. Definition. A system {8 ,; ¢ € I} of open families of a topological space P
is said to be complete if for every centered open family % in P with ¥ n B, = ¢,
the intersection Y is non-void for each ¢ in I.

4.2. Proposition. Let {B,; ve I} be a complete m-system of open families of
a reqular space P. Denoting the union UB, of the family B, by U ,, suppose that
the set ¢
R=nN{U,;el}

is dense in P. Then R possesses a complete m-system of open coverings (and
hence, R is a G(m)-space).

Proof. As P is regular for each ¢ in I there exists a refinement B, of the
covering B¢ of the space U,, such that ¥ c U, for each V in ®B/. For each :
in I put W, = B, n R. We shall prove that {I8,; ¢ ¢ I} is a complete system
of open coverings of the space E. Let U be an open centered family in R such
that & n W, == ¢ for each ¢ in I. Denote by U, the family of all open subsets 4
of P such that 4, > 4 for some 4 in Y. Finally let U, be a maximal open
(in P) centered family containing ;. Evidently %, n B, == ¢ for each ¢ e I.
Thus the intersection ¥, is non-void. Since U, is a maximal family, this
intersection is a one-point set e. g. (x). We shall prove that = belongs to (U".
Suppose the contrary, that for some 4 in U the point x does not belong to AR,
First let us notice that « ¢ R. Indeed, choosing ¥, in U; n %B,, we have

xsn{V‘P;tel}Cn{U,;zeI}:R.

Since # non ¢ A® and x ¢ P we have z non e A”. There exists a closed neighbor-
hood F of z in P with F n A” = 9. Hence, according to the definition of 2,

the set P — F belongs to ;. Thus ¢ P — F, which is impossible since F is
a neighborhood of z. This contradiction completes the proof.
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4.3. Proposition. Let {8, } be a complete sequence of open families in a regular
space P such that

4.3.1 Uus,=P°P, n=1,2,...

The space R = A{UB,;n =1, 2, ...} is dense tn P and possesses a complete
sequence of open coverings (and hence, R is a dense Gy-subspace of P).

Proof. According to 4.1 it is sufficient to prove that R is a dense subset of P.
Given a non-void open subset U of P, we shall prove that B n U &= ¢. By 4.2.1
we may choose V7, in B, with V; n U = §. Using the regularity of P we may
choose a non-void open set H, such that H,cV, n U. Proceeding by in-
duction we can construct non-void open sets H, and V, in 8, such that for
n=23,....

n-1 n-1
HcUnnV.onNH,.
k=1

k=1

Since {8B,} is a complete sequence and ¢ +H, ,cH,cV,eB, we have

H=NH,=NH,+9.
n=1 n=1

But Hc NV, c R. This establishes U n R 5= ¢ and completes the proof.
n=1
4.4. Proposition. Suppose that a dense subspace R of a regular space P possesses
a complete m-system {B,; ¢ € I} of open coverings. For every open subset U of R
choose an open subset U’ of P such that U' 0 R = U. For each v in I let B, be
the family of all U’ with U ¢ B,. For «in I put U, = UD,. Then {B.; ve I} is

a complete system of open families in P and
N{U;tel} =R.

Proof. Let U be an open centered family in P such that for some V, € %3,
the set V| belongs to U. Since R is a dense subspace of P, the family R n U
is centered and hence Y A R® &= 0, since V, ¢ (¥ n R) n B,. Thus NY* =+ 0.
The proof of the second assertion is quite analoguous to that of 2.4 and may
thus be omitted.

Recall that a family U of subsets of a topological space P is said to be an
almost-cover of P if the union of the family U is a dense subset of P. As corolla-
ries of 4.2, 4.3 and 4.4 we have the following three theorems.

4.5. Theorem. A regular space P contains a dense subspace possessing a complete
sequence of open coverings if and only if there exists a complete sequence of open
almost-covers of P.

