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THE TOPOLOGICAL PRODUCT OF COUNTABLY COMPACT SPACES

ZpENEK Frorfk, Praha

(Received August 20, 1959)

In the present paper we investigate the class of all completely
regular spaces P such that the topological product P X @ is countably
compact for all countably compact and completely regular spaces Q.
Moreover we give a necessary and sufficient condition for the embedd-
ing of a completely regular space as a closed subspace into the topo-
logical product of two countably compact spaces. Every separable
metrizable and every discrete space may be embedded as a closed
subspace in the topological product of two countably compact spaces.
In this connection we derive a theorem on the Stone-Cech compacti-
fication of metrizable separable spaces.

The terminology of J. KELLEY, General Topology, is used throughout. The
closure of a subset M of a space P will be denoted by M* or merely M. The
Stone — Cech compactification of a completly regular space P will be denoted
by SP. Unless otherwise stated, subsets of a space will be considered to be
subspaces. The potency of a set M will be denoted by card M.

1. SOME PRELIMINARIES

In this section we recall some definitions and theorems. Let m be an infinite
cardinal number. A space P is said to be m-compact if it satisfies the following
condition: If {F} is a family of closed subsets of P such that the potency of
{F} is = m and the family {F} has the finite intersection property, then the
intersection M {F} is non-void. ¥,-compact spaces are called countably
compact. A map f from a space P into a space @ is said to be closed if the
image f[F] of every closed subset F of P is closed in Q.

1.1. Proposition. Let f be a closed map from P into Q. If Q is a m-compact
space and [~[y] 18 m-compact for each y in Q, then P is m-compact.

Proof. Suppose that a family {F} of closed subsets of P has the finite
intersection property and that the potency of {F} is = m. Without loss of
generality we may assume that if both F, and F, belong to {F}, then their
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intersection F; n F, also belongs to {F}. Choose a point y in ) {f{(F]}. The
space E = f~1[y] is m-compact, the family {F n E} consisting of closed
subsets of E has the finite intersection property and it has potency =< m.
Hence

N{EnNF} +0.

In consequence we have M) {F} + 0.

1.2. Proposition. Let K be a compact space and let P be a space. The pro-
jection m of the topological product P X K onto P is a closed map.

Proof. Let F be a closed subset of P X K and z ¢ (P — n[F]). For each
y in K there exist open sets U(y) c P and V(y) c K such that

xeU(y), yeV(y), Uy XVy)nF =90.
Choose a finite subset Y of K so that

U{Vy; yel} =
The intersection U = N {U(y); y €« Y} is a neighborhood of the point z, and
U na[F]=90.
As a simple consequence of 1.1 and 1.2 we have

1.3. Theorem. If P is m-compact and if K s compact, then the topological
product P X K is m-compact.
We shall need the following simple and useful lemma.

1.4. Lemma. Let A be an index set, and for each a in A let P, be a subspace
of a fixed Hausdorff space R. Consider the topological product

P=X{P;aecA}.
Put Q = N {P,; a e A}. The “diagonal” D of the product P, that is the set of
all y € P such that all coordinates of y are equal and belong to Q, is a closed subset
of P.

Proof. Denote by =, the projection (map) of the product P onto the factor
P,. Let y be an element of P — D. Hence there exist indexes a, and a, such
that 7, [y] = %, + %, = 7, [y]. The space R is Hausdorff and hence there
exist disjoint open (in R) sets U, and U, containing «, and «, respectively.

Put ;

= (73 [Uy 0 Po)) 0 (25{Us 0 Po,]) .
Since U; n U, = @, we have that W n D = ¢. The proof is complete.

We state the following special case of 1,4:

1.5. Lemma. Let P and Q be subspaces of a Hausdorff space R. Then the
“dragonal”, that s the set
{(z,2); xeP n @},
18 closed in P X Q.
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Let us recall that a space R is said to be extension (Hausdorff extension,
completely regular extension) of a space P, if P is a dense subspace of R (and
R is a Hausdorff space, R is a completely regular space, respectively).

1.6. Lemma. Let P, and P, be spaces and let K, and K, be Hausdorff extensions
of P, and P, respectively. Consider the product spaces

P=P, xP,, 8,=K, X Py, =P, x Ky, 8=258, X 8,.

