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A THEOREM ON NORMAL SEMIGROUPS

STEFAN SCHWARZ, Bratislava

(Received April 14, 1959)

This paper contains a proof of a theorem concerning compact semi-
groups S, the idempotents of which are contained in the centre of S.

Let S be a Hausdorff compact semigroup. If a is an element € S we shall
denote by I'(a) = I'y(a) the closure of the set {a, a? a®, ...}, and by I(a),
n = 2, the closure of {a”, a**!, a+2, ...}. It is known that I'(a) contains a

@0
unique idempotent e. In fact, A I',(a)is a(closed commutative) group containing

n=1

e as a unity element. We shall say that a belongs to e. The set of all elements
€ S belonging to e will be denoted K(e). Since every element e S belongs to
one and only one idempotent e,, S can be written as a class sum of disjoint
sets 8§ = U K(e,), where E == {e, | x € A} is the set of all idempotents e S.

eqeE
In general K(e,) need not be a semigroup. To each e, there exists a unique

maximal group G(e,) such that G/(e,) is the greatest subgroup of S containing e,
as unity element. Clearly G(e,) € K(e,). The group G(e,) is closed and we have
e, K(e,) = K(e,) e, = G(e,). An element a e K(e,) is contained in G(e,) if
and only if ae, = e,a = a holds. The detailed proofs of these statements
can be found in the paper [1].

In the same paper I proved the following theorem:

If § is commutative and if @ belongs to e, and b belongs to ¢4, then ab belongs
to eyep.

In a letter to the author Professor ALLEN SHIELDS (Ann Arbor, Michi-
gan) raised the question whether this statement can be proved for a wider
class of semigroups, especially for the so called normal semigroups. This note
contains an affirmative answer to this question. In fact we shall prove some-
what more, namely, that the statement holds if the set of idempotents is
contained in the centre of S.

Definition. A semigroup S is called to be normal if for every xe S we have:
xS = Szx.
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Lemma 1. In a normal semigroup S the set of all idempotents is contained in
the centre of S.

Proof. Let  be any element ¢ .S and e an idempotent ¢ S. The relation
eS = Se implies that there exists an element u ¢ S with ex = we and an ele-
ment v e S with ze = ev. Now ex = ue implies exe = (ue) e == ue = ex and
xe == ev implies exe = e(ev) = ev = xe. Hence ex = xe which proves our
Lemma.

Remark. The converse of Lemma 1 need not hold. The semigroup S =
= {0, a,, a,, a;} with the multiplication table

0 a, a, a3
0 rdﬁo' 0
a, i 0O 0 O 0
a0 0 0 0
a3| 0 0 a a

has a unique idempotent 0 which commutes with every element e S, but

Sa, + a,8.

Lemma 2. Let S be a Hausdorff compact semigroup and aeS. Let X =
= {2, %y, 2, ...}, ¥ = {yy, ¥, j3,. .} be two sequences of elements such that
a = x,y, holds for every integer n = 1. Then to every & ¢ X there exists anne Y
such that a = &n.

Proof. The proof follows indirectly. Suppose that such an % does not exist.
This means: For every 7, ¢ Y we have a =+ &n,. Find to every #, two neigh-
bourhoods U,(a) and V(%n,) with U,a) o V(&n,) = @. With respect to the
continuity of the multiplication we can further find neighbourhoods U (&),
U(n,) such that U/ &) U(n,) SV (&y,) holds. Hence U,(a) n U (&) U(n,) = @
and a non ¢ U,(£) U(n,). Consider now the set U U(z,), where %, runs through

- g _
all elements ¢ Y. This constitutes a covering of the compact set ¥ by means of
k

open sets. There exists therefore a finite covering such that YSU Un,,) =
i=1
k

= @), and we have a non e Y U, (§) . U(y,). If now U(&) is a neighbourhood
i=1

of & such that U(§) S U, () n ... n U, (&) we have anoneU(£).@. On the

other side U(&) contains at least one element e X, say z,. The element y,,

(with the same index m) is contained in ¢ and we have therefore ¢ = x,¥,, ¢

e U(&) Q. This contradiction proves our Lemma.

In the following we retain the notations introduced at the beginning of
the paper. Before proving the main theorem we first prove:
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Lemma 3. Let S be a Hausdorff compact semigroup in which every idempotent
1s contained in the centre of S. Let be x € K(ey), y € K(e,). Then xye,e, is contained
in the maximal group G(e,e,).

