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THE FRATTINI SUBGROUP OF A DIRECT PRODUCT
OF GROUPS

Vreastivmin DraB, Khartoum and ViApimir KoRkiNEK, Praha

(Received September, 14, 1959)

This note is devoted to the investigation of the conditions under
which the Frattini subgroup of a direct product of groups is the di-
rect product of Frattini subgroups of the direct factors. For this, ne-
cessary and sufficient conditions are found and other simple, but only
sufficient, conditions are deduced. These conditions show that the above
assertion is true for all soluble groups and for all finitely generated
groups and that it is generally valid if and only if every simple group
has maximal subgroups.

The Frattini subgroup @(G) of a group G is the intersection of all maximal
subgroups of @, if such subgroups exist; otherwise @(G)) = G. The principal
property of @(G) yields a second definition for it which can be expressed as
follows: @(G) is a subset of G such that each of its elements can be removed
from a generating system of G' which contains it without altering the gene-
rating property of the system.

This paper is devoted to the following investigation. Suppose we have
a decomposition of @ in a direct product
(1) G=T]" 6,

eeP

where the set of indices P has a quite arbitrary cardinality. The question is,.
under which conditions the equality

(2) D(GF) = 11” D(G,)
holds? ’

The Frattini subgroup was introduced into the group theory first by G. FraT-
TINT [3] in 1885. The implication (1) => (2) for all finite groups ¢ was proved
by G. A. MiLLER [7] in 1915. (See also W. GasscHUTZ [4]). Recently VL. DraB [1}
and [2] proved it for every abelian and every finitely generated @. 1t is proved
in this paper that (2) holds for every soluble ¢ (and even for a slightly more
general class of groups) and for two other classes of groups one of which contains
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all finitely generated groups. The problem whether, in general, the implication
(1) = (2) holds or not is equivalent to the problem whether simple groups
without maximal subgroups do not or do exist. This second problem seems
to be a very difficult one.

Vi. KokiNEK first undertook these general investigations, formulated and
proved Theorems 3, 4, 5, 6. His proofs were based upon the lemma contained
in Remark 1 and Lemmas 3 and 4. Later VL. DLAB discovered the importance
of the relation (14), gave the definition of the property F, formulated and proved
Theorems 1 and 2. By these two theorems, not insignificant simplifications
were brought into the proofs of subsequent theorems. Theorem 7 is due to
Dlab.

First, let us explain the notations used in this paper and give some definitions.
The signs €, n, U are used in the ordinary sense. The inclusion 4 c B does not
exclude the case A = B. If this equality is excluded, we write A ¢ B. A — B
denotes the set theoretical difference. A subgroup M of G is called maximal
in G (max. subgroup), if M == G and if there is no subgroup K such that M ¢
¢ K ¢ @. Similarly the normal subgroup N of G is called maximal normal
subgroup (max. normal subgroup) of G, if N &= G and if there is no normal
subgroup L such that N ¢ L ¢ G.

A direct decomposition of ¢ will be written in the form (1) or in the form

G=G x Gy X ...x G4,

if the number of direct factors is finite. For every g ¢ @ (1) gives a unique
-decomposition of g,

(3) 9:],_199’ Joe Gy
o€

Here, all but a finite number of the components g, are equal to the group
unity of G¢,. Let H be an arbitrary subgroup of G. If g runs through all H,
the components g, of g in G, form a subgroup of G,, the component subgroup
of H in G, which will be denoted by H,. The intersection

H Z =Hn G,
is a normal subgroup of H and therefore also of H,. We call it the subgroup

of free components of H in G,. We shall often write the decomposition (1),
o, being a fixed index from P, in the form

(4) G=0, xG,,,

where

(5) G,= T[] &,.
ee P (0y)

The component subgroups and the subgroups of free components of H in the
decomposition (4) will be denoted by H,, H,, H,, H,.{A, B, ...} is the sub-
group generated by the sets 4, B, ... of elements of G.
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We begin with a general lemma which probably is not new:

Lamma 1. For all groups G and all their direct decompositions (1) the inclusion
(@) c [[*o(4,)

4 oeP
holds.
Proof. Take an index o ¢ P and suppose G, has max. subgroups. If M, is
one of them,

(6) M, x TT*a,

ee P (o)
is a max. subgroup of G, as it can easily be proved. Let H,, 4 ¢ 4,, be a system
of subgroups of &, containing all max. subgroups of (,, if such subgroups
exist, and the group &,. We have
2(G,) = N Hy
Aed,
and

dHcn H, X [[*G)=nNH,x ][ G=o0,)x ] a,

Aedy 0eP-(0) Aedy oe P~(o) ee P (0)

for all o € P. Therefore
D(G)c N [DPG,) X ﬂx G,] = nx[tﬁ(G(,) nG,]= I—Ixtp(GQ) .