The set
D= {(x,x); xeP}

1s closed in S (and homeomorphic to P).
Proof. Consider R = (K; X K,) X (K, X K,) and apply 1.5.

2. EMBEDDING OF COMPLETELY REGULAR SPACES AS CLOSED SUBSPACES
IN THE TOPOLOGICAL PRODUCT OF TWO COUNTABLY COMPACT SPACES

In this section we shall study the class §, (m being an infinite cardinal
number) consisting of all spaces such that for some completely regular m-
compact spaces R and S the space P is a closed subspace of the topological
product R x S.

In [4] J. NovAK constructed countably compact subspaces P and @ of the
Stone — Cech compactification AN of the countable infinite discrete space N
such that P n @ = N (and P u = N). The topological product P X @
is not countably compact since the diagonal, that is the set

{(n,n); melN}

is an infinite closed discrete subset of P X @. This follows from 1.5. First
we show that Novéak’s method of embedding is quite general.

2.1. Theorem. 4 completely regular space F belongs to §, if and only if there
exist m-compact subspaces P and @ of the Stone-Cech compactification BF of
F such that P n Q@ = F.

Proof. Sufficiency is a quite elementary consequence of lemma 1.5. Indeed,
supposing P n @ = F and P u @ c SF we have by 1.5 that the set

D= {xx); xelF}
is closed in P X @ (and homeomorphic to F'). Hence if P and @ are m-compact,
then F belongs to §,.

Conversely, suppose that F belongs to F- There exist completely regular
m-compact spaces P; and P, such that F is a closed subspace of the topolo-
gical product P, X P,. Let K, and K, be compactifications of P; and P,

respectively. Put
S8, =K, X P,, 8 =P, X K,
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and consider the topological product § = S; X S,. By theorem 1.3 the spaces
S; and 8, are m-compact. Put

D= {(x,z); xeP, X Py}, F,={(x,2); veF}.

Evidently the spaces D and F; are homeomorphic with P, x P, and F,
respectively. Moreover F; is closed in D. Let R, and R, be closures of F in
8, and 8,, respectively. The spaces R, and R, are m-compact as closed subsets
of m-compact spaces S; and S,. Evidently

DN (R, X R)=F,.

By lemma 1.5, the set D is closed in S. Hence F, is closed in R, X R,, Let
@; (1 = 1, 2) be Stone-Cech mappings from SF onto the Stone-Cech compacti-
fication BR; of R, (this mapping exists, since F is dense in R;, and therefore,
BR; is a compactification of F). Put

Q1=‘P1—1[R1], Q. = ‘Pz_l[R]r
It is sufficient to prove that @, and @, are both m-compact and @, n @, = F.
‘We need the following simple lemma on closed maps.

2.2. Lemma. Let f be a closed and continuous map from A into B. Let C c B.
Then the restriction g of f onto f~* [C] ts a closed map.

The simple proof of this lemma may be left to the reader. From lemma 2.2
and proposition 1.1. it follows that @, and @, are m-compact. It remains
to prove that @, n @, = F, but this is a consequence of the fact that the set
F, is closed in R, X R,. The proof is complete.

2.3. Note. Note that theorem 2.1 may be generalized in the following way.
Let U be a class of completely regular spaces satisfying the following conditions
(a) If P e and F is closed subspace of P, then F ¢ .

(b) If P, e A and P,e U, then there exists a completely regular extension
K of P, such that both K ¢ ¥ and K X P, e .

(c) If P is an completely regular extension of ¢ and P ¢ U, then there exists
a subspace R of @ such that ¢[R] = P, where ¢ denotes the Stone-Cech
mapping of @ onto SP.

Then a space F is a closed subspace of the topological product of two spaces
belonging to U if and only if there exist subspaces P, and P, of F such that

PinP,=F and P, e, P,e¥.
In the remainder of this section we shall consider only the class Fy, = §.

2.4. Theorem. Every discrete space may be embedded as a closed subspace
i the topological product of two countably compact completely reqular spaces.
That s, every discrete space belongs to §.

Proof. Let M be an infinite discrete space. By [1], theorem 3.1.6, there
exist countably compact subspaces P and @ of the Stone-Cech compafication
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BM of M such that P n @ = M. (The proof of the theorem just quoted is
rather involved.)

2.5. Theorem. Every metrizable separable space may be embedded as a closed
subspace in the topological product of two countably compact completely regular
spaces. That is, every metrizable separable space belongs to §.

