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THE FRATTINI SUBGROUPS OF ABELIAN GROUPS

Vweastimin DraB, Khartoum, Sudan

(Received March 11, 1959)

In the present paper the form of the Frattini subgroup of an abelian
group is described. Further, there is proved that every abelian group is
the Frattini subgroup of suitable groups; in the class of all abelian
groups with this property there exists a minimal one, unique up to
isomorphism (the ¢p-closure of the given group). The paper concludes
with some applications concerning the @®- and <-series of an abelian
group and the study of generating systems of abelian groups.

1.INTRODUCTION

The Frattini subgroup ®(GF) of a (in general non-abelian) group @ is defined as
the intersection of all maximal proper subgroups of the group @, if G has maxi-
mal subgroups; otherwise one puts ®(¢) = (. We can also characterize the
Frattini subroup ®(@) in terms of the ‘“non-generators” of @, that is of those
elements which can be omitted from any generating system of the group &
without loss of the property of being a generating system of the whole group:
P(() is just the subgroup of all such non-generators.

Many papers have been dedicated to the investigation of the Frattini sub-
groups; the papers of G. A. MiLLER [8] and W. GascHUTZ [5] also discuss
finite abelian groups. The present article extends the results of the latter to
arbitrary abelian groups. In § 2 there is described the form of the Frattini sub-
group of an abelian group: The Frattini subgroup of an abelian group G is the
subgroup of those elements g ¢ G for which the equations

(1,1) p.x=yg ,

are solvable in the group G for any prime p (Theorem 1). In contradistinction to
the non-commutative case, the Frattini subgroup of an abelian group is fully
invariant (compare e. g. [9]). In § 3 there is proved that every abelian group is
the Frattini subgroup of some abelian group; in the class of all abelian groups
the Frattini subgroups of which are isomorphic to a given abelian group, there
exists a minimal one, unique up to isomorphism (Theorem 4, Appendix to
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Theorem 4): the so-called ¢-closure of the group @.1) Theorem 4,4 in B. H.
NrumANN’s paper [9] implies that there exist non-abelian groups which cannot
be Frattini subgroups of any group whatsoever; from the results of § 3 it follows
that the assumption of non-commutativity cannot be weakened in this theorem
(for finite groups this has already been shown by Gaschiitz [5]). In the case of
abelian groups we obtain from the latter a positive answer to a problem of
B. H. Neumann from the end of his paper [9]: If a finite abelian group G is the
Frattini subgroup of some group, then there even exists a finite group
whose Frattini subgroup is isomorphic to G. The final section of this paper,
§ 4, is devoted to some applications of previous results.

By a group we shall mean throughout an abelian group written additively.
The symbols @, + G, resp. > G5 will denote the direct sum of groups ¢, and @,

ded

resp. (s (0 € 4), G/H the quotient group ¢ modulo H and pG the subgroup of
a group G of all elements p . g with g € G. For any non-void subset M of G, {IM}
is used to denote the subgroup of G generated by the elements of M; thus
{®} = G means that & is a generating system of the group G'. By the symbols
NuYB, A B and ANV we shall denote the set-theoretical union, intersection
and difference of sets U and B, respectively. U c B means that A CB and
A + B. The set of all primes -shall be denoted by II, the greatest common
divisor of integers m and n by (m,n) and the power of a set M by m(M).

The concept of the rank of a group G as the cardinal number of a maximal
linearly independent set of the group ¢ is well-known (see e. g. [7]); let us denote
it by r(@). A set & = (¢5)s. 4 of non-zero elements of ¢ is called D-independent
if for any finite subset (¢s,)i_1,,..,» of @ a relation

ky.gs, 4 ky.gs, + ...+ kn. g5 = 0 with integers ky, ks, ..., k,

implies k; . g5, = 0 (¢t = 1, 2, ..., n). By the D-rank of a group G we understand
the cardinal number of a maximal D-independent set of the group @ containing
only elements of infinite or prime power orders; we shall denote it by r,(G) (for
properties of the D-rank of an abelian group thus defined see [2]). Thus,
especially, the equality rp(G) = r(Q) follows for a torsion-free G.

By an elementary group we understand a group in which all non-zero
elements are of a prime order. A group G* is said to be divisible if pG* = G* holds
for any p eI, or alternately, if every equation of the form (1,1) admits a solu-
tion in G* for any ge G and any pe II (see [6]). A group having no non-zero
divisible subgroup is called reduced. Every abelian group can be embedded in
a so-called divisible closure G, 4. e. in a minimal divisible group G containing
G, which is unique up to isomorphie extensions of the identical isomor-
phism of the group G (see e. g. A. G. Kuro§ [7]). For any non-zero element

1) However, the ¢-closure thus defined does not have the property (@ (®)) = @(G)
usually demanded in the abstract concept of a closure relation (compare e. 9. BIRKHOFF [1]).
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g G there exists a positive integer n such that n.g +0, n.ge @ (see e. g.
Hilfssatz 2 in [3]); thus, especially, r,(G) = rp(G). On the other hand, any divi-
sible group G* containing @ each element of which has the mentioned property
is obviously a divisible closure of the group G; especially, if r, (@) is finite and
G* is a divisible group for which the relations G € G* and r,(G) = rp(G*) hold,
then G* is a divisible closure of the group 6.