ceP eeP_- (0) 0eP oe P
Lemma 1 shows that it is sufficient for our problem to examine the inverse
inclusion. For this purpose we prove first some lemmas.
Lemma 2. Let (1) be a direct decomposition of G. Each max. subgroup M of G
satisfies one of these two conditions

a) There is in P an index o, such that

(7) M, = M,

s a mazx. subgroup of G, and

(8) M;:M;:GQ for geP = (qy).
b) It is '

(9) M, =G, forall ¢eP

and either M;’ =G, or M ;' is a max. normal subgroup of\G,. There is at least
one index o, € P for which M, = G, 1) and for this index we have the isomorphism
(10) o My, = G, |1,
in the direct decomposition (4).
Proof. Suppose there are two indices oy, o, so that M, = G,, M, =+ G,.

1) In fact there must be at least two such indices, but we shall not need this fact.
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Then
C McM,x M, x T[* GeM, x [[*G,c[["G,=0@

ee P=(0y, 03) ee P (o)) eeP

and M is not maximal. Therefore we have to consider only two cases.

1) There is one index ¢, for which M, c@,. Suppose either M W CM :11 or

M. ¢ M, for another index ¢ ¢ P = (0,). In both cases we have
McM, x [[* G,c@
ge P (0y)
and M is not maximal. Therefore (7) and (8) hold. If M were not max. sub-
group in G, there would be a subgroup H, of G, with M, ¢ H, c@, and
we should have
M=M,x [[* G,cH, x T[* Geca,

0eP(0y) ee P+ (ay)
again in contradiction to the maximality of M. We have proved a).

2. The other possibility is that (9) holds for all g e P. M == ¢ implies the
existence of an index ¢, € P for which M, = @, %) Take the decomposition (4)
of G for this 0,. Any g e M can be written in the form

(11) g = ga,_g_tr, s Yo, € G'o',l ’ 60, € @a', .

M = @ implies M, = G,. Take into consideration the classes g, M, and
9o M,,. In view of the definitions of M and I, one finds, if g runs through-
out M, that g, M, < g, M, is a one to one mapping of G, /M, onto G, [I,..
One easily proves that this mapping which will be denoted y is an isomorphism
of these two quotient groups. Briefly speaking, M is a subdirect union of the
groups G,, and G, with kernels M, and M, . Thus we have (10).

Suppose M, is not a max. normal subgroup of G,,. Let N, be a normal
subgroup in G, such that M, ¢ N, c@,. In view of (10) there must be a
normal subgroup N,,l in @,, such that M, cN,, ¢ G,,. The isomorphism
of @, /M, onto G, /M, generates an isomorphism y of @, /N, onto G, /N,.
It is easily seen that all elements (11), where the classes g, N,, g0, N, corre-
spond one to the other by this isomorphism y, constitute a subgroup N of ¢ such
that M ¢ N ¢ @, in contradiction to the maximality of M. Hence M, and M,
are, in addition, max. normal subgroups in @, and G,. Lemma 2 has been
proved.

Remark 1. From the above proof of Lemma 2 we can deduce a more precise
assertion concerning the decomposition of @ into a direct product of two
factors:

(12) G=06, X G,.

2) In fact there must be in P at least two such indices, otherwise M = G.
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Let (12) be a direct decomposition of G. A subgroup M of G s a max. subgroup
an @G, if and only if it belongs to one of these two types:

a)M =H, X Gy or M =@, X Hy, where H; is a max. subgroup in G,
1=1,2.

b) It is M; = G;, M, is max. normal subgroup in G, ¢ = 1,2 and M is
-a subdirect union of G, and G, with kernels M7 and M,. But we shall not need
this lemma.

Lemma 3. Let (1) be a direct decomposition of the group G. G can be homo-
-morphically mapped onto a simple group S, if and only if the same thing holds
-at least for one direct factor G, in (1).

Proof. If a direct factor G, of (1) can be homomorphically mapped onto S,
-G does obviously the same. Suppose G can be homomorphically mapped onto S
and let NV be the kernel of this homomorphism. Then, N must be a max. normal
subgroup in G. N == @ implies the existence of an index ¢ e P such that
N n G, + G,. By the maximality of N we get {N, G,} = G and by the first
theorem on isomorphism:

S~ GIN ={N,G,}/N =~ G,/(N n G,).
Now we are able to prove the following theorem:

Theorem 1. Let (1) be a direct decomposition of the group G. The equality (2)
for its Frattint subgroup ®(Q) does not hold, if and only if there exist in (1) two
direct factors G, , G, with two max. normal subgroups N, , N, such that

(13) Gy [Ny, = G, [N,
and
(14) D(G,) ¢ N, .

