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Чехословацкий математический журнал, т . 10 (85) I960, Прага 

ON CYCLIC GROUPS 

VLASTIMIL DLAB, Khartoum, Sudan 

(Received April 27, 1959) 

In the present paper the author proves in an elementary way the 
following two assertions: 

1. Le t G be such a group tha t there exist relatively prime integers 
ml9m%, ...,mk for which the m r powers {Gmi} are cyclic subgroups 
(i = 1, 2, .. . , k). Then the group G is cyclic as well. 

2. Let ö b e a group such tha t every its cyclic subgroup is a power 
{Gm} of the group G for a suitable natural number m. Then G is cyclic. 

1. INTRODUCTION 

I t is a well-known fact that every subgroup of a cyclic group G is also cyclic 
and tha t i t is a power Gm of the group G for some natural number m. F . SzÂsz 
has on the contrary shown in his paper [3] tha t such a group every (non-
trivial) power of which is a cyclic subgroup is cyclic itself. The present paper 
shows in an elementary way tha t the same assertion follows already from the 
assumption tha t there exist relatively prime integres m1? m2,...,mk such 
tha t the w - t h powers of the fundamental group are cyclic (Corollary 2). I t 
is shown at t he same t ime tha t the assumption cannot be weakened even 
in the case tha t G is abelian (Remark 2). More generally, the following statement 
is proved: If t is the greatest common divisor of integers ml9 m2, . . . , mk and 
{G™1} are cyclic subgroups of G (i = J, 2, ..., k), then {G*} is also cyclic (Theo­
rem 2). Now, the following assertion follows readily from the result obtained 
(see F . Szâsz [1], И ) : И every cyclic subgroup of a group в is a power {Gm} 
for a suitable natural number m, then the group G is cyclic (and thus every 
subgroup of G is a power of the given group) (Theorem 3). The assumptions 
of the preceding theorem may be formally weakened. Let G be a group with 
the following property: For every cyclic subgroup {h} of G there exists a cyclic 
subgroup {g}, {h} £ {g} S G, such tha t {g} = {Gm} for some natural number m. 
This property is equivalent with the proposition that G is a group with maximal 
cyclic subgroups which are powers of the group G. Then one can easily prove 
tha t G is a cyclic group (Remark 3). 
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A useful lemma is also proved in the paper, asserting tha t every auto­
morphism of a subgroup of a cyclic group can be extended to an automorphism 
of the whole group (Lemma 1, Remark 1). 

Througout this paper, the letter G (resp. with indices) always denotes 
a (multiplicatively written) group; elements of a group will be denoted by 
small Latin letters from the beginning of the alphabet while the remaining 
letters will denote rational integers. For any non-void subset A of G, {A} is used 
to denote the subgroup of G generated by the elements of A; by Gm for a fixed 
integer m we shall denote the subset of the group G consisting of the elements 
gm with g e G; the subgroup {Gm} is said to be the m-th power of the group G.1) 
The cardinality of a group G (i. e. the order of G) will be always denoted b y 
m(Cr), the order of an element g e G by 0(g) and the identity element of G 
by e. The symbol (mx, m2, , . . , mk) is used to denote the greatest common 
divisor of integers ml9 rn2, . . . , mu and m1\m2 (resp. m1f m2) denotes t h a t 
m2 is (resp. is not) divided by mx; the symbols u , resp. n denote, of course, 
the set-theoretical union, resp. intersection. А с В means in contrast with 
A Si В that А Ф B. 

A subgroup {g0} with g0 e G is said to be a maximal cyclic subgroup of G 
if there does not exist any cyclic subgroup {g} with g e G satisfying {g0} с 
с {g} S G. If any cyclic subgroup is contained in a maximal cyclic subgroup 
of G, then the group G is called a group with maximal cyclic subgroups. 

2. LEMMAS 

First of all we are going to prove the following lemmas: 

Lemma 1. Let a cyclic group {a} and a natural number m be given. Let b be 
a generator of the subgroup {am} S {a}. Then there exists an element a e {a} 
for which the relations 

(2.1) am = b and {a} = {a} 

hold. 