By theorem 2.1, the theorem 2.5 is an consequence of the following

2.6. Theorem. Let P be a metrizable and separable space. There exist countably
compact subspaces R and S of the Stone-Cech compactification of P such that
RnS=P.

We shall prove the following generalisation of 2.6.

2.7. Theorem. Let P be a separable and metrizable space. Denote by K the
Stone-Cech compactification of P. Let A be an index set of potency 22™. For each
a in A there exists a countably compact subspace P, of K such that

a,ed, ayed, a ¥+ a; = P, n P, = P.
First we prove two lemmas.

2.8. Lemma. Let P be a metrizable and separable space. Every infinite subset M
«of BP has 22 accumulation points (in fP) provided that it has no accumulation
point in P. Thus, tf K is a compact subspace of P — P, then K is either finite or
has potency 22,

Proof.l) The space SP is a Hausdorff space and it contains countable
-dense sets (since P contains countable dense sets and P is dense in P); con-
isequently, the potency of P is = 22™. Tt follows that the assertion about
-compact subspaces is an immediate corollary of the first assertion; and that to

prove the first assertion it is sufficient to show that the potency of M#P is
g 2230‘

Suppose that M is an infinite subset of fP possessing no accumulation point
in P. Choose a countable infinite discrete subset X of M. Consider the subspace
R =P u X of gP. First we note that R is a Lindelof space, that is, every
-open covering of R contains a countable subcovering. Indeed, R = P u X
.and P is Lindel6f space since it is separable and metrizable and X, being
-countable, is a Lindelof space. R is a regular (moreover completely regular)
Lindel6f space, and consequently, by a well-known of theorem Tychonoff, R
is a normal space. By assumption X is a closed subset of E. It follows that for
every bounded continuous real function f on X there exists a bounded conti-
nuous function f* on R such that f is a restriction of f*. Therefore every bounded
continuous function on X has a continuous extension to fP. Thus the closure
XPP of X in P is the Stone-Cech compactification of X. By a well-known

' 1) This simple proof was communicated to me by prof. M. KaTiTov.
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theorem of Pospigil, the potency of the Stone-Cech compactification of the:
countable discrete space is 22 and hence the potency of X*P is 220 In
consequence the potency of MfF is = 22%. The proof is complete.

2.9. Lemma. Let P be a metrizable and separable space. Let M c fP — P
be a set of the potency < 22, There exists a countably compact space R such.
that P c R c BP — M and that the potency of R 1s < 2%.

Proof. For every infinite subset X of BP choose in BP — M an accumul-
ation point x(S) of X. By 2.8 such a function « exists. For convenience denote
by M(N) the family of all infinite subsets of the set N. Put P, = P and for
every ordinal number « put

P, = U{z[NR)}; f <o} .
We assert that the subspace B = P, (w, denotes the first uncountable ordinal:
number) of AP satisfies all the requirements of 2.9. Evidently the potency
of Py is < 2% and by induction (x = w,)
card R, < > card M(Ry) = (2%)% . x, = 2%,
B<a

Clearly R n M = 0. If S is an countably infinite subset of R, then for some:
« < w, we have that S c P, and hence, the point x(S) € P,,,. is an accumul--
ation point of S. Thus R is a countably compact space. The proof is complete.

Proof of theorem 2,7. If P is a compact space, then theorem 2.7 is trivial..
Suppose that the space P is not compact. Denote by U the family of all count--
ably compact spaces R such that P c R c P and that the potency of R is.
= 2% By 2.9 the family U is non-void. Let & be a maximal subfamily of A
with the property

(*) R e®B, R,e®B, R, +R,=~>R nR,=P
Since the condition (*) is of finite character we conclude from Tukey’s lemma.
that such a family 9B exists. We shall now prove that the potency of % is.
22%_ Evidently this potency is < 22", Suppose that, on the contrary, card B =.
= m < 22, Then the set C = U {R; R ¢ B} has potency at most

max [2%, m] < 22 .
By lemma 2.9 there exists a space R e 2 such that B n(C — P) = 0. This:
contradicts the maximality of %B.

