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Yexoca0BANENIT MaTeMaTHdecKHil xypHaa, T. 10 (85) 1960, Ilpara

STOCHASTIC APPROXIMATION METHODS

VAcrLav FaBian, Praha

(Received March 25, 1959)

Some modifications of known approximation procedures are con-
sidered and general theorems are proved, which make possible the
study of their convergence.

1. Introduetion. Stochastic approximation methods deal with the problem
of approximating a point of the g-dimensional Euclidian space E, at which
a function f acquires its minimum (or maximum or at which the value of f
is equal to a predetermined number). Such problems are of great importance,
especially in connection with practical problems of finding optimum conditions
for concrete chemical and physical processes, where we usually can for every
point z in B, (which represents some fixed conditions of the process considered)
determine or at least estimate the number f(x) (which describes the ,,quality”
of the process with conditions characterised by ). Often the only further
knowledge that we have about f, is that f has some very general properties
(has a bounded second derivative etc.). The approximation process starts with
a point (or random vector) X, in K, and constructs successively a sequence
of random vectors X,, X,, .... The first » members X,, X,, ..., X,, being ob-
served, the sequence proceeds in such a direction Y, that it can be expected
that f decreases on the segment [X,,, X, 4+ aY,] at least for small a. Then the
length «, of the n-th step is chosen and X, is defined to be X, + «,Y,.

Methods for attaining optimum conditions were proposed even before the
origin of stochastic approximation methods, but only intermediate steps were
studied in the search for a minimum (factorial and other designs, the method
of G. E. P. Box and K. B. WiLsox ([4], 1951)).

Although till now the majority of papers are concerned with the one-di-
mensional case, it seems that the multidimensional case is of an incomparably
greater importance from the practical point of view. Indeed, in the one-di-
mensional case (and much less in the two-dimensional) a graphic description
of data makes possible subjective considerations, which may in some cases
be more efficient than a general objective scheme. However, in the three-
and more-dimensional case, the possibility of a graphic representation breaks
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down and the systematic approach is also inconvenient, since the number-
of points of a reasonably dense net in the domain of f increases geometri-
cally with the dimension. If we try to represent the function considered by
a polynomial, then, if we have to find an extremal point, the degree of the
polynomial must be greater than one and usually the representation does not
lead to a practical reduction of the problem. On the other hand, if stochastic
approximations are used, then, under certain conditions and in a sense to
be specified later in section 9, an increase in the number of dimensions from

g+1 (see (9.2)).

¢ — 1to g increases the number of observations by a factor of

Hence, and from practical experience, it seems that the use of multidimensional
stochastic approximation can lead to a substantial increase in the efficiency of’
experimental work e. g. in chemistry, engineering, zoology, medicine and so
on. Moreover it seems that some results in multidimensional stochastic appro-
ximation are new also in the particular case when the values of the function
considered can be determined precisely without any random error in which
case it deals with a problem in numerical analysis rather than in probability.
In this sense, the stochastic approximation methods are related to more
special methods (so called methods of the steepest descent, see e. g. [12]) and
seem to be more fit than they for use in constructing an automatic optimizer
(see [10]).
To fix the ideas let

(11) Xn+1 = Xn + “nYn )

where X,, Y, are ¢-dimensional random vectors, «, are random variables,
let us write %, = [X,, ..., X,,] and let us denote by M,(Z,) the conditional
expectation E4 Y, of Y, given Z,.

The pioneering paper of H. RoBBiNs and S. Monro ([15], 1951) deals.
with the (one-dimensional, i. e. ¢ = 1) problem of finding a root of an equation
R(x) = 0. Under somewhat stronger conditions than are those of the following
theorem, Robbins and Monro proved the convergence of X, to the solution &
in probability; under the conditions of the following theorem, the convergence
with probability one was proved by J. R. Brum [1] in 1954.

(1.2) Theorem. (Robbins-Monro method.) Suppose that R is a function.
defined on K, = (— o0, + o), that
(1.2.1) sup R(z) <0, inf R(x) >0

1 1
-k<x_®<_i E<xf@<k

for a (unknown) number O and every natural number k and that there exist
constants A, B such that

(1.2.2) |[R(x — O)) < Ad|x— 0|+ B

for all .
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Now if a, is a sequence of positive numbers such that
o) o0
(1.2.3) Sty =+ 0, Yday< -+ ©,
n=1 n=1

if in (L1) oy = an, if

(1.2.4) M, (Z,) = — R(X,)
and f
(1.2.5) Eg"(yn — M (Z,))* = o?

for a suitable o and for every natural number n, then the sequence X, converges
to the point @ with probability one.

We observe that (1.2.4) states that Y, is an unbiased estimate of — R(X,)
and that the sequence of (conditional) variances of Y, is bounded. The intuitive
reason for defining X,,, to be X, + «,Y, is that ngnanyn = — a,R(X,)
is by (1.2.1) positive and negative for X, < @ and for X, > @ respectively.

In 1952 J. KieFer and J. WorLrowIrz [14] solved in a analogous way the
problem of finding a maximum of a function R defined on £, and proved that
under suitable conditions their scheme converges in probability. Again J. R.
Brum [1] has weakened the conditions and proved the convergence with
probability one; this result is recapitulated in the following

(1.3) Theorem. (Kiefer-Wolfowitz method.) Suppose that R is a function
defined on E,, that

(1.3.1) inf  DR(zx) >0, sup DR(x) <0

1 1
_k<x_@<_E ;<x~@<k

for a (unknown) number © and every natural number k, where Df(x) and Df(x)
denote the lower and wpper derivative respectively of the function f at the point x.
Swuppose that there exist constants A, B such that

(1.3.2) |R(x + 1) — Rx)| <A|lx— 0|+ B
for all z.
Let a,, c, be two sequences of positive numbers,
a2
(1.3.3) 6 >0, Y a, = + @, z;§<+oo,
let o, = a,,

(134) Mn(%‘ﬂ) = % [R(Xn + cn) - R(Xn - Cn)] s

n
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and
2

(1.3.5) (Y—M%»A;w

for a suitable o and for every natural number n.

Then Z, converges to @ whit probability one.

In 1954 Blum [2] generalized the one-dimensional results of Robbins,
Monro and Kiefer, Wolfowitz to their multidimensional analogues. However
it seems to us that the conditions of the multidimensional Blum’s analogue
to the Robbins-Monro method are too strong and that the second Blum’s
method desribed in the following theorem is of a considerably greater impor-
tance. Before stating the theorem we introduce the following notations.

For a vector x we denote by a(» the i-th component of , for a matrix M
we denote by M) the element of the i-th row and j-th column; further we

_—
denote||z|| = V 2. [#9]2, | M|| = sup || Mz||. By 4; we denote the vector satisfy-
i =1

ing A9 = 0forj + ¢and 4P = 1.If fis a function on X, then by the symbols
Df(x) and D,f(x) we mean the vector and matrix such that D@f(x) = [Df(x)]® =

— O ) and Dgnj(e) = [DAf@ID = ) f(@)

(1.4) Theorem. (Blum’s method.2) Suppose that R is a function defined on
X = E,, that DR(z) and D,R(z) exist for all x € X, that

(1.41)  R(O) = 0,inf {R(z); |x — O] > ¢} > 0, inf {|DR()[; & — O] >
> >0

for a O € X and every ¢ > 0 and that
(1.4.2) ID,R(y)| = 2K

for a sustable constant K.

If a,, ¢, are positive numbers such that

(1.4.3) c"—>O,Zan:+oo,Zancn<+oo,z%%<+oo,

— Y -

. Y,
1) Usually Y, is supposed to be =" % % ,whereY,*andY,~ are estimates of R(X, -

n

+ ¢,) and R(X, —c,) respectively,
E’g (Y, * — R(X, + ¢,))? = 02, E@n (Y,” — R(X, —c¢,))? =o%.

%) We change inessentially the original theorem by cons1dermg the function R = — M,
where M is the function considered by Blum [2]. : :

3) Hence R has its unique minimum at 6.
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if in (1.1) &, = a,,

(1.4.4) MO(Z,) = — - (R(X,, + 6,49) — R(X,),

(1.4.5) Eg, (Y, — M,(Z.,))? g"—2,

then X, converges to O with probabitity one.

The reader should note the analogy between (1.2.1), (1.3.1) and (1.4.1).
On the other hand (1.4.2) is much stronger than (1.2.2) and (1.3.2). However
in the one-dimensional case there are only two possible directions for the move
from X, to X,,,; in the multidimensional case there are uncountably many
directions and only ¢ directions are examined by Y,; this is the reason for
stronger conditions on DR(z).

From further studies on the convergence we mention the paper by A.
DvorerzkYy ([9], 1956), in which the problem of stochastic approximation
was attacked with considerable generality, making it possible especially to
obtain in a unified way all the previous results concerning convergence pro-
perties — both in mean square and with probability one — in the one-dimen-
sional case.

In 1958 H. KesTex [13] proposed a modification of the Robbins-Monro
procedure substituting the definition «, = @, by the definition «; == a,,
Xy = @y, Ky = @y, Where m denotes the number of changes of sign in the

n—-2
sequence Y, Y, ....Y,  ,i. e. m =1 Z [sign Y, — sign Y,|. The intuitive

i=1
reason for the modification is that small m indicates that | X, — 0] is large
and that it is unreasonable to diminish «,. Under the additional assumption
that a, is anonincreasing sequence and under some additional weak assumptions
on Y, Kesten proved the convergence with probability one to @ of the modi-
fied Robbins-Monro procedure. He studied also the Kiefer-Wolfowitz procedure
but was unable to prove that its analogous modification preserves its con-
vergence to @. He proved this convergence only after some further changes in
assumptions especially after replacing the condition ¢, — 0 by ¢, = const.;
however, in this case X, does not in general converge to the point (if it exists)
at which R acquires its maximum.

In 1958 VAcrav Dupa¢ [8] devised an essentially new method for solving
simultaneous equations R;(z) = 0 (@ = 1,...,q) under the assumption that R,
are linear functions.

In addition to the construction of new approximation methods and the
proof of their convergence, the speed of this convergence, at least asymptoti-
cally, was studied in a number of papers among which the first was that by
K. L. Cruxe [11]. The method of Chung, who deals with the process of
Robbins-Monro only, was applied to the study of the Kiefer-Wolfowitz pro-

127



procedure independently by C. DErmaN ([5], 1956) and Véaclav Dupaé [7],
1957) with partially overlapping results. Vaclav Dupaé studied also—using
Chung’s method — the asymptotic speed of convergence of his above-mentioned
multidimensional stochastic procedure ([8], 1958). A very general and fruitful
study in this direction concerning both one- and multidimensional cases was
published in 1958 by JEROME Sacks [16], who used succesfully another
method of proof than Chung. All results of this kind are of great importance
for their consequences for the choice of eligible constants in the schemes
studied. The best choice (unique minimax in the non-asymptotic sense)
of eligible constants in a special case of Robbins-Monro procedure was found
by Dvoretzky in the already cited paper [9].

