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ON DUAL SEMIGROUPS

STEFAN ScHWARZ, Bratislava

(Received April 14, 1959)

The purpose of this paper is to study the structure of a class of so
called dual semigroups introduced below. The main results are contai-
ned in Theorem 2,2, Theorem 3,3, Theorem 4,3 and Theorem 6,1.

The notion of a dual ring was introduced by R. BAER [2], I. KAPLANSKY
[6] and further developped by F. F. BoxsaLnL and A. W. Gorpie [3] and
K. G. Worrsown [13]. The first step in this direction was made by T. Na-
KAYAMA [8], [9]. M. HArL [5] treated related questions. An extensive
treatement of these results and the connections to the theory of normed rings
are given in the recent book of M. A. NAJMARK [7].

The introductory notions of these papers use only the multiplicative pro-
perties of the elements of the ring under study. It seems therefore natural
to ask how their results can be transferred to the theory of semigroups.

In this paper we show that there is some analogy between dual rings and
dual semigroups as they are introduced below. The purpose of the paper
is to prove fundamental structure theorems concerning such semigroups.
In distinction to the papers [3], [6], [13] we shall study in this paper abstract
semigroups without topological assumptions. Hence the requirements in the
definitions must be somewhat sharpened. The case of compact semigroups
will be treated elsewhere.

Some preliminary lemmas which can be found in [6] and [7] and remain
unaltered in the theory of semigroups are shortly reproduced for the conve-
nience of the reader.

The proofs and results of this paper are in a loose connection with a paper
of A. H. CrarrorD [4] and an older paper of the author [11].

The following is a consequence of the results of this paper, particularly
Theorems 3,1, 4,3, 5,1 and 6,1. Let S be a dual semigroup satisfying the
(strong) maximal and minimal conditions for left ideals and for right ideals.
Let N be the radical of S. Then N is the intersection of all the maximal
left (or right or two-sided) ideals of S. The difference semigroup S/N is a
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dual semigroup without nilpotent ideals, and is the 0-disjoint union of simple
dual semigroups, each of which is a semigroup of finite square matrices over
a group with zero. The theorems mentioned are, however, proved under
much weaker conditions.

1. INTRODUCTORY NOTIONS

In the whole of the paper S denotes a semigroup with a zero element.
The zero element, which will be denoted by 0, is characterized by the property
20 = O0x = 0 for every x € S.

A subset L c S(B c S) is called a left (right) ideal of S if SL c L(RS c R).
A two-sided ideal is a subset of S which is both a left and right ideal of S.
The zero element and the whole semigroup § are trivial two-sided ideals of
S. (We shall freely use 0 to denote the zero-ideal (0).) Each left (right, two-
sided) ideal of S contains the zero element. A left ideal of S is called a minimal
left ideal of S if it is + 0 and does not contain a proper subset # 0 which is
itself a left ideal of S. A left ideal is called maximal if it is #+ S and is not
contained as a proper subset in a left ideal = S. Analogously minimal and
maximal right and two-sided ideals are defined

Definition. Let A be a non-vacuous subset of S. The left annihilator £(A)
of A is the set of all x € S with A = 0. The right annihilator R(A) of A is the
set of all x € S with Az = 0.

The definition implies ¢(A4) A = AR(4A) = 0. The following lemmas can
be easily proved:

Lemma 1,1. a) For every non-vacuous A c S the set £(A) is a left ideal of S
and the set R(A) is a right ideal of S.

b) For any non-vacuous A c S we have A ¢ R[L(A)] and A c {R(A4)].

c) If 9 + A, c 4,, then ¥(A4,) > {4,) and R(4,) > R(4,).

d) If M is a right [left] ideal of S, then R(M) [£(M)] is a two-sided ideal of S.1)

Lemma 1,2. Let {A, v e A} be @ collection of subsets of S. Then we have

53( U Av) =N g(‘41') ) ﬂ{( U Ar’) =N Eﬁ(Ar) .
ved ved ved ved

Let L(R) be the set of all left (right) ideals of S. Let L ¢ L. The correspondence
L — R(L) defines a mapping of the elements € L on the elements € R. In
general L is mapped onto a subset of R.

Suppose that for each right ideal R of S the relation
(1) RIYR)] = R

1) If, for instance, M is a right ideal, we have M(SR(M)) = (MS) R(M) C MEK(J”) =
= 0, hence SR(M) c R(M). Further ME@RM)S) = (MRM))S =0. 8 =0
R(M) . S C R(M). This proves that R(M) is a two-sided ideal.
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holds. Then the image of L in the mapping L — R(L) is the whole set R.
For, suppose that R is any element e¢ R. Then £(R)eL and R[¥R)] = R
hence R is the image of a certain element ¢ L. Examples show that the corres-
pondence between L and R need not be one-to-one, since two different ele-
ments € L may be mapped into the same element ¢ R.

Suppose moreover that besides the relation (1) also £[R(L)] = L holds
for every left ideal L of S. Then for L,, L, e L with R(L,) = R(L,) we have
LR(Ly)] = Y[R(Ly)], 1. e. Ly = L,

Hence the mapping L — R(L) defines a one-to-one correspondence between
the elements of L and R. Clearly R — £(R) is the inverse mapping to the
mapping L — R(L).

We introduce the following definition:

Definition. 4 semigroup S + 0 is called dual if for every left ideal L of S
we have

(2) YR(L)] = L
and for every right ideal R of S we have R[L(R)] = R

Lemma 1,3. Let {R, |v eA} ({L, |ved}) be a collection of right (left) ideals
of a dual semigroup S. Then we have

ved ved ved ved

Proof. Using Lemma 1,2 we have

U YR —53{55{[Ug ]}~?{nm[2 =Y NR}.

ved ved

The second statement can be proved analogously.

Corollary 1,3. Let S be dual. Then for any two left ideals L, L, with L, n
n L, =0 we have R(L,) v R(L,) = S. For any two right ideals R,, R, with
R, 0 R, = 0 we have &(R,) u ¥(R,) = S.

Let S be dual, L the set of all left ideals and L,, L, € L. Since the inter-
section L, n L, is a non-empty left ideal and so is L, u L,, we may introduce
in L the operations U and n under which L becomes a lattice L,. The lattice
of right ideals R, is defined analogously. Clearly L, and R, are complete lattices.

Let L,, v € A, be a non-vacuous collection of elements e L. Then the one-to-
one mapping L — R(L) has the following properties:

ved ved ved red

Hence the lattices L,, Ry are (completely) antiisomorphic.

The set of all two-sided ideals of § is clearly a complete sublattice of both
L, and R,. If M is a two-sided ideal of S, then so is R(M) (see Lemma 1,1d).
This implies:
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Theorem 1,1. Let S be a dual semigroup. Then the complete lattices L, and R,
are antitsomorphic. Hereby the complete sublattice of two-sided tideals is anti-
1somorphic to itself.

The following two lemmas are immediate consequences of Theorem 1,1:

Lemma 1,4. Let S be dual. Then

a) 8) = R(S) = o.

b) For every left ideal L & S and right ideal R + S we have L(R) + 0 and
R(L) + 0.

c) For L #+ 0 we have R(L) + S and for R + 0 we have ¢(R) * S.

Remark. The result a) will be often used in the form: In a dual semigroup
xS = 0 (or Sz = 0) implies x = 0.

Lemma 1,5. Let S be dual.

a) If L is a minimal left of ideal S, then R(L) is @ maximal right ideal of S.

b) If M is a minimal iwo-sided ideal of S, then R(M) and L(M) are maximal
two-sided ideals of S.

We omit the explicit formulations of analogous converse statements.

We shall need also the following lemmas:

Lemma 1,6. If S is dual, then x € xS and x € Sz for every x € S.

Proof. We prove z € «S; the second statement can be proved analogously.
Since xS = R[ ¥(«S)], it is sufficient to prove that x e R[ L(xS)],i.e. {zS) .z =
= 0. If y ¢ ¥@S) we have yxS = 0, hence (see Lemma 1,4a) yx = 0. Therefore
L@xS)x =0, q. e. d.

If A is any subset of S, Lemma 1,6 implies 4 c S4, 4 c AS. In particular,
if L is a left ideal, we have L c SL and SL c L; hence L = SL. We state
explicitly:

Corollary 1,6a. If L(R, M) is a left (right, two-sided) ideal of a dual semigroup
S, we have L = SL(R = RS, M = SM = MS).

We shall need especially:

Corollary 1,6b. In a dual semigroup we have always S% = S.

2. THE FIRST DECOMPOSITION THEOREM

A left (right, two-sided) ideal L =+ 0 of § is called nilpotent if there is an
integer p > 0 such that L¢ = 0.

If L is a nilpotent left ideal, then we have also (LS)¢ = L(SL)e-*Sc L.
. Le1S = LeS = 0. The set L u LS is clearly a two-sided ideal containing L.
Further (L u LS)2 = 0. For each element of the ideal (L u LS)?¢ contains
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either at least o factors L or at least ¢ factors LS. In both cases the summand
equals to zero.