2.10. Note. According to F. HAUSDORFF [2], a space P is said to be Fp
if every closed subset of P is nonmeager in itself. It is easy to prove that
every countably compact regular space is Fr;. By 2.5 the space of all rational
numbers may be imbedded as a closed subset in the topological product.

of two countably compact spaces. It follows that the topological product
of two spaces Fyy may fail to be Fy;.
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3. THE CLASS €

3.1. Definition. Denote by € the class of all completely regular spaces P such
that, for every countably compact completely regular space @, the topological
product P X @ is countably compact.

First we state the following simple proposition.

3.2. Proposition. If P belongs to € and F is a closed subspace of P, then F
belongs to €. If both P, and P, belong to €, then the topological product P, X P,
Dbelongs to €.

The following theorem is the main result of this section.

3.3. Theorem. A completely regular space P does not belong to € if and only
3f it satisfies the following condition:

There exists an infinite discrete subset N of P such that for every compacti-
fication K of P there exists a subset S of K — P such that the subspace N u S
of K s countably compact.

Proof. Suppose that the condition is satisfied. By 1.4 the diagonal
{(n,n); mnelN}

is an infinite discrete closed subset of P x (N u §) and consequently, the
space P does not belong to €.

To prove the necessity of the condition, suppose that a completely regular
space P does not belong to €. Hence there exists a countably compact completly
regular space @ such that the topological product P x @ is not countably
compact. If P is not countably compact, then it contains an infinite closed
discrete subset N and we may put S = N¥ — N. The space N u 8 being
compact the condition is satisfied. Now suppose that P is countably compact.
P x @ is not countably compact and therefore there exists an infinite closed
discrete subset N’ of P X Q. Denote by = and » the projections of P X @
onto P and @, respectively. The mappings & and » are open and continuous.
‘The spaces P and ¢ being countably compact the sets z—[x] n N" and »~*[y] n
N N’ are finite for each « in P and y in Q. It follows that for some infinite
subset N” of N’ the sets a—1[x] n N” and »~[y] n N” contain at most one
point. That is,

(@, y)eN", (@, y)eN", (,9) + @, y)=>2 2,y +y .

Since every infinite Hausdorff space contains an infinite discrete subset,
we can choose an infinite subset N of N” such that the sets n[N] and »[N]
are discrete. Put

Ny =a[N], N,=[N]
Thus N is an one-to-one mapping from N, onte N,. For each y in N, — N,
denote be A(y) the family of all neighborhoods of the point ¥ in Q.
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Let K be a compactification of P. For each y in N, — N, put
§(y) = NN 0 N1 Ue Ay} -
The space K being compact the sets x(y) are compact and non-void. Moreover,
the sets «(y) are disjoint with P. Suppose, on the contrary, that there exists
a point z in «(y) n P. We assert that the point (z, y) is an accumulation point
of the set N, which is impossible. Indeed let U be a neigborhood of the point «
in P and let V be a neighborhood of the point y in @. According to the definition
of a(y) the set U n N[V n N,] is infinite, and clearly

NnUXV)y>{(x N-x]); xeU n N[V n N,J}.
Put
S=U{ay); yeN,—N,}.
It remains to prove that the space N, u § = R is countably compact.

First let N’ be an infinite subset of V,. The set N-[N'] has an accumulation
point y in N, — N,. It easy to see that x(y) n N'X #+ ¢. Indeed, the family

(N' o N[UnN,J; Ue(y)

has the finite intersection property.

Now let N’ be an infinite discrete subset of S. If for some y in N, — N,
the set N’ n «(y) is infinite, then N’ has an accumulation point in «(y) since
«(y) is a compact space. In the other case the sets a(y) n N’ are finite and
without loss of generality they may be supposed to contain at most one point.
Tor each x in N’ choose a point f(x) in N, — N, such that z € «(f(z)). By our
assumption the function B is one-to-one. In consequence the set B[N'] is
infinite. Let ¥ by an ‘accumulation point of f[N'] in N, — N,. We shall prove
that
(**) x(y) o N'E % 9
Denote by ¥ the family

{NIU 0 NoJ*5 UeUy)y.
By construction we have «(y) = M {B; B ¢ B}. To prove (**) it is sufficient
to show that Be® implies B n N'X + ¢. Suppose that B = N[U n N,]X,
where U e %(y). The point y is an accumulation point of the set S[N'] and
therefore we may chosse an interior point y’ of U belonging to S[N']. Hence
UeUy’) and a(y’) c B. In consequence B n N’ + ¢. We have thus proved
that if ¥ is an accumulation point of B[N'] in N, — N,, then (**) holds. An
analoguous assertion holds for every infinite subset N'. Choose an accumul-
ation point y of B[N’]. It is easy to conclude that «(y) n N’ = . Indeed,

a(y) c N' — (@)%

for each z in N’. It follows that every point of x(y) is an accumulation point
of N'. The proof is complete.
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3.4. Lemma. If a completly reqular countably compact space P does not belong
to €, then for some infinite discrete subset N of P every infinite subset of N has
an infinite number of accumulation points.