- 4.6. Theorem. A completely regular space P contains a dense Gy-space if and
only if there exists a complete sequence of open almost-covers of P.
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4.7. Theorem. A dense subspace R of a completely reqular space P is a G(m)-
-space if and only if there exists a complete m-systems {B,; v e I} of open families
in P such that

N{UB,;tel} =R.

5. EXTENSIONS OF CONTINUOUS MAPPINGS

In this section we give a generalisation of the theorem of Lavrentev con-
cerning extensions of a continuous mapping from a subset of a metrizable
space to a complete metric space (in our terminology, to a metrizable Gs-space).
With this end in view we introduce a generalisation of “uniform topology”.

Let U be a family of subsets of a given set N. Recall that for each N > M
the set

SM, ¥) =U{4;4c¥U, 4 n M = 0}

is said to be the star of M in . The star of a point  in U is defined as the star
of the one-point set (x), in symbols,

Sz, ) = S((x), ¥) .

5.1. Definition. A space P is said to be a m-space if there exists a complete
m-system {8 ,; ¢ € I} of open coverings of P such that

5.1.1. For each z in P the family {S(x, %B,); ¢ € I} is a local base at z.

5.2. Evidently, every space possessing a system {8} of open coverings such
that the condition 5.1.1 holds is a regular space. If a space possesses a complete
m-system of open coverings and a m-system of coverings satisfying 5.1.1, then
it is a m-space. Thus the concept of a m-space is assembled from the concept
of space possessing a complete m-system of open coverings and of the concept
of a space possessing a m-system of open coverings satisfying 5.1.1. If a space P
possesses a m-system {8,} of open coverings such that 5.1.1 holds, then for
each M c P the system {8, n M} satisfies 5.1.1. Suppose that {8, te I} is
a system of open coverings of a space P such that 5.1.1 holds. The system is
complete if and only if for every centered system { ¥ ; ¢ ¢ I} of closed subsets of P
such that some V, € B, contains F,, the intersection M\{F; ¢ ¢ I} is non-void.
This is an immediate consequence of Theorem 2.14, since the condition 2.14.1
is evidently satisfied. S

5.3. If a space P possesses a m-system {B,; ve I} of open coverings satisfying
5.1.1, then every closed subset of P is a G(m)-subset.

Proof. Supposing that F is a closed subset of P, it is easy to show that
. F=nN{SF,B,); el}. ;
Indeed, if ¢ (P — F), then by 5.1.1 there exists an ¢ in I such that S(z, B,) c
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c (P — F). It follows that x non e S (¥, B,). It may be noticed that it was
necessary to prove that

F=nN{SF,B,);cel}.
5.4. Theorem. A subspace R of a m-space P is a m-space tf and only if it is
a G(m)-subset of P.

Proof. By Theorem 2.7 the space R is a G(m)-space if and only if R is a G(m)-
-subset of R”. By 5.3 every closed subset of a m-space is a G(m)-subset.

5.5. Theorem. Suppose that {P,; a € A} is a system of m-spaces such that every
P, contains at least two points. Then the topological product

P =X{P,aed}
18 @ m-space if and only if the potency of A is at most m.

Proof. If the potency of B is > m then the character of every point of P
is > m and hence the condition 5.1.1 is satisfied by no m-system of open
coverings. Thus P is not a m-space.

Conversely, suppose that the potency of 4 is at most m. By Theorem 2.10
the space P possesses a complete m-system of open coverings. In consequence
it is sufficient to show that some m-system {8,; c € I} of P has the property
5.1.1. By our assumption for each a € A there exists a m-system

{Bg,c; c € Cg}

of open coverings of P, such that 5.1.1 holds. Without loss of generality we
may assume that the system {C,; a € 4} is disjoint. Denote by I the family
of all finite subsets of the set

U{(a) X Ci;aec A}.
Denote by =, the projection of P onto P,. For each ¢ in I, ¢ = {(ay, ¢y), ...,
oo (@ 1)}, let I8, be an open refinement of the coverings
2 [ Bopa), 1=1,2,...,k.
Clearly {IB,; ¢ € I} is a m-system of open coverings of P and for each = in P the

family
{S(x,B,); cel}

is a local base at x. The proof is complete.