Let us, moreover, add that by the characteristic y(g) of an element ge G in
the group ¢ we shall understand the sequence

(172) X(g) = (kls k27 LR ki> ) >

where k; (+ = 1, 2, ...) is the maximal non-negative integer n for which the
equation

(1,3) pi-x=yg
issolvable in G, if such an n exists and k; = oo otherwise, . e. if the equation (1,3)
admits a solution in G for any positive 1nteger n(py <Py <...<p;<<... are

assumed to be all primes).

2, THE FRATTINI SUBGROUP OF AN ABELIAN GROUP

First of all let us prove several lemmas from which Theorem 1 will imme-
diately follow.
Lemma 1. Let G be an abelian group; then the relation
(2,1) ®(Q) < pQ
holds for every prime p.
Proof. The relation (2,1) is trivial if pG = G. In the contrary case the quo-
tient group G = @/p@ is a non-zero elementary group; therefore evidently
®(G) = 0. Thus there exist maximal subgroups ar s of the group G (6 € A) such
that
(2,2) ' ni,=o.

ded
The corresponding subgroups M4, pG C M4 c G, are maximal in ¢ and by (2,2)
we have ) M; = pG. This implies the relation (2,1).
scd
From Lemma 1 one can easily deduce

Lemma 2. For an abelian group G there holds the relation
®(G)CNpa.

pell
We proceed to prove

Lemma 3. For an abelian group G there holds the relation
()2 N pd.

pell



Proof. Suppose
(2,3) 9o N pG

pell
and let M be an maximal subgroup of G not containing the element g,. Hence

(2,4) (Mo (g) =0
and there exists a prime ¢ such that
(2,5) q.goe M.
According to (2,3) we can find an element g* such that
(2,6) q-9% =9,
which by (2,4) can be written in the form

gF=m+k.g,, meM, 0<k<gq.
Thus by (2,6)

Jo=q.-m +kq.90;

according to (2,5) we immediately deduce that g,e M which contradicts with

our assumption; and the lemma follows.2)
Lemma 2 and 3 imply
Theorem 1.3) The Frattini subgroup of an abelian group G is of the form
®G) = Npa.
pell

An immediate consequence of Theorem 1 is the following corollary which
characterises divisible groups:

Corollary 1.3) An abelian group is divisible if and only if ®(F) =

Remark 1. If we take into account the alternative definition of the Frattini
subgroups by means of generating systems mentioned in § 1 we obtain easily the
following result of [4]: A4 necessary and sufficient condition for a non-zero group
@ to be divisible is that every generating system & of G is strongly reducible (i. e.
&\ (g) is again a generating system of G for any element g ¢ ).

The following implications are easisly verified:

G =73G;=pG = ZPGs:>nPG > (N pGy);

ded pell ded pell

obtaining the following result (which is, however, easily proved directly):

2) For the prime ¢ there holds simply ¢@ C M, since the quotient group G/M is of the
order ¢, and therefore f} pG C qG C M.
pell
3) The paper was already in the press when the author found that the assertions of
Theorem 1 and Corollary 1 were mentioned already in the monograph of L. Fucus, Abelian
groups, Budapest 1958.
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Theorem 2. Let G = > G; be a direct decomposition of a group G. Then ®(Q) =
ded
= > P®(Gy).
bed

From Theorems 1 and 2 we also obtain

Corollary 2. If G is a p-primary group, then ®(Q) = pQ. If G is a torsion group,

and G = > @, its direct decomposition with p-primary components G, then
pell
D (G) = > pG, (some of the direct summands can, of course, be trivial).
pell

Remark 2. Theorem 1 can also be formulated in the following equivalent
forms: a) The Frattint subgroup ®(Q) of a group G is the subgroup of those ele-
ments g € G for which the equation (1,1) is solvable in G for any p € I1.

b) The Frattint subgroup ®(G) of a group G s the subgroup of those elements
g € G the characteristics (1,2) whose fulfil k; #+ 0 forallt = 1,2, ...

Remark 3. From the form of the Frattini subgroup ®(@) of an abelian group ¢
we see readily that ®(Q) is fully invariant in the group G (in contrary to the
non-commutative case, see B. H. Neumann [9]). In general, even for a non-
abelian group G the relation

®(G)n S ®(Gn)

subsists for every homomorphism 7 of that group G; equality is not always true

(compare W. Gaschiitz [5]). An example of the infinite cyclic group G(o0) =

= {u} and the natural homomorphism of this group with the kernel {p? . u} c

c {u}, p € I1, shows that equality ®(G) n = ®(G) is not generally true even if ¢ ’
is abelian. Similarly we can see that the proper inclusion ¢ > K does not imply

@ (@) > P(K) but culy ®(GF) 2 ®(K). Of course, one can immediately deduce

that ®(G/®(F)) = 0 (compare Gaschiitz [5]).