In the present paper we propose two modifications of the known procedures
and study their convergence with probability one. In order not to interfer
with the convergence property, the modifications which lead to a weakening
of the conditions concerning the function R require stronger conditions for
the estimates of the values of R. However these strengthened conditions are
still rather general since they are satisfied if, roughly speeking, all errors of
the estimates of the values of R used in the approximation process are conti-
nuous and equally distributed (see Theorems (4.3), (4.4), (8.4), (8.5), sections
(6.2) and (7.2)).

The recurrence relation (1.1) for the Robbins-Monro procedure can be
rewritten in the form

X=X, +a,|Y,|sign’,,

where Y, is an estimate of — R(X,). Hence we see that the direction of the
n-th move of the approximation process is choosen to be sign ¥, and the
length of the move is chosen to be a, |Y,|. This choice will be reasonable if
large values of |Y, | can be expected for large | X, — O, but this is not guaran-
teed by the assumptions of the Robbins-Monro method. Thus if e. g. R(X) =
= Xe~** then assumptions (1.2.1) and (1.2.2) are satisfied for @ = 0, the
Robbins-Monro procedure still converges to 0, but it behaves unsatisfactory
from the practical point of view. Indeed it makes small corrections for |X, —
— @ large and large corrections if |X, — 0| is small. If we determine the
length of the n-th move to be a, instead of a, ||, we get a procedure much less
charged by this inconveniency (and free of it if there is no error in observations).
Moreover the above-mentioned weakening of conditions imposed on R consists
in omitting (1.2.2). That (1.2.2) cannot be omitted without the modification
of the procedure, follows from the following example (see Dvoretzky [8]): Let

R(x) = |z|«, Y, = R(X,) (i. e. there is no error in observation), @, = %,

Xo=3;then X, =3 —-32= — 6, X;, = — 6 + ¢ =12,... and it is easily
verified that |X,| - 4 oo if the original approximation scheme is used.
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On the other hand for the above described modification we have X, = 3,
X,=3—-1=2,X,=2—1=3%X,=3 - 1=7 . and X, > 0.

3

The situation in the case of the Kiefer-Wolfowitz method is analogous.
., Oy . .
Here the length of the n-th step is 5o |Y,| which again seems not to be reason-

able unless a further assumption (here that of concavity) cz)ncerning R is
satisfied. In the general case we propose to modify the procedure by taking
an an

%, for %, |Y,|, so that (1.1) changes to

X=X, +2aT"signY,,.

In the multidimensional case we study the modification consisting in replacing
YO by sign Y (s = 1, ..., q). As the proposed modification of the determin-
ation of the length of the n-th step of the process makes possible the omission
of the condition (1.2.2) in the case of the Robbins-Monro method, it enables us
to omit the condition (1.3.2) in the case of the Kiefer-Wolfowitz method and
to weaken the condition (1.4.2) in the multidimensional case of Blum (only
however, if conditions on Y, are strengthened).

The second modification is motivated by the fact that in the search for
a minimum of a function by the method of Blum we need at least ¢ 4 1
observations for determining the direction at each step. Since we never know
the optimum length of the move, it seems to be unreasonable, especially if ¢
is large, to examine only one length. We propose to determine the length
&, in the following way: If X, and Y, are observed, take observations V; (in-
dependent of X, Y,) of R(X, + jaY,)forj=1,2,...untilV, >V, > ... >
>V, jandput o, =jaif V, >V, > ... >V, >V; ZV,,,.

Thirdly we study the behaviour of the sequence X, if the assumption
(1.4.1) is not required. It can be shown in this case that f(X,) is a convergent
sequence which behaves as if the sequence X,, converges to a zero-point of the
derivative of f (see Note (5.3)). It is paradoxal that we have not succeeded
in proving that this must be a local minimum, but it seems that this is a weak-
ness of our methods of proofs rather than a deficiency of the approximation
methods.

Concerning the ordering of the paper, section 2 introduces some notations
and assumptions, sections 3 and 4 deal with the modification of «, mentioned
above. The reader interested only in the case, in which «, are numbers, can
omit these sections except Theorem (4.1). Section 5 contains basic convergence
theorems; in Note (5.3) the interpretation of results is discussed. Section 6,
7 and 8 contains proofs of Theorems (1.1), (1.2) and (1.3) — and their genera-
" lisations — respectively. Some concluding remarks are made in section 9.
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2. Some notations and basiec assumptions. Let ¢ be an integer and X = £,
the ¢-dimensional Euclidean space. If z, y are in X, we denote by <{z, ¥> the

g : —
inner product > a(y® of x and y. The norm ||z|| = |/{z, x) of a vector x
i=1

and the norm of a matrix were defined in the preceding section.

Let (2, %, P) be a probability space. By random variables we mean measur-
able transformations from £ to #,, by random vectors we mean measurable
transformations from 2 to X. If X is a random vector, then we denote by X
the random variable defined by the relation X®(w) = [X(w)]®, by EX
(expectation of X) the vector defined by the relation [EX]® = [X® dP,
if these integrals have a meaning for every ¢ = 1, 2, ..., . By DX we denote
the q . ¢ (covariance) matrix the element DGHX of which equals EX®X®),
Concerning equalities, inequalities and convergence of random vectors or
variables, they are always meant with probability one.

In the sequel we shall deal with a function f satisfying

(2.1) Assumption. f is a non-negative real valued function defined on X,
D,f(x) exists for every x e X and ||D,f(z)|| =< 2K for a number K and every
z e X.

For simplicity we shall write D(x) = Df(x); if Assumption (2.1) is satisfied,
then by Taylor’s Theorem we get

(2.1.1) fx + y) = f(x) + <y, D(x)) + K [ly|?

for every x, y in X.

3. The choice of the random variables «,. Given X, and Y, the random
variable «, determines the length of the move from X, in the direction deter-
mined by Y. Let a be a positive number; we shall suppose that «, can acquire
the values a, 2a, ... only. This assumption is not essential, but removing it
leads to complications of proofs or to results insufficiently general.

Let f be a function satisfying assumption (2.1). For w ¢ 2 we define two
functions ¢, w, by the relations ¢, (t) = f(X, (@) 4+ tY (w)), ¥,(f) = ¢,(0) +
+ 19 (0) + 2K || Y, (w)|]* for every e E,. By Assumption (2.1) we have
P(0) = (Y (@), DX ())>, ¢,(t) = p.(t). By t+(w) and 7-(w) we denote the
product ja where j is the largest principal such that the sequence ¢ ,(a), 9 ,(2a), .. .,
®,(ja) is increasing and decreasing respectively. From the two numbers
7+(w) and 7-(w) at least one is «; if the whole sequence {@,(i@)}{; is increasing
(decreasing), we put 7+(w) = + o0 (77(w) = + ).

Now let P(w) be the system of such intervals ((j — 1)@, 74> (j = 1,2, ...,

O‘"(w)) for which ¢,(ja) — @.((j — 1) @) > 0 and denote by & () the Lebesgue

measure of the union JP(w) of these intervals.
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So we have defined three functions 7+, 7=, a* on Q; clearly «, is a random
variable. Since our aim is to minimize ¢ ,(x,(»)), we try to determine «,, so that
&, would be small and that «, would be in some sense not greater in the case
TH(w) > @ than in the case 7=(w) > a. In the next theorem we shall state
conditions, under which «, is at least as good as a random variable f inde-
pendent of X, and Y.

(3.1) Theorem. Suppose there exist two numbers c,, a, and a non-negative
random variable f, assuming values a, 2a, ... only and such that

(3.1.1) Ez v, [0n]? = ¢,

(3.1.2) Exvf=a.,, Exryvf=c,

and that for every w in some subset 2 of 2

(3.1.3) flw) < tHw) = a,(w) = f(w)

and

(3.1.4) ap(w) < 77 (w) = f(w) = x,(w)

and for every we 2 — 0

(3.1.5) al®@) — ef0)] < o3 (@) + @,

where c(w) € B, and

(3.1.6) Pole(@)) < inf {p,(0; £ = 0}, ghlc(@)) = 0.
Finally swppose that f satisfies Assumption (2.1). Then

(3.1.7) By f(Xo0) = f(X,) + a, < M(X,), D(X,) > +

+ 16, KEg |V,

Remark. Since in the theorem the index 7 is fixed, we can omit it in the
symbols M,,, Z,, X,, Y,, &, «,; for X, ., we shall write X 4+ «Y and K(w)
for K ||Y(w)||®. Before proving the theorem let us prove some lemmas.

(3.2) Lemma. Suppose that f satisfies Assumption (2.1.). Then ¢, has a con-
tinuous derivative

(3.2.1) P.(t) = Y(0), D(X(w) + tY(w)))
and a bounded (by 2K (w)) second derivative.
For every t,, t, we have
(322) gt = gulty) + (f — 1) @l(t) + (s — 1,)? K(w) ;
especially for every t ‘
(3.2.3) Pu(t) = po(0) -

Proof. The conclusions follow from the assumption in a straightforward
way.
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(3.3) Lemma. Suppose that f satisfies Assumption (2.1). Then there exists
a function ty on £ such that for every w e Q satisfying the condition Max {t+(w),
77(w)} < + o0 we have

(3.3.1) Pulto(®)) = 0,

(3.3.2) THw) = a = |fh(w) — 77 (0)] < a
and _

(3.3.3) 7 (w) = a = |ty(w) — tH(w)| < a.

Proof. Let w € 2. If +(w) = v~ (w) = a, then ¢,(a) = ¢,(2a) and thus there
exists a fy(w) € (77(w), 77(w) 4+ a) = (v+(w), TH(w) + a) so that (3.3.1) to (3.3.3)
hold. If t#(w) #+ 77(w) and 7H(w) = a resp. 7~ (w) = a, Max {7H(w), T-(0)} <
< 4 o0, then

Pu(T7 (@) — @) > @,(77(0)) = ¢,(t7(0) + a)
resp.

Pu(tH @) — a) < ¢,(tH(0)) = ¢,(tH(w) + a
so that again there exists a t,(w) satisfying (3.3.1) to (3.3.3).

(3.4) Lemma. Suppose | satisfies Assumption (2.1).
Then
(3.41) THw) = a, T(0) < + © = ,(r-(®)) = Min p,(t) + @®K(w) .
t=a

Proof. We discriminate two cases: (i) ¢,,(0) = 0 and (ii) ¢.,(0) < 0.
(1) In this case vy, increases in the interval (0, + o0), Min y,(t) = y,(a).
t=a

From the definition of 7—(w) we have ¢,(t7(w)) < ¢,(@), according to (3.2.3)
¢o(@) = y,(a): combining the three relations gives an inequality implying
(3.4.1). ‘

(ii) Denote t, = sup {t’; g.,(f) < 0 for every te(0,t')}. From the assump-
tion 7 (w) < + oo it follows that ¢, << 4+ co. From the continuity of ¢/,
it follows that ¢, > 0 and ¢.(t,) = 0. From the definition of 7-(w) it follows
that ¢, € (0, 7=(w) + @) and we shall prove that
(3.4.2) Pu(T7 (@) = @,(ts) + a’K(o) .