Hence, a semigroup having a nilpotent left (right) ideal contains also a nil-
potent two-sided ideal. Therefore instead of supposing in the following that
S has (or does not have) a left or right nilpotent ideal we may suppose that
S contains (or does not contain) a nilpotent two-sided ideal.

A dual semigroup cannot be nilpotent. For if S is dual, we have S% = 8.
This implies Se = 8 for every integer p > 0. Hence there cannot exist an
integer v > 0 with 87 = 0.

Lemma 2,1. Lei I be a two- sided ideal of S and L a nilpotent left ideal of S
contained in I. Then I contains a nilpotent two-sided ideal of S.

Proof. The relation 0 + L c I implies LS c IS c I. The ideal L u LS
is a two-sided ideal = 0, it is contained in I, and the same argument as above
shows that it is nilpotent.

Definition. T'he set-theoretical sum of all nilpotent ideals of S is called the
radical N of S. In a semigroup without nilpotent ideals we put N = 0.

A semigroup with N = 0 will be called more precisely a semigroup without
a proper radical.

The radical N is clearly a two-sided ideal of S. It need not be itself nilpotent.
However, in the following we shall often impose this condition to N.

We shall see soon that there is an essential difference between two-sided
ideals of S that do not contain nilpotent subideals and those which contain
(non-zero) nilpotent ideals. A two -sided ideal I contains a nilpotent subideal
of Sif and only if I n N = 0. For, if I n NV = 0, it is clear that I cannot contain
nilpotent ideals of S. Conversely, if m = I n N =% 0, then I must have a non-
zero intersection with at least one nilpotent ideal of S and this intersection
is a two- sided nilpotent ideal.

Hence, instead of saying that a two-sided ideal I of § does not contain
a nilpotent subideal of S we shall say that I " N = 0.

Lemma 2,2. Let S be dual and I a two-sided ideal of S with the property N n
n 1l = 0. Then:

a) R(I) = &I).

D) InRUI)=InUI)=0, TuRUI)=1v I)=3S~.

c) If M is a left (right, two-sided) ideal of I, then M s also a left (right, two-
sided) ideal of S.

d) If M is a left (right, two-sided) ideal of R(I), then M is also a left (right,
two-stded) ideal of S.

Proof. a) According to the definition we have I.R(I) = 0. We prove
first that I n R(I) = 0. Suppose for an indirect proof that v = I n R(I) =+
%+ 0. We then have 0 + vc I, 0 + v c R(I) and v2c I . R(I) = 0. The ideal
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I would contain a nilpotent right ideal v, hence (according to Lemma 2,1)
a nilpotent two-sided ideal, contrary to the supposition. Now, since R([) .
I cR() n I, wehave R(I).I = 0,i.e. R(I)c LI). An analogous argument
shows that (/) c R(). Hence £(I) = R(), q. e. d.

b) The relation I N R(I) = 0 implies (see Corollary 1,3) I U R(I) = 8,
q. e. d.

c) Let M be a left ideal of I. According to the supposition we have M c I
and [M c M. Further we have R([)M c R(U)I = £I).I = 0. Hence
SM =1l uvRU)M=IMuvu{0}cM,q.e.d.

d) Let M be a left ideal of R(I). Then R(I) M c M. Further M c R(I)
implies IM c IR() =0, hence SM =1[I v RUL)|M =IM v R(I) M c
c{0}uM=DM,q.e.d

Example 1. We show on an example that the statements ¢) and d) of
Lemma 2,2 need not hold if I contains nilpotent ideals of S. Let S = {0, «a,
b, ¢, d} be a commutative semigroup with the following multiplication table:

0 a b ¢ d
00 O 0 0 0
a0 0 0 b a
b0 0 0 a b
c|0 b a d ¢
d|0 a b ¢ d

S contains three ideals: S, N = (0, a, b), 0, and it is easy to verify that it is
a dual semigroup. Choose N = I. Then (0, a) is an ideal of I, but not an ideal
of S.

Theorem 2,1. Let S be a dual semigroup and I a two-sided ideal of S with
the property I 0 N = 0. Then I and R(I) are dual semigroups.

Proof. a) We prove first that [ is a dual semigroup. Denote by ¢'(4) and
R'(4) the left and right annihilators of 4 in I, respectively. It is sufficient to
prove that for any right ideal M of I we have R'[¥'(M)] = M. (The second
case, 1. e. the case when M is a left ideal can be proved analogously.)

Since I n R(I) =0, {I) = RU), &I).I = 0, we have clearly ¥{(M) =
= {() u Y(M). Lemma 1,2 implies R[KM)] = R[LU)] 0 R[¥'(M)]. Since
(according to Lemma 2,2¢) M is a right ideal of S (and § is dual), we have
M =1 R[¥(M)]. Further since ¥'(M)c I and 0= R() [ > R() ¥'(M),
we can write R[L(M)] = R() v R'[¥'(M)]. Hence we have

M= 1 o {R() 0 RLLD]} = [L 0 KD 0 {0 READ] =
= {0} v {l n R[]} .

But since R'[¥'(M)] c I, we have finally M = R'[¥'(M)], q. e. d.
b) The proof that R(I) is dual follows in the same way, but instead of

206



Lemma 2,2¢ we must use Lemma 2,2d.?) Denote the left and right annihila-
tors of 4 ¢ R(I) in R() by ¢'(4) and R"(4), respectively, and choose any
right ideal M of R(I).

Clearly $(M) =1 u (M), and according to Lemma 1,2 we have

R = RU) 0 RCDD], M= R(I) 0 RO .

Now since "(M)c R() and "(M).I =0, we have R[¥'(M)]=1v
U R'[(M)]. Therefore

M= R(UI) 0 {I v R[]} ={RU) o I} 0 {RU) 0 R'[Y(M)]} =
L= {0} U (R() 0 RTUAN] = KLY (M)]

This proves Theorem 2,1.

Suppose now that § has a proper radical N and at least one two-sided
ideal I & 0 with I n N = 0. Denote by S’ the class-sum of all two-sided
ideals of S each of which has a zero intersection with N. The set S’ is a uniquely
determined two-sided ideal of § and (according to Theorem 2,1) it is a dual
semigroup. Also R(S’) = 8" is a dual semigroup having the property that
each two-sided ideal I c R(S’) has a non-zero intersection with N. Therefore
we can state:

Theorem 2,2. Any dual semigroup S with the radical N admits a unique
decomposition into a sum of two two-sided ideals S = 8" v S", where S'S" =
=8"8" = 8" n 8" = 0, the summands having the following properties:

1.LIfN=0,8=8,8 =0.

2. If N £ 0, 8" is either zero or it 1s a dual semigroup without nilpotent
wdeals, 8" 1s a dual semigrowp with the radical N in which each two-sided ideal
has a non-zero intersection with N.

Example 2. We give a simple example to Theorem 2,2. Let S = {0, a, b, c}
be a semigroup with the multiplication table

0 a b ¢
of[o 0 0 o
al0 0 0 a
b0 0 b O
c| 0 a 0 ¢

The lattice of ideals is given by the graph in Fig. 1.

It is easy to verify that § is a dual semigroup. The radical of S is N = (0, a).

The largest ideal which has a zero intersection with N is §" = (0, b). The
12) Note that the two-sided ideal R(/) may contain nilpotent ideals of S. But R([)

is not an arbitrary two-sided ideal of §. It is characterized by the property that it is

a ‘“‘complement” of a two-sided ideal without proper nilpotent ideals. (Compare with
Example 1.)
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“complement‘‘ R(S’') = 8" = (0, a, ¢) contains N. The decomposition in the
sense of Theorem 2,2 is § = (0, b) u (0, a, ¢). (Note that S contains two mi-
nimal ideals: (0, @) and (0, b). The first is nilpotent, the second one non-nil-
potent.)

Example 3. We show that the existence of a decomposition of the type
given in Theorem 2,2 does not imply that S is dual. Consider the semigroup
constructed in the following manner: Let G}, G, be two groups and N a semi-

S
S
(O,G,C) J, uN J2 ulN
R(N) ={Olatb) ‘
N={O,G) J
b ' %
Fig. 1. Fig. 2.

group consisting of two elements N = {0, ¢} with the multiplication 0% =
= 0a = a0 = a?® = 0. Define further G,¢, = G,(;, = 4N = NG, = NG, =
= (,N = 0. Then the semigroup S =G, u G, v N admits a decom-
position § =J, u J, U N, where J, = {0} v @;, J, = {0} U G, and N are
minimal two- sided ideals of §. Denoting 8" = J, u J,, 8" = N we have
a decomposition of the kind given in Theorem 2.2. The lattice of ideals is
given by the graph in Fig. 2. Since R(J, u N) = R(J,) = J, u N, our semi-
group cannot be dual.
Example 4. To have some material for later purposes we give a more
complicated example in which §" = 0.
Let S be the multiplicative semigroup of those residue-classes (mod 72)
-which are represented by the numbers 0, 9, 64, 18, 48, 36. The corresponding
multiplication table has the following form:

0 9 64 18 48 36
ojo o o0 o0 o0 o0
910 9 0 18 0 36

6410 0 64 0 48 O
1810 18 0 36 0 O
4810 0 48 0 0 O
3610 36 0 0 0 O




The lattice of ideals has the graph in Fig. 3 (which enables an easy verification
that S is a dual semigroup). In this semigroup every two-sided ideal # 0 has
a non-zero intersection with N. There are two minimal two-sided ideals, they
are both nilpotent.