Proof . If 0(a) = oo, then {am) is the infinite cyclic group and it follows 
either b = am or b = a~m. Thus, it suffices to put either a = a or a = а~г 

in this case and the relations (2,1) are obviously valid. 

If 0{a) < oo, let us denote by w the order of am : 0(am) = w; consequently 

(2.2) 0(a) ! mw . 

Further, we have the equality b — amt with 

(2.3) (t, w) = l. • ' 
x) Especially, if G is abelian, then, of course, {Q^} = Gm. 
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We see immediately tha t the elements ai = at+iw where i denotes a natural 
number, satisfy the equality a™ = b. Let 

и = (t, m) and v = (m, w) ; 

hence, according to (2,3) also (u, v) = 1. Let 

(2.4) t = utl9 w = vwl9 m = ^ m x ? 

i. e. 

(2.5) fo, m j = 1 . 

Let 2>i, >̂2> • • •> Pk be all prime numbers satisfying 

Pi \ml9 Pit и (I = 1, 2, ...,&) . 

Further, let g be a prime number with g /" ^. Now, let us denote by i0 the 
product 

(2.6) i0 = PiPz-.*pkq. 

We are going to prove tha t the numbers £ -f i0w and mw are relatively 
prime. Assume, in the contrary, tha t t + v ^ and also mw are divided by 
a prime number p0; then, by (2,3) necessarily p0 | m. Thus, according to (2,4) 
p0 | umv 

Now, £>o I u implies in view of (2,4) p0 \ t and therefore ^o I hw holds. By 
(2,4) we obtain p0 | i0 in the contradiction to (2,6). Thus, we have 

(2.7) p0 | m1 and p0f и . 

Then, according to (2,6) we deduce p0 | i0w and therefore p0 \ t; we obtain by 
virtue of (2,5) the contradiction with (2,7). On the whole we have 

(t -f- i0w , mw) = 1 , 
and in view of (2,2) also 

(2.8) (t + i0w , 0(a)) = 1 . 

Thus, if we define a = at + i°w, it follows firstly am = b and further by 
(2.8) {a} = {a}. 

This completes the proof of Lemma 1. 
R e m a r k 1. Thanks are due to V. VILHELM for having remarked tha t the 

assertion of Lemma 1 can be expressed in the following way: Let H be a sub­
group of a cyclic group G. Then every automorphism of H can be extended to an 
automorphism of the given group G. \ 

Lemma 2. a) The following inclusions hold for any integers m, n 

(2.9) {Gmn} £ {{Gm}n} Ç {Gm} . 

b) / / {Gm} is abelian, then even 

{Gmn} = {Gm)n . 
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Proof, a) An arbitrary element g e Gmn is expressible in the form 

(2,io) д = дГдГ---9Г, 9**° for»= i,2,...,fc, 
from where immediately g e {G^}n follows and therefore also the relation 
(2,9). 

b) I t is sufficient to prove the converse inclusion. Let 

(2.11) до = 9ТаТ-9ь, 9itG for i=l,2,...,k, 
be an arbitrary element of {Gm}; in consequence of commutativity the element 
g = q™ € [Gm}n can be expressed in the form (2,10) and hence, in fact, {Gm)n Ç 
£ {Gmn}, q. e. d. 

Lemma 3. The subgroup {Gm} is normal in G for every natural number m. 

Proof . Every element g0 e {Gm} can be expressed in the form (2,11). If g 
is an arbitrary element of G, then we have the equality 

д-гдо9 = g^gigg-Wg.-.g-Wg = (g-1gig)m(g-1gœ)m ••• {д^ЯияУ1, 
and thus д~гд0д e {Gm}, i. e. {Gm} is, in fact, normal in G. 

Lemma 4. Let G = GXG2, where G5{j = 1, 2) are infinite cyclic subgroups 
normal in G. Then G is abelian. 

