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Чехословацкий математический журнал, т. 8 (83) 1958, Прага 

STOCHASTIC BRANCHING PROCESSES WITH CONTINUOUS 
STATE SPACE 

MILOSLAV J l f t lNA, Praha 

(Received June 10, 1957) 

The paper is concerned with stochastic branching processes the 
state space of which is the whole non-negative par t of the n-dimen-
sional Euclidean space. Existence theorems and fundamental proper­
ties are proved and several kinds of degeneration are studied. 

1. General properties. In the last few years the theory of stochastic branch­
ing processes with discrete valued realisations has been developed.*) The 
values of the random variables describing the states of these processes are 
vectors with non-negative integral coordinates and the n-th coordinate usually 
means the number of particles of the n-th kind. As the quanti ty of particles 
can sometimes be expressed by other means than by counting, it seems rea­
sonable to consider branching stochastic processes with more general states. 
I t is the purpose of the present paper to give the definition and to study some 
properties of stochastic branching processes the state space of which is the 
whole non-negative par t of the Euclidean space. Throughout the whole paper 
n will denote the number of different particles and, accordingly, the dimen­
sion of the state space. 

The following notation will be used in the sequel. If a is a тг-dimensional 
ГОЛУ vector, аг will denote the г-th coordinate of a and we shall write 
a = (ab . . . , an). The corresponding transposed vector will be denoted by a 

~ n 

and thus we can write ab instead of ^afi^ To denote special vectors we shall 
г = 1 

write 0 = (0, . . . , 0), 1 = (1, ...? 1) and d(') = (d[j\ . . . , dp), where d{p = 0 
if i Ф j and d{p = 1. More generaly 5 will denote any zero matrix. The relations 
< , ^ , = between two vectors means tha t the relation holds between all corres-

ponding coordinates. The same rule applies to the operations + ,—- , / , — etc. 
Ob 

Thus, if fi(x), Çi(x), hi(x), (i= ! , . . . , n) are functions of n variables (xl9..., xn) = x, 
the relation f(x) = g(h(x)) means tha t fi(xl9 . . . , xn) = gi(h1(xlj . . . , xn), ..., 

*) For the definition of these processes we refer to [1] or [2]. 
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. . . , Кп(хъ . . . , хп)) for every i == 1, 2? ...-, п. For f(x) = /(жь . . . , #n) we shall 
д д2 

write /<*>(*) - — f{x19 ..., хп), f(M(x) = ^ - ^ / ( ^ , . . . , хп). Since A ±a 
will be used in sec. 3 as a symbol for the shift of the set A by a, we shall denote 
the set difference by \ . 

X, X0 and Хг will denote the ^-dimensional Cartesian power of the set of 
all complex numbers with non-positive real part, of the non-positive par t 
of the real line and of the interval <0, 1> respectively. 

Let T be any set of non-negative numbers such tha t 0 e T, let E be the 
^-dimensional Cartesian power of the non-negative part of the real line, and 
let ê be the system of all Borel subsets of E. T will represent the parameter 
set and E the state space of the process. We shall denote the characteristic 
function of А с Е by d(a, A) and, more generally, if A is any subset of the 
fc-dimensional Cartesian product E X . . . X E, by d{aix), ..., aik), A). 

Any function P(s, a,t, A) defined for s e T, a e E, s <t e T, A e ê will be 
called a stochastic branching process with continuous state space or, more briefly, 
a Ъ-process, if the following conditions are fulfilled: 

C l . P(s, ., t, A) is а (о-measurable function on E for every s e T, s ^ t e T, 
A e ê. 

С 2. P(s, ayt, .) is a o-additive and non-negative measure on S for every 
SeT, s ^teT, aeE. 

С 3. P(s, a, t, E) = 1 for every s e T, a e E, s ^ t e T. 

С 4. P(t, a, t9 A) = d(a, A) for every t e T, aeE, Ae ê. 

С 5. P(tly a, *a, A = fP(t2,'b, t3, A) P{tb a, t2, do) holds for all tt*T 
E 

(i == 1, 2, 3) such that t± ^ t2 ^ ts and all a e E, A e ê. 