3. DUAL SEMIGROUPS WITHOUT NILPOTENT IDEALS

In this section we shall study dual semigroups with N = 0. We recall first
that a semigroup is said to be simple if it contains no proper two-sided ideal,
except the zero ideal (0).

In what follows we shall S
use the following theorem
(see Clifford [4], Theorem
1,1, p. 835): Let S be a semi-
group without nilpotent ide-
als. Then any minimal two- (03689 48,36,64)
sided ideal of S is a simple
semigroup. (0,36/18)

Clearly, the intersection
of two distinct minimal
two-sided ideals of S is the
zero element 0. If M,, M,
are two distinet minimal
two-sided ideals of S, we ,
have M, M,c M, n M;=0, Fig. 3.
hence M, My = 0.

Let M,, veA, be the set of all minimal two-sided ideals of a dual semi-
group S without nilpotent ideals. According to Theorem 2,1 each M, is a dual

semigroup. Denote 7' = U M,. T is a two-sided ideal. According to Lemma
ved

2,2 we have S =T u R(T), where 7" and R(T) are dual semigroups with
T RT) = o.

Suppose now that every two-sided ideal of S contains at least one minimal
two-sided ideal of S. Then R(7') = 0. For, since R(7") is a two-sided ideal of S,
R(T) £+ 0 would imply the existence of a minimal two-sided ideal of S contained
in R(T'). This is a contradiction to 7" n R(7T") = 0.

We have proved:

(0,36,18,9,48) (0,36,18,/48,64)

Theorem 3,1. Let S be a dual semigroup without nilpotent ideals. Suppose
that every two-sided ideal of S contains at least one minimal two-sided ideal of
S. Then we have S = U M,, where M Mg= M, n M;=0 for o« % fed,

ved
and M, are simple dual semigroups.

The converse statement is given by
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Theorem 3,2. Let M,, v e, be a collection of simple dual semigroups with
M, My =9 for « £ f . Identify the zero elements of all M,, v € A. Consider

the set S = U M, and define in S a multiplication * by the following relations:
ved

For a,beS we have

a*b~/a'b if a, b belong to the same M, ,
7 N0 dfaeM,, beMy x + fed.

Then S is a dual semigroup without nilpotent ideals in which every two-sided
ideal (+ 0) of S contains at least one minimal two-sided tdeal of S.

Proof. We may suppose card 4 > 1 Let L be a left ideal of S. We show
that {R(L)] = L. Denote L n M, = 1,. Then L=y L, and R(L) =

ved
= N R(L,). Denote further M, = U M, and let R»(L,) be the right anni-
ved ue/l,a:t:vﬁi _
hilator of L, in M,.2) Then R(L,) = M, v R(L,) and R(L) =N [M, v

red
u R(L,)]. Now it follows from a merely set-theoretical conclusion that the
last intersection equals to the sum U %R*(L,). Hence R(L) = U R*(L,).

ved ved
Now we have (R(L)]= ¢[U R(L,)] =N YR*(L,)]. Denoting by
ved ved
[R(L,)] the left annihilator of R¥(L,) in M, we have M {[NR*(L,)] =
ved

=N {M, U Y[R (L,)]}. Since M, is dual, we have ¢/ [R¥(L,)] = L,. Therefore
ved

YR(L)] =N [M, v L,). Tt follows again from a merely set-theoretical

ved
conclusion that the last expression equals to U L,. Hence {R(L)] = U L, =
ved ved
=L, q.e. d

By an analogous argument we prove that for any right ideal R of S we
have R[L(R)] = R. This proves Theorem 3,2.

Combining Theorems 3,1 and 3,2 we get:

Theorem 3,3. Let S be a semigroup without nilpotent ideals in which every
two-sided ideal of S contains at least one minimal two-sided ideal of S. Then S
18 dual if and only if S is the union of its minimal two-sided ideals and each
of these minimal ideals is a dual semigroup.

An other criterion for the duality, which we shall use later, is given in
Theorem 3,4.

In the following lemma we do not suppose the duality of S.

Lemma 3,1. Let S be a semigroup with zero, without nilpotent ideals, contain-
tng at least two mazimal two-sided ideals of S. Let {M* |x e A} be the totalily

2) If for some » e A we have L, = 0, then R"(L,) = M,.
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of all different maximal two-sided ideals of S. Suppose that ) M* = 0 and

aed
denote P, = S — M¥*. We then have:
a) 8= {0} v [U P,], where P, 0 Py =0 and PPy =0 for ~ + ffe.

weA

b) For any x e A L(M*) = R(M*) = {0} u P, holds.

c) For any xeA we have S = M* o M*), where M¥ o ¥Y(M*) = 0 and
LM*) is a minimal two-sided ideal of S.

d) S = U Y.

acd

e) Every two-sided ideal of S contains at least one minimal two-sided ideal

of S and {L(M¥) | x e A} is exactly the set of all minimal two-sided ideals of S.

Proof. a) We prove first that for « + f we have P, n Py = 0. It follows
from a purely set-theoretical conclusion that P, n Py = (S — M*) n (S —
— Mj) =8 — (M¥ v M}). Since M, My are two distinct maximal two-sided
ideals of S, we have MY v M} = S, hence P, n Py = 0.

We have further 0 = A M* =N (S — P,) =8 — U P,, hence S can

xed xed xed
be written as a union of disjoint sets: § = {0} u [ U P,].
aed

We show finally that for § + y we have P,P,, = 0. Suppose for an indirect proof
that there exists a couple of elements w, € Py, u, € P, such that wyu, = us + 0
and us e Ps. We consider separately the two possibilities: us ¢ Py and u; € P
Suppose first us¢ Py, 1. e. Py & Py Since then Py c S — Py = My and MF
is a two-sided ideal, we have PP, c M¥P, c M, hence uye M = 8 — Py,
which is a contradiction to wus;e Ps. Suppose next use 5 Since Py + P,
we have P, c 8§ — Py= Mjand PyP, c PyMyc My, hence uye Mj = S — Py,
which contradicts to the supposition u; e P.

b) Since P, 3% = P, {0 v [ Y P,]} = 0, we have {0} u P, S ¥(M¥). On the

rved
vEa

other hand the two-sided ideal ¢(#%*) has a zero intersection with M*. For,
UMEy n M* =1 + 0 and L(M*) M* = 0 would imply (2= 0, i. e. there
would exist a nilpotent left ideal 1 # 0 of S, contrary to the supposition.
Thercfore ¢(M¥) = {0} u P,. An analogous argument shows that R(M¥) =
= {0} u P,.

¢) It is sufficient to prove that ¢(M*) is a minimal two-sided ideal of S.
1f there were an ideal I of S with 0 ¢ 1 & ¥(M%), the set M u I would be
a two-sided ideal of S, which is apparently larger than M¥, hence equals to S.
But this is impossible since ¥ u I does not contain the elements e $(H¥) —
— I * 0.

d) This statement is an immediate consequence of § = {0} v [U P,

xed
P, 0 Py=9fora % pand {(M¥) = {0} u P,.



e) If I is a two-sided ideal of S, then § = U {(M?¥*) implies the existence
xed

of at least one y e such that I n {(MF) + {0}. Since (M) is minimal, we
have ¢(M3¥)c I.If, moreover, I is minimal we have I = £(M).

This completes the proof of our Lemma.

Remark. Lemma 3,1 trivially holds also in the case if there is a unique ma-
ximal ideal M¥*. We then have M* = 0, {(M*) =S, and P, = S — {0}. In
this case S is a simple semigroup.

Theorem 3,4. Let S be a semigroup with zero, without nilpotent ideals, in which
every two-sided ideal of S and different from S is contained in a maximal two-
sided ideal of S. Suppose that there exist at least two maximal two-sided ideals
of S. Let {M¥* |x e A} be the set of all maximal ideals of S. Then S is dual if
and only if:

a) M M* = 0. b) Every semigroup M*, « e A, is a dual semigroup.

wed

Proof. 1 Suppose that S is dual. Condition b) is satisfied according to

Theorem 2,1. The duality implies that every two-sided ideal I of S contains

a minimal two-sided ideal of S. By Theorem 3,1 we have S = U m,, where
xed
{m, |x € A} is the set of all minimal two-sided ideals of S. Now since S is dual,

we have 0 = R(S) = R( U m,) = A R(m,). The set {R(m,) |x eA} is exactly

xed xed
the set of all maximal two-sided ideals of S. Hence the first part of our Theorem
is proved.

2. Suppose that the conditions a) and b) are satisfied. We show that S
is dual. According to Lemma 3,1 we can write S = M* u &(M*). The two-sided
ideal ¢(M?¥) is contained in a maximal two-sided ideal My of S and M} is
a dual semigroup. ¢(M¥), being a two-sided ideal of S, is the more a two-sided
ideal of M’;‘. According to Theorem 2,1 $(M¥*) is therefore a dual semigroup.