3. THE -CLOSURE OF AN ABELIAN GROUP

It is the purpose of this section to prove the main theorem asserting that every
abelian group @ is the Frattini subgroup of a suitable abelian group; moreover,
we shall prove that among all groups whose Frattini subgroups are isomorphic
to G exists a minimal group, unique up to isomorphism, the ¢-closure of
the group @. First of all we shall prove the following lemmas:

Lemma 4. Let G be an abelian growp and p e I1. Then there exists a group H,
which satisfies the following conditions:
I) pH, = G.
(II) For every monm-zero element he H, there exists a positive integer n'}
such that n.h + Oand n.he@G.

*4) In fact, either n = porn = 1.



Proof. Let us embed G in a divisible closure G: G C G (see § 1). The set of
elements h e G with the property p . he G obviously forms a subgroup of the
group @; let us denote it by H,. Now, H, satisfies the conditions (I) (every
equation of the form (1,1) with g € G is solvable in ) and (II) (indeed this is true
for every element of @).

Lemma 5. Let G C A be abelian groups and A a divisible closure of A; let p e I1.
Denote by A the subgroup of the group A consisting of all elements a e A such that
p.aeG.

a) If pA2 G, then A% C A.

b) If pA = G, then A% = A.

Proof. First we shall prove the proposition a). Let a* be an arbitrary
element of the group A; then, p . a* = g*, g* e G. According to our assumption
there exists an element @ ¢ A such that p . a = ¢g*. Thusp . (a* — a) = 0; since
a* — a e A, necessarily there exists a positive integer n with

n.@* —a)+0, n.(a*—a)ed.
Hence it follows that (n, p) = 1 and consequently a* — ae 4. We obtain
a*ed, i.e. AYCA.

Now, the proposition b) follows immediately, since pA = G implies 4 C A¥.

Remark 4. Let G be a divisible closure of a group Q. On the basis of Lemma 5
one can easily see that the group H satisfying H C G and pH = G is unique.

Lemma 6. Let (! and H, be abelian groups satisfying the equality (I). Then the
condition (I1) vs equivalent to

(ITY) There exists no proper subgroup H., c H, such that
(3,1) pH, =G .

Proof. (IT) = (ITY). Assume (II); any divisible closure H, of the group H,
is also a divisible closure of the group @ itself. The condition (IT¥) now follows
by Lemma 5 (resp. Remark 4).

(IT*) = (II). We shall give an indirect proof. Let A, #+ 0 be an element of H,
such that {A,} n G = 0. Embed the group H, in a divisible closure H ,:

GcH,CH,.
Let G be a divisible closure of the group G, so that
. GCGcH,,;
clearly, &, non e @. The set H,, of those elements g ¢ G, for which p . g e G, forms
a group satisfying obviously the relation (3,1); further, Lemma 5 implies
that H., is a (proper) subgroup of H .
By similar arguments as in the proof of (II') =~ (II), Lemma 6, we easily
verify
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Lemma 7. Let G and A be abelian groups such that pA 2 G, p e I1. Then there
exists a subgroup H, C A satisfying (I) and (II).

Theorem 3. Let (¢ be an abelian group and p e I1. Then the following propo-
sitions hold:

a) Groups satisfying the conditions (I) and (1) are mintmal in the class of
groups with (I). If A is a group such that pA = G, then there exists a subgroup
H, C A salisfying the conditions (I) and (I1), i. e. pH,, + G already holds for
every proper subgroup H, c H,.

b) A group is defined by the conditions (I) and (I1) uniquely wp to isomorphism.
If H, and K, are different groups with the properties (1) and (1) (where, eventually,
anstead of H , write K ), then there exists an tsomorphism between H , and K , which
18 an extension of the identical isomorphism of the group G.

Proof. The proposition a) is an easy consequence of Lemmas 6 and 7.

Thus, we shall only prove the proposition b). Divisible closures H, and K,
of the groups H , and K , respectively, are also divisible closures of the group G.
Now, an isomorphism exists between the groups H , and K , which is an extension
of the identical isomorphism of the group G; according to Lemma 5 this isomor-
phism carries H , onto K, as desired.

Remark 5. If G is a torsion-free group one can readily see that there exists
a torsion-free group H , satisfying (I); condition (I) determines such a group
uniquely (up to isomorphism), since (I) implies (II) for torsion-free groups.
Furthermore, it is easily shown that if G is finite then the group H, of Lemma
4 is also finite. In general, there holds the equality rp(H,) = rp(G) for groups
& and H, with properties (I) and (II).

Now we can formulate the main theorem.

