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ON CYCLIC GROUPS

Vwiastivin Dras, Khartoum, Sudan

(Received April 27, 1959)

In the present paper the author proves in an elementary way the
following two assertions:

1. Let G be such a group that there exist relatively prime integers
My, My, ..., my, for which the m;-powers {G™i} are cyclic subgroups
(¢ =1, 2, ..., k). Then the group G is cyclic as well.

2. Let G be a group such that every its cyclic subgroup is a power
{G™} of the group G for a suitable natural number m. Then G is cyclic.

1. INTRODUCTION

It is a well-known fact that every subgroup of a cyclic group @ is also cyclic
and that it is a power G™ of the group @ for some natural number m. F. Szisz
has on the contrary shown in his paper [3] that such a group every (non-
trivial) power of which is a cyclic subgroup is cyclic itself. The present paper
shows in an elementary way that the same assertion follows already from the
assumption that there exist relatively prime integres m,, m,, ..., m; such
that the m,th powers of the fundamental group are cyclic (Corollary 2). It
is shown at the same time that the assumption cannot be weakened even
in the case that ¢ is abelian (Remark 2). More generally, the following statement
is proved: If ¢ is the greatest common divisor of integers m,, m,, ..., m; and
{G™} are cyclic subgroups of G (t = 1, 2, ..., k), then {G*} is also cyclic (Theo-
rem 2). Now, the following assertion follows readily from the result obtained
(see F. Szdsz [1], [2]): If every cyclic subgroup of a group (¢ is a power {G™}
for a suitable natural number m, then the group ¢ is cyclic (and thus every
subgroup of G is a power of the given group) (Theorem 3). The assumptions
of the preceding theorem may be formally weakened. Let G be a group with
the following property: For every cyclic subgroup {A} of ¢ there exists a cyclic
subgroup {g}, {A} € {g} C G, such that {g} = {G™} for some natural number .
This property is equivalent with the proposition that @ is a group with maximal
cyclic subgroups which are powers of the group G. Then one can easily prove
that G is a cyclic group (Remark 3).
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A useful lemma is also proved in the paper, asserting that every auto-
morphism of a subgroup of a cyclic group can be extended to an automorphism
of the whole group (Lemma 1, Remark 1).

Througout this paper, the letter ¢ (resp. with indices) always denotes
a (multiplicatively written) group; elements of a group will be denoted by
small Latin letters from the beginning of the alphabet while the remaining
letters will denote rational integers. For any non-void subset 4 of @, {4} is used
to denote the subgroup of @ generated by the elements of 4; by G™ for a fixed
integer m we shall denote the subset of the group ¢ consisting of the elements
g™ with ¢ € G; the subgroup {G™} is said to be the m-th power of the group G.%)
The cardinality of a group @ (i. e. the order of () will be always denoted by
m(@), the order of an element g e @ by O(g) and the identity element of G
by e. The symbol (m,, m,, ..., m,) is used to denote the greatest common
divisor of integers my, m,, ..., m, and m,|m, (vesp. m,{ m,) denotes that
m, is (resp. is not) divided by m,; the symbols u, resp. n denote, of course,
the set-theoretical union, resp. intersection. A c B means in contrast with
A C B that A + B.

A subgroup {g,} with g, e G is said to be a maximal cyclic subgroup of ¢
if there does not exist any cyclic subgroup {g} with g e G satisfying {g,}
c {g} € G. If any cyclic subgroup is contained in a maximal cyclic subgroup
of @, then the group @ is called a group with maximal cyclic subgroups.

2. LEMMAS

First of all we are going to prove the following lemmas:

Lemma 1. Let a cyclic group {a} and a natural number m be given. Let b be
a generator of the subgroup {a™} C {a}. Then there exists an element @ ¢ {a}
for which the relations

(2,1) a"=b and {a} = {a}
hold.

Proof. If O(a) = o0, then {am} is the infinite cyclic group and it follows
either b = a™ or b = a—™. Thus, it suffices to put either ¢ =« or @ = at
in this case and the relations (2,1) are obviously valid.

If O(a) << o0, let us denote by w the order of a™ : O(a™) = w; consequenﬂy
(2,2) O(a) | mw .
Further, we have the equality b = a™t with
(2,3) (&, w) =1,

1) Es_peci;lly, if G is abelian, then, of course, {Gm} = G™.
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We see immediately that the elements a; = at+i where i denotes a natural

number, satisfy the equality a7 = b. Let
u=(t, m) and v = (m, w) ;

hence, according to (2,3) also (u, v) = 1. Let

(2,4) t=ut,, w=ovwy, M=yom,,
i. e.
(2)5) (tl’ /'nl) =1.