Since the sequence g¢,(a), @.(2a), ..., p,(t~(w)) is decreasing, there exists a
natural number j such that ¢,(ja) = ¢.(r(®)) and |j — t5] < a. Thus we get
according to (3.2.2) g,(7—(»)) = ¢.(ja) =< @,(t,) + a*K(w) and (3.4.2) holds.

Now g,, has a second order derivative ¢, and |¢,(t)| < 2K(w). Thus |p, (t) —
— 9u(0)

2K (w)
= @,(t;). On the other hand it is easy to see that v, (t,) = %Vilil Yo(t). Combining

— ¢,(0)] < 2tK(w), which implies #, >f, = and hence ¢,(t,) <

our results, we get ¢, (7-(0)) = @,(t:) + a2K(w) < () + a2K(0) < p,(t,) +
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+ a2K(w) =< Min y,(t) + a?K(w). Thus (3.4.1) holds in the case (ii) too,
t=a
and the lemma is proved. '

(3.5) Lemma. Suppose all assumptions of Theorem (3.1) hold and put v =
= Max (z—, tt).

Then
(3.5.1) Pu(¥(@)) — ¢, (t1(0)) = K(o) {8 [x+(w)]*}
as soon as x(w) = t(w) and
(3.5.2) 1Pu(B(0)) — pu(r(0))| = 2p%(w) K(w)

as soon as t(w) < -+ oo.

Proof. From the assumption a(w) = 7(w) it follows that 7+(w) and 7~ (w)
are finite. Remember that xt(w) is the Lebesgue measure of the union UP(w)
of the system

P(w) = {{a, (j — 1) a); ¢u(ja) — ¢u(l — 1 a) >0, j=1,2,..,

a < ja = o).
Now UP(w) can be written as a union of another system B(w) of disjoint inter-
vals {c¢;,d;> (¢ =1, 2, ..., k), where c¢,, d; are integral multiples of a,
(3.5.3) Pold) = @o(Cis) » 1=1,2,..,k—1
and

(3.5.4) @ (c; — a) = @,(c;) < @.(d;) foreveryti =12,....k, ¢, > a.

Thus there exist numbers ¢, such that ¢,(t;) =0, t; € (¢; — a, d,) for every
1=1,2,...,k ¢, = a. Hence we get
Pulds) — ulcs) = Pu(d) — Pults) — (Pules) — @u(t;)) =
= {(d;, — t,)? + (¢; — t.)*} K(w) = 8(d; — ¢,)* K(w) :
(3.5.5) Po(d;) — Pole) = 8(d; — ¢,)* K(w)
for every ¢ = 1, 2, ..., k such that ¢; = a.

The exceptional case ¢; — @ < 0 occurs only if ¢ = 1, ¢, = 0 and is of interest
for us only in the case 7(w) € (¢;, d;). However in this case there exists af, = f,(w)
(see Lemma (3.3)) such that ¢.(f) = 0 and |l, — 7(»)] < @ which implies
ty € (¢1, d;). Hence

Puldy) — Puler) = @u(dy) — Pulle) — (Puler) — (Pl"(to)) = [(dy — )2 +
+ (¢, — £0)*] K(w) = 2(dy — ¢y)2
and thus

(3.5.6) Pu(dy) — Polc) = 8(dy — ¢1)* if ¢, =0, T(Q)) € (cy, dy) .
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Now if I is the set of such indices 7, that (c;, d;) € B(w) and d; = t(w), then
from the definition of B(w) it follows that

(pw(“(w)) - (pm(r(w)) g z [(pw(dl) - (pa)(cz)]

il
and this is according to (3.5.5) and (3.5.6) equal to or less than

S 8(d; — ¢)? K(o) .

iel

However > (d; — ¢;)* = [J |d; — ¢,|]* = [x*(w)]* which proves (3.5.1).

iel iel
It remains to prove (3.5.2). If 7(w) < + oo, then according to Lemma
(3.3) there exists a #y(w) such that @, (f(»)) = 0 and |r(w) — fH(w)] < a. By
(3.2.2) we get two inequalities
[pu(t(@)) — @u(to(w))| < a*K(w) ,
[2(B(@)) — @ulto(®))] < (Bl@) — ty(w))* K(w) ,

which imply (3.5.2); the proof is accomplished.
(3.6) Proof of Theorem (3.1). Let = = Max (z—, ) and define
4y = {05 1(0) > (@)} 0 0y, Ay = {w; 7(0) = )} 0 Dy,
B, = {w;tH(w) =a} n 2, B, = {w; tH(w) > a} n £y,
‘We remember that (see (3.2.2) or (3.2.3))
(3.6.1) Pu(t) = u(0) + t9,(0) + PK(0) = pu(0) .

If wed, n B_;, we have x(w) < 7~ (w) and even f(w) = x(w) < t=(w) by
(3.1.4), which gives, according to the definition of -, ¢,(f(®)) = @, (x(w);
hence by (3.6.1) we get

(3.6.2) wed, 0 By =g,(x(w) = ¢,0) + fo) ¢,(0) + fw) Kw).

If we A, n By, we have a(w) < tt(w). Since (3.1.3) is equivalent to «(w) >
> B(w) => x(w) > Pflw) = tHw), we have x(w) = f(w). If f(w) =< 7+ (w), then
Pu(x(@)) = @,(B(w)). If f(w) > 7H(w), then ¢,(x(0)) = @u(t*(w)) and — by
(3.5.2) — @, (tHw)) = ¢,(f(w)) + 26%w) K(w). Hence and according to
(3.6.1) we get

(3.63) wed; 0 B =g,(x(w) = ¢,(0) + (@) ¢,(0) + 3F%(w) K() .

Ifwed, n B_;, we have a(w) = 7-(w) = t(w). Since 7(w) is finite, we may
use Lemma (3.4) to get

Pu(t7(@)) = Min ,(t) + a*K(w) = Yu(f(@)) + *K(w) =
= ¢u(0) + @) ¢,(0) + 26%w) K(w) .
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Hence and according to (3.5.1) we get
(3.6.4) wed, n B =g (x(0)) < ¢,0) + Blw) Pul0) +
+ {26%w) + 8[aH(w)]*} K(w) .

If weA, n B, then x(w) = 7+(w) = 7(w) which implies (see (3.1.3)) that
also f(w) = 7(w). Hence and according to (3.5.2) we have ¢.(7(®)) = ¢,(B(w)) +
+ 28%w) K(w); by (3.5.1) ¢,(x(w)) < @,(t(w)) + 8[x(@)]* K(w) and thus
(3.6.5) wedy 0 By =, (x(0) = ¢,(0) + ) 7u(0) +

+ {8[xH (@) + 26%w)} K(w) -

Finally if w € 2 — 0,, then according to (3.1.6) ¢,(¢(®)) = ¢, (B(»)) and
¢.(c(w)) = 0, which with the inequality (3.1.5) gives Po(*(®)) = ¢,(c(w)) +
+ (d[aH(@)]? + a?) K(0). Thus ¢,(x(0)) = ¢,(f)) + @EaH(@)]F + a*) K(o)
and
(3.6.6) weD — Q=g (x(0) = ¢, 0) + Blw) Pul0) +

+ {26%(w) + 4o ()]} K(o) -

Since (4, n B_;)) u (4, 0 B)u (4,0 B_)) u (4,0 B) v (2 — ) =0,
the relations (3.6.2) to (3.6.6) give
(3.6.7) 0 € 2 = 9, (x(@) = 7,(0) + o) Pi(0) + (Blx* (@) +

+ 3/5'2 )} K(w)
Hence
(3.6.8) (X (w) + x(w) Y(0) < f(X(0)) + Blw) (¥ (w), D(X(w))) +
+ KB8[aH(w)]* + 36%w)) ¥ (w)]?
and by (3.1.1) and (3.1.2)
(3.6.9) Eq, v (X + &¥) < f(X) + a, (M (Z,), D(X)> + 11e,K [V[2,
which implies (3.1.7). The theorem is proved.

4. Particular choices of length «, of the n-th step

(4.1) Theorem. Suppose | satisfies Assumption (2.1) and &, == a, 1s a number.
2

Then (3.1.7) holds with ¢, — %" i e.

(4.1.1) Eﬁ"nf(Xn+1) = ((XL) + a, (ML(Z5), D(X,)) + aiEflu Yl .
Proof. Since X,.; = X, + a,Y,, (4.4.1) follows directly from (2.1.1).

In the preceding theorem a simple way of choosing «, is described, which
was hithertho used by authors proposing approximation schemes. However
a more refined definition of «, can save us observations, especially, if the
number ¢ of dimensions is large and if X, is far from the extremal point we
seek.
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In the following theorem we describe such a method. We note that the
condition (4.2.1) will be satisfied for example if m; = f(X, + ¢aY,). The
random variables V; can be called estimates of m,, or especially of {(X,, + 7aY ).
The generality obtained by introducing the variables m,; is useful in the
cases in which f cannot be observed and observations of another function R,
related to f, are at our disposition.

(4.2) Theorem. Let f satisfy Assumption (2.1), let n be a matural number,
a, d, ¢ real positive numbers. Let V;, m;(t = 1, 2, ...) be random variables such
that for every 1 =1,2,3,..;t=—11;1+j=1
(42.1)  [(Xa@) + jaT () > [(Xa() + (G + i) a¥ () =

= my(w) = My4(w)
and that

(4.2.2) kilkSPgr"’Y" Vi—my>Vy—my>...>V, —my, =
§V:+1 — My = lfors =0, =dfors =1, <cfors=2.

Define x,(w) = ka for w in the set

(4.2.3) Ay =T, >Vy> 0. > Ve = Vi

and suppose that »

(4.2.4) Ez v o, ]? = ca®,

Then (3.1.7) holds for a, = ad and ¢, = a®.
Proof. Define f(w) = ka, if » ié in the set

(4.25) By ={V,—my >V, —my>...>V, —my < V3 — My}

For the proof of the theorem it suffices to show that assumptions of Theorem
(3.1) are satisfied. The condition (3.1.1) is repeated in (4.2.4), (3.1.2) follows
from (4.2.2), f satisfies Assumption (2.1) and it remains to prove that (3.1.3)
to (3.1.6) hold for some 2, c 2: we shall show it for £, = £, in which case
(3.1.5) and (3.1.6) are trivial. .