Proof. 1. Suppose (2) does not hold. If &(GF,) c (@) for all ¢ € P we should
have (2) by Lemma 1. Thus there is an index o, € P such that ®(G,) ¢ O(@).
‘This implies the existence of a max. subgroup M in G such that

D(G,) ¢ M.
‘The equality M, = G, and the case a) from Lemma 2 for M and the index
o, are impossible, as in both cases we should have &(G,,) ¢ M, c M. Therefore
M must satisfy the conditions of case b) in Lemma 2; i. e. M, is a max. normal
subgroup in G, . We put M, = N, and we obtain in this way (14) and the
relation (10) for the direct decomposition (4) of G. G, [N, is a simple group
and so is G, /M, in (10). By Lemma 3 and (5), there are an index o, ¢ P = (a;)
and a max. normal subgroup N, in G, for which (13) holds.
2. Suppose one can find two indices o, and o, in P and max. normal sub-
groups N, in G, 1 = 1, 2, such that (13) a (14) hold. Write
K =194, .

eeP
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It is obviously
(15) K, =@, .

On the other side fix an isomorphism in (13) and form all products 9oJoys
Yo, € Gy © =1, 2 such that the classes g, N, , g, N, correspond one to the
other in the fixed isomorphism of @, /N, onto @, [N, . The set M, , of all
such products is a subgroup in G, X G, and it can be easily shown that this
subgroup is max. in G, X @, . Therefore
M=M, x T[] @

Qe P-(0y, 03)

e

is a max. subgroup of G and we deduce from it &(G) c M. This gives
(D@, c M, = N,
In view of (14) and (15) we have [®(G)], =+ K, and therefore &(@) =+ K.
The condition (14) suggests the following definition.
Definition. We say the group G has the property F (Frattini property) if
either
D(G)c N

holds for all max. normal subgroups N in G or G has no max. normal sub-
groups.
Now we easily obtain

Theorem 2. Let (1) be a direct decomposition of the group G and suppose
each direct factor G, of (1) has the property F. Then (2) holds.

Proof. Indeed the condition (14) of Theorem 1 cannot be fulfilled.

Lemma 4. Let N be a max. normal subgroup in G and suppose there exists in G
a max. subgroup M such that

(16) NcMc@.

Then we have
D(F)c N .

In other words if ®(G) ¢ N, then G|N 1is a simple group without max. subgroups.
Proof. (16) implies
(17) NcM

for any subgroup M’, conjugate to M. M’ is also a max. subgroup in G. By N,
denote the intersection of all these M'. N is normal in ¢ and (16) and (17)
give N c N,. In view of the maximality of IV this means N = N, and therefore
D(GF)c N,= N.
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Theorem 3. Let (1) be a fixed direct decomposition of G. Suppose there is no
pair of direct factors G, G, in (1), which can be homomorphically mapped onto
the same simple group without maz. subgroups. Then {2) holds.

Proof. Suppose (2) does not hold. By Theorem 1 there are two indices o,,
o, € P such that we have (13) and (14). By Lemma 4 and by (14), G, /N, is
a simple group without max. subgroups and so is by (13) G,,/N,, too. Thus G,,
and (,, permit a homomorphic mapping onto the same simple group without
max. subgroups, in contradiction to the supposition.

Theorem 4. Suppose that, in every direct decomposition (12) of the group G
in two direct factors, these factors G, and G4 cannot be homomorphically mapped
onto the same simple group without max. subgroups. Then for every direct decom-
position (1) of G the equality (2) holds.

Proof. Let (1) be a given direct decomposition of ¢. Suppose there are two
indices o,, 0, € P such that G, and G, can be homomorphically mapped onto
the same simple group 8 without max. subgroups. Form the decomposition (4).
0, is an index from P — (0,). We see by Lemma 3 and (5) that G, can be
homomorphically mapped on S as well as G,,. This is a contradiction to the
supposition of the theorem. We conclude that the suppositions of Theorem 3
are fulfilled for (1). Therefore (2) holds.

We can summarize the results, we have got til now, in the theorem:

Theorem 5. The assertion A: ,,For any direct decomposition (1) of an arbitrary
group G the equality (2) holds,” s logically equivalent to the assertion B: “No
simple group without max. subgroups exists”.

Proof. If Bis true, A is valid by Theorem 3. If B is false, there exists a simple
group S without max. subgroups. Take two copies S; and S, of this group and
put ¢ = 8, X 8,. The conditions (13) and (14) with 8, instead of G,, 1 = 1, 2
are easily verified. By Theorem 1 the equality (2) for the decomposition G =
= 8; X 8, does not hold.

Now we can seek some classes of groups for which the equality (2) always
holds. In this direction we give here two results.

Theorem 6. For any soluble group G (thus for any nilpotent or abelian group)
and for any of its direct decompositions (1), the equality (2) always holds.