5.6. Theorem on extensions of continuous mappings. Let P be a m-space.
Let Q be a dense subset of a space R. Let f be a continuous mapping from Q to P.
Then there exist a G(m)-subset S of R containing @ and a continuous mapping
F from 8 to P such that f is a restriction of F.

Proof. Let {8B,; ¢ € I} be a complete m-system of open coverings of the épace
P satisfying the condition 5.1.1. For each ¢ in I denote by I8, the family of all
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open subsets W of R such that f[W n @] c V for some V in %B,. For each ¢
in I denote by U, the union of the family I8,, Consider the space S =
= N{U,; te I}. By continuity of f, the set @ is contained in every U,, and
consequently @ is contained in S. The sets U, are open and hence S is a G/(m)-
-subset of R.

We shall now construct the mapping F. For each x in S denote by F(x) the
family of all V e U{B,; ¢ € I} such that for some neighborhood W of the point
we have f[W n Q] c V. §(x) is an open centred family since x is an accumulation
point of Q. Indeed, choosing V, V,, ..., V,, in §(x) we may select open neighbor-
hoods W,, W,, ..., W, of x with

fVia@QcW, (1=1,2,...,n).

The intersection W = ) W, is a neighborhood of 2 and hence W meets Q.
i=1

Clearly
flQn W]c ani .

It follows that M} V; is non-void. By the construction of S, for each ¢ in I we
i=1

can select an open neighborhood W (z) of x and a V () € B, such that
flQ o W) cV, ().

Thus V ,(z) € §(z) for every ¢, that is, F(x) 0 B, == 0 for every . The system
{®B,} is complete and hence the intersection AF(x) is non-void. Since {B,}
satisfies condition 5.1.1, this intersection contains one point only. Denote
this point by F(x). If x € @, then f(x) eV (x) for every ¢ and consequently
F(x) = f(x). We have defined a mapping F from S to P such that f is a restrict-
ion of F to Q.

It remains to prove that F is a continuous mapping. First we show

5.6.1. For every open subset U of S we have
F[UIc U n Q].
Choosing x in U, for every ¢

Vi@)>f[W/(x)n Un@Q].
Thus

flUnQInVx) 0.
Since F(x) e V (x) for every ¢, by condition 5.1.1 we have
F(z) e f[U 0 Q]
which completes the proof of 5.6.1.
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To prove the continuity of F, given a « in S and an neighborhood V of F(x)
we choose ¢ in I with

5.6.2. S(F(x),B,)cV
By definition of V (x) we have f[W (x) n @] c V ().
Applying 5.6.1, we obtain F[W (x)] c f[W (x) 0 @] and hence F[W (z)] c

c V,(x). Since F(z) eV (x), by 5.6.2 we have F[W (x)] c V. This establishes
continuity and completes the proof of the theorem.

5.7. Theorem. Suppose that f is a homeomorphic maping from a subspace
of a m-space R onto a subspace N of a m-space P. There exists a homeomorphic
mapping F of a G(m)-subset M, > M onto a G(m)-subset N, > N such that f is
a restriction of F.

Using theorems 5.6 and 5.3, the proof of this theorem could be led made
analogous to that of the parallel theorem on complete metric spaces, see [4],
pp. 335.

As an example of m-spaces we introduce the concept of complete m-metric
spaces.

5.8. Definition. A space P is said to be m-metrizable if there exist a m-system
{@} of pseudometries in P such that for each z in P and every subset M of P
P x e M if and only if the ¢,-distance of z and M is zero for every . The pair
(P, {®,}) is said to be a m-metric space. A m-metric space (P, {¢,}) is said to be
complete if for every closed centered family § in P with

5.8.1 inf {d,(F); F e} =0

for every ¢, the intersection M) § is non-void. A space P is said to be a com-
plete m-metrizable space if there exists a complete m-metric space (P, {g,})
such that the family {@,} generates the topology of P, in the sense that x e M
if and only if the @,-distance of « and M is zero for every «.