We shall prove (3.1.3); let w € 2, ja = f(w) < tH(w). Then {(X,(w) + B(w) -
Y, () < f(Xu(w) + (B(w) + a) Y,(w)) and according to (4.2.1)

(4.2.6) mw) < my(@) .
From the definition of 8 it follows that V(w) — m;(w) = Vi(w) — m;,(w)
and according to (4.2.6) V,(w) <V, (w). Thus a,(w) = jo = p(w) and (3.1.3)
is proved.

It remains to prove (3.1.4). Let w € 2, ja = x,{w) < 77(w). Then f(X,(w) +

+ on(@) Yo(@)) > f(Xn(@) + (kn(@) + 1) ¥,(w)) and — according to (4.2.1) —
m;(w) = m;,,(w), which with the obvious inequality Vi(®) = V;(w) gives

136



Viw) — my(w) < V(o) — m;(w). But the last inequality implies f(w) =
< ja = «,(w) and the proof of (3.1.4) and of the whole theorem is accomplished..

The preceding theorem imposes some very weak conditions on the estimates
V. of m;. Their generality will be apparent in the next theorem.

(4.3) Theorem. Let f, m; satisfy the conditions of the preceding theorem,
let V,; be random variables such that f/, = V; — m,; are distributed independently,
tdentically and continuously and are independent of Z,, Y ,. Then (4.2.2) holds
with

=] 1 [2e} ‘kz
(4.3.1) d = Z 2 FTr Z o
k=1 k=1

If «, is defined as in the preceding theorem, (4.2.4) and (3.1.7) hold with
a, = ad and ¢, = a®c.

Proof. Obviously

Pﬁl”n,Yn (171> I72 >.. >V, = V~k+1) =PV, >Vy>...> I7k = 171c+1) =
_ Kk
(k)
which implies (4.2.2) with ¢ and d given by (4.3.1). We shall show that (4.2.4)
holds. Denote ¢; = f(X, + jaY,) and let

(4.3.2)
K(w)

U < ny(o), ni(0) + hyw)) = U{G — L7); ] = 2,3, ..., ¢a(0) < ¢s(0)]

i=1
where n;, h; are natural number valued functions on 2, K(w) is a natura¥
number or 4+ oo and
(4.3.3) Ny <My + by < my<....

It is easy to see that, by the relations (4.3.2) and (4.3.3), K, n, and A, are

uniquely determined random variables (K possibly infinite) and that they
are functions of [%,, Y] only. Further we have

(4.3.4) a ot =y + Z{h,,z =1,2,..,n; + h; X },

IA

a

where y is positive part of ¢, — @,
N

Thus, denoting by N the index for which > &, =k — y, the event {«, == ak}
i=1

implies the event

N
(43.5) nfn <)
j=10 " @
and this implies, according to the definition of «,, the event
N
(4.3.6) jg Vo, > Va1 > oo > Vaa}
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However from (4.3.2) it follows that

(437) ¢'n.’- < (pnﬂ'—l < < (pnl+hi
which gives according to (4.2.1) the inequality
438) mn]. é mni+1 é se g mn]-+h,- N

Since 171 =V, — m,, the event in (4.3.6) implies the following

N -~ ~ -~
(4.3.8) N> Vo> o > Vi)

j=1

and we get that

N ~. ~
(43‘9) Pg‘"’yn {(X: = ak} g Pgn’Yn n {V > V"PL]' > ...
j=1
N e 1
coo > Vaint = T
> Vol H (hy() + D!

the last equality being due to the fact that f/'.,,i are independent, continuous
and that the sequence I;l, 172, ..., is independent of [Z,, Y,], n;, h;, N. Thus
Pg v {xg = ak} has an upper bound of
1
(ha() + D (hy(@) + D! ... (Ayop(w) + 1)
where N§)hi(w) = k — 1. Thus there are at least k£ — 1 factors greater than

i=1

2 in the denominator, which implies

1
(4.3.10) Py vy {on =ak} = i

whence (4.2.4) follows with ¢ defined by (4.3.1). Since the last assertion of
the Theorem follows from Theorem (4.2), the proof is accomplished.

The two theorems already proved deal with the problem of approximating
a point at which the function estimated acquires its minimum. An analogous
result for the situation of the Robbins — Monro procedure is given in the
following theorem:

(4.4) Theorem. Let f be a function defined on E, staisfying Assumption (2.1),
decreasing in (— oo, @) and increasing in (0, 4+ ©). Let n be a natural number,

a a positive number and V,, m; (1 = 1,2, ...) random variables such that I}\l =
= sign (V; — m,) are independently and identically distributed random variables
independent of X,, Y, with EV, == 0. Suppose that if f is increasing resp. de-
creasing in the point X,(w) + ja¥.(w), then m;(w) is non-negative resp. non-
posttive.
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Let x,(®) = ja for w such that
— sign Y, (w) = sign Vy(w) = ... = sign V,_;(w) * sign V,(w)
(f — sign Y, (o) #+ Vi(w), we put «,(w) = 1). Then (3.1.7) holds with a, =
= 2a, ¢, = 6a’.
Proof. Let us denote by £, the set of those w ¢ £2, for which the interval
(Xp(w), Xa(@) + (@) Yy(w)) 0 {Xy(0) + xn(@) Ya(w), Xy(w)) is non-empty
(i. e. Y,(w) + 0) and does not contain @. Further put f(w) = ja for such w that

— sign Y, (w) = f’l(w) =...= I//\'j_l(w) + IAf,»(co) .

We shall prove that for our £,, f the relations (3.1.3) and (3.1.4) hold. If
ey and ja = f(w) < tH(w), then t+(w) > a, i. e. either (i) X, (w) < 6O
and sign ¥, (w) = — 1 or (ii) X,(w) = O and sign Y ,(w) = 1. In the case (i)
1 + V,{w), i. e. V;(w) < m;(w) and since X, (») + p(w) Y, (w) < @ and thus
m;(w) = 0, we get V,(w) < 0, sign V;(w) = — sign YV, (w), which implies that
og(w) = aj = f(w). Thus (3.1.3) is proved in the case (i). The proof in the
-case (ii) is analogous and will be omitted. Now turn to (3.1.4). If w € £, and
aj = ay(w) < 7-(w) we have either (i) X, (w) <0, Y,(0) >0, X,(»)+
+ a(w) Yy(w) < O or (i) X, (w) = 0, YV, (0) < 0, X, (0) + op(w) Yo(w) > 6.
In the case (i) — 1 =+ sign V;(w), i. e. V;(w) = 0 and since m;(w) = 0, we have
Vi(w) > — 1 so that f(w) < ja, = x,(w). (3.1.4) is proved in the case (i);
the proof for the case (1i) is similar and is omitted.

Now if w € 2 — Q,, then ether Y, (w) = 0 and in this case (3.1.5) and (3.1.6)
are satisfied by taking ¢(w) = «,(w), or the interval (X,(w), X,(w) + x,(w) .
Y, () v X (@) + ap(w) YVi(w), Xy(w)) contains 6. In the last case
{3.1.5) and (3.1.6) are satisfied by ¢(w) = Q;,—i)")(—w—) .

Finally it is easy to see that

(1)
Ey v P = 552“27(5) = 2a =a,,

and
Ef(w Yn[oc,j]2 =Efr=c,.
Since f satisfies Assumption (2.1), all conditions of Theorem (3.1) hold and
(3.1.7) is proved.
We have seen that, if f satisfies Assumption (2.1) and if for every n «, are

chosen in one of the ways described in Theorems (4.1) to (4.4) (not necessarily
in a unique way for every n), then the following assumption holds.
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(4.5) Assumption. For every n, the relation
By (Xu) = (X)) + a0 (M(2,), DX,)) + @ CEq [V, 12,
holds, where a,, C' are positive numbers.

5. Convergence theorems. The following lemma and theorem are slight
modifications of Blum’s [2] results. '

(5.1) Lemma. Let &, be non-negative rand ym variables and let
(5.1.1) SEO; < + o,
n=1

where O, denotes the non-negative part of the random variable
(5.1.2) O =Eg 6. 60 En — Ena -

Then the sequence &; converges to a random variable &.

Proof. Put &, = > 6 and {; =9, —&. We have (, = 0,, — &, =
j=1

J
= 1971*—1 + 07[ - ‘:z\:n 2 ﬁn—l + @w - ’S’n = 29‘nv1 + @n - ‘Sn—l - (én - Stn—l) -

= lu_1+ On— (£ — &,4). According to (5.1.2) we have E, . [0, — (£, —
— £&,.1)] = 0 and thus

EeeoeunCn Z B e (Cny + On — (8 — &0y)) = Bg ey e i
however (y, ..., {,_; are functions of &, ..., §,_; only and thus '
(5.1.3) Eitonitos On = Cats

which shows that the sequence (j, (s, ..., is a semimartingale. Now (5.1.1)

guarantees that sup Ed, << 4 oo which implies, since £, are non-negative,

that sup E{, << + 0. On the other hand

for by (5.1.3) E{; < E{, =< .... But in this way we have proved that
(5.1.4) sup E |£,| < + oo, sup E§, < 4+ .

From the first of the inequalities it follows by the martingale theorem (see
Theorem 4.1, Assertion I of Doob [6]), that (, is a convergent sequence.
Since the non-decreasing sequence ¢, converges according to (5.1.1),
£, also converges to a random variable.

(5.2) Theorem. Let Assumptions (2.1) and (4.5) hold, let B, be non-negative
functions on 2, let b,, d,, ,, K, be positive numbers and let
(5.2.1) (M(Z,), DX,)y = — B + b,(K, + B,),

(5.2.2) IM(Z)I* = d, + e.Br
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(5.2.4) Sa, = + o0, Zab, < + o0, Laid, < + o0, lim b, =
= lim a,e, = 0.

Then there exists a sequence n; and a set £y c 2 such that P(Q,) = 1 and that
lim {(X,(w)) exists and is finite and lim B, (w) = 0 for every w € Q,.

n—>o0 i

If the functions B, depend on X, only, i. e. if B, = B(X,), where B is a function
on X, then for every w e 2,

(5.2.5) lim f(X,) e{a;2;e X, 2, >x € X, a = f(x), B(x;) -0} v F,
where F = {a; x; ¢ X, |lv;|| = + oo, f(x;) > a € By, B(x;) — 0}.

If B is continuous, then
(5.2.6) lim f(X,()) € f({x; Bx) =0}) u F .

Proof. By Assumption (4.5) we have

Ey f(Xon) = HX,) + 4, (M(Z,), D(X,)) + a2 CE, [V,
From (5.2.2) and (5.2.3) we get ‘
E, [V.P = 2d, + 20,8
and thus
Eq [(Xo11) = [(X,) + an(— B} + b,(Ky + B,)) + 2a3(d, + e,B3) C =

b, B _ 20,d,C + b,,Kz)

T 1 — 20" 1 — 2a,e,C
(since only limiting properties are of interest, we may assume with respect to
(5.2.4) that 2a,e,C < 1). Putting
n = a,(1 — 2a,e,0),
by
T 1—2a,,C’
_ 2a,d,C +b,K,
&= T Bae,0

= — a,(1 — 2a,e,0). (Bﬁ

Vn

we get
(5.2.7) Ey (f(Xoi1) — f(Xa) = — wul By — vaBo — 0ul ,

where u,, v,, 0, are positive numbers, satisfying according to (5.2.4) the re-
lations

(5.2.8)  Zpp = + 0, Zppry, < + 0, Zpo, < + 00, limy, =0.