Now condition a) implies (see Lemma 3,1d) that S = U YM¥*). Further
aed

(see Lemma 3,1e) every two-sided ideal of S contains a minimal two-sided
ideal of S and S is the union of its minimal two-sided ideals each of which
is a dual semigroup. Theorem 3,3 implies that S is a dual semigroup. This
proves our Theorem.

Supplement to Theorem 3,4. Suppose that the suppositions of ‘Theorem 3,4
are satisfied with the exception that there exists a unique maximal two-sided
ideal M of S. Then, if S is dual, M = 0 and S is a simple dual semigroup.

Proof. Analogously as in the proof of Theorem 3,4 it follows that every
two-sided ideal of S contains a minimal two-sided ideal of S. Since there is
a unique maximal two-sided ideal M in S, we conclude that there exists
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a unique minimal two-sided ideal m of S. Theorem 3,1 implies S = m. Hence
8§ is a simple dual semigroup and M = 0.
We can prove similarly:

Theorem 3,4a. Suppose that the suppositions of Theorem 3,4 are salisfied.
Then S 1s dual if and only f:
a) M M* = 0. b) There is a pair of two-sided ideals M,, M, which are them-

wed
selves dual semigroups, and we have S = M, v M, with M, M, = 0.

Theorem 3,4b. Let S be a semigroup with zero element, without nilpotent ideals,
m which every two-sided ideal of S is contained in a maximal two-sided ideal
of 8. Let {M¥ |x e/} be the set of all mazimal ideals of S. Then S is dual if
and only if:

a) M\ M* = 0. b) Each of the semigroups (M%) is dual.

aed
4. SIMPLE DUAL SEMIGROUPS

Let S be a simple semigroup with zero. Since 0 c 82 c S there are only two
possibilities: either S2 = 0 or §2 = §. The case S2 = 0 is not interesting
since S has then exactly two elements: the zero element and a further unique
non-zero nilpotent element.

We recall: Let S & 0 be a simple semigroup having a zero element with
S2 4 0. If S contains at least one minimal left ideal, then S is the class sum
of all minimal left ideals: S = UZL,, where L, n L; = 0 for « #+ . If S has

at least one minimal left ideal and at least one minimal right ideal, then §
contains idempotents + 0 and each minimal left (right) ideal is generated by
an idempotent, i. e. it is of the form Se, (e4zS) with a suitably chosen idempotent.
e, + 0(ey + 0). .

Now we shall study simple dual semigroups. Acording to Corollary 1,6b
we then have necessarily §2 + 0 (and 82 = S).

Lemma 4,1. Let S be a stmple dual semigroup having at least one minimal
left ideal. Then S has also a minimal right ideal (and hence contains an idempotent
+ 0).

Proof. According to the supposition we can write & = U L,, where L,
runs through all minimal left ideals of S. xed

a) Suppose card /1 > 1 and consider the ideal Li; = U L,. This is clearly
aed,x+f
a maximal left ideal of S. According to Lemma 1,5 ER(L;) is a minimal right

ideal of S. The existence of a minimal right ideal is proved.

b) Suppose next that § = L, (i. e. S does not contain a left ideal + §
and =+ 0). Then 8 cannot contain a right ideal 4 0 and = S. (For, if v were
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a right ideal, 0 $ v £ S, £(v) would be a left ideal, 0 & £(v) £ S.) Hence S
is at the same time a minimal right ideal of S. The existence of the minimal
right ideal is proved.

Remark 1. Let be in this last case x ¢S and x & 0. Then since x e Sz,
we have Sx = § and analogously xS = S. Therefore the set of all non-zero
elements €S forms a group. The unit element of the group S — {0} is the
(unique) idempotent =+ 0 of S.

Remark 2. Let G be a group. Adjoin to ¢ an idempotent 0 and define
0.6 = G .0 = 0. Then we term the semigroup G = G u {0} thus obtained
“a group with zero adjoined* (or briefly a “‘group with zero**). Such a semi-
group is simple having only two ideals, namely 0 and G(.

A group with zero is dual and contains a unique idempotent == 0. Conversely,
it is known that a simple semigroup with zero containing a unique idempotent
== 0 is a group with zero. Hence:

Lemma 4,2. 4 simple semigroup with zero and with a unique idempotent == 0
18 dual.

Theorem 4,1. Let S be a simple dual semigroup having at least one minimal
left ideal. Then for any two idempotents e, =+ ez we have e,eq = 0.

Proof. With respect to Lemma 4,1 § contains also at least one minimal
right ideal and hence at least one idempotent == 0.

Let e, #+ 0 be any idempotent € S. The left ideal Se, is a minimal left ideal
of S. Therefore R(Se,) is a maximal right ideal of S. Write S = U R,, where
ved
R, runs through all different minimal right ideals of S. Then it is clear that
every maximal right of S is of the form U'R,, where the dote denotes that
ved
precisely one of the summands is excluded. We may therefore write R(Se,) =

¥

= U £,. Now since

ve A
vy,
(3) S()J[URV]:O?
ved
v,y

it follows that R, must be the minimal right ideal of S containing e,, hence
e,S. [For otherwise the product to the left would contain Se, . ¢,S which is cer-
tainly = 0, containing itself e,.]
We prove now that Se, (and hence every minimal left ideal of S) contains
precisely one non-zero idempotent. Dencte Se, = L, . We then have
L,=L,0S=[L,oR,]ul[L,0(UR)].

ved
LE 378

The second summand cannot contain an idempotent == 0 since otherwise the
relation (3) would not be possible. Now the minimal ideals L, and R, have
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the following properties: L, R, = Se,e,S =S, R, L, = e, .8¢, +0. Tt
is well known that under these conditions R,, . L, equals then to B, n L,
and it is a group with zero. (See f. i. Clifford [4], Lemma 3,2—3,5, p. 837.)
Hence the first summand (and therefore Se,) contains a unique non-zero
idempotent (which is, of course, e,).

By an analogous argument we can prove that every minimal right ideal
of § contains a unique idempotent == 0.

Hence the correspondence betwcen the non-zero idempotents and minimal
right ideals R,, » €A, is a one-to-one. We can write R, = ¢,, where e, is the
unique non-zero idempotent € E,.

Now we easily achieve the proof of our Theorem. If S contains a unique
non-zero idempotent, Theorem 4,1 trivially holds. We may suppose therefore
that there are at least two non-zero idempotents. The relation (3) can be

written in the form (Se,) . [ U egS] = 0, i. e. U Se,epS = 0. The summand
Bed Bea
B+a B+«

Se,epS contains the element e, (e,ez) e = e,e5. Hence e,ey = 0 for every f =+ .
This proves Theorem 4,1.

Theorem 4,2. Let S be a simple semigrowp with zero containing at least one
left and one right minimal ideal. Suppose that for any two idempotents e, + ey e S
we have c,ep = 0. Then S is a dual semigroup.

Proof. With respect to Lemma 4,2 we may suppose that there exist at
least two non-zero idempotents.

We prove first that under our suppositions every minimal left (right) ideal
of § contains precisely one non-zero idempotent, and hence there is again
a one-to-one correspondence between the set of different minimal left (right)
ideals and the set of all non-zero idempotents.

Let Se,, e, + 0, be a minimal left ideal of S. We have e, € Se, and Se,e, S =
= Se,S % 0. If there were in Se, an other idempotent e; + 0, e; + e,, there
would hold Se, = Sey; and Se,e, S = Sege, S = 8§ .0.8 = 0. This constitutes
an apparent contradiction.

Let {e, |x €A} be the set of all idempotents e S. Let L be any left ideal of S.
We have to show that {[R(L)] = L. The left ideal L can be written in the
form L = U Se,, where H c A.

aeH
Suppose first that 4 — H + 0. Then R(L) = U epS. If namely some g
ped—H
were in H the product L . R(L) would contain SegeyS and since this set con-

tains ey, the product would not be 0. The left annihilator YR(L)] =¥ U ezS]

Bed-H
is the sum of those minimal left ideals Se, for which Se, ( U e,8) = 0 holds.
xed-H
Clearly, this is exactly the set U Se,. Hence £[R(L)] = L.

veH
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Suppose next A4 = H, i. e. L = S. Then R(L) must be 0. (For if R(L) con-
tained at least one summand of the form e,S, the product L . R(L) = SR(L)
would not be zero, since it contains e, # 0.) The relation R(S) = 0 implies
LRES)] = ¥o0) = 8.

An analogous argument shows that for every right ideal R we have R[¥{(R)]=
= R. This proves Theorem 4,2.

Example 5. An example of a dual simple semigroup (which is not a group
with zero) is given by the set S = {0, a,, a,, a3, a,} with the following mul-
tiplication table:

0 a ay, a; a,
010 0 O 0 ©
a, |0 a, 0 ag O
a, | 0 0 a, 0 a4

ag | 0 0 a3 0 a,
a, |0 ag 0 a, O

A simple semigroup containing at least one minimal left and at least one
minimal right ideal is called a completely simple semigroup. Theorem
4,1 and Theorem 4,2 give a necessary and sufficient condition for a completely
simple semigroup to be dual.