Let p,, P, --., Pr be all prime numbers satisfying
plmy, pfu (1= 1,2,...,k).
Further, let ¢ be a prime number with ¢ 7 «. Now, let us denote by i, the
product
(2,6) Yy = P1Pa - Diq -
We are going to prove that the numbers ¢ 4 {yw and mw are relatively

prime. Assume, in the contrary, that ¢ 4- i and also mw are divided by
a prime number p,; then, by (2,3) necessarily p, | m. Thus, according to (2,4)

Do | wm,.

Now, p, | » implies in view of (2,4) p, |t and therefore p,|i,w holds. By
(2,4) we obtain p, | %, in the contradiction to (2,6). Thus, we have
(2,7) po|my, and pofu.
Then, according to (2,6) we deduce p, | ,w and therefore p, | ; we obtain by
virtue of (2,5) the contradiction with (2,7). On the whole we have

(t+i0w: mw) =1,

and in view of (2,2) also
(2,8) (t +igw, Ofa) =1.

tiiw

Thus, if we define @ = a'***, it follows firstly a¢™ = b and further by
(2,8) {a} = {a}.

This completes the proof of Lemma 1.

Remark 1. Thanks are due to V. VILHELM for having remarked that the
assertion of Lemma 1 can be expressed in the following way: Let H be a sub-
group of a cyclic group G. Then every automorphism of H can be extended to an
automorphism of the given group G. \

Lemma 2. a) The following inclusions hold for any integers m, n
(2,9) {G™S{{emy (e}
b) If {G™} is abelian, then even
{Gmn} — {ijn .
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Proof. a) An arbitrary element g e G™" is expressible in the form

(2,10) g=gr"gy" ... 9™, g.eG fori=1,2, ..k,
from where immediately g e {G™}" follows and therefore also the relation
(2,9).
b) It is sufficient to prove the converse inclusion. Let
(2,11) Go =90y - gr, 9:€G for 1=1,2, ..k,

be an arbitrary element of {G™}; in consequence of commutativity the element
g = qo € {G™}" can be expressed in the form (2,10) and hence, in fact, {G™}" C
c{@™}, q. e. d.

Lemma 3. The subgroup {G™} is normal in G for every natural number m.

Proof. Every element g, ¢ {G™} can be expressed in the form (2,11). If ¢
is an arbitrary element of (, then we have the equality

97909 = 97979971929 - 97959 = (970:9)™(G79:9)" - - (97 )™,

and thus g~1g9 € {G™}, i. e. {G™} is, in fact, normal in G.

Lemma 4. Let G = G,G,, where G,(j = 1,2) are infinite cyclic subgroups
normal in G. Then G is abelian.

Proof. Let G = {a,} and G, = {a,} with
(2,12) Oa;) =0 (j=1,2).
If G, n Gy=(e), then G is obviously abelian.2) Thus, let G; n G, + (e),
i. e. there exist non-zero integers u,, u, such that

(2,13) ay = ay* .
Since
(2,14) aiaya, = a3 for a suitable v ,

we have according to (2,13)

_1 -1
att = ay'aya, = ay'ayia, = ay’ = a}”’,

from where we deduce in view of (2,12) v = 1. Thus, @ is by (2,14) abelian,
as desired.

Lemma 5. Let G* be a cyclic normal subgroup of G. Then every subgroup of
the group G* is normal in G, as well.

Proof. The assertion of Lemma 5 follows readily from the fact that every
subgroup of a cyclic group is characteristic.

Lemma 6. Let @ = GG, where G4(j = 1, 2) are finite cyclic normal subgroups
of G with a non-zero intersection G,. Let

(2,15) m(G;) = maw (j = 1, 2), where (my, m,) = 1 and m(G,;) = w.

%) By this assumption @ is abelian generally for arbitrary abelian groups G; (j = 1, 2)
normal in G; G is simply the direct product G4 X G,.
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Then there exists a cyclic subgroup G, normal in G satisfying the relations
G = GG, G, 0 Gy, = G, and the following property: If we denote

(2,16) m(G,) =mw, m(G,) =mw and m(G,) = w,
then

(2,17) m, | w

and

(2,18) (o, my) = 1.

At the same time the following implication holds: If m,|w, then m,|w.

Proof. By Lemma 1 there exist by (2.15) elements a; ¢ G;(j = 1, 2) and
¢ e G, such that
(2,19) G, ={a;}(j=1,2),0; = {c}and a7 = a3* = ¢, (my, My) = 1.
Thus, O(a;) = mw (j = 1, 2). If m, | w, it suffices to put G, = G, and the
assertion of lemma follows in a trivial way.