Since only limiting properties are of interest, we may assume that », < %
for all n. Put
1 if B,>1,

hw={
No if B,<1;
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then

1
(5.2.9) (1 — 4) »By = v, B — A0 Ba Z 5 B .

Since according to (5.2.7) Ez (f(X,..) — f(X,) = — talBn — AppBn — 0a] +
+ un(1 — 4,) v, B,, we get by (5.2.9)

1
(5.2.10) E.%"n(f(Xn+1) - f(X")) = — E /unB'Z‘ +- ;un(Vn + Qn) .
Hence we get, since u,(v, + ¢.) > 0,

(5.2.11) {EsixrXay o X (X)) — A X)) = pta(vn 4 04)
where on the right we have a summable sequence p,(v» + o,). This is (see:
Lemma (5.1)) a sufficient condition for the sequence f(X,) to be convergent.
Now let us denote
— Bz, [(Xnsa) +/(Xo) 4 pa(vn + 00)
Mo

(5.2.12) C, =
By 5.2.10 we have 0 = %B;‘i = C, and

E.Q"nf(erl) — (X)) = — /unCn + pa(va + )
E(f(Xpi1) — [(X0) = — 1,EC, + po(ve + 04)

Bf(X,a) = f(X0) — 2 mEC, + S st + ) -

Since by (5.2.8) 0 < > u;(v; + ¢;) < + oo and since f(X,,;) = 0, the non-

iz1
n

positive term — > u,EC; converges, too, which implies the existence of a.
j=1

sequence m; suchjthat EC.,, — 0, whence it follows that there exists a £, c £
with P(£;) =1 and a sequence n; such that C, (w) — 0 for every w e Q,.
However the inequality B < 2C, implies that B, (w) — 0 for every w e £2,.
Formerly we have proved that there exists a 2, c 2 of probability one and such
that f(X,(w)) converges to a number if e 2, Clearly f(X,(w)) converges to
a number and B, (w) — 0 for every w ¢ 2, = 2, n £, and P(2,) = 1.

Finally let B, = B(X,) for a function B and let w ¢ £2,. We may choose
a subsequence x; of the sequence X, (w) such that either z; —x ¢ X or |jz,]| —
— -+ oo0. In the first case we get by the continuity of f that lim /(X (w)) =
= lim f(z;) = f(x) and lim B(z;) = 0. Hence the relation (5.2.5) follows.
Since (5.2.6) is a direct consequence of (5.2.5) and of the assumed continuity
of B, the proof is accomplished.

(5.3) Note. In the preceding Theorem (5.2.1) with b, — 0 is a basic condition;
which ensures that <M,(Z7,), D(X,)) is negative at least if n and B, are large.
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Hence, from (5.2.7) and from the non-negativity of f it was then possible
to deduce that for every w there exists a sequence n; such that B, (w)— 0.
This is of interest for example if M,(%,) is such that B, = ||[D(X,)|. In this
case (and if certain conditions are satisfied, in a more general case B, =
= [|H (%) D(X,)| (see also the following theorem) the condition (5.2.6) can
be written as

(5.3.1) lim f(X,(w)) e d v 4,, .
where "—>°°

(5.3.2) 4 = f({x; D(z) = 0})

and

(533) Al = {a’; Z; € X’ ”xzn - + 00, D(xz) - 0’ f(xl) —> e El} :

1t is easy to see that if || X, ()| is bounded for every w ¢ £, (and this condition
will be satisfied if e. g. the assumptions of Theorem (5.5) hold), then (5.3.1)
can be strengthened to .

(5.3.4) lim /(X,(0)) € 4 = f({z; D(z) = 0}) .

However in certain cases (5.3.4) can be also deduced from (5.3.2) and (5.3.3).
For example, in Sections (6.1), (6.2), (7.1) and (7.2), ||x;|| — oo implies f(x;) —
— -+ o0 so that 4, = @. Similarly if inf {|[D(z)|; |lx — O > &} > 0 for every
& > 0 (see (1.4.1) for R = f), then again A; = 0 and (5.3.4) holds; moreover
(5.3.5) lim f(X,(w)) = /(O)
and f has at @ its absolute minimum. If further conditions are satisfied, e. g.
that inf {|f(®) — f(x)|; [lx — O] > &} > 0 for every ¢ > 0 (see (1.4.1)), then
(5.3.5) implies

(5.3.6) X, () > 0.

In this connection we remark that, from the practical point of view, usually
not the distance between X, and @ is of interest, but the distance between

f(X,) and inf f(z). The second formulation avoids certains unessential difficul-
: xeX

ties which arise with the first. For example if f(y) = inf f(x) for every y in
xeX

a convex set containing more than one point, we are not able to establish

a relation of the form (5.3.6), although from the practical point of view such

a situation may be considered as agreable for stability reasons.

Let us return to the relation (5.3.4). The case in which the set {x; Dx = 0}
consists of a single point @ (the non-negativity of f then implies that if f
aquires its absolute minimum it does so at ©) has been discussed. However,
there are many practical situations in which {x; Dx = 0} consists of more
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than one point .In this case, it is natural that in general the relation lim f(X,) =

n—oo

— inf f(x) does not hold and that lim f(X,(w)) may converge to f(z), where

xeX
at x f acquires its local minimum. Indeed in such a situation there is, in our

.opinion, no other way to approximate the point of the absolute minimum than

a systematical estimation of f(x) for every « in a reasonably dense net in X.

Let us denote by A, and A_ the sets of points at which f has its local maximum

and minimum respectively. As we mentioned, we have no chance to prove

that lim f(X,) = inf f(x). By Theorem (5.5) it is easy to construct examples
xeX

showing that every effort to prove that lim f(X,(w)) e f(A_ — A,) would
also be unsuccessful. However we did not even succeed in proving lim f(X,,(w)) €
€ f(A_) for almost all w e 2, which is perhaps a consequence of the fact, that
the method of proving Theorem (5.2) is based on the first derivative D, which
-does not distinguish between the points of A, and 4_.

The next theorem will sometimes be useful in verifying the conditions of
"Theorem (5.2). *

(5.4) Theorem. Let n be a natural number and let for every x e X» Hi(x)
be a non-negative hermitian matriz, i. e. let (Hx(x)a, b> = {H,(x) a, H,(x) b) for
every x e X*, a,b e X. Let

(5.4.1) M.(Z,) = — HAZ,) D(X,) + 7On(Z.) »
where 6, 1s a matrix function on X, h, is a number and
(5.4.2) OAZ,) =1, hy=0.

Let further

(5.4.3) DX = ga(Cy + [Hu(Z,) D))

where g,, C, are non-negative numbers. Then (5.2.1) holds with
(5.4.4) B, = ”Hn('%‘n) -D(Xn)H B Kz = 01, b, = h’ﬂgﬂ .
Proof. If (5.4.3) holds, then from (5.4.1) we get

Ma(Z2), D(X,)) = {— H(Z,) D(X,), D(X,)) + by {O,(Z), D(X,)) =
= — [Ha(Z2) D(X,)|2 + hoga(Cy + [|Ho(Z) DX »

so that (5.2.1) holds with B, b, and K, defined by (5.4.4).

(5.5) Theorem. Let M, (Z,) = N,(X,,), where N, are function on X, satisfy
(5.2.2) and (5.2.3) with e, = 0, let (5.2.4) hold. Let there exist a r > 0 such
that for every ¢=1,2,...,q sign ND(z).sign 2@ < 0 if |29 > r. Let

Cp = @y, or let «, be defined as in Theorem (4.3) with a = %and with such m,
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that (instead of (4.2.1)) if denoting by &(x) the distance of x from the set {z; x € X,

[29] < r} we have for every i = — 1,15 =1,2, .50 +j =1L, we 2
(5.5.1)  §(Xp(w) + jaY p(w)) > d(Xn(w) 4 (5 4 1) Yo(w)) = my(w) =
= Myq(0) .

Then there exists a subset Q, c Q of probability one and suchthat sup || X (w)] <

n=1,2,...
< 4 o for every w € £,.
q
Proof. Put f(z) = 6*(x) = > (|o®| — r)® %) Clearly f satisfies Assumption
i=1
(2.1) and
Do z) = 2(|lx®] — r), sign 2 |
so that (5.2.1) is satisfied with B, = 0, b, = 0. From Theorem (4.1) or (4.3)
it follows that Assumption (4.5) holds. We may apply Theorem (5.2) and the
boundedness of | X,(w)|| for almost every o follows from the convergence of
HXy).
The simple condition concerning sign N(9)(z) is satisfied e. g. in the case
of the search for a minimum of a function R, if sign N®(X,) = sign [R(X,) —

— R(X, + ¢, 49)] and if sign D@OR(x) . sign 9 = 0 for |29 > g > ¢,. In

»

5> My = R(X, + jaY,).

6. The Robbins-Monro method and its modifications. (6.1) Suppose that R,
Y,, a, satisfy the conditions of Theorem (1.2), but let us require
(6.1.1) R(x) <0 for x <O, R@x)=0 for x>0

instead of the stronger condition (1.2.1). Define f(x) = (x — ©)2. Then minimiz-
ing f is formally equivalent to solving the equation E(x) = 0.

this case also (5.5.1) is satisfied if ¢ <

Suppose further that «, are chosen in such a way that Assumption (4.5)
holds with a suitable constant C. Theorem (4.1) says that this is so if &, = a,
as in Theorem (1.2). However this is not the unique possible choice of «, as
we have proved in Theorem (4.5). Thus we may, after determining the value
Y .(w), observe estimates V,(w), Vy(w), ..., V(w) of values

R(Xn(w) +% Yn(w)) , R(X,L(a» +2% Yn(w)), R(Xn(w) +i% Yn(w))
until all but the last have the same sign as the estimate — Y () of B(X,(w)).

According to Theorem (4.4) we then put «,(w) = j %. If the errors V, =V, —

— R(X,, — ia?” Yn) are independently and identically distributed with

) By a, orat and a_ or a~ we denote the positive and negative part of a respectively;
=a, + a_.
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E sign V, = 0, if they are also independent of Z,, Y,, then all the conditions
of Theorem (4.4) are satisfied (with m; =R (Xn —1 %"~ Y n)) and Assumption

(4.5) is again satisfied with C = 6.