Theorem 4. Let G be an abelian group. Then there exists a group H satisfying
the conditions (1I) (with H instead of H ,) and
(III) d(H) = G.

Proof. In fact, let us embed the group G in a divisible closure G; let H, be
the uniquely defined subgroups of G for which

pH, = G (for every pell).

Putting H = {H,},.; we have obviously G C H C@. Since G C H,C H for
every pe II, we obtain G C pH for every pe ll, i. e.

(3,2) ®H)=NpH2G.
pell
Now we shall prove the converse inclusion. In fact, the quotient group H/G is
a direct sum of the p-primary (elementary, in fact) groups H,/G' and therefore
the relation

(3,3) H, n{H,},n =G, where II, = IT\(p,)



holds for every p, € II. Every element % e H can be expressed formally in the
form of an infinite sum

(3,4) h :th’ h’GEHG?
qell
where %, = 0 for all but a finite number of g e II. The expression (3,4) is not
unique; if
h=3>h,, heH,,
GeIl
is another expression of the element % ¢ H, then (3,3) implies

(3,5) h, — hye G for every qell.
Thus, an element 2* of the group pH can be written in the form
(3,6) W =p.h=3>p.hy=>ht, hifcH, and h}eQ

qell eIl
for every p e I1. The relations (3,5) and (3,6) then immediately show that every

element of ®(H) = M pH belongs to G; this assertion and the relation (3,2) to-
pell

gether imply the desired equality (III). The validity of (II) is, of course, obvious.

Lemma 8. Let G C A be abelian groups and A a divisible closure of A. Let us
denote by A* the subgroup of the group A of those elements a e A that n . a € G for
a suitable square-free positive integer n.

a) If ®(A)2 G, then A*C A.

b) If there exists for each element a e A a positive integer t such thatt.ae G
and if ®(A) = G, then A* = A4.5)

Proof. First, one can readily see that 4* is indeed a subgroup of the
group A. In order to prove the proposition a) we recall the following relation
(3,7) GC®(A)CpAdcA
which holds by Theorem 1 for every p e II. Thus, in view of Lemma 5, every
element a ¢ 4 such that p . @ € G holds for some p e II belongs to 4.

Now, let a* be an arbitrary element of A*; consequently, there exists a
square-free positive integer » such that n . a* = g, ge G. Let

n = PiPs -+ Pm >
where p; are different primes. Put
7s = P1Ps -+ Pi—1Pi+1 --- Pm Tor =12 ... . m.

It follows that (ry, 7y, ..., 7,) = 1, 4. e. there exist integers sy, s,, ..., s,, such
m

that Zsiri = 1. Since, according to the above consideration, =».a* =
i=1

= p; . (r; . a*) e G and therefore
r,.a*=a;,, a;ed for 1=1,2 .. m, .
%) Especially, if ®(4) = G and if A4 satisfies the condition (II) (with A in place of H )
then 4* = 4.
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we obtain the equality
m m
a* = sr 0t =28 . a;;
i=1 i=1

consequently a*e 4, 1. e. A* C A.

In order to prove the statement b) it is therefore sufficient to show that
A* 2 A. Assume the contrary, that this inclusion is not true, 7. e. that there
exists an element a € 4 and a positive integer ¢ such that

(3,8) t=14q%.t, forsome gqell

and

(3,9) t.aeG@, but gty.anoneG.

We shall now prove that the element ¢t, . @ belongs to ®(A4): First, obviously,
(3,10) gty . aeqA .

Let p be an arbitrary prime, p =+ ¢; then there exist integers r, s such that
(3,11) p+sqg=1.

Further, by (3,7) there exists an element a, e 4 for which

(3,12) p.a,=st.a.

It follows then for the element rqt, . @ 4 a, ¢ A by (3,12), (3,8) and (3,11) that

p.(rgty.a 4 a,) = proty . a + sq%, . a = prgty . a + (1 — pr)gt, . a = qt, . a,
and hence
(3,13) gty .aepA forevery pell, p +gq.

The relation (3,13) together with (3,10) imply in view of Theorem 1 that the
element gf, . @ belongs to ®(4), in contradiction to (3,9) (for ¢ = ®(4) by our
assumption). This completes the proof of the lemma. ’

Remark 6. The assumption concerning the existence of the integer ¢ in
Lemma 8 b) cannot be omitted (in the related proposition b) of Lemma 5 the
existence of such an integer already follows from the assumption p4 = G):
Let @ = R+ and 4 = R+ + (o), where R+ is the additive group of all rati-
onal numbers and G(oo) the infinite cyclic group. In fact, ®(4) = R+ = G,
but A* = R+ + A.

Remark 7. Let G be a divisible closure of a group G. In view of Lemma 8 b) it
is easy to see that the group H satisfying H C G and ®(H) = G is unique. The
group H is, in fact, precisely the subgroup of those elements g e G for which there
exist square-free integer n such that n . g e G.