С 6. P(s, ai1) + ai2), t, A) = 
= / fdfii1) + Ы2), A) P(s, ai1), t, àU1)) P(s, ai2), t, dbi2)). 

E È 

С 5 is the well known Chapman-Kolmogorov equation and С 6 is the cha­
racteristic property of-branching processes. From С 6 if follows tha t 

jf(b) P(s, ai1) + ai2),t, do) = / //(be1) + Ы2)) P(s, ai1), t, dbi1)) P(s, ai2), t, àU2)) 

(1.1) 

for every bounded and measurable function / and using this relation we 
easily obtain 

P(s, IaV), t,A) = J...fd(2Щ А) ПPiß, аЩ t, dé<») 
j=l Е Е j=l j=l 
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for every natural k. In particular, if a e E has integral coordinates, the last 
relation gives 

n at n ai 

p(s, a,t,A) = f... jd(Z 2b(i,i)>A) П Г № d(i)> b>db(M)) • 
E E i=l j = l i=l ; = 1 

This is a direct generalisation of the relation defining branching processes 
with discrete state space (see for example [1] (12) on page 53). Similarly to 
(1.1), it follows from С 5 tha t 

/ /(c) P(tb a, t2, dc) = / Jf(c) P(t2, Ъ, *з, de) P(tl9 a, t2, du) . (1.2) 
E EE 

E will denote the Cartesian power ET and оЛ the corresponding a-algebra 
generated by the well known Kolmogorov procedure. Every | e E is a function 
on T with values in E and thus, £(t) — (^(t), . . . , £n(t)) is its value at time t. Let 
P 0 be an arbitrary probability measure on E, corresponding to the probability 
distribution at time 0. Using P 0 and P we can always define a probability 
measure UPoP on oA such tha t 

I7PQAA X ЯТч<<—><*>) = / . . . /d(a(D, . . , a(*>, 4 ) P(*fc_b a<*-i>, *fc, da<*>) . . . 
Б Е 

. . . P(0, a<°), *b dac1)) P0(da(°>) 

holds for every natural к, tx< t2 < ... ^ tk e T and i e ^ X . . . X ^ . This 
probability measure satisfies the condition for Markov processes and we have 
Прор(А X 2?T x^|f(s) = .a) = P(s, a, t, A) almost everywhere. For any random 
variable rj on E, EPQJP(TJ) will denote its expected value jrj(i) i 7 P o P (d | ) . 

In accordance with methods of discrete space processes we define for s e T, 
a e Ey s ^ t e T, x e X± the generating function 

F(8, a, t, x) = Jx^xl2 ... xb
n

n P(s, a, t, dfe) 
E 

and we write, in particular, F^s, ty x) = F(s, d(*\ t, x), F(s, t, x) = 
= (F^s, t, x), . . . , Fn(s, ty x)). The following theorem states tha t the funda­
mental iteration rule for generating functions still holds. 

1.1 For every x e Xc1) and tx^t2^tzeT we have 

F(tly tz, x) - F(t1} t2, F(t2, h, x)) . 

P roo f . From (1.1) it follows tha t F(s, a + b} t, x) = F(s, a, t, x) . 
. F(s, b, £, #). Having in mind tha t F(s, a, t, x) is measurable with respect 
to a we infer from the last functional equation tha t 

F(s>a,t,x)=fl[Fi(s,t,x)]"<. (1.3) 
i=l 

S» 

Combining (1.2) and (1.3) we complete the proof. 
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Although generating functions have proved themselves to be a useful tool 
for studying branching stochastic processes, we shall replace them in almost 
all cases by complex Laplace transforms. There are several reasons for this, 
the main being tha t the generating function does not define here uniquely 
the corresponding transition probability. The ordinary characteristic functions 
would not be appropriate because of the important relation (1.5). The de­
finition of X and E enables us to define for every s e T, a e E, s ?^t e T, x e X 

0(s, a, t, x) = fex*P(s, a, t, db) (1.4) 
E 

and we write again Ф^8, t, x) = <P(s, d({\ t, x), <P(s, t, x), . . . , 0n(s, t, x)). Clearly, 
<P(s, a, t, x) is continuous in x, ê-measurable in a and \Ф(в, a, t, x)\ ^ 1, 
Ф{8, a, t, 0) = 1. 