Proof. A soluble group can be homomorphically mapped onto a simple
group 8 only if this group S is cyclic of prime order, but then S obviously has
one max. subgroup, the unity subgroup. Hence, by Theorem 4 and Lemma 3,
the equality (2) always holds.

Remark 2. Using the proof of Theorem 3 we see that for a given direct
‘decomposition of a group G we can only suppose that each of the direct factors
G, in (1) is a soluble group which is a slightly more general supposition. But we

) 356



can formulate the theorem 6 more generally in an other way: For any RI*-group
and for any of its direct decompositions (1) the equality (2) holds. A RI*-group
G (see [5] p. 29 and [6] p. 368) is a group which possesses an ascending well
ordered chain of normal subgroups: Uc@, cG,c...cG,CGyuiq C... in
which U G, = @ and all the quotient groups G, /G, are abelian.

Theorem 7. Let (1) be a given direct decomposition of a group G. Suppose that
one of these two conditions is fulfilled:

a) Each D(G,), o € P, s finitely generated.
b) Each direct factor G, o € P, is finitely generated.
Then the equality (2) holds.

Proof. Suppose there is at least one direct factor G,, 5 ¢ P, not having the
property F. We take the max. normal subgroup N, for which &(G,) ¢ N,. In
view of the maximality of N, we have {&(G,), N,} = G,. Let I'" be a system
of generators for @(G,) and A for N,. Then I' u A is a system of generators for G,,.
In the case a) take I finite, in the case b) there is a finite subset of " U 4
which is also a system of generators of G,. In the latter case, write this system
in the form Iy v 4,, Iy c I', 4, c A. Thus we have generating systems I"u 4 or
I'; u 4, for G, where the sets I"and I'; of elements from @(G,) are finite. The
principal property of the Frattini subgroup shows, that we can drop I"and I
from these generating systems of G, and 4 and 4, must generate the whole
group G,. But 4 and 4, generate only N,. We have proved by contradiction
that every direct factor ¢, in (1) has the property F' and therefore (2) holds
by Theorem 2.
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Pesome
TIOATPVIIITA ®PATTUHU TTPAMOTO IMPOU3BEIEHUS I'PYIIII

BJIACTUMNMJI JIJIAB (Vlastimil Dlab), Xaprym
u BJIAIUMUP ROPHRNHEK (Vladimir Kotinek), ITpara

Tlyers nmama rpynma G, siBistioniasicsi NPAMBIM npoussefenumeM (1) rpymm.
B pabore pasdupaercss Bopmoc, worja mnoparpynna DparTuHu 3TOH TPYIIBI
PaBHAETCSl TPSAMOMY TpousBeieHmo Hoarpyun MparTiHy OTHEIBHBIX HPSIMBIX
COMHOKHTeJIeN, T. e. Korjla cupaseinBa nmiinkanus (1) = (2). I A. Muanep
[7] noxasan 3Ty MMINIMKALMIO [JIsT KOHEYHBIX rpymn, a HexaBHo B. [ma6 [1]
u [2] post aGesteBBIX TPYII M JJIS TPYIII ¢ KOHEYHBIM YncIoM obpasyouux. B Ha-
crosiieit paboTe ATOT BONPOC MCCIIeyeTcs B 001eM Bujie, U YCTaHOBJIEGHEI HEOO-
XOluMbIe ¥ JTOCTATOUHBIC YCJIOBHsI clipaBepuBocti 1o mMunuranun (Teope-
Mma 1). VI3 aT0il TeopeMBbl BEIBOJATCS 00Jiee HPOCTHE YCIOBUSA CHPaBEeJJIMBOCTH
aroii mmmukanuu (Teopemsl 2, 3 u 4), asusomMuecs, OJHAKO, TOIBKO TOCTa-
TouHbiMu. M3 HuX ciemyer, UTo yKasaHHAsd WMIUIMKAIUA CHPAaBeIWBA TS
Beex paspemuMslx rpym (Teopema 6) u jutst rpynn G, B npsimoM pasioskernn (1)
KOTODBIX: a) Kayiblii coMHomutens G, wmu 6) noarpynna ®parrunn O(G,)
KaIKJOT0 COMHOMKUTEN s 001aal0T KOHeYHOH cucremoit oopasyomux (Teopema
7). Hakonen mokasaHo, 4To yTBep;kiaeHue ,, 17 KasKIoro npsamMoro pasioskeHus
(1) mo6oit rpynusl G crpaseamuBo (2)° paBHocmiIbHO yrBepskueHuio ,,He cy-
1ecTBYeT NpocToil rpynnsl 6e3 MaxkcuManbHeix noxrpynn‘ (Teopema 5). O cy-
IeCTBOBAHMY MJIM HECYHMIECTBOBAHMU TAKMX HPOCTHIX I'PYIOI HAM HIYEro HEHM-
3BECTHO.
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