Lemma 9. Let G and H be abelian groups satisfying the equality (I11). Then the
condition (II) (with H instead of H ) ts equivalent to the following



(xxis) There exusts mo proper subgroup H' ¢ H such that
(3,14) - ®H)=G.

Proof. (II) = (IT"1). This follows immediately on the basis of Lemma 8
(resp. Remark 7) in the same way as the assertion (II) =- (II') of Lemma 6.

(ITUT) = (IT). Let us follow again a similar line as in the proof of Lemma 6.
Let hy e H be a non-zero element such that {h,} n ¢ = 0. Embed the group H
in a divisible closure H and consider a divisible closure @ of the group G such
that ¢ C G C H. Repeating the construction from the proof of Theorem 4 we
obtain the group H'’ satisfying H’' C Gand ®(H') = (.°) Since h, non € G, it follows
that by non ¢ H' and thus H’ is in view of Lemma 8 a proper subgroup of the
group H with property (3,14), as desired.

Similar consideration yield

Lemma 10. Let G and A be abelian growps such that ®(A) 2 G. Then there
exists a subgroup H C A satisfying (III) and (IT) (with H instead of H ).

Now, the assertions of Lemmas 8, 9 and 10 (resp. Remark 7) immediately
imply the following appendix to Theorem 4.

Appendix to Theorem 4. a) Groups satisfying the conditions (I1I) and (I1) are
minvmal in the class of groups with (III). If A is a group such that ®(A) = G,
then there exists a subgroup H C A satisfying the conditions (I11) and (I1) (with
H instead of H,), 1. e. ®(H') + G holds already for each proper subgroup H' c H.

b) A group isdefined by the conditions (I11) and (1) uniquely wp to isomorphism.
If H and K are different groups with the properties (II1) and (II) (with H or K
anstead of H,), then there exists an isomorphism between H and K which is an
extension of the identical isomorphism of the group G.

The group defined by a given group G in this manner (unique up to tsomorphism,)
is said to be the -closure of the group G; we shall denote it by (G).7)

Theorem 4 implies directly

Corollary 3. The <p-closure of a torsion (resp. torsion-free) group is a torsion
(resp. torsion-free) growp also. The p-closure of a finite group s finite. The
D-rank of a group G and that of its -closure @(G) are equal, rp(@P(GF)) = 1p(F).
If rp(@) < 8y and D(H) = G with tp(H) = tp(G) s fulfilled for a group H,
then H = ¢(@).

We shall conclude this paragraph with the following theorem concerning
the ¢-closures of abelian groups.

8) Alternatively, H’ is the subgroup of G of all those elements g ¢ G that are solu-
tions of equations n .x = g, where g ¢ G and n is a square-free integer (see Remark 7).

7) In contradistinction to the Frattini subgroup ®(G) of a group G being an unique
subgroup of G, ¢(G) is determined up to isomorphism only; thus, the equality H = ¢(@G)
means precisely that H satisfies the conditions (ILT) and (II) (with H instead of H,, ).
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Theorem 5. a) ®(@(F)) = q.

b) There holds @(®(G)) S G up to isomorphism.8)

c) If HC @, then @(H) S (G) up to isomorphism.®)

d) If ¢ :6%6’3, then (@) ;chp(Ga).

Proof. The statement a) is trivial. On the basis of Lemma 10 and Appendix
‘to Theorem 4 we deduce easily also b) and c).

We shall prove d). Let G = > G5 be a divisible closure of the group G,

scd
where G are divisible closures of the groups G4. Let H, be the ¢-closure of the

group G for which H; C Gy, 6 € A. Inview of Theorem 2, G is the Frattini sub-
group of the group > H;. Since > Hy C @, according to Appendix to Theorem 4

ded ded

{resp. Remark 7) we conclude that > H, is a ¢-closure of the group G.°)

oed
4. SOME APPLICATIONS

A) By the descending Frattini series (®-series) of a group ¢ we shall mean the
descending series

G=G,>0,>2G0,>...0G,>...0G,,
‘where @, = ®((,_;) for isolated ordinals «, @, = MG, for a limit x and

f<a

7 is the least ordinal number such that ®(@,) = @,. According to Corollary 1
@G, is divisible (@, is obviously the maximal divisible subgroup of the group ¢);
thus, the ®-series of G ends at the trivial group if and only if ¢ is reduced. We
shall refer to the ordinal 7 as the @-length of the group @. Let us observe that
D(GF,/Gy+,) = 0 for every &« << 7. Anelement g e (¢ belongs to @, (for a positive
integer n) if and only if k; = n is fulfilled in its characteristic (1,2) for each
index ¢; further, g € (') is equivalent to the proposition that k; = oo in (1,2)
for each <.