In the contrary case, let (m,, w) = z; consequently, there exist integers
u;, v,(j = 1, 2) such that

(2,20) UMy - UW = 2
and
(2,21) My = V12, W = Vy2.

The subgroup G, is obviously normal in @; consider that the quotient group
GG, is abelian (see the footnote?)) and that, consequently,

14+km,

aita,a, = ap for a certain integer £ ;

hence
(2,22) atala, = ey .
Then, using (2,20) and (2,19) together with (2,22) we obtain

~1 - n -1
(2,23) ay 'dia, = ay ey ™aag lay e, = ay™ayt = df

i. e. the elements a, and aj are commutative. Since (m,, m,) = 1, we have
by (2,21) (my, v;) = 1 and therefore there exist integers /; (j = 1, 2) such that

(2,24) Im; + Ly, =1.

Let us put

(2,25) b= abai . A

Thaen in view of (2,25), (2,23), (2,21), (2,19) and (2,24) we can deduce
b = ap"aih™ = abmay™ = afmai™ = a,

and

(2,26) B = ab™igth™ = qlMeqih™ = gl WM — g |
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The group G4 = {b} is by (2,25) obviously the group union of its subgroups
@, = {a,} and {a}} which are by Lemma 5 normal in G; thus, G, is also normal
in G. Since, obviously, {G, u G} = G, we have:G = G,G,. Let G, n G, = G,
and let (2,16) holds. Since {as} C G, and since by (2,21) O(a}) = v,w, it follows
(2,27) wlw and m,|z,
and hence according to (2,21) the relation (2,17) is fulfilled. Further, since
m, | m, in view of (2,27) and (2,21) and m, | m, in view of (2,26), we deduce
that (2,18) is also valid.

Finally, the validity of m, | w implies in consequence of m, | m, and w | w
also m, | w.

This completes the proof of Lemma 6.

Lemma 7. Let G = é1é2, where C~r',- (j = 1, 2) are finite cyclic normal sub-

groups of G with non-zero intersection G.. Let

(2,28) m(G) = i (j = 1, 2) with (M, ;) = 1 and m(Gy) = @ .
Let, further,
(2,29) m;|w for j=1,2.

Then G s abelian.

Proof. According to Lemma 1 there exist by virtue of (2,28) elements
b;e é,— (j=1,2)and de C~¥3 such that
(230) G = (b} (1= 1,2), Gy={d}, bfs=1fs =d, (7)) =1.

Hence,

(2,31) O(b,) =m,w for j=12.
By (2,29) there exist, moreover, integers u,;(j = 1,2) satisfying
(2,32) W= um; (j = 1,2) .
Let
(2,33) bi'byb, = b} .

Thus, by virtue of (2,30) and (2,33) we obtain

b = bb, = b,
i e.
(2,34) M, = myr (mod m,0) -
Further, (2,30) and (2,33) imply that

b, — by ™Mb — by
i. e.

(2,35) ™ =1 (mod m,%) -
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Now, in view of (2,34) and (2,35) we get the equalities

(2,36) r= kw41
and )
(2,37) (ko + 1™ — 1 = linyi
for suitable integers k, I. From (2,37) we readily derive by a simple computation

Ml N L

( ‘1) k‘m,_zwm‘_z-l — l’/;bz ,

ico \ ?

i. e. according to (2,32)
. My —2 pos . e .
(2,38) l‘ml( > ( i*) e T TS 1) = lm, .
iZo

Since (m,, m,) = 1, it follows by (2,32) m, | %, and hence
m "7‘52 M\ 1y, +1)=1
25 & 7: 1 - .
Now, m, | k follows immediately from (2,38). At last, using (2,36) and (2,31)
together with (2,33) we get
bb, = byb,

and thus, @ is abelian, as desired.

3. THEOREMS

Theorem 1. Let G be such a group that there exist two integers m,, m, satisfying
the condition that {G™} and {G™} are cyclic. If (my, m,) = ¢, then the subgroup
{G*} is cyclic, too.

Proof. The subgroup {G™} and {G™} are, in view of Lemma 3, normal in G.
According to Lemma 2a) it follows readily {G*} 2 {G™} and, further, {G™} are,
obviously, normal in {G"} (j = 1, 2). We can easily see that

(3,1) {G4 = {a™} (@™} .
For (m,, m,) = t implies the existenceof integers k,, k, such that
(3,2) kymy + kymy =1,

and thus we have for an arbitrary element g e G* in view of (3,2) the relations
(with a suitable element g, ¢ )

g=go=go™ ™ = (g5") (go*)" € {G™} {G™},

and every element of the group {G!} is then a product of elements of G*.
Now, (3,1) follows already from the fact that {G™/} are normal in {G*} (j = 1, 2).