Proof . Let G = {аг} and G2 — {a2} with 

(2.12) 0(a,) = œ (j = 1, 2) . 

If G1 n G2 = (e), then G is obviously abelian.2) Thus, let 6гх n C?2 ф (e), 
i. e. there exist non-zero integers иъ и2 such tha t 

(2.13) of = a ? . 
Since 

(2.14) a f " ^ ^ = a2 for a suitable v , 

we have according to (2,13) 
a ? = а1га^ах = a r x a > i = a?" - < v , 

from where we deduce in view of (2,12) v = 1. Thus, G is by (2,14) abelian, 
as desired. 

Lemma 5. Let 6?* 6e a c /̂c '̂c normal subgroup of G. Then every subgroup of 
the group G* is normal in G, as well. 

Proo f . The assertion of Lemma 5 follows readily from the fact tha t every 
subgroup of a cyclic group is characteristic. 

Lemma 6. Let G = GXG2, where Gô(j = 1 , 2 ) are finite cyclic normal subgroups 
of G with a non-zero intersection t?3. Let 

(2.15) m(6r?-) = rrtjW (j = 1,2), where (тъ m2) = 1 and m(G3) = w . 
2) By this assumption G is abelian generally for arbitrary abelian groups Gj (j = 1, 2) 

normal in G; G is simply the direct product Gx X G2. 
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Then there exists a cyclic subgroup G± normal in G satisfying the relations 
G = GXG2, G± n G2 = G% and the following property: If we denote 

(2.16) m ( ^ i ) = miW , ni((r2) = m2w and m(C?3) = w , 

then 

(2.17) m2 | w 

and 

(2Д8) (Щ,т2) = 1 . 

At the same time the follounng implication holds: If m^w, then mx\w. 
Proof . By Lemma 1 there exist by (2.15) elements ai e Gj(j = 1,2) and 

с € G3 such tha t 

(2.19) Gj = {aj} (j = 1, 2), G3 - {c} and a7?1 = a™* = с , (m15 m2) = 1 . 

Thus, 0(%) = m,-w (? — 1, 2). If m2 | w, it suffices to put Gx = Gx and the 
assertion of lemma follows in a trivial way. 

In the contrary case, let (m2, w) — z; consequently, there exist integers 
Щ» VAJ = 1, 2) such tha t 

(2.20) %m2 + u2w = г 

and 
(2.21) m2 = г^г , w = г>22 . 

The subgroup Gz is obviously normal in G; consider tha t the quotient group 
G/G3 is abelian (see the footnote2)) and that , consequently, 

a{ 1a2a1 = a2
+7m2 for a certain integer к ; 

hence 

(2.22) a{1a^a1 = a™ . 

Then, using (2,20) and (2,19) together with (2,22) we obtain 

(2.23) alxa\ax = af ^ " ^ A T 1au
2*wa1 = a^a^w = a\ , 

i. e. the elements ax and a | are commutative. Since (m1? m2) = 1, we have 
by (2,21) (mlf vx) = 1 and therefore there exist integers lj (j = 1, 2) such tha t 

(2.24) l1m1 + l2vx = 1 . 

Let us put 

(2.25) b = a ^ 1 . 

Then in view of (2,25), (2,23), (2,21), (2,19) and (2,24) we can deduce 

b* = alfla2
hVl - alflalim* = alfla1^ = a t 

and 

(2.26) 6W* = а[^а1кщ = а1£т*а^ = afat?1 + w = a\ . 
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The group Gx = {b} is by (2,25) obviously the group union of its subgroups 
Gx = {ax} and {a2} which are by Lemma 5 normal in G; thus, G± is also normal 
in G. Since, obviously, {Gx и Cr2} = G, we have* Cr = G±G2. Let G± n G2 = C?3 

and let (2,16) holds. Since {a2} £ Gz and since by (2,21) 0(a\) — i\w, it follows 

(2.27) w | Й5 and m2 | z , 

and hence according to (2,21) the relation (2,17) is fulfilled. Further, since 
m2 | m2 in view of (2,27) and (2,21) and mx \ m1 in view of (2,26), we deduce 
tha t (2,18) is also valid. 