Consequently, the ®-length of a torsion-free group ¢ is = w; a necessary
and sufficient condition for G, = 0 is that @ is reduced. Especially, for torsion-
free groups R of rank 1 (i. e. for non-zero subgroups of the additive group B+ of
all rational numbers) we easily deduce:

o) ®(R) = 0 +f and only if the type corresponding to the group (i. e. the class
of all characteristics (1,2) differing one from another only for a finite number of

8) F;?p?@(G)) (resp. ¢(H)) is isomorphic to a subgroup of the given group @ (resp. of
<p((¥)) and this isomorphism is, moreover, an extension of the identical isomorphism of
P(QF) (resp. of H).

9) Of course, it is possible to verify the statement d) directly by making use of the
preceding assertions a), b) and c).

10) By w we denote the first infinite ordinal.
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components k; that are different from oo) consists of characteristics (1,2) with-
k; = 0 for an infinite number of indices <.

8) If B(R,) =~ B(R,) + 0, then R, ~ R,

y) Let us denote by R the class of all (non-isomorphic) torsion-free groups of
rank 1 and by R, the subclass of all groups of ®-length 1. Thus, by «) and B)-
® is a correspondence which carries the set R U (0) onto itself; moreover, the cor-
respondence P is one-to-one between (R\R,) U (0) and R u (0).

3) The ®-length of a group R is equal to zero if and only if R~ R+. A
necessary and sufficient condition for a group R to have a finite non-zero ®-length
is that the type v corresponding to the group R satisfies the following condition:
There exists a positive integer N such that k; = N s true for an infinite number of
indices ¢ tn each characteristic (1,2) belonging to r.

) In the contrary case the ®-length of a group R is equal to w:

R=R,>DR,>R,>...o0R,>...oR,=0.
All the groups R, (n = 1, 2, ...) are 1somorvhic tf and only if the type correspon-
ding to the group R consists of characteristics (1,2) with k; = oo for only a finite:
number of indices 1.

For p-primary reduced groups, of course, the concepts of ®-series and the
®-length coincide with the concepts of Ulm’s series and the length of the
p-primary group (see e. g. I. KAPLANSKY [6]).

B) Consider the ascending series

(4,1) G=GCcG, cG,c...cq,c...cq4,,
where G, = @(G,_;) and G, = U G,. If (1,2) is the characteristic of an element.
n<w

g € G, in the group @, then evidently
(ky +m, ky +m, ..., k; +m, ...)

is the characteristic of this element g in the group G,+,, (of course, oo + m =
= o). Hence, ¢, is necessarily a divisible group, . e. @(@,) = G,. It is easy
to see that @, is the divisible closure of the group ¢. We deduce further that
the ¢p-series (4,1) of a group G is either strictly ascending (and its ¢p-length
is w) or G is divisible (and then, clearly, G = G, = G, forn =1, 2, ...).

C) Let us apply this to the study of generating systems of abelian groups.
If & is an irreducible generating system of a group G (for terminology we
refer to [4]), then necessarily & n @(¢) = (. Moreover, any linear combina-
tion of the form

ky.gi+ky.go+ ... +kn.9gn ]
where g, e & (+ = 1, 2, ..., n) and k; = -+ 1 at least for one index 7, does not lie
in ®(G).
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On the basis of the preceding consideration we can easily prove, that a group
G =D 4 A, where D s a divisible group and A a group possessing a generating
system U with the property
(4,2) m(U) < m(D)

has mo wrreducible generating system. In fact, we see immediately that
®(G) 2 D. If @ is an arbitrary (infinite) generating system of the group @, then
there exists a proper subset &, c & such that {&,} 2 4 holds. Let g* be an ele-
ment of G\G,:

g* =d* +a*, d*eD, a*eA.
For suitable integers k, and elements ¢ ¢ &, (¢ = 1, 2, ..., n) we thus have the
relation

a* =k g0 4 kg R g

d* =g* —ky . g\ —ky. 99 — ... — k. g

consequently, according to our preceding consideration, & is not irreducible
(for the coefficient by g* equals 1 and d* ¢ ®(Q)).

The assumption (4,2) cannot be weakened: In the paper [4] there is shown

that the p-primary group G(p®) + > G,(p), where G(p®) is Priifer’s group
i=1

of the type p® and Gy(p) are cyclic groups of the order p (i =1, 2,...),

possesses an irreducible generating system. In a similar manner we can prove

that the torsion-free group W = R+ + > {u,}, where R+ is the additive group
© i=1

of all rational numbers and > {«,} the free abelian group with the basis u,, %,, ...,
i1

Uy, ..., has an irreducible generating system: Let
Tos Tgy ceusTpy evey (M + 1) .1y =1, (n=23,...)

be the familiar generating system and the defining relations of the group R+;
in the given group consider the set

W = (Wi)iza,e,..
where
Wagmp = Top + 3. Uppy
Wygy = 2. Ugey — (26 + 1) L ugy
and

Wap = Top+1 T 2 . Ugy
for k =1, 2, ... It is easily shown that for k£ = 1,2, ...
Ugr = — Ok(k + 1)(2k + 3) . wap4g — 12k(k + 1) . Waps +
+ 8k(k + 1) . wypay + (3k + 2) . wy, + 3. wyy — 2. Wy sy,
Upp—y = (2k + 1) . war + 2. wypy — Wy