Proof. According to the assumption we have e, e I'(x), e, e I'(y), hence
ee5 € I'(x) . e,. If B is any subset of S and b € S it follows from the continuity

of the multiplication b . B € bB. We have therefore I'(x) e, = {x, a2, a?, ...} ¢, C

C {we,y, a%e,, X3¢, ...} = {(wey), (wey)?, (wey)?, ...} = I'(we,). Hence ee, e I'(xey),
i. e. ze, € K(e,e,). By the same argument we get ye, € K(e,e,). Now, as remarked
above, we have K(ee,) . e;e, = G(ee,). Therefore the elements we, . ee, =
= we,e, and ye, . ee, = ye,e, are elements of the group G(e,e,) and so is their
product xee, . ye;e, = wye,e,. This proves Lemma 3.

Theorem. Let S be a Hausdorff compact semigroup in which every idempo-
tent 1s contained in the centre of S (in particular, a Hausdorff compact normal
semigroup). If x belongs to the idempotent ey, y belongs to the idempotent e,,
then xy belongs to the idempotent e e,.

Proof. We have to show that x e K(e,), v € K(e,) imply ay ¢ K(ese,). We
prove it in three steps.

a) Suppose that zy € K(e), i. e. e ¢ I'(xzy). We then have ejene € ee,I'(xy) C
C I'(xye,e,). According to Lemma 3 we have I'(ayee,) S G(ee,). Since ejeqe
is an idempotent and G(e.e,) contains the unique idempotent e,e,, we have
€126 = €,€,.

b) Consider the group J = M I',(xy) c G(e). Since xy.eeJ, we have

n=1
xy) = xy(eJ) = (xye) J = J, hence xyJ == J. There exists therefore an element
aedJ with aya = e. Denote ya == b. The relation e = zb implies e = e =
= e(xb) == xeb = x(ab) b = 22?2, and by induction e = z7b" for every integer
n = 1. Now we use Lemma 2. According to this Lemma there exists to the
element e, e I'(x) = {x, 2% 2%, ...} an element BeI'(b) such that e = ¢ B.
But then ee; = (¢;B) ¢, = ¢,B = ¢, hence ee; = e.

Analogously Jay = J implies the existence of an element ¢ € J with cxy = e.
Denoting d = cx we have dy = e, and e = ¢* = e(dy) = dey = d(dy) y = d*y>.
By induction: e¢ = dy" for every integer m = 1. According to Lemma 2
we can find an element D e I'(d) such that e = De,. This gives finally ee, =
= (De,) e, = De, = e, hence ¢e, = e.

c) The relations eje,e = e;e, and e = e,e = ee imply together ee, =
= e,€,6 = (e4¢) (e,) = e . e = e. This proves our Theorem.

Corollary 1. InaHausdorff compact semigroup S in which every idempotent
is contained in the centre of S the elements xy and yx belong to the same
idempotent.

Corollary 2. Under the same assumption every set K(e) is a semigroup.
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Peswowme
OB OIIHON TEOPEME, KACAIOIENCA HOPMAJILHBIX TTOJIYTPVIL
HITEDAN TBAPI[ (Stefan Schwarz), Bparnciasa

yers 8 — xaycmopdosa Gurommarrrasi noiayrpyrua. Crasem, uro a e S
HPUHAPICHUT K MAEMIOTEHTY e, eCJIN e sBI1eTCs (eJIMHCTBeHHBIM) MIeMIOTe -
TOM 3aMbIKanmsa MHO;KecTBa {a, a2, a®, ...}

Homyrpynny S HasbiBaeM HOPMAJIBHOM, ecau jyisi Besxoro e S xS = Sz.

Ileapo HacTOsIEH 3aMeTKM ABIAETCH JIOKA3aTEIbCTBO CJEAYIOIEro yI-
BePIKICHUA:

Ecau S8 — bukomnarmmas xaycdopgosa noayepynna, udemnomernmsl Komopoi
codeparcames ¢ yenmpe S (6 wacmmnocmu, ecau S AAACMCS HOPMAALHOL), U eCAU
X npunadaexncum k ulemnomenmy e, U y NPUHAdIEHcUm k udeMnOmenmy e,
mo xY NPUHAOIEHCUM E UOCMNOMEHMY €16,.
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