Finally, the validity of тг | w implies in consequence of m1 \ m1 and w | w 
also m1 | w. 

This completes the proof of Lemma 6. 

Lemma 7. Let G = G1G2, where Gj (j = 1, 2) are finite cyclic normal sub­
groups of G with non-zero intersection Gb. Let 

(2.28) m(Cr;) = rrijW (j = 1, 2) г^£Л (m1? m2) = 1 arid m(6?3) = w . 

£e£, further, 

(2.29) m,- | й for j = 1, 2 . 

Т/гетг G г« abelian. 
Proof . According to Lemma 1 there exist by virtue of (2,28) elements 

bj € в,- (j = 1, 2) and d € G3 such tha t 

(2.30) Ö, - {bj} (j = 1, 2) , ö 8 = {d} , 6j4 = 6m8 = д , ( u b m2) = 1 . 

Hence, 

(2.31) 0(6,) = щю for j = 1,2 . 

By (2,29) there exist, moreover, integers üj(j = 1,2) satisfying 

(2.32) w = u,ra,- 0* — 1,2) . 

Let 

(2.33) b f V i = ^2. 

Thus, by virtue of (2,30) and (2,33) we obtain 

bf* = b;X% = 6Г2> 
i. e. 

(2.34) m2 == m2r (mod m2w) . 

Further , (2,30) and (2,33) imply tha t 

b2 = 6 r Ä W - С • 
i. e. 

(2.35) г™1 ES 1 (mod m2^) • 
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mx-l 

1т9 

= 1 . 

Now, in view of (2,34) and (2,35) we get the equalities 

(2.36) r = kw+ 1 

and 

(2.37) (lew + if1 - 1 = lm2w 

for suitable integers k, I. From (2,37) we readily derive by a simple computation 

I'(l')rV 

i. e. according to (2,32) 

(2.38) km, Çf2 M k^-*-1^-*-2^ + l\ = 

Since (m1? m2) = 1, it follows by (2,32) m2 | ux and hence 

(™2>
mfo

2 (7 ) ^ - ( - V ' - ' - s % +1) 
Now, m2 | & follows immediately from (2,38). At last, using (2,36) and (2,31) 
together with (2,33) we get 

Ьф2 = b2bx 

and thus, G is abelian, as desired. 

3. THEOREMS 

Theorem 1. Let G be such a group that there exist two integers m1? m2 satisfying 
the condition that {G™1} and {G™2} are cyclic. If (m1, m2) = t, then the subgroup 
{G*} is cyclic, too. 

Proof . The subgroup {G™1} and {Gm*} are, in view of Lemma 3, normal in G. 
According to Lemma 2a) it follows readily {G*} 2. {G™*} and, further, {Gm}} are, 
obviously, normal in {G1} (j = 1, 2). We can easily see tha t 

(3.1) {G*} = {Gm>} {Gm>} . 

For (ml5 m2) = t implies the existence of integers kl9 k2 such tha t 

(3.2) k1m1 + k2m2 = t, 

and thus we have for an arbitrary element g e Gb in view of (3,2) the relations 
(with a suitable element g0 e G) 

9 = 9*0 = 9оМЛ = (90hf> (9o>)K e {G*} {Gm°} , 
and every element of the group {Gf} is then a product of elements of G*. 
Now, (3,1) follows already from the fact tha t {Gmj} are normal in {6r*} (j = 1, 2). 

Further, there exist integers т'ъ m2 such tha t 

(3.3) rn1 = mxt, m2 == m2t, (тъ m2) = 1 , 
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and hence by virtue of Lemma 2b) we deduce 

(3.4) {Gm'}m*' = Gm*m* = 6 m ' ' m ' = {Gw*}" v . 