Our next goal is to describe the construction of completely simple dual
semigroups.

We recall some known results first proved by D. ReEs [10].

Let I =1{i,9,k, ...} and 4 = {x, A, u, ...} be any two sets of indices and
GO = G u {0} a group with zero. By a ,,/ X A matrix M = {a;,} over GO®”
we mean a set of elements which we obtain by assigning to each pair 1, »
of indices (7 €1, x eA) a unique element a;, ¢ G®. The set of all elements
a;, of M with the same index ¢ € I will be called the 7-th row of M. Analogously
the x»-th column is defined. M is called regular if no row or column of M
consists of zeros. M is called monomial if in each row and column exactly
one entry is &= 0. For a monomial matrix we have necessarily card I = card 4.
An I x A matrix having the element a € G with a =+ 0 in the (7, »)th position
and 0 elsewhere will be denoted by (a);,. The I X A matrix for which a;, = 0
for all pairs (7, ) will be denoted by (0).

Let be A a I X A matrix and B a 4 X J matrix and suppose that for any
1el, leJ there is at most one pair a;y, by; (@;; in the i-th row of A and by,
in the I-th column of B) such that a,,b,; + 0. Assuming that 0 has also the pro-
perties of an additive zero we define the ordinary matrix multiplication

AB as an I x J matrix C with elements ¢;; = Z a0y It is easy to show
ied
that this multiplication of matrices is associative, whenever it is defined.
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Especially, if (a);, is a I x A matrix, (0),; a 4 x I matrix, then their ordi-
nary matrix product is the I X I matrix, which can be calculated by the
rule:

. s (ab)y it x =2,
(a)in(b)].j "—\ (0) if » + 2.

Let now be P = {p,;} a fixed regular /A > I matrix over G®. Construct
the set S of all I x A matrices of the type ();,, « ranning through all elements
of the group G, together with the zero matrix (0). Introduce in S a multiplicat-
ion by the definition (z),, * (y);; = (¥)i. P(y);;, where the product on the
right is an ordinary matrix product. Thus

(4) (@)s, * @)in = (@Pyi¥)iz -

Then S is a completely simple semigroup with zero. Conversely, every comple-
tely simple semigroup with zero can be constructed in this manner by choosing
suitably I, A, the group G and a regular matrix P over G(®. Card I and card A
are the cardinal numbers of the set of different minimal right and left ideals
of 8, respectively, G is isomorphic to the maximal groups in Sand Pisa A x [
matrix which can be explicitly constructed (but not in a unique way).

To emphasize the means needed to the construction of S we shall write
occasionaly S = S[I x 4, G, P]. Rees proved also that S[I x A, G, P] is
isomorphic to S[I X 4, G, P] if and only if there is an automorphism 9 of G
and two monomial matrices A, B over G® such that P, = AP?B.3) Especially,
if P, is a matrix which arises from P by row (or column) interchanges, then
S[I x A, G, P,] is isomorphic to S[I x A, @, P,].

From (4) we conclude easily that each idempotent € S[I X A, G, P] can be
obtained in the following manner: Choose in P a (x, ¢) position for which p,; + 0
and construct (p,;;l)i,‘, then this matrix is an idempotent € S.

Let now S be a completely simple dual semigroup. Write § in the form
S = 8[I x A, G, P]. We wish to know what follows from the fact that S
is dual. Let be

e= (P ¥ 0, f=(P5n *0,
two different idempotents ¢ 8. According to the definition we have
ef = (P2 P03z = (050l iz » fe = (031 P(P,,_il)i,, = (P/ﬁl77li7’,:il)5x .

Since p,; * 0, p;; * 0, the relation ef = fe = 0 (which is necessary and suffi-
cient for S to be dual) implies p,; = 0 and p;; = 0. This means: If in P we
have in the (%, 7)th position and in the (4, j)th position non-zero elements,
then there are necessarily zeros in the (x,7)th position and in the (4, 4)th
position.

3) P%is the A4 X I matrix the (%, 2)th entry of which is p,*.
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Let be p,, # 0. Since P is regular there exists to every j e I an index 1€ A
such that p;j + 0. Therefore we have p,; = 0 for every j e I with the exception
of j =4, i. ¢. P contains in the »-th row a unique element 4 0. Analogously
there is a unique non-zero element in the i-th column. P is therefore a moromial
matrix, hence card A = card I. Since to a given x e /1 there is exactly one
t € A such that p . + 0, the sets I and /A are in a one-to-one correspcrdence.
We may therefore assume that I = 4. By a suitable numeration we may arrange
that p;; will be the non-zero element in the ¢-th row or column of the rearranged
matrix P. The new matrix P, thus obtained is of the form P, = (¢ ), where
7, =0 for i & x, and 0 % ¢, ¢ @ for every 7 el. Define P} = (q:‘i), where
g¥ =0 for ¢ + x», and ¢f; = ¢5;". Then PP} is the I x I “‘unit matrix’’ E,
i. e. a I > I matrix in which exactly the main diagonal elements are + 0
and equal to the unit clement of the group 6.

The interchanges which lead from the matrix P to E turn out to the multi-
plications of P by monomial matrices. Since a product of monomial matrices
is again a monomial matrix we can state that our original semigroup S is
irsomorphic to the semigroup S[I x I, G, E].

Now with E instead of P in (4) the *-multiplication reduces to the ordinary
matrix multiplication. Hence a completely simple dual semigroup is isomorphic
to the set of all 7 x I matrices (x),; (where x runs through all elements e ()
together with the zero matrix; where the multiplication is the ordinary matrix
multiplication.

Conversely, consider the semigroup S, of all 1 X I matrices of the type
(x);; (e @, G a group) together with the zero matrix (0), where the multi-
plication is defined by

IV R
() ;(y)rs = N(0) if g E.

This is a completely simple semigroup with zero. The non-zero idempotents
e S, are clearly the matrices (e),;, 7 € I, where e is the unit element of the group
(. Since for ¢ & j we have (), . (e);; = (0), S; is a dual semigroup.

We have proved: :

Theorem 4,3. Let I be any set of indices and G©® = G v {0} a group with
zero adjoined. Construct the set S of all I x I matrices over GO in which at most
one element s =+ 0. Then the set S under the usual matria multiplication (as
defined above) is a completely simple dual semigroup. Conversely, every completely
simple dual semigroup is tsomorphic to a semigroup constructed in this manner
with a switably chosen set of indices I and a suitably chosen group G.4)

Remark. It follows from a result of Clifford (see [14], p. 340) that the
semigroups described in Theorem 4,3 are just Brandt groupoids with a zero

4) This theorem bears a resemblence to Theorems 5 and 8 of Kaplansky’s paper [6].
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adjoined (as defined in [14]). They can also be characterized as completely
simple inverse semigroups, as shown by W. D. Mu~~ [15] (see particularly
section 4,2).49)

5. THE RADICAL AND MAXIMAL IDEALS

In this section we show (among other results) that in a dual semigroup S
satisfying some very general conditions the radical can be characterized as the
intersection of all maximal two-sided ideals of S.

Lemma 5,1. Every minimal left ideal of a dual semigroup S is contained
i a minimal two-sided ideal of S.

Proof. It is well known that if L is a minimal left ideal of S and ce S,
then either Lc is also a minimal left ideal of S or Lc = 0. The second possibility
holds if and only if ¢ € R(L). Denote Z =S — R(L) + 0 and Z = {z, | v e H}.
We then have LS = L . {R(L) v Z} = LZ = U [Lz,]. The summands on

veH
the right need not be all different, but omitting repetitions we get a decom-

position .S = U [Lz,] in which Lz, & Lz, for u + % (u, » € H,). Since L c LS

veH,

(see Lemma 1,6), there is an z,, x € H,, with L = Lz,. Ncte further: if M is

a two-sided ideal and M n Lz, + 0, then, with respect to the minimality

of Lz, (ve H,), we have Lz, c M. .
Suppose now that M is any two-sided ideal of S with 0 = M c LS and M

does not contain L = Lz,. Then M can be written in the form M = U Lz,,
veH,
where « does not belong to H,. Since M is a right ideal, we have

(5) [U (Lz,)] S c U (Lz) .
veH, veH,

For any fixed chosen z, (v € I,) the set z,§ cannot contain z,, since otherwise
(5) would not be satisfied. The right ideal 2,8 contains z, (see Lemma 1,6),
while R(L) does not contain z, Hence, with respect to the maximality of
R(L), we have 2,8 u R(L) = 8. This constitutes an apparent contradiction,
since z, is contained neither in 2,8 nor in R(L). We have proved that any two-
sided subideal # 0 of LS contains L.

It is now easy to prove that LS is the minimal two-sided ideal of S contain-
ing L. Let M, be any two-sided ideal of S contained in LS. Since L c M,
we have L c M, c LS. Multiplying by S to the left we get LS c M ,S c LS2.
But since § = 82, and M S = M, (see Corollary 1,6a), we have M, = LS.
This proves our Lemma.