Now we shall study the behaviour of X, under the assumptions accepted.
Without loss of generality we may assume that @ = 0. Then we have f(x) = 2,
D(x) = 2x, — M, (¥,) D(X,) = 2R(X,) X, is non-negative and thus (5.2.1)
is satisfied with B, = VZX R(X,), b, = 0. The assumption (1.2.4) 1mphesv
(5.2.3) with d, = o2, e, = 0; a fortiori (5.2.3) holds with ¢, = 4 + B, d, =
= B(4 + B) + 0%, we shall show that with these e,, b, (5.2.2) also holds.
Indeed by (1.2.4) and (1.2.2) we have

IM.(Z,)[? = R(X,) < |R(X,)| (4 |X,| + B) = AB; 4 B |R(X,)| .

Now for || =1 we have |R()| = A + B, for || > 1 we have |R(z) =
< |o| |R(@)| = B hence

IM(Z,|? = AB; + B(A+ B + B})'= (A4 B) B, + B(A + B) = ¢,B, + d, .
Since (5.2.4) follows from (1.2.3), all assumptions of Theorem (5.2) hold.

Hence f(X,) converges to a random variable and there exists a sequence n,
such that Bﬁi = X, R(X,)— 0. Hence we get

lim X2 — {az'i el x,—~a, z,R(x;) — 0} =
= {0} v {a® x; e B, x;, —> a, R(x;) = 0}.

If moreover (1.2.1) holds, R(x;) — 0 implies, if z; — a, that z; — 0 and thus
in this case, X, — 0.

(6.2) Suppose we again seek the point @ at which a function R, defined
on E,, acquires its zero value, we have the sequence a, satisfying (1.2.3), Y,
are again estimates of — R(X,), Assumption (4.5) holds, but we put

(6.2.1) X1 =X, + x,8ign Y,
Denoting sign Y, - if\ s E(X ) = E; Y,L, we deal with the usual Robbins-

Monro approximation scheme for the function E. Automatically it satisfies
condltlons (1.2.4) and (1.2.2) and the meaning of condition (1.2.1) or (6 1.1)

for R is clear from the relation
We note that the procedure (6.2. 1) for &, = a, was already studied by Blum [1].

(6.3) Note. If «, are determined in the way described in Theorem (4.4),
the procedure is related to that of Harry Kesten [13] in the following way:
if Y, and V, take on only the values — 1,1, the two methods are iden-
tical. Generally, instead of estimating R at the points X,(w) 4 aY (), X, +
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+ 2aY (o), ..., X, + on(0) Y,(0), Kesten’s method takes observations at
the points X,(w) + a¥ (), X, + a(Y,(0) — Vi(w)), ..., Xu(w) + a(¥ ,(w) —
—Viw) — ... — V(@) (where «,(w)==7ja; however there are differences
between Kesten’s and our notations).

7. The Kiefer-Wolfowitz method and its modifications. (7.1) Suppose that
R,Y,, a,, c, satisfy the conditions of Theorem (1.3), but require, instead
of (1.3.1), the following weaker condition

(7.1.1) D) =0 for =60, D) =0 for 2 =0.

Choose a ¢, 0 << ¢ < 1 and define f(z) = [(Jx — O] — ¢)*]%

Suppose further that «, are chosen in such a way that Assumption (4.5)
holds. Theorem (4.1) says that it does so if «,, = a, as in Theorem (1.3). Howe-
ver Theorems (4.2) and (4.3) show other possibilities of the choice. Having
observed Y,(w) we may take estimates V,(w) of R at the points X, (w) -+

+ @'%" Y (@) unless V(o) > Vo) > ... > V,(@) < V(o) and put «, (o) =

. 1
J— " G 2
= j.—.%) If further d = ;lk ENE

are contmuous identically and independently distributed and independent

if the errors V, — R (X,, + i?di Y")

of &,,Y,, then the conditions of Theorem (4.3) hold (With m; =R (X" +1 %ﬁ Yn)),

1
which implies that Assumption (4.5) is satisfied with ' = z k2 e

k=1

We shall study the behaviour of X,. Without loss of generality we may
assume that @ = 0 and, since only limiting properties are of interest and
¢, — 0, that ¢, << ¢ for every n. This assumption together with (1.3.1) implies
that

—R(Xn + C ) - R(Xn - cn) //
N

(7.1.2) My (Z,) = o) - B -

(7.13) . D) MU(Z,) =0
and we may put

(7.1.4) B, = |— D(X,) M.(Z.) .

. . ’ a.
6) However in practice we choose not a,, but a, = —d—" and we need not know the values

ofa, = da,’, but only the limiting properties of a,, which are that of the sequence a;.
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Now we shall show that the assumptions of Theorem (5.2) hold. First, (5.2.1)
0-2
= 5o

n

holds with b, = 0 as follows from (7.1.4). (1.2.4) implies (5.2.3) with d,,
e, = 0. Concerning (5.2.2) we get by (1.3.2) and since ¢, < ¢ < 1
LR(Xn + cn) — R(Xn - cn)i2 <

My (Z,) < e
= 202
_ IR, +¢,) — R, — e))| (A(X,| —c)* + 4+ B) _
= 2¢2 =
= 2B+ AL IR, ) — RX, e

n

However |R(X, 4 ¢,) — R(X, — ¢,)| is less than or equal to 44 4 2B or
(I1X,] — ¢u)™ |R(X, + ¢,) — R(X,, —¢,)| if (|X,] —cy,)* =<1 or =1 respecti-
vely. Hence

M2(Z,) = fl- 2 AEB + B A+ B)Q(;‘;‘l_iilﬂ
and (5.2.3) is satisfied with e, _ 24 + B and d,, _ A+ B)c(22A + B) . both
(5.2.2) and (5.2.3) are satisfied withe, = 2—‘4;—{15 d, = _ @4 +B) (2;2 +B) + "2

Concerning (5.2.4), the requirement zan = 4 oo is contained in (1.3.3),
2
zanbn = 0 since b, = 0, zaﬁd" < - oo since z gzl‘ < + o by (1.3.3).
2
From the last inequality it follows that ((—zc—"—) — 0; hence In 0, too,
lim a,¢, = 0 and (5.2.4) holds. !

n

Since Bz = |D(X,)| [N,(X,)|, where N,(X,)= RX, +c”)~2jcﬂ)£" )

and inf |[D(z)| > 0 for every ¢ > 0, we deduce from Theorem (5.2) that
|x| >ct+e

there exists a set Q(c) such that Q(c) c 2, P(2(c)) = 1 and that for every
w e Q(c)
(7.1.5) lim (|X,(w)| — ¢)? exists and (equals zero or N,, (X () —0) .

Since ¢ was an arbitrary positive number (7.1.5) holds for every we Q, =
=N Q (%) and every ¢ > 0, which implies that

k=1
(7.1.6) lim X%(w) exists and (equals zero or N, (X, (w)) — 0)

for every w € £, where P(2,) = 1. Obviously, if (1.3.1) holds, then lim X,(0) =
= 0 for every w € Q,.
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(7.2) Suppose we again seek for the maximum of a non-negative function
1
2¢,
and Y, are estimates of R(X, 4+ ¢,) and R(X, — c,) respectively. Suppose
that as in Theorem (1.3) Eann = M,(Z,) = N,(X,) is a function of X, only

and suppose (instead of (1.3.1) or (7.1.1)) that

(7.2.1) N,(x) = 0forx < ©® —¢,, N,(z) = 0forz > 0O 4 ¢, .

R, defined on E,, but now we define Y, to be sign (Y, — Y;), where Y

The conditions (1.3.2) and (1.3.4) will be omitted. Further we suppose that
(1.3.3) holds and that «, satisfies Assumption (4.5) with f(z) = [(jlx — O] —
— ¢)*]? for every 0 < c¢ << 1.

Under these conditions we shall study the behaviour of X,. As in (7.1) we
suppose that ® = 0, ¢, < ¢ for every n. According to (7.2.1) M,(Z,) D(X,)

is non-positive, so that (5.2.1) holds with b, = 0 and B, = || — N (X,) D(X,).

Since |V,] gél—, we have (5.2.2) and (5.2.3) with d, :ci’ e, = 0. (5.2.4)

follows easily from (1.3.3) and from the relations e, =0, b, = 0, d, = —1

Since f satisfies Assumption (2.1), we get from Theorem (5.2), the conditions
of which we have already verified, that there exists a 0(c) c 2 such that

P(L2(c)) = 1 and that for every o in £2(c) (7.1.5) holds. Putting 2, = ﬁ Q (%) ,
k=1
we get that (7.1.6) holds for every w € 2, and that P(£2,) = 1.
If instead of (7.2.1) the following stronger condition
inf {N,(x);n=1,2,..,2e(—mn, —c¢, + 6)} >0,
(7.2.7)
sup {N,(x);n=1,2,..,2¢ (0 4 ¢, n)} <O
is satisfied, then obviously X, — 6.

8. Multidimensional case. (8.1) Suppose that R, Y,, a,, ¢, satisfy the
conditions of Theorem (1.4) with the exception of (1.4.1) and that «,, satisfies
Assumption (4.5) with f = R. (By Theorem (4.1) the last condition is satisfied
if the «, are chosen as in Theorem (1.4); it is also satisfied if the «, are deter-
mined in the way described in Theorem (4.2) resp. (4.3) — see also (7.1)).
Under these conditions we shall study the behaviour of X,.

From (1.4.4) it follows by Taylor’s Theorem that

M,(Z,) = — DR(X,) — 5 D,R (xum) :
where y(X,) e (X?, X + ¢,). According to (1.4.2) the assumptions of
Theorem (5.4) hold with H,(Z,) =1, h, = Kc,, Op(T.) = — ,D,zif)?%@‘),,
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g, = 1,0y = 0. Thus (5.2.1) holds for B, = ||D(X,)|, b, = Kc,, K,= 0.
Further [[M,(@,)] = [DX,)[2 + 2h, D(X,), O,L,)> + 12 |0.(Z,)]| = BE +
+ 2h,B, + k2 < (1 + 2h,) B2 + 2h, + hZ, whence it follows that (5.2.2)

2
holds with e, — 1 + 2Kc,, d, = 2Kc, + 2K%2 +- Eaf; from (1.4.5) it follows

that (5.2.3) holds with these c,, d,, too. "
Concerning (5.2.4): the condition Ya, = 4 oo is contained in (1.4.3);
Sauh, < 4 o is satisfied since by (1.4.3) Zanc" < 4+ o0 and b, = Kc,;

2
za,,dn < 4 oo follows from the relations (see (1.4.3)) ¢, — 0, Za—; < + oo,
. : ¢

n

L. 2 9252
which imply d, = 2Ke, + 2K?%2 -+ Z—z < —:2— for large n. The relations lim b, =

2
= lim a,e, =0 follow from the assumptions Ya,c, < + o, >, ZLZ" < + oo,

¢, = 0 which imply @, — 0 and from the relations b, = Kec,, ¢, = 1 + 2Kc,.
Obviously f satisfies Assumption (2.1) and by Theorem (5.2) there exists a set
£2, c 2 with probability one such that for every w e 2, lim R(X,(w)) exists
and belongs to the set

R {x; DR(x) = 0} U {a; z; € X, |jz;|| = + o0, R(x;) = a, DR(z;) — 0} .