5.9. If 1 < m < ¥,, then every m-metrizable space is a metrizable space.
If m is an infinite cardinal number, then every complete m-metrizable space
is a m-space. Conversely, if m is an infinite cardinal number, then every fully
normal (= paracompact) m-space is a complete m-metrizable space. The last
assertion assertion is a consequence of the theorem asserting that for every
open covering B of a fully normal space P there exists a pseudometric ¢ in P
such that the family of all spheres of radius 1 is a rafinement of 3.

5.10. Theorem. T'he topological product of a m- sy.stem of metrizable Gy-spaces
18 a complete m-metrizable space.

Proof. Let {P,; a ¢ A} be a m-system of metrizable Gs-spaces. Denote by P
its topological product. By Theorem 2, for every « we can choose a metric y,
for P such that (P,; y,) is a complete metric space. By a well-known theorem,
the product of complete uniform spaces is a complete uniform space. But the
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product uniformity for P is generated by the m-system {y}} of pseudometrics
in P defined as follows: For each z = {z,} and x = {y,} in P set y¥(z,y) =
= 4(Zq; Ya). Denote by I the set of all finite subsets of A4 and for each ¢ eI
put

P2, y) = Z "/"a*(x’ Y) -

Evidently every centered family satisfied 5.8.1 is a Cauchy family. It follows
that {P, {p}} is a m-complete metric space. The proof is complete.

5.11. For every infinite cardinal number m there exists a complete m-metrizable
space which is not a G(n)-space with n < m.

Proof. Evidently the space Z of irrational numbers is a metrizable (/5-space
which is a G(n)- space for no n < ¥,. By theorem 5.10 the cube Z™ is a complete
m-metrizable space and by theorem 5.5 Z™ is G(n)-space for no n < m.

Recall the following simple lemma.

5.12. Lemma. Let F be a continuous mapping from P to @ such that for some
dense subset P, of P the restriction F|P, of F to P, is a homeomorphic mapping.

Then F[P,]n F[P —P,] = 9.

5.13. Consider the identity mapping f of a m-space P which is not a n-space
for any n < m. Let R be a extension of P. By lemma 5.12 there exists no
continuous mapping F from R to P such that F/P = f. It follows that in
theorem 5.6 the assumption “P is a G(m)-space’ is essential.
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Peswome

OBOBHIEHUSI G-CBOMCTBA TOJHBIX METPUYECKUX
[MPOCTPAHCTB

3JAEHER ®POJINK (Zdenék Frolik), IIpara
ITycrs m-xappuHalbHOe umcso. Tomojormueckoe mpocTpaHCTBO Xaycxop-
¢a P nazpiBaercd G(m)-IpocTPaHCTBOM, €CJIM BBINIOJIHEHO clefyloniee YCIIOBHe:

ecin P sBisercs IVIOTHBIM NORNPOCTPAaHCBOM IpocTpaHcTBa Xaycmopda R,
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T0 P ABIsercsa mepecedeHmeM M OTKPHITHIX MHOKecTB mpocrpaHcrsa R, r.e. P
aBnsgerca G(m)-muoskectBoM B R. Cienyst 9. Uexy, Buonse peryispusie G(¥y)
-IIPOCTPAHCTBA HABHIBAIOT TOIOJOIMYECKH MOJIHBIMII IpocTpHacTBaMil. V3Bect-
HO, 9TO MeTpHu3yeMoe IpocTpaHcTBO P spisercsi (-1pocTPAHCTBOM TOTjA
U TOJNBKO TOIJA, eCTM JUIA HEKOTOPOIl MeTPHKH @ MeTPHYECKOoe IPOCTPAHCTBO
(P, p) moaHo.