42) T am indebted to Professor A. H. CLIFFORD for this remark.
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Remark. An example given in [11] (p. 255) shows that Lemma 5,1 need
not hold in a semigroup which is not dual.

Lemma 5,2. Let S be a dual semigroup with a nilpotent radical N. Then every
minimal left (right, two-sided) ideal of S is contained in R(N) n L(N).

Proof. Since every minimal left (right) ideal is contained in a minimal
two-sided ideal, it is sufficient to prove our Lemma for minimal two-sided
ideals.

Let M be a minimal two-sided ideal of S. The set NM is a two-sided ideal
of S and NM c M n Nc M. Since M is minimal we have either NJM = 0
or NM = M. The second possibility cannot hold since NM = M implies
NeM = M for every integer p > 0. But since N7 = 0 for some 7 > 0 this
would imply M = 0, contrary to the supposition. The relation NM = 0
implies M c R(N). An analogous argument shows that M c £(N); hence
M c R(N) 0 E(N).

Lemma 5,3. Let be {L* |x e A}, {R¥ |x € Ay}, {M% |x € A} the set of all ma-
ximal left, right, two-sided ideals, respectively, of a dual semigroup with a nil-
potent radical N. We then have: Nc Y LY, Nc A R¥, Ncn M*

xed, xedy xed
Proof. The set ¢(R¥)is a minimal left ideal of S. With respect to the forego-
ing lemma we have L(R¥)c ¢N). This implies N c R¥ for every « e,

Hence N c A RE. The remaining statements can be proved analogously.
axed,

In the following we shall impose to the semigroup S the following minimal
condition:

Condition A. S is a semigroup in which every non-nilpotent two-sided ideal
of S contains at least one left and at least one right minimal non-nilpotent ideal
of 8 (i. e. a left ideal L such that for any left ideal L’ with 0 € L’ ¢ L we have
L’e = 0 for some p > 0, and a right ideal R such that for any right ideal
0C R’ ¢ R we have R'> = 0 for some ¢ > 0).

The following Lemma is known (see Clifford [4], Theorem 5,2, p. 842):

Lemma 5,4. Let S be a semigroup with a nilpotent radical N satisfying Condai-
tion A. Then every left (or right) non-nilpotent ideal of S contains an tdempotent
element not in N.

Theorem 5,1. Let S be a dual semigrowp with a nilpotent radical N satisfying
Condition A. Let {R* |x e A,} and {M* |x e A} be the set of all maximal right
and maximal two-sided ideals of S, respectively. Swppose further that every right
ideal of S is contained in a maximal right ideal of S. We then have: N = f} R* =

xedy
=N M=

xed
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Proof. a) Denote P = M} R¥. To prove N = P, it is sufficient (with respect

wed,
to Lemma 5,3) to show that P c N.

Suppose P ¢ N. According to Lemma 5,4 the right ideal P contains then
an idempotent e; + 0. Consider the left ideal Se,. The supposition that every
right ideal is contained in a maximal right ideal implies that every left ideal
contains a minimal left ideal. Denote by L a minimal left ideal of S contained
in Se;, 0 % L c Se,. Since R(L) is a maximal right ideal of S, we have e, ¢
e P c R(L). Hence Le; c LR(L) = 0. On the other side L c Se, implies Le, =
= L + 0. This contradiction proves P c N.

b) We prove now N = f} M*. Note first: Since (according to Lemma 5,1)

axc A
every minimal left ideal is contained in a minimal two-sided ideal, every

maximal right ideal R* of S contains a (unique) maximal two-sided ideal
MY, of S. (Different R may contain the same M},,.) Hence RY > M}, > N
and N = O R} > O\ M}, > O M >N. This proves N = 0 M3

T(x
xedy xed, xed aed

Theorem 5,2. Let S be a dual semigroup with a nilpotent radical satisfying
Condition A. Suppose further that every left and right ideal of S is contained in
a mazximal left and right ideal of S, respectively. Then we have R(N) = ¢(N).

Proof. Theorem 5,1 implies ¢(N) = U LE¥). Since L(K¥) is a minimal

aedy

left ideal we have (see Lemma 5,2) L(R¥)c {N) n R(N) for every « e A,.

Hence Y{(N) c {N) n R(N), which implies &(N) c R(N). :
Now supposing that every left ideal of S is contained in a maximal left

ideal of S, we can prove analogously as in Theorem 5,1 N = f} L*. We then

oxedy
have further R(N) = U RL¥) c R(V) 0 L&), hence R(N)c {N). This
oxed;

proves Theorem 5,2.

It is of some interest to clarify the relation between N and R(N) respectively
().

If S + 0and N = 0, we have 0 = N S R(N) = {N) = S. Example 2 shows
that N & R(N) is possible also in the case N = 0. In the most interesting
case, namely if in the sense of Theorem 2,2 we have S = 0, we can prove
the following theorem:

Theorem 5,3. Let S be a dual semigroup with a nilpotent radical N + 0 satis-
fying Condition A. Assume further that every two-sided ideal of S different
from 0 has a non-zero intersection with N. Then we have R(N) c N.

Proof. Suppose R(N) ¢ N. Since R(N) is then non-nilpotent, it contains
a left minimal non-nilpotent ideal L c R(N) (i. e. a left ideal L such that
for any left ideal L’ with L’ ¢ L we have L’e for some ¢ > 0). According to
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Lemma 5,4 L contains an idempotent e # 0. Since Le c L . L c L, further Le
is non-nilpotent, and L minimal non-nilpotent, we have Le = L.

We have necessarily L n N 4 0. We prove it indirectly. L n N = 0 would
imply that L is a minimal left ideal of S (in the usual sense that there is no
left ideal L' # 0 of S with L’ $ L). According to Lemma 5,1 LS would be
a minimal two-sided ideal of S. Since LS n N + 0 we would have (with
respect to the minimality of LS) LS n N = LS, hence LS c N, and L c N,
contrary to the supposition.

Denote L n N = L, + 0. The relation L, c Le implies that every ae L,
can be written in the form @ = be, b € L, hence a¢ = bee = be = a, i. e. Lie =
= L;. But on the other hand we have Le ¢ NL c NR®(N) = 0. This contra-
diction proves our Theorem.

Remark. Under the suppositions of Theorem 5,3 N = R(N) holds if and
only if N2 = 0. For, R(N) = N implies NR(VN) = N2 = 0. On the other
hand N . N = 0 implies N c R(N); hence N = R(N).

6. THE DUALITY OF THE DIFFERENCE SEMIGROUP S/N

Let. § be a semigroup and I a two-sided ideal of S. The difference semigroup
S/I = 8 is a semigroup obtained from S by collapsing I into a single zero
element 0, while the remaining elements of S retain (up to an isomorphism)
their identity. Thus there is a one-to-one correspondence ¢ — @ between the
elements @ ¢S not in I and the non-zero elements @ ¢ S such that ab — ab
if ab ¢ 1, and ab = 0 if and only if ab e 1.

The homomorphism S — § induces a one-to-one correspondence between
the class of all left (right, two-sided) ideals L of § containing I and the class
of all left (right, two-sided) ideals L of S.

If S is dual, I any two-sided ideal of S, then S/I need not be dual. This is
shown on the following example:

Example 6. Let S = {0, a, a,, as, .a,4} be a semigroup having the following
multiplication table:

Ay Ay Uz Q4
o0 0 0 0 0
a |0 0 0 0 a
a, | 0 0 a 0 a,
a |0 0 0 a; a,
1 a, | 0 ay- a, az; a,

The lattice of ideals has the graph in Fig. 4.
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S is a dual semigroup with the radical N = (0, a,, a,, a3). Choose I = R(N) =
= (0, a,). Then S/I = {0, a,, a;, ay} has the following multiplication table:

|

[e=]

I 1 ol
o
ol ol ol ol
2l ol ol ol 8l
ol ol ol 8
SIRSUES
&

S
o

1]
@

S
@
~

SERSY
W

The lattice of ideals has the graph in Fig. 5.

S S

N=0,a,,a,,a;)

{0a,a,)

R =00a,

0
Fig. 4. Fig. 5.

The semigroup S/I is clearly not dual. (Note on the other hand that S/N is
dual, being a group with zero.)

In what follows we shall study the structure od SN, where N is the radical
of S.

The following Lemma is known (see f. i. Clifford [4], Theorem 5,1, p. 842):

Lemma 6,1. Let S be a semigroup with a nilpotent radical N. Then S|N s
a semigrowp without nilpotent ideals.

The fundamental problem is whether for a dual semigroup 8 also S/N = 8§
remains dual.

Suppose that § is dual and has a nilpotent radical N. According to Lemma
5,3 every maximal two-sided (left, right) ideal of S contains . This implies
that there is a one-to-one correspondence between the maximal ideals of §
and the maximal ideals of S/N. If M* is a maximal two-sided ideal of 9,
then M* = M*|N is the corresponding maximal two-sided ideal of S/N.
Conversely, if M* is a maximal ideal of S/N the inverse image of M* in the
correspondence & — S/N is a maximal ideal of §.