For the interpretation of this result see Note (5.3).

Now we shall study the modification of the choice of Y,, analogous to those
investigated in sections (6.2) and (7.2). There, under some conditions on the
observations of function considered, the modification enabled us to omit
conditions (1.2.2) and (1.3.2), respectively. Here we shall give some conditions
on Y, sufficient to ensure that the convergence will not break down (Theorem
(8.4)) and that even under some other conditions the condition (1.4.2) can
be weakened (Theorem (8.5)). First we shall state an assumption.

(8.2) Assumption. G is a distribution function with a bounded continuous

derivative g, o is a positive bounded function on X, 5 s bounded and has a

continuous derivative D o R is a function on X with a continuous derivative

DR. For every principal n, ¢, is a positive number, Z, ., Z, _ are random vec-
tors,

(8:2.1) Y9 = — Lsign (49, — 29) (i=1,...0),
(8.2.2) Py {Zp =2t =G (i#) (i=1,...,9q),

= R(X, +o,d9)) .
Ay ) (=1,

ZY., ZY)_ are conditionally (%) independent, i. e.

(8.2.3) Pg {29, <2} = G(
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(8.2.5) P.Q”" {Zﬁf,’_ =z Zg)+ = 2 = PQ“n {Z(ni,);é 21} P.‘K" {Zg,)n = 22}
for every 2z, 2, e B, i =1, ..., q
and either

(8.2.6)

or

(8.2.7) fug Ydy = 0.

g ==

' (8.3) Lemma. Let Assumption (8.2) holds. Then

(8.3.1) MO(Z,) : — ~1— [1 — 2r,(X,,c,)]

where ’

(8.3.2) . ri{®, 0) = 5,

) 1 R(z + ¢4®) y — R(x)

(8.3.3) (@, ¢) = o@ f G( ol +CA<¢>) ‘)g(‘—a(W) dy .
D@DR 3

(8.3.4) a—dzri(x, c) / e ——G(a—f)ﬁ f 9*(y) dy

and, if 0 =1, )

{8.3.5)

— o0

ri®, ¢) = — DOR(x + ¢A¥) f 9y — B(x + c49) gy — R(x)))

—

Proof. As follows from the definition of ¥, (8.3.1) will be satisfied if

(8.3.6) rdXn ¢) = Pg (20, — Z9_ < 0).
From (8.2.2) to (8.2.5) it follows that

Pf"(zn,+ - Zﬂ-— = Z) - f G( o'(X" -+ CnA(i)\) ) dG( G(Xn) ),

whence, substituting z =0, —y =1¢,
+

B t — R(x + cA®) t — R(x)
(8.3.7) ri(x, ¢) = f G( o(x + CA(i)) ) dG( o(x) )

-0

which is equivalent to (8.3.3).

The relation (8.3.2) follows from thé faot that r(z, 0) equals P {V, — V, =<
=< 0} for two independent continuous and identically distributed (with distri-
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bution function G ((v :(xl)i(i)) , random variables V,, V,. Differentiating the

integrand in (8.3.3) gives
y — Rz + ¢A9)\ [y — R(x)) DDOR(x + cAD)
o(x + cdM) g o(x) T o(x + cAD)

1
+ [f/ - R(x + CA(t))] DO —— (2} + CA(’))]

from Assumption (8.2) we deduce easily, that this expression has for every
given x € X and c in every finite interval (¢, ¢;) a integrable majorante. Thus
we may differentiate under the sign of the integral in (8.3.3). If 0 = 1, we

have D al = 0 and (8.3.5) holds. If ¢ = 0, then

+

dr,(z, c) . DDR(x) oy — B(x)
~de /c=&' UWxY’./‘g(‘ o(@) )dy*‘

, =7 R@w)| . _
*”%mf g(d@)@_

+ 0 -+

g2(y) dy — WWW%fwm@

— o0 — 0

_ DY¥R(x)
a(x)

Hence the relation (8.3.4) follows either by (8.2.6) or (8.2.7) and the proof is
accomplished.

(8.4) Theorem. Let f = R satisfy Assumptions (2.1) and (4.5), let the random
variables Y, satisfy Assumption (8.2) with ¢ = 1, let the positive numbers a,, ¢,
satisfy the relations

2
(8.4.1) Zan = + oo, zancﬁ < + oo, Z%g < + o, lime, = 07)
n

Then for almost all » lim R(X,(w)) exists and belongs to the set A = A, U A,,

where
A, = R {x; DRx = 0},
Az = {a; a e El: Z; € X, R(xz) - a, sz” -+ w} :

Proof. By the Mean Value Theorem we get

. 1 2
M::)('%‘n) = - C_ + —C_ 7 (Xrn cn) =

1 2 d
= - a + a [ri(Xm 0) + ¢, ?C ri(Xm @z(Xn))]

7) This is a rather weaker condition than (1.4.3).
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with 0 < 0,X,) < ¢,, since by Lemma (8.3) the derivative of r,(z, ¢) exists.
However by (8.3.2) r{(X,, 0) = % and thus according to (8.3.5)

(8.4.2) M(Z,) = — DOR(X, + 0,(X,) 49) »,(X,),
where

(8.43) n(X,) = [ 9y — R(X, + 6.X,) 40)] . gly — R(X,)) dy = 0.

According to (8.4.2) M¥(Z,) DOR(X,) is non-positive if DOR(x) + 0
for every xe (X,, X, + c,4®). In the opposite case, since |D,R| < 2K,
[DOR(x)| < 2Kc, for every z € (X,, X, 4 ¢,4®). Thus
MP(2,) DOR(X,) = 4K*c(X,,) .

By Assumtion (8.3) g is bounded. Hence »(X,) is also bounded and we get
(8.4.4) - M(Z,), D(X,)) = — By + 6K,
with a suitable constant K, and with
(8.4.5) B2 = — ((M(Z,), DX.))- .

Now we shall apply Theorem (5.2). (8.4.4) shows that (5.2.1) is satisfied
with b, = ¢%. From the definition of Y, it follows that both (5.2.2) and (5.2.3)
qZ

are satisfied with ¢, = 0, d, = R Thus the condition (5.2.4) can be rewritten .
n

a? . .
as 2@, = + 0, Da,c: < + o, E E%‘ < + o0, lim ¢z = 0 and these relations
n

are assumed in (8.4.1). Thus all conditions of Theorem (5.2) are satisfied and
thus for almost all w in Q2 lim R(X, (o)) exists and B, (w) — 0, i. e. (M,,(Zn,(®)),
D(X, (w))y_ — 0 for a sequence of natural numbers n;.

However the positive part of (M, (%, (v)), D(X,(w))> converges to zero
by (8.4.4), too and '

M, (Z, (), D(Xn]_(w))> — 0. Thus for every i1 =1,2,...,¢q

DOE(X,, (0)) DOR(X, (0) + 0;(X,(@))4;) %,(Xp(w)) = 0.
Thus there exist z;, z; e X, such that |o; — ;' — 0 and that R(z;) >a =
= lim B(X,(w)),

[DOR(x,) DOR(x))] ':r gy — B() gy — R(z;) dy >0 .

Since from Assumption (2.1) it follows that D®R is uniformly continuous,
the last relation is satisfied only if

DOR(w;) -0 or [ gly — R(z)) gy — R(z;)) dy - 0.

—©
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Now if the sequence |z;[| is not bounded, it is easy to see (by taking such
a subsequence w, that |/l > + ©0) that a e 4, If |lo; < M for some M,
then from the contlnulty of DR there follows the uniform continuity of R
in the sphere {; |lz| < 2M} and R(x;) — R(z;) — 0. By boundedness and
continuity of g and R we get

+fw 9y — R(x)) gly — R(x;) dy =

Z_}mg(y — (B(x;) — R(x,)) 9(y) dy — f g*(y)dy > 0.

Thus if @ non e 4,, then DOR(x;) — 0 and there exists a subsequence Ty,
- converging to a point z € X such that we get lim R(X,(w)) = lim R(z,) =
= R(x) e ‘A, since DR(x) = lim DR(z, ) = 0; the proof is finished.

Remark. If |R(z,;)| — +. oo assoon as |[x;|| — -+ oo then 4, = ¢. If Theorem
(5.5) can be applied, we get sup X, (w) < 4 oo with probability one and the
sequence z; in the proof of the preceding sequence can be supposed to be
bounded, whence again we get lim RB(X,(w)) € 4, with probability one.

(8.5) Theorem. Suppose that R is a function ou X with a second derivative. Let
0 be a function defined on K, with a derivative o' satisfying
(8.5.1) inf o'(x) > 0 for every bounded set A c E,,
xed
suppose that Assumptions (8.2), (2.1) and (4.5) are satisfied with f = o(R) and
with '

(8.5.2) Zan: + oo, Zancn<—|—oo,z%’:'< + o0, ¢, —>0.

Suppose that for every x ¢ X there exists a function @, defined on E, and a po-
sitive number c(x) such that for every c € (0, ¢(x)), ¥ € B, we have

dz olt— R(x + ¢A®) )
de2 "\ o(x + cdD) =

8.5.3)

and for every x e X »
(8.5.4) ' f ?:(y) 9(y) dy <+ ©.

Finally suppose that there exist such positive constants K,, y that

' g _ R A — R(@))
(8.5.5) lg:(R(x)) D(z)R(x)\/‘% G(g G(x (ji :;](cz)) )) . (y G(w)(x)) dyl < Kz

for every x e X, c e (0, ).

Then for almost all w lim R(X.(®)) exists (possibly infinite) und belongs to

the set A = A; v A, v A,, where
{8.5.6) A, = R({z; DR(x) = 0})
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(8.5.7) A, = {a;x; e X, |lz;]| > + o0, R(x;) > a ¢ E,, DR(x,) — 0}
(8.5.8) A, = (@5 @, e X, o] > + o, [R(@)| — + o} .

If P {sup X,(w) < 4 co} = 18) then P {lim R(X,(w)) e A} = 1.
Remark. The meaning of conditions (8.5.3) and (8.5.4) is clear: they
-ensure the possibility of differentiating twice under the sign of integral in

(8.3.3). It can be easy seen that they will be satisfied if e. g. R andbl—r have

continuous second derivatives and if G has a bounded second derivative.

If we use Theorem (5.2), then the function f, which can be said to measure
the success of approximation, must satisfy Assumtion (2.1). One way of
-choosing f is to put f = R, as we have done in section (8.1); then we must
require that R is upper bounded and has a bounded second derivative.
These last conditions can be weakened by the introduction of an increasing
function . '

If we put for example

/ey for y =<0,

Q(y):\Qe—e—y for y >0

then Assumption (2.1) is satisfied for f = o(R) if R is a polynomial of any
-degreee.