¢

Bo Bropoit wacTu gaercdA ,,BHYTpeHHas < XapaKrepuaalus BIOJHE Peryssip-
HBIX G(m)-mpocrpancTB. OKaseiBaercs, 4TO MOJBL3YACH ITOH XapaKkrepusanuei,
ocBHOHBIe cBoiicTBa G(m)-mpocrpancrs oueBugnbl. CemeitctBo {IB,; ¢ e I} or-
KPBITHIX TOKPBITHI TpocTpaHcTBa P HasbIBaeTCs MOJHBIM, €CJIM UL BCAKOI
HEeHTPUPOBAHHON cucTeMbl MHOKecTB U, comepsKamieil MHOKeCTBA M3 KajKIOIO
nokpeiTs IB,, mepeceveHme 3aMBIKAHMI MHOKecTB u3 U He mycro. Oraspl-
BaeTCs, 4TO BIOJIHE peryisipHoe npocrpaHctBo P spiserca G(m)-nipocrpan-
CTBOM TOTJId ¥ TOJBKO TOTJA, €CJH CyIecTBYeT noijiHoe cemeiictBo {IW,; e I}
OTPKBITBIX HOKPHITHIl IpocTpaHcTBa P Tar, 4To MOMHOCTH MHOJKCCTBA WHICK-
coB I paBHa m. AHAJOTMYHO BHYTPEHHE XapaKTCPU3YIOTCS BIOJIHE PEryisp-
HBEIe IIPOCTPAHCTBA, cOMeps;Kamue IIoTHoe G(M)-IpocTpaHCTBO.

B rperpeit wactm paccMarTpmBaioTcsi jajbHelimme cBoitctBa  (G(X,)-1po-
CTPAHCTB, 1 JlaeTcA HECKOJIBKO MPUMepOB.

B mocmenmeit wactm paccmatpumBaioTca m-npoctpaHcrsa. IIpocrpamcrso P
Ha3BIBAaeTCA M-TNIPOCTPAHCTBOM, ecJM CYIIeCTBYeT IIOJIHOE ceMelicTBO {IB,;
t € I} OTKPHITHIX NOKPHITUI IpocTpancTBa P Tak, YTO MOIHOCTL MHOsKectBa [
paBHa m u

S, B,); vel}

ABJIseTCA 0a3MCOM OKpecTHocTell A Kamuoi touxu x e P, rme S(z, I,
0603HaYaeT 3Be3[y TOUKN & B MHOJKeCTBE 3aMbIKaHMil siieMenToB u3 IB. Orassi-
BAeTCs, YTO W3BECTHASI TeopeMa O PACIIMpEeHHI HempephIBHOTO 0TOOpajKeHHs
70 TOJIBHOTO METPHYECKOro HPOCTPAHCTBA HMMeeT HeKoTopoe obobIeHnme Ha
M-IIPOCTPAHCTBA.

Teopema. IIycmv P — m-npocmpancmeo. Ilycms @ — naomuoe nodnpo-
cmpancmeo npocmpancmea R. Haroney, nycmv f — wnenpepuisnoe omo6pance-
pue npocmpancmea @ ¢ P. Cywecmeyem G(m)-mmoomcecmséo S ¢ R u menpe-
puisroe omobpancenue F npocmpancmea S 6 P mak, wmo f(x) = F(x) daa x € Q.

W3BecTHas TeopeMa 0 pacmmpeHHE roMeoMopdu3Ma MMeeT cllegyioee 0606-
HIeHue: :

Teopema. Ilycmv f — eomeomopdroe omobpascenue nodmroncecmea M m-
-npocmpancmea P na nodmnomcecmso N m-npocmpancmea Q. Cywecmsyem
2omeomopgroe omobpancenue F G(m)-muoocecmea My c P, M ¢ M, na G(m)-
-muomcecmeo Ny c @, N ¢ Ny mak, umo F(z) = f(zx) Oas x e M.
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