Remark. The one-to-one correspondence between the maximal ideals of S
and S/N is essentially due to the fact that every maximal ideal of § contains
N. Example 3 (in which N is not contained in the maximal ideal J; v J,)
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shows that in general such a one-to-one correspondence need not exist. In
this example S has three maximal ideals (namely J, u N, J, u N and J, u J,),
but S/N has only two maximal ideals (which are isomorphic to J, and J,).

Theorem 6,1. Let S be a dual semigroup with a nilpoient radical N satisfying
Condition A. Suppose that every right and left ideal of S is contained in @ maximal
right and left ideal of S, respectively. Then S|N is a'dual semigrowp.

Proof. A. Since § + N, S/N contains non-zero elements and it is a semi-
group without nilpotent ideals. If {M? | & € A} is the set of all maximal two-
sided ideals of S, we have (see Theorem 5,1) N = ) M*. With respect to

aed
the one-to-one correspondence between the maximal two-sided ideals of S

and the maximal two-sided ideals of S/N the last relation implies 0 = ) M,

axed
where M* runs through all maximal ideals of S.

Denote by R(A4) and £(A) the right and left annihilators of 4 in S. If
card 4 = 2, we can use Lemma 3,1 according to which: a) @, = ﬁ(ﬂf) =
= Y(M*) (for every « e A) is a minimal two-sided ideal of § (hence a simple
semigroup); b) S=UQ,, and Q,Q; =Q, 0 Q; =0 for x + peA. The

aed
same result holds (see Remark to Lemma 3,1) if card A4 = 1. For then N

is the unique maximal two-sided ideal of S and S/N is a simple semigroup
(with zero 0).

B. Condition A implies for the difference semigroup S that every Q, (being
a two-sided ideal of S) contains a minimal left and right ideal of S (different
from 0). Since @, is a minimal two-sided ideal of 8, @, is the sum of all minimal
left ideals of S contained in @, (see f. i. Clifford [4], Theorem 2,1, p. 836).
Analogously @, is the sum of all minimal right ideals of S contained in @,,.
Therefore we can write @, = U R)” = U L{”, where {R{ |ve,} and

Ay yeHy

(L |v e H,} is the set of all minimal right/resp. left ideals of S contained in
Q,. Since for & + B we have @, . Q; = 0, every L\ resp. R{® is at the same
time a minimal left resp. right ideal of @,,. )

Note for further purposes that S can be written as a class sum of all minimal
right (left) ideals of S in the form § = U { U B} = U { U L{™}. This im-

aed vedy xed veHy
plies that we obtain a maximal left ideal of S by taking the sum of all

minimal left ideals of § except one of them and every maximal left ideal
of § can be obtained in this manner. Analogously for maximal right ideals.
C. To prove that S is dual it is sufficient to prove that @, is dual for every
x e (see Theorem 3,2). To prove that ¢, is dual we have to prove that for
every couple of idempotents e + f@ e @, we have e¢@jf@) — 0 (see Theorem

4,2).5)
5) Since @, contains minimal left and right ideals, it contains idempotents and every

minimal left ideal of @, is generated by an idempotent, i. e. it is of the form Q4 . e(*)
with a suitably chosen idempotent e(® e @,.

224



We return, for a while, to the original semigroup S. Let e + 0 be any idem-
potent ¢ S. Consider the left ideal Se of S. Let I be a minimal left ideal of S
contained in Se.®) The relation [ c Se implies ¢ ={. Now for the maximal
right ideal R(Y) we have [R({) = 0, hence [eNR([) = 0, i. e. eR([) c R()).
Since eR(l) c eS, we have eR(l) c eS n R(l). Since further R(I) does not
contain e,?) the right ideal eS n R({) is a right subideal of S properly contained
in eS. But eS is a minimal non-nilpotent right ideal of S.8) Hence &S n R({) c
c N. We proved: eR(l) c N.

Note now that every non-zero idempotent e ¢S is mapped by S — 8 in
a non-zero idempotent ¢ S. Returning therefore to the semigroup § we can
state the following result: If e is any non-zero idempotent ¢ S and B* is the
maximal right ideal of § which does not contain e, we have eR* = 0. By an
analogous argument we get L*e = 0, where L* is the maximal left ideal of S,
which does contain e.

D. Let now be e® # 0 a fixed chosen idempotent e @, and let L{¥ and
RL";) be the minimal left and right ideal, respectively, of ), containing e(),
hence L{? = Q,e@ and R = e@®Q,. We prove that L{? contains a unique
non- zero idempotent (= e@®).

We have L . R = Qe .e*Q, = Q, and RPLY = eQ,Q,e + 0.
This implies that R(Y . L{ equals to R(Y n L{* and it is a group with zero.
(See the proof of Theorem 4,1).

Since U R is contained in the maximal right ideal of S which does
vedg, v
not contain e@®, we have

(6) e{ U R =0,
vedg, v,
and analogously

(7) (U I®e@=0.

veHy, v,

The relation (6) implies

(8) Qe { U R =0, ie LI{ U R =0.
vedy, v,y vedg, v,
Now
L = 1O 0 Q. = [L 0 BP0 [LY 0 (U B
vedy
v g

6) Such a minimal ideal [ exists, since according to the supposition S is dual and
every right ideal is contained in a maximal right ideal of S. It is, of course, possible that [
is nilpotent. It can be shown that this is the case if and only if Se S 0 N = 0.

) e e R() would imply le CIR() = 0, i. e. e = 0, which is a contradiction to
le=1=0.

8) If namely R C eS were a non-nilpotent right ideal properly contained in eS, R=+0
would be a right ideal of S properly contained in eS. Now if ¢ ¢ Q,, we have eS = ¢ .
A{ U Q,} = éQ,. But eQ, is a minimal right ideal of @, and it cannot contain a proper

xed —
right subideal = 0.



The first summand (being a group with zero) contains a unique non-zero
idempotent. The second summand cannot contain an idempotent #+ 0 since
otherwise the relation (8) would not hold. This proves that L{” (and hence
every minimal left ideal of @,) contains a unique non-zero idempotent.

E. Denote the unique non-zero idempotent contained in L{Y by . We
then have L = Q. and @, = U L = U [Q.&£], where {*|ve H,}
veHy veHy
denotes the set of all different non-zero idempotents € @,. Now with respect
to (7) we have [ U Q,¢{7] & = 0 for every idempotent ¢{. Hence ¢* . ¢§) = 0
veHy
v A

for every couple «{? #+ €. This completes the proof of Theorem 6,1.

7. DUAL SEMIGROUPS WITH A UNIT ELEMENT

Baer proved: A ring S satisfying the minimal condition for descending
chains of ideals and in which 2 € Sz holds for every « € S contains a left unit.
A number of analogous results concerning rings can be found in his paper [1].
Such theorems do not hold for semigroups. Ivery dual semigroup satisfies
xeSx n xS for every x e S, but S need not contain (left, right, two-sided)
units. This can be shown on the example of the semigroup S = {0, a, a?, b}
with the multiplication table:

0 a a*> b
olo o o o
a 0 a*> a O
a0 a a* 0
b [0 0 0 b

This semigroup is dual and does not contain a unit element.

It seems to be of some interest to study the influence of the existence of
a unit element on the structure of §.

Suppose that § is dual and it bas a right unit e,. Consider the right ideal
e,S. We have {(e,S) = {x |xe,S = 0}. Since we, = x, we have {(¢,8) = {a |28 =
= 0}. Now in a dual semigroup xS = 0 implies * = 0. Therefore ¥(¢,5) = 0;
hence R[ e, S)] = ¢,S = S. The relation ¢, = S shows that e, is also a left

unit of S. We have proved:

Lemma 7,1. 4 dual semigroup containing a one-sided unit conlains a (unique)
two-sided wunait.
Let e be the unit element of 8. Write in the sense of Theorem 2,2 § =

=8"ul8". Ifeel, we have 8" = "¢ c 8"S" = 0. If ee S”, we have S’ =

>

= S’ec 8’S” = 0. Hence:
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Lemma 7,2, Let S be a dual semigroup with a unit element. Then:
a) etther 1s S a semigroup without nilpotent ideals,

b) or S has a proper radical N and every two-sided ideal of S has a non-zero
intersection with N.

The case a) can be easily settled.

Theorem 7,1. A dual semigroup without nilpotent ideals containing a unit
element is a group with zero.

Proof. The existence of a unit element implies that S contains a maximal
left ideal L* with the property that every left ideal of S and different from S is
contained in L*. (See f. i. [12], p. 379.) Analogously there is a unique maximal
right ideal R* and a unique maximal two-sided ideal M* of S.

Since S is dual, we have, according to the Supplement to Theorem 3,4,
M* = 0. Hence S is a simple semigroup (with a zero element). Now R(L*)
and £(R*) are minimal right and left ideals of S, respectively. A simple semigroup
containing minimal left and right ideals is completely simple. A completely
simple semigroup (with zero) containing a unity element is known to be
a group with zero. (See Rees [10], p. 394.) This proves Theorem 7,1.