If {«5m'} = { ä j , {Gm*} = {ä,}, it follows by (3,4) 

{äM = К1 '} , 
and therefore according to Lemma 1 there exists an element a2 e {Gm%} such 
tha t {Gm*} = {«J and tha t 

(3.5) af2' = a^' 

holds. 
Now, let us consider the following two cases which may take place. 
A. If 

(3.6) {Gm>} n {G™2} = (e) , 

then the group {6?*} is evidently commutative (see the footnote2)).3) Also 
in the case that G contains an element of the infinite order the group {G1} is 
necessarily in view of Lemma 4 commutative, for {G™1} and {G™2} are infinite 
cyclic groups with (3,1) normal in {G1}. Now, we can already easily prove tha t 
{G*} is a cyclic group generated by the element g of the form 

g = a^aX*, where kj (j = 1, 2) are the integers satisfying (3,2). 

For, using the commutativity of the elements ai and a2 we have according 
to (3,5), (3,2) and (3,3) 

and 
дтг' = J*.«, ' 5МЧ' = ^МН^Л' = 

-m' = ^rn'-l^m' = -W^A' = ^ . 

B. I t remains to consider the case when both subgroups {G™1} and {G™2} 
are finite cyclic groups and (3,6) does not hold. We can easily see tha t the 
assumptions of Lemma 6 are fulfilled. The double use of Lemma 6 gives 
us the following expression for the group {(?*}: 

{G*} = G±G2, Gx n G2 = Gz, 

where ff,- (j = 1, 2), resp. G3 are cyclic subgroups of the orders m,-w, resp. й;, 
normal in G and 

(3.7) rhj \w(j = 1,2) and (m b m2) = 1 . 

Then, in view of Lemma 7 {G1} is certainly commutative even in this case. 
Further, by Lemma 1 there exist elements bj e Gi such tha t 

(3.8) Gj = {&,} (y = 1, 2) a n d Ь * = Ъ™2 . 
3) Thus, by (3,5) and (3,6) the relations 0(a1)|m2

/ and C K ^ r a / follow for the generators 
a.j (j = 1, 2) and hence (0(ах), 0(ä2)) = 1, from where we readily obtain tha t {G*} is 
cyclic. 
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In consequence of (3,7) there exist integers lö (j = 1, 2) satisfying 

and then we can easily derive by virtue of (3,8) again tha t 

{G*} = {£}, where jjf = bl/bl* . 

This completes the proof of Theorem 1. 

Corollary 1. Let a group G be given. If there exist integers m1, m2 which are 
relatively prime such that {G™1} and {G™2} are cyclic subgroups, then G itself 
is cyclic. 

Now, we are going to prove by means of Theorem 1 the main result. 

Theorem 2. Let G be such a group that there exist integers m1? m2, ...,mh for 
which the m{-th powers {G™1} are cyclic subgroups (i = 1, 2, . . . , k). If (m1? m2, . . . 
. . . , mk) = t, then the subgroup {(?'} is cyclic, too. 

Proof . We prove the above theorem by induction. The assertion is trivial 
when к = 1. Assume tha t the assertion is valid for a certain i, 1 ^ i fg k, 
i. e. t ha t {$**} is cyclic, where t{ = (mlf m2, . . . , m j . But then, according to 
Theorem 1, also the subgroup {Gti+1} is cyclic, where 

This concludes the proof of Theorem 2. 

Corollary 2. Le£ a group G be given. If there exist integers m1,m2, . . . ,m f c 

which are relatively prime such that {G™1} (i = 1, 2, ..., k) are cyclic subgroups, 
then G is cyclic itself. 

R e m a r k 2. Let us observe tha t the assumptions of Theorem 2 (resp. Theo­
rem 1) can not be weakened, even at the supplementary assumption of commut­
ât ivity of the group G. That is quite clear, if we take into account tha t G 
can be, e. g., the direct product of its subgroup {(?*} and a subgroup with 
elements the orders of which are divisors of t. 

I t follows from Theorem 2 immediately also the following result (see F . 
Szâsz [1], [2]): 

Theorem 3. / / every cyclic subgroup of a group G is a power {Gm} of this group 
for a suitable integer m, then G is cyclic. 