Further, there exist integers my, my such that

(3:3) m; = m;.t y My = m;t 5 (mi, m;) =1 5
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and hence by virtue of Lemma 2b) we deduce
(3,4) {G™M™ = Q™M™ = (™M™ = (™™
If {G™} = {a,}, {G™} = {a,}, it follows by (3,4)
{a"} = {a}"},
and therefore according to Lemma 1 there exists an element a, ¢ {3™} such
that {G™} = {a,} and that

(3,5) al” = ag"
holds.

Now, let us consider the following two cases which may take place.

A If
(3,6) {G™} 0 {G™} = (e)

then the group {G'} is evidently commutative (see the footnote?)).?) Also
in the case that G contains an element of the infinite order the group {Gt} is
necessarily in view of Lemma 4 commutative, for {¢™} and {@™} are infinite
cyclic groups with (3,1) normal in {G*}. Now, we can already easily prove that
{G*} is a cyclic group generated by the element g of the form

g = ayay, where k; (j = 1, 2) are the integers satisfying (3,2).

For, using the commutativity of the elements @, and @, we have according
to (3,5), (3,2) and (3,3)

—k. —F. ’ k -
gml — a 1my a227”'1 — a/llm’a/ 2™y’ = a,

and
‘(—lmz' — E’;;mzlagzmz' — a’zclmx'aksmz' — 62 .

B. It remains to consider the case when both subgroups {G™} and {G™}
are finite cyclic groups and (3,6) does not hold. We can easily see that the
assumptions of Lemma 6 are fulfilled. The double use of Lemma 6 gives
us the following expression for the group {G*}:

(@ = Gy, Gy Gy=0G,,
where (5,- (7 = 1, 2), resp. 633 are cyclic subgroups of the orders m,w, resp. w,
normal in G and
(3,7) m; | w(j =1,2) and (m,;, m,) = 1.
Then, in view of Lemma 7 {G*} is certainly commutative even in this case.

Further, by Lemma 1 there exist elements l;, € f}j such that

(3,8) G, = {b} (j =1,2) and b™ = b™

_ %) Thus, by (3,5) and (3,6) the relations O(a@ 1)|m2 and O(@,)|m,’ follow for the generators
a; (j = 1, 2) and hence (0(@,), O(@,)) = 1, from where we readily obtain that {Gt} is
cyeclic.
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In consequence of (3,7) there exist integers [; (j = 1, 2) satisfying
I, + lym, =1
and then we can easily derive by virtue of (3,8) again that
(Gt} = {7}, where § = bibl.
This completes the proof of Theorem 1.

Corollary 1. Let a group G be given. If there exist integers m,, m, which are
relatively prime such that {G™} and {G™} are cyclic subgroups, then G itself
s cyclic.

Now, we are going to prove by means of Theorem 1 the main result.

Theorem 2. Let G be such a group that there exist integers my, m,, ..., m; for
which the m-th powers {G™} are cyclic subgroups (v = 1, 2, ..., k). If (my, m,, ...
...y my) = t, then the subgroup {G*} is cyclic, too.

Proof. We prove the above theorem by induction. The assertion is trivial
when & = 1. Assume that the assertion is valid for a certainz, 1 <17 < k,
i. e. that {G%} is cyclic, where t; = (m,, m,, ..., m;). But then, according to
Theorem 1, also the subgroup {G%+} is cyclic, where

g = (b, Myyq) = (Mg, My, .., Myyy)
This concludes the proof of Theorem 2.

Corollary 2. Let a group G be given. If there exist integers my, m,, ..., My
which are relatively prime such that {G™} (i = 1, 2, ..., k) are cyclic subgroups,
then G 1s cyclic itself.

Remark 2. Let us observe that the assumptions of Theorem 2 (resp. Theo-
rem 1) can not be weakened, even at the supplementary assumption of commut-
ativity of the group . That is quite clear, if we take into account that ¢
can be, e.g., the direct product of its subgroup {G*} and a subgroup with
elements the orders of which are divisors of .

It follows from Theorem 2 immediately also the following result (see F.
Szasz [1], [2]): ‘

Theorem 3. If every cyclic subgroup of a group @ is a power {G™} of this group
for a suitable integer m, then G is cyclic.