13



and
Tor = Wy — 3. Ung—y  (VESP. Typy = Wy — 2. Usy) -

Hence 98 is a generating system of the group W which is, evidently, irredu-
cible (if the element w,,_, resp. wy,_,, or wy, is omitted, then the remaining
set generates a proper subgroup of W not containing the element uy,_,;, resp.
Uyy). M)

Finally, let us add the following

Remark 8. If B is a generating system of a group @, then the set G\®(F)
does not necessarily generate the whole group @ (in the case that ¢ is divisible:
the set G\P®(F) is even void). Hence, it follows that Satz 18%, p. 122in W.
SpecHT [10] is not true; if the group G/®(QF) is finitely generated, then G' need
not have the same property (it is enough to consider the subgroup W, = R+ +

n

-+ > {u;} of the group W for a natural number n; obviously, ®(W,) = R+).
=1
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Pesome

MOArPYIIHl OPATTUHN ABEJIEBLIX T'PVIIIL
BJIACTUMWJI JIJIAB (Vlastimil Dlab), Xapryy

.

Hoprpynuna @parruan ®(G) rpynnsl G (BooGiIe HCKOMMYTATHBHOI) ompese-
JicHA KaK LEPeceYeHHe BCeX MAKCHMAJBHBIX IOATPYNIL 9TOH IPYIIEL, €CJI
G Taxkumu noprpynunamu obnajgaer; nHave P(G) = G. Bosmorkua Tarske ApY-

11) Thus, a slight modification of our consideration brings the following result: If
@ .

G = D + X{u;}, where D is a countable divisible group, then G possesses an irreducible
i=1 v o .

generating system.
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rasg Xapakrepusanus noarpynnsl ®(G) B repMmHax T. Has. ,,Heobpasyoummx‘,
T. €. TeX JJEMEHTOB TPYyHIHl (, KaKAblil W3 KOTOPLIX MOET OBLITH yAAJACH U3
ao0oit cmereMbl obpasywnmx rpynnsl (¢ 6e3 HapymIeHUs: CBOHCTBA ABIATHCS
cucreMoil obpasyomux Beeil rpynns; @ (@) — 370 UMEHHO HOArPYTIIA ATHX
HEOOPABYIOIUX.

IMocste BeTynUTEIBHBIX 3aMCUAHNMIT MCCIIEYET ABTOP B § 2 CTPYRTYPY 10/~
rpynist Oparrunn naunoii adeseBoil rpynubl.t)

Teopema 1.%) Ilodepynna @Ppammunu abeaesoic epynnue G umeem fopmy

2(¢) = Nrd,
pell
2de IT — mmnoorcecmso ecex npocmux wucen.

Orciofja BBITCKAeT, B YAaCTHOCTH, JATbHCHIIAA XapaKTCPU3alus HOJHBIX
abenessix rpynu (CieperBue 1), M3 KOTOPOIl HEMOCPEACTBEHHO I10JIydYaeMm
XapaKkTepusaluio NPy HOMOMHM cHCTeM 00pasylounx, IpHBEICcHAY0 B [4]
(3amerka 1).

Caepersue 1.2) Abeaesa epynna G agasemces noanoii mo2da u moavko moeda,
ecau B(G) = G.

JUstst psiMOIT CYMMBL TOrjia CIpaBe/iluBa

Teopema 2. ITycmv G = > Gy — npamoe paavrwmeuue epynnut G. Tozda

sed
®(() g;, ®(dy) .

Crmencrsue 2 cliemuuuapyer HOJTYYeHHBIE Pe3yIbTaThl ;Jisi CIICIHAJIHHBIX
KJIaCCOB TPYII M 3aMeuanue 2 JjaeT HPKBUBAJIGHTHOE BhIpaskeHIe TeopeMsl 1 mpu
NOMOIIM HOHATNH XapaKTePUCTUKYU dTeMEeHTa rpynubl. V3 (GopMbl moarpymnist
Dparruan P (G) rpynnst G cpasdy BeiTekaet, yto ®(G) — BOJIHE XapaKTepUCTH-
yeckasg B G u uro @(G/P(GF)) = 0.

Caenyomuit § 3 NOCBAMEH BOIPOCY CYIIECTBOBAHUsL I'PYIIIBL, HOJAIPYILIA
@®parr:ian Kotopoit n3omopdHa jannoil rpyune (. IIpoGmema pemena 1pu no-
Mo KoHerpyknuu rpyun H o obmapaomux cpoiicrsom pH, = @, rue p —
npocroe uncyio (Teopema 3). ABrop BBOJUT NOHSATHC @-3aMBIKAHUS 1 POpP-
MyJLIpyeT pemieHHe B Teopeme 4 1 Jo0aBJICHNU K dTOI Teopeme.