Proof . By our assumption there correspond to every cyclic subgroup 
{g} £ G certain integers m for which {Gm} = {g}. Let us denote by ~# the 
set of integers thus obtained for all cyclic subgroups of G. Let t be the greatest 
common divisor of the elements of ~#; then there exists already a finite number 
of elements mu m2, ...,mk of Jt such tha t (ml9 m2, . . . , mk) = t. Thus, accord­
ing to Theorem 2, {(?*} is cyclic. 
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Now, it is easy to prove tha t {(?*} = G. For, if g is an arbitrary element of 
the group 6r, then 

{g} = {Gtw} for a suitable integer w. 

I n view of Lemma 2 a) we obtain 

{g} = {(?«»} C{Gt}, i . e . 0,e{ö«} 

and the proof of Theorem 3 is complete. 

R e m a r k 3. Let us observe tha t the group every cyclic subgroup of which 
is a power {Gm} of G is a group with maximal cyclic subgroups. For, if {g0} 
is a cyclic subgroup which is not contained in a maximal one, then there 
exists an infinite ascending series of cyclic subgroups 

{g0} с {дг} с {д2} с . . . с {g J с . . . , 
where 

д._г = g™< with rrii 7> 2 for i — 1 ,2 , . . . 

Since {̂ 0} = {Gm°}, we get 

m1m2 . . . mi• \ m0 for every i = 1 ,2 , . . . 
and obtain a contradiction. Now, one can easily see tha t the whole proof of 
Theorem 3 may be repeated at the only assumption tha t the maximal cyclic 
subgroups are powers of the group G. Thus, we can formally express Theorem 3 
as follows: 

Let G be a group with the following property: For every cyclic subgroup {h} of 
G there exists a cyclic subgroup {g}, {h} £ {#} £ G, such that {g} = {Gm} for 
a suitable integer m.4) Then G is cyclic. 
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Р е з ю м е 

О Ц И К Л И Ч Е С К И Х ГРУППАХ 

ВЛАСТИМИЛ ДЛАБ (Vlastimil Dlab), Кхартоум, Судан 

В настоящей статье доказывает автор элементарным способом следующие 
утверждения, обобщающие результаты Ф. С а с а (см. [1] и [2]): 

Теорема 2. Пусть G обладает следующим свойством: Существуют целые 
числа тъ т2, ..., тк так, что подгруппы {С?™*}1) цикличны (i = 1, 2, . . . , h). 
Пусть t — наибольший общий делитель чисел тъ т2, . . . , тк. Тогда {G*} 
есть циклическая подгруппа. 

Следствие 2. Пусть G — группа. Если существуют взаимно простые 
числа т1, т2, . . . , щс такие, что {G™*} суть циклические подгруппы (i = 
= 1, 2, . . . , h), то группа G также циклична. 

В статье показано также, что утверждения нельзя уже усилить (ни в слу­
чае, когда G — абелева группа). Утверждение теоремы 2 вытекает непо­
средственно по индукции из теоремы 1, доказательство которой опирается 
на сравнительно сложные леммы (лемма 6 и лемма 7). При помощи этих 
лемм мы получаем следующий результат: 

Пусть G — GXG2, где G,} (j = 1, 2) — конечные, циклические нормальные 
делители в G. Пусмь индекцы пересечения Gx n G2 в Gx и в G2 взаимно про­
сты. Тогда группа G является абелевой. 

В статье автор существенным способом пользуется тоже утверждением 
леммы 1, обеспечивающим продолжаемость всякого автоморфизма под­
группы циклической группы до автоморфизма всей группы. 

Из теоремы 2 далее легко вытекает 

Теорема 3. (См. Ф. Сас [3]) Если всякая циклическая подгруппа группы 6? 
является степенью {Gm} этой группы для подходящего т, то группа G 
циклична. 

х) {Gmi} обозначает подгруппу, образованную всеми элементами gmi, g € G. 
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