Theorem 7,2. Let S be a dual semigroup with a nilpotent radical N #+ 0
satisfying condition A. Swuppose that S contains a unit element. Then the radical
1s the unique maximal two-sided ideal of S and we have S = N v G, N n G = 0,
where G is a group.

Proof. Analogously as in Theorem 7,1 the existence of a unit element
implies the existence of a unique maximal left ideal L*, a unique maximal
right ideal R* and a unique maximal two-sided ideal M*.

Theorem 5,1 implies N = R* = L* = M*. Now it follows from Theorem
6,1 that S/N is a dual semigroup. Since S/N is a semigroup without nilpotent
ideals and it contains a unit element, we conclude from Theorem 7,1 that
S|N is a group with zero. Therefore S=Nu G, Nn G =90, and G is
a group. This proves Theorem 7,2.
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Pesome

O NYAJDBHBIX TTOJYIPYIIITIAX
IMTED®AH TIBAPI] (Stefan Schwarz), Bpatncaasa

ITycrs S — monmyrpynmna ¢ xysem 0, S = 0. JleBsiM [mpaBbiM] anyIATOPOM
HenycToBo MHOsKecTBa A C S HaspiBaeTcsa MHOZKCCTBO

Yd) ={xeS|2d =0} [RA) ={reS|4x = 0]].

ITonyrpynmna HasblBacTCs AYaJdbHOI, eciy UL KaKkIOTO JieBoro wujeana L
n Kamgoro npasoro ujpeana R YR(L)] = L u R[YR)] = R. B srom ciyuae
npeofpasosanne L — R(L) n R — {(R) ompepessier B3aMMHO OJHO3HAYHOE
COOTBETCTBHE MEYK/Ly JICBBIMU M MPaBLIMI MleaJlaMi HOJIYTPynnsl S, 1 cOOTBe-
cTBYIOMue (II0NNBIe) CTPYKTYPHL JIEBBIX, COOTBETCTBEHHO TPABLIX, MealoB aHTH-
n30MOpPQHBL

Ilensro aToil crarbu ABIsAETCS W3yUCHWE CTPOCHMA NYallbHBIX IOJYIPYIM.

Beenem emé oxno nonsitie. Coenunenue N BceX HUIBIIOTEHTHBIX JIBYCTOPOH-
HUX WIeasoB mOJyrpynusi S HaseBaercs pammkaimom moixyrpymmst S. (B mo-
ayrpynne 6e3 HUIBHOTEHTHBIX UjealioB moynomsuM N = 0.)

B ormene 2 macrtosameil paboThl TOKAa3HBAIOTCS CIIELYIONAE TEOPEMBL:

Teopema 2.1. ITycmv S-Oyarvras noayepynna u [-deycmoponnuii udean uz S,
dasa komopoeo I n N = 0. Toeda I u R(I)-0yasvrvie noayzpynnot.
Kpome moeo, LI) = R(), RU) . I =1 RI)=0u 1 v RU) =S-S.

Teopema 2.2. Bearywo dyarvnyno nosyepynny ¢ paduraiom N moxncrno nped-
cmagums Kak coedunenue deyx deycmoponnux udeanos ¢ sude S = S’ u 8",
ede 8'S" = 8"S" = 8" n 8" = 0, npuuem caazaemvie obradarom caedyouumn
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ceoticmeamu: 1. Ecau N =0, mo 8" =8, 8" = 0. 2. Ecau N % 0, mo S’
uau 0, uau — dyasvras noayepynna 6e3 nuavnomenmunix udearos, S"-0yarvrasn
noayepynna ¢ padukasom N, 6 komopoil ecaruii deycmoponnuii udear =+ 0
umeem ¢ padukanom nepeceverue + 0.

B orpmene 3 morasniBaercs ciefylolias TeopeMa:

Teopema 3.3. [lycmv S-noayepynna 6e3 HULbROMEHMHBL UOCAA08, 8 KOMOPOLE
ecaruil dsycmopornull udean codepacum no kpaiineti mepe 00urn MUHUMALLHBILE
dsycmoponnuii udean (£ 0). S seagemes Oyarvroil noayepynnoil moeda u MosvEo
mozda, ecau S-coedunenue 6cexr MUHUMAALHLL O6YcmMOponnuxr udearos uz S u
EaocOulil u3 MUNUMAALHLL 08YCMOPOHHUL Udearos asisemcs Oyasbnol noay-
epynnod.

Haiorest Toske apyreie GopMyIMPOBKU ITOTO pe3yJIbTaTa.

Bearuit MuHMMAaIbHBIT JIBYCTOPOHHMI mieas IoJyrpymnsl S, Heobiagao-
meil HUABTOTEHTHRIMI UjlealiaMi, ecTh NIpocTasd TOJYrPYNTa (3HAUNT, HEe NMeeT
HUKAKUX coOCTBEHHBIX jaBycropoHHuX wmyueasioB = 0). Ilpocras nomyrpymnma,
uMeolliass 110 KpaiiHell Mcpe OJMH MWHUMAJBLHBIA JIEBBII M MITHUMAJILHBIK
NpaBbIil Waealsl, Ha3hBaeTCHA BIOJHE NPOCTON.

B reopeme 4, 1 u 4, 2 moxassBaeTcA:

Bnoane npocmas noayepynna (¢ nysem) asasemes 0yaivroil mo2da U mosbko
moeda, ecau 048 6Cakol napvt UOCMNOMENIN0G e, =+ ¢4 € S UMeem Mecmo cOOMHo-
wenue eqey = 0.

B nampmeiimem JlaeTcA npejcraBieRne BIOJHE NPOCTHX JYadbHBIX IOJY-
rPYNI B BHje MAaTPUYHBIX HOJTYTPYHIL.

ITycrs I — MHOKecTBO uMHACKCOB U G = G U {0} — rpynna ¢ BHemHe
npucoeynuenubiM nyiem. Ilocrpoum MuosmkectBo S BceX Tak Has3hIBACMBIX
I X I marpun {a;}(¢, kel) nag G, npudem Besikas ,,Marpuna‘‘ mmeer He-
GoJlee ONHOTO EJIEMCHTA, OTIMYHOTO OT Hyssi. Torja npu ecrecTBEHHOM oIpe-
JICJICHNH YMHOKEHUsT 9TuX ,,Marpun’’ S sBIsercss JXyalbHOH NOJYrpyNIIOil.
Ob6parno, KaskIast BHOJIHE IPOCTas JAyaJbHas HOJXYrpymma usomopdua momy-
rpynme, MocTpoeHHOI TakuMm obpas3om npm yaoOHo m3bpaHHOM MHOKectBe [
n ynooHo usGpansoi rpymmne GO, .

B oresne 5 noxasbiBaloTCs pasiMuiMe TEOPEMBI, KacaIONNecs: CBABH MEHRLY
MaKCHMaJIbHBIMK UJICAJIAMHU M PajinKaJIOM.

Craskem, uro S yjoBierBopsier yeaoBuio A, eciiM BCAKNIT He-HUJIBIOTCHTHBIA
JIBYCTOPDOHHMI WAeaJ mMMeeT MO KpaliHell Mepe OAMH MUHUMAJBHBIH JIeBHI
1 MUHMMAJILHBIL 1IPaBblil He-HUJIBIIOTEHTHLIH Hieall.. Vimeer MecTo, Hanpumep,.
CIeLYIONasl TeopeMa:

Teopema 5.1. ITycmv S-0yarvras noayepynna ¢ HUALNOMELMHBIM PAOUKALOM,
ydosaemeopaiowas ycaosuro A. Ilycmv {RE | e Ay} u {M¥ | x e A} — mno-
HceCmea 6cer MAKCUMALOHUIE NPABVE, COOMBECMEEHHO, 06YCMOPONHUX UOeanos
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us S. Ecau ecaruii npagwii udeas uz S codepycumcs 6 HeKOMOPOM MAKCUMANb=

nom npasom udease us 8, mo N =  R* = N M*.
aed, aed
Ecan I-gBycTOpOHHMIT Mieall MOAYTPYNNEL S, TO PA3HOCTHON IMOJIYTPYIIOR
S/I pazymeeMm HOJYrpyIily, KOTOPYIO B OCHOBHOM IIOJIYYMM OTOKIECTBIIEHIEM

Becex diiementoB us / ¢ C/IMHCTBEHHBIM €JIEeMEeHTOM O, B TO BpeMs KaK CMBICJII
OCTaJILHBIX dJfeMeHTOB 13 S ocrasum Oe3 usmenenusd. B orpesie 6 JOKa3pIBaeTCA:

Teopema 6.1. Ilycmv S-Oyaavnas noayepynna ¢ nusbnomenmuum padura-
aom, yoosaemeopsowas ycaosuio A. Ilpednosomcum, wmo kancdvlil aecuiil
u npaguiii udean us S codepacumes 6 HEKOMOPOM MAKCUMALLHOM AGOM, COOTNEECTN-
eenno, npasom udease us S. Toeda S|N-0yanvras nosyepynna.

B orperne 7 jokasaHbl HEKOTOPHIE TEOPEMBI, Kacaloliecsl CTPOEHMs LyadbHbIX
NOJIYTPYHIII ¢ CIMHATEH.
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