Condition (8.5.5) will be satisfied, too, for a large class of functions R, )
for which ||DR(z;)|| — + oo or |D,R(x,)|| — co implies |R(x;)] — oo and for
a suitable o. Indeed, if for simplicity we assume ¢ = 1, the condition (8.5.5) can
be written as

xeX,ce(0,9),1=1,2,..,9=| [{g(y — Rx + cA®)) [DR(x + cAD)]> +

+ 9y — Bx + cA®) D§PR(x + cA®)} g(y — R(x) dyo'(B(x)) DOR()] < K,
i e. ‘

o' (R(x) [DOR(x + cAD)]* DOR() [ ¢'(y — R(x + ¢4D)] . g(y — R(x)) dy +
+ ¢'(R(@)) D R(x + ¢A4®) DOR(x) . [gly — B(x + c4®)) g(y — R(x) dy| < K, .
It is easy to see that the last inequality will be satisfied again if ¢’ is bounded,
o defined as above and if R is a polynomial, K, and y a suitable positive number.

Proof. Since Assumption (8.2) is satisfied, we may use Lemma (8.3). (8.5.3)
-ensures that we may integrate twice under the sign of integration in (8.3.3)
and according to (8.3.1), (8.3.2) and (8.3.4) we get by Taylor’s Theorem

(8.5.9) - M) = — I(X,) DR(X,) — ¢,0,(X,,) ,

8) See Theorem (5.5).
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where

L,
(8.5.10) h(x)=-0—(;)fyz(y) dy
and -

O(X.) — y — B(X, + c49) y — R(X,)\
(8.5.11) O = x)fdc2 ( o(X, + cA®) )g( o(X,) )dy

with 0 < ¢ < ¢,.

Now since f = o(R) we have

(8.5.12) D(z) = o'(R(z)) DR()

and thus according to (8.5.9) and (8.5.5) for sufficiently large n

(Mu(Z), D(X,)) = — o'(R (Xn) X ) HDR - Cn@ (R(X,) < D(R(X,)) »

for a suitable constant K so that (5.2.1) is satisfied with
(8.5.13) B: = B¥(X,) = o'(B(X,)) i(X,) |[DR(X,)|]?, b, = ¢, .

2

Clearly both (5.2.2) and (5.2.3) are satisfied with e, =0, d, = g

2 50 that.
(5.2.4) follows from (8.5.2) and all the assumption of Theorem (5.2) are satis-
fied. Hence for almost all w € 2 lim o(R(X,(w))) exists and belongs to the set
defined in (5.2.5). Since p is increasing, lim E(X,(w)) also exists, however is
not necessarily finite. If the sequence X,(w) is bounded then there exists a
subsequence n; such that for z; = X, (w) we have z; > x ¢ X, R(x;) - R(x),
B2 (w) = o'(R(x,)) h(x,) | DR(x;)||? — 0. However the sequence R(z;) is bounded,
o is bounded and by (8.5.1) and (8.5.10) we get DE(x,) — 0. Since DE(z;) —
— DR(z), lim R(X,(w)) € 4;.

If X, () is not bounded but R(X,(w)) is so, then again from B, (w) — 0
it follows that DR(X,(w)) — 0 and lim R(X,(w)) e A,. If neither X, (w)
nor R(X,(w)) are bounded then lim R(X,(w)) € 4,.

9. Concluding Remarks. (9.1) Other definitions of Y,. To observe Y,
considered in the two last sections it suffices to take estimates of R(z) at the
points

X, ), Xp(o)+ 49, 1 =1,...,q,
i. e. to take ¢ + 1 observations of random variables. Jerome Sacks [16]
points out that this definition of Y, leads to a systematical bias of X,,; —
considered as an estimate of @ in Theorem (1.4) — and propose to estimate
R(x) at the 2¢q points X,, 4 ¢,4®. However since this bias is known, an esti-
mate of @ can be obtained without increasing the number of observations.
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On the other hand there may be many other possibilities of the choice of
Y,. For example if ¢ = 3 we may use a Latin square 2.2 = ¢ 4+ 1, observe
the estimates V;; of R(X,;), where

@ __ @ 1§ s — @ __ (2) § —

a _ <X,, (Wi | for 1 =1, O _ /X,, | for j 1
7 XO 1, A for i =2, TONX® 4o, A0 for j =2,
X® —c,A® for ¢ =7,

X&) —
Y X® L, A® for 4 +

define Z, by

Z(nl) = (Vn - V21) + (Vm - sz) ’ Z("z) = (Vu - V12) + (V21 - V22) ’
Z(na) = (Vn + sz) - (Vm + V21)

1 c . . .
and put ¥, = o Z, (as an alogue tc the definition considered in Sec.

(8.1)) or Y® = 4. sign Z{® (as analogue to the definition in Assumption

(8.2)). It is easy to see that this definition of Y, leads to no complications in
proving the convergence properties of X, under suitable conditions.

(9.2) Increasing the number of observations by increasing the di-
mension of X. The question often arising in practice if the process studies does
or does not depend on a certain factor has the following abstract formulation. Gi-

ven a function f on B, does there exist a f~ defined on E,_; such that f(x) = f~(9~a)
for every e B, TeE,;, o =2z for 1 =1,...,¢ — 1% In the search
for the minimum of f an erroneous positive answer to the preceding question
results in reducing the number of observations but also in approximating
the restricted inf f(x), where a is a number, instead of approximating inf f(x).

() =a
This error (of the first kind, say) can be of an essential character. The error
of the second kind in answering our question in the negative leads to an
increase in the number of observations. If the increase is large (and this is
30 for example if factorial designs are used with & levels for the ¢-th factor;
then we need k times more observations), then the experimenter trying to
avoid the Scylla of the perhaps unnecessary and large increase in the number
of observations easily fails to avoid the Charybda and neglects practically signi-
ficant factors. On the other hand a small increase diminishes this risk. And
this is a further advantage of approximation methods desribed in Theorems
(8.4) and (8.5), since there consideration of the function f defined on E, in-

stead of f defined on E,_; (if f(z) = }(55) as above) results in an increase in

the number of observations at most by a factor g +t1 . Indeed if X, and 5(\"
q
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denote the approximation sequence for f and f}espectively, if the estimates.
are assumed to be equal in both processes as soon as the estimated quantities.
are identical, if further

(9.2.1) X0 = X0 for i —1,...,q — 1

and for n = 1, then it is easy to see that (9.2.1) holds for every n = 1,2,....
Hence our assertions follow from the fact that for the determination of the

values of Y, and Y, we need ¢ + 1 and ¢ observations respectively and the
number of observations for determining the value of «, is identical in both
cases.

(9.3.) Unsolved questions. From a host of them we mention especially
two. The first was pointed already in Note (5.3): If in Theorem (5.5) B = D,
under what non-trivial conditions the assertion P {lim f(X,) ¢ f {x; D(x) = 0}}
can be strengthened to P {lim f(X,) ¢ 4}, where A4 is the set of local minima.
of f? Secondly how to generalize the consideration in a non-trivial way to
functions f defined on a set X c F, rather than on X = E,, especially if f
may acquire its (possibly unique) minimum at the boundary of X? Although
we feel the great importance of the two problems we have not succeeded in
solving them. :
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Peswome
CTOXACTUYECKUE METOIbB! 1MTPUBJINMEH A
BAIJJIAB ®ABUAH (Véclav Fabian), Ilpora

Ucnonp3oBanue 00BUHBIX cxeMm X, = X, + «,Y, MOKeT oKasaThes MpaK-
THYECKH HEeBLIFOMHBIM B clIydYasX, worga |Ex Y,| seimxo mus X, OGumsrumx
u MaJio jist X, JaJIeKNX OT HCKOMOTO penieHusi. ITOH HEeBRIIOJBI OYAYT JIMMICHBL
cxemsl tuna X, = X, + &, sign ¥,.

OGsI9HOE TIPEJII0I0IKeHIIe, UTO o, — YUCIIA, MOKeT OBITH HEBBITOJHEIM B k-mep- .
HOM ciry4ae mpu 60ibmioM k, Korja Jjisi olpeflesieHus HaupasieHus Y, HeoO-
X0oUMO IpousBecTH 1m0 MeHbmeit mepe kK -+ 1 onsroB. Tar kak HewssecTHA
ONTHMAaJbHAA JJIMHA IIara B OIPeJIeJIeHHOM TaKuM 0o0pasoM HaIpaBIleHWH,
HPEeCTABIIAETCS He9KOHOMITYHBIM HPOGOBATE JINIIb OJIHY JUIUHY, IPEIMCAHHYIO
4UCIOM «,. Oupepenus Hanpasienue Y,, MOKHO IIOCTyIaTh, HAIPHEMEP, Tak
(1pu passicKmBanuy MgEIMyMa (yHRIuU R), 9T0 ONeHMBacM MOCIIe/[0BATCILHO
R(X, + a,Y,), R(X, + 2a,Y,), ... npn nomomu ouenox Vy, V,, ... go tex mnop,
noxa He Oymer Vy, >V, > ... > V; = V;,,, a 3a1eM MOKHO IOJNOMKUTD &, = [l

ITpm moBosbHO OOWMX YCAOBHAX, HAJIOMKEHHBIX HA OHEHKM V,, 0OBIUHBIE
aNIPOKCHUMAIMOHHDIE CXEMBl COXPAHSIOT CBOIO CXOAUMOCTH G BEPOSTHOCTHIO
1 mpm BrOpoll M3 ykasaHHBIX Moampuranuil. [lepBas Moguduranmus rtarike
Tpefyer HEKOTOPOTO YCHIIEHMsI YCJIOBHI, KACAOMUXCSH OMEHOR ()yHKIIMOHATIb-
HBIX 3HAYEHUil, HO 3aTO IO3BOJSIET 0cJIa0UTh YCJIOBWUS, HAJIOJKEHHBIE HA pe-
rpeccuBHEIE () yHKIIUM. : .

CpolicTBa CXOMUMOCTR KaK MOXM(QUUMPOBAHHBIX, ‘TAK M UCXOJAHBIX AIIpO-
KCUMAIMOHHBIX CXeM, HCCICHOBAJINCH lpu Oojee OOIMUX INPEeRHOIOKeHMIX
OTHOCHTEIILHO PerpeccABHLIX (QyHMImil, Yem, Hanpiavep, yeiosns U. P. Baoma
[2]. B cayuae orkasa ot ycaosus (1.4.1) mociegoBarensaocts R(X,) cxomures
u Befier cebs, rpy6o roBops, Tak, Kaxk 6yxro 651 X, cXonnIKch K TOYKE, B KOTO-
poii mepBas mpousBofHas R pasHa HyIO. ‘
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