Proof. By our assumption there correspond to every cyclic subgroup
{g} € G certain integers m for which {G™} = {g}. Let us denote by .# the
set of integers thus obtained for all cyclic subgroups of (. Let ¢ be the greatest
common divisor of the elements of #; then there exists already a finite number
of elements m,, m,, ..., m; of A4 such that (m,, m,, ..., m;) = t. Thus, accord-
ing to Theorem 2, {G'*} is cyclic.
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Now, it is easy to prove that {G*} = (. For, if g is an arbitrary element of
the group @, then

{g} = {G*} for a suitable integer w.

In view of Lemma 2 a) we obtain
fg} = (G} C{GY, ic. ge{0Y
and the proof of Theorem 3 is complete.

Remark 3. Let us observe that the group every cyclic subgroup of which
is a power {G™} of G is a group with maximal cyclic subgroups. For, if {g,}
is a cyclic subgroup which is not contained in a maximal one, then there
exists an infinite ascending series of cyclic subgroups

{90y c {9} cigsfc...c{g}c...,
-where

Jioa = giiwithm; = 2fori =1
Since {g,} = {G™}, we get
mym, ... m; | my for every 1 = 1,2, ...

and obtain a contradiction. Now, one can easily see that the whole proof of
Theorem 3 may be repeated at the only assumption that the maximal cyclic
subgroups are powers of the group @. Thus, we can formally express Theorem 3
as follows:

Let @ be a group with the following property: For every cyclic subgroup {h} of
G there exists a cyclic subgroup {g}, {h} C{g} C G, such that {g} = {G™} for
a suitable integer m.%) Then G s cyclic.
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PesomMme

O INKJINYECKUX TPVYIIIAX

BJIACTUMUJI IJIAD (Vlastimil Dlab), Kxaproym, Cynan

B macrosimell craTbe JOKa3bIBAaET aBTOP dIIEMEHTAPHBIM C110CO00M CJIe/Ly0IIne
yrBep:kaesust, obodmaronme peayiasratel O. Caca (em. [1] u [2]):

Teopema 2. IIycmv G ob6aadaem caedywowum ceolicmeom: Cywecmeyom yesvie
YUCAA My, My, . .., My, Mak, umo nodepynns {G™1) yukawuns (¢ = 1, 2, ..., k).
ITyemv t — nauboavwuii o6wuii deaumeas wuces my, My, ..., my. Toeda {G*}
ecmy yukaueckas nodepynna.

CxeperBue 2. Ilycmv G — epynna. Ecau cywecmeyiom e3aummo npocmasie
wucaa my, My, ..., m; makue, umo {G™} cymov yukauueckue nodepynnvr (i =
=1, 2, ..., k), mo epynna G makyuce yuriuuna.

B crarne mokazaHo TaKkyKe, 9TO YTBEPHKACHAA HEIb3A YKe YCHINTE (HI B CIY-
gae, Korga G — abesieBa rpymnma). Y TBepiK/eHIe TEOPEMBI 2 BBITEKAET HEIO-
CPeJCTBeHHO 110 MHAYKIUHU 113 TeopeMbl 1, JoKasaresbCTBO KOTOPOH omupaercs
Ha CPaBHUTENILHO CJIOMHBIE jieMMbl (Jievma 6 u jemma 7). Ilpuw momomu sTux
JIEMM MBI IIOJIy9aeM cIe[[yIOUiil pe3ybrar:

ITycmv G = GG, ede G; (j = 1, 2) — koneunvie, YUEAUYECKUE HOPMANbHBLE
deaumeaun 6 G. Iycmv undexysr nepecevenus Gy 0 G, 6 Gy u 6 G, 63aummo npo-
cmut. Toeda epynna G ssasemes abesesoi.

B crarpe aBTOp CyIECTBEHHBIM CIIOCOOOM TIOJIB3YETCH TOMKE YTBEepPIKACHHEM
JeMMBl 1, ofecrneumBaOUIM 1PoJoaNHcaemocms 6CaK020 A8MoMOPHUIMA NOoO-
epynnul YUEAUNECKOl epynnol 00 asmomopPuana eceil 2pynnul.

4 E! TeOpeMbI 2 jajiee JIETKO BBITEKaeT

Teopema 3. (Cm. @. Cac [3]) Ecau scakas yukauveckas nodepynna 2pynnv G
aeasemes cmenenvio {G™} amoii epynnw Oas nodrodsugezo m, mo 2pynna G
YUEAUYHA.

1) {G™y} oGosnavaer moArpyniy, oOpasoBaHHYI0 BeeMu JIeMeHTaMu g™, g € G.
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