Teopema 4. IIycmv G — abeaesa epynna. To2da cywecmsyem epynna, 6vi-
NOAHAOWAL CALOYIOUUE YCAOBUL:

(I1) das raocdozo menyaesoco anemenma h e H. cywecmeyem namypanwmoe
wucko n makoe, umon . h = 0un.heGu

III) ®(H) = 6.

1) B paupHeliiieM 1oj Ipynmod Bcerja pasymecrcs alesiepa Ipynma ¢ aJINTHBHON 3a-
1MCBIO.

2) Bo Bpems HOArOTOBKHU K II€UaTH aBTOP 3aMETH.I, UTO YTBEDPH{ICHUS TeopeMbl 1 o cirej-
creusa 1 maxojsres yme B Monorpaduu JI. Qyrca, Abenesn rpynmst, Byaanewr 1958,
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ToGapxenne k Teopeme 4. a) I'Pynnui, eunoanswowue yeaosus (IT) u (III),
ABAKIOMCA  MUHUMAALHOIMU ¢ KAAcCe 2pynn co  ceoiicmeom (IIL). Ecau
A — epynna maras, umo ®(A) = G, mo cywecmeyem nodepynna H C A,
eutnoansiowas yeaosus (I1) u (IIL), m. e. das kamcdoii cobemsennoii nodepynnut
H' ¢ H cnpasedauso ymce ®(H') + Q.

b) Veaosuamu (II) u (III) epynna onpederena 0dnosnaumno ¢ mounocmvio 00
uzomoppusma. Ecau H u K — pasauunvie epynnu co ceoticmeanu (II) u (I1I),
mo mexncoy H u K cywecmeyem usomopgdusam, npodoasrcarowguii moosrcdecmeernmuiii
agmomoppusm epynnot G.

I'pynny, onpedeaennyio  dannoti 2pynne G marum cnocobom (00Ho3HaUIO ¢ MOY-
Hocmvio 00 usomopusma), HA308eM Q-3aMBEAHUEM 2PpYynnul U 0603HaNUM ee

«epes @(G).
B cnegctBum 3 mokasaHbl HEKOTOPBIG COOTHOINEHUsT MeKAY [D-panrammn

JaHHOM Tpynnsl 1 ee <-3aMmpikanusA. Cjlefyiomas TeopeMa TOKAa3LIBaeT He-
KOTOpBIC CBOMCTBA @-3aMblKaHMA Ipymmnst G.

Teopema 5. a) ®((F)) = G.

b) @(®(F)) € @ cnpasedauso ¢ mourocmvio 0o uzomopPpusma.?)
¢) Ecau H C @, mo @(H) C @(G) ¢ mounocmvio do usomopgusma.?)

d) Ecau G = 3 G5, mo @(@) =~ > @(Gy).
bea dca

IMocnennuit § 4 HoCBANEH NPUMEHEHMIO MOJIYYCHHBIX Pe3yJIbTAaTOB K H3yde-
o yosBaomux nerneii Mparruam (KOTOpBIe B cjIydae pP-IPYHIBL COBHAAIOT
¢ YJIBMOBCKIMH IelsMu), Bozpacraiomux nemneii MDparTuHE M K U3ydYEHHIO
cucrem obOpasyonmx maHHoit rpynmsl. Ilpm momomm mOHATHSA HOACPyHIBL
Dparruund OKasbBaeTcs, Hamp., cilepyomee yrBepspenne: I'pynna G =
=D 4 A, 20e D — noanas epynna u A — 2pynna, obaadaiowas cucmemoit
06D a3y0OWUL co C6OIUCMBOM

(4,2) m(%). < m(D),*)
He umeem Henpugodumyio cucmemy oopasyowur.®) OqHOBpeMeHHO MOKA3aHO Ha
@0

upnmepe rpymust W = R+ + > {u;}, rae B+t — ajutusHas Ipynm pamuo-
© t=1

HAIBHBIX Wices M » {u;} — cBoGoamas abejeBa rpymnna cYeTHOro paHra,
i=1

4TO MPEJIOJIOMEeHMs HTOTO yTBEDACHUA HeJIb3s 0cIabyMb.

3) T.e. q(®(G)) (nm e (H)) nsomopdua noxrpymnne fanuoi rpymnst G (nma xe @(G))
¥ 9TOT M30MOPPU3M IPOTOJKAET, CBePX TOTO, TOMIECTBCHHEIH aBToMoppuaM rpynust . ®(G)
(wim ke H).

4) CumpoJiom m(IM) oGo3navena MOIHOCTH MHOMecTBA IN.

5) Cucrema obpasyiomux rpymisl G Ha3LBACTCA HENPHBOAMMOMN, €CJIM BCAKOE COOCTBEeH-
HOE NOJMHOMECTBO He ABIAETCA yHe cucTeMoil 00pasyomux aroi rpynnsl G (cu. [4]).
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