Proof. This is a consequence of the proof of necessity of 3.3.

3.5. Lemma. Let P be an infinite regular countably compact space which
contains a dense subset N such that every infinite subset of N has an infinite
number of accumulation points. Then the potency of P is = 2%.

Proof. It is easy to show that every neighborhood of an accumulation point.
of P contains an infinite number of accumulation points. Choose open sets
U, an U, such that U, n U, = ¢ and both U, and U, contain accumulation
points of P. Then we choose Uy, Uy,, U,y and U,, such that Uy, c Uy, Uy, ¢ U,
and U;; n U;; =90 (3,7 =1, 2). Proceeding by induction we obtain open
sets U; 4,4, (n = 1,2,...) such that 7, = 1, 2 and

Uiiu € Uiy Ui i 0 Ui ip =10
For every sequence § = {7,} of the integers 1 and 2, the intersection
F3 =N Ui,...i,,
n=1

is non-void. If 3, # j,, then F§ n Fy, = 0. The potency of the set of all
such sequences 3 is 2%. It follows that the potency of P is = 2%.

In consequence of 3.4 and 3.5 we have:

3.6. Theorem. If a completly regular countably compact space P does mnot
belong to €, then for some infinite discrete subset N of P the potency of NP is 2%,

From the proof of 3.3 and from 3.5 we may conclude the following theorem.

3.7. Theorem. If there exists a compactification K of a countably compact:
space P such that the potency of K — P is < 2%, then P belongs to €.

3.8. Examples. Let N be the countable infinite discrete space. Let K be
the Stone-Cech compactification of N. Denote by K, the subspace K — (x)
of K. The spaces K, belong to €. Put

P, =X{K;xeK — N}.
The diagonal of this topological product, that is the set
{y; [yl = n, neN} ’

(7, denotes the projection of P, onto K,) is an infinite closed discrete subset

of P,. Hence the topological product of 22 spaces belonging to ¢ may fail to be
countably compact. Now let ¢ > N be a countable compact subspace of K. Put.

P,=X{K,; 2eQ — N}.
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‘The diagonal of this product, that is the set

{y; mlyl =2eN v (K —Q)}

is closed in P, and homeomorphic with N U (K — @). It follows that P does
not belong to €. By 2.8 there exists such a space @ with potency 2%. Hence,
the topological product of 2% spaces belonging to € may fail to belong to €.

3.9. It may be proved that the topological product of a countable sub-
family of € belongs to €.
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Peswome

TOINOJIOTUYECKOE TMPOU3BEJEHUE CYHETHO
KROMITARTHLIX ITPOCTPHCTB

3JIEHEK ®POJINK (Zdendk Frolik), ITpara

Hax um3BecTHO, TOmOJIOrMYECKOe IIPOM3BejeHHE JBYX CYETHO KOMIIAKTHBIX
IMPOCTPAHCTB MOKeT He OBITH CYETHO KOMIIAKTHBIM IIPOCTpaHCTBOM. B paGore
paccmarpuBaercsi wkiace € BceX BIOJHE peryisipHBIX npocrpancts P, mis
KOTOPBIX HpocTpaHcTBo P X @ c9eTHO KOMIAKTHO JIJIs BCSIKOIO CYETHO KOM-
nakTHoro mnpocrpascrsa (). PaccmarpmBalores Takske HpocTpaHCTBA, IOMeEO-
MOPHBIC BAMKHYTOMY TOJIMHOJKECTBY TOTOIOTHYECKOTO ITPOUBBECHMS JIBYX
CYETHO KOMIAKTHHIX BIOJHE DeryisspHbIX mpocrpaHcTs. [lokassiBaercs, uro
‘TAKOBBI, HAIIpUMep, Bce cellapabelibHBE MeTPUYECKUe IPOCTPAHCTBA.
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