1.2 There exists exactly one function W(s? ay t, x) which is for every s ^ t e T 
and every a e E continuous in x e X and such that W(s, a, t, Ö) = 0, 
0(s, a, t7 x) — exp \W{s, a, ty x)}. Setting ¥ (̂<s, t, x) = W(s, d({\ t, x) and 
W(s, t, x) = (W^s, t7 x), . . . , Wn{s, t, x)) we have 

0{s, a, t, x) = exp [W(8, t, x) a] (1.5) 

and if t± ^t2 ^t3e T, then 

W(tlytZjx) = W(t1?t2yW(t2,tZjx). (1.6) 

P roof . The first par t (existence and uniqueness) of the theorem can be 
considered as a generalisation of a weakened form of the theorem on character­
istic functions of infinitly divisible laws. Nevertheless, because of the funda­
mental importance of the theorem, we shall sketch how the theorem can be 
proved directly in our case. First of all we deduce from (1.1) for all x e X tha t 

Ф{в, a + b, t, x) = Ф(89 a, t, x) 0(s, b,t,x) . (1.7) 

Further we remark tha t (1.4) has meaning for all x e X0 and for these real 
x (1.5) can be proved by the method used in the proof of 1.1. But (1.5) being 
proved for x e X0 implies lim P(s, a, t, {b e E : b ^ e . 1}) = 0 and from this 

and (1.7) it follows tha t Ф{в, a, ty x) is continuous in both a e E and x e X, 
and different from zero. Hence, we deduce that there exists exactly one 
function W(s, a, £, x) which is continuous in both a e E, x e X and such tha t 
0(s, a, t, x) = exp [W(s} a, t, x)] and W(s, 5, t, Ö) = 0. All other properties of 
^ fo l l ow from the uniqueness. In particular, to deduce (1.6) we combine (1.2) 
and (1.5) and we obtain 0(tly ay t3, x) = jxbP{tly a, ts, db) = 

E 

= JfexSP(t2, c, t3, db) P(tu a, t2. dc) = J0(t2, c, t3> x) P(tu a, t„ dc) = 
ЕЕ Е 

= / e x p [V(t2, t3, x) ~c] P(tl9 a, t2, dc) = Ф{1Ъ a, t2, W(t2, t3, x)). 
E 
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2. B-processes with discrete parameter. In this section we assume tha t the 
parameter set T is formed by non-negative integers, L е., Т = {0, 1, 2, . . . } . 
Any function P(s, a, t, A) satisfying С 1—С 6 with respect to this T will be 
called a stochastic branching process with continuous state space and discrete 
parameter or briefly, a Bd-process. According to С 6, P(s, a, t, .) is for every 
s, a, t an infinitely divisible probability measure on ê. I t is the aim of the 
following theorem to show that , on the other hand, any sequence of infinitely 
divisible probability measures on ê defines uniquely a B^-process. This proves 
the existence of Bd-processes because infinitely divisible probability measures 
on S exist; as an example, we can instance for n = 1 the Poisson distribution 
or, among absolutely continuous distributions, the Г distribution, defined by 
the density function 

- ^ e - ^ - 1 С и > 0 , A > 0 ) . (2.1) 

2 .1 . Suppose that Pi{t, A) are infinitely divisible probability measures on 
S for all i = 1, 2, . . . , n and all t e T. Then there exists exactly one &d-process 
such that P(t, d<<>, t + 1, A) = P{(t, A) for all i = l,2,...,n. 

Proof . We denote for all xeX the logarithm of the complex Laplace 
transform of P^t, .) by W^t, x) and we define for all t e T an all a e E the 
function P(t, a,t-\~ I, A) as the probability measure on S the Laplace trans-

n 

form of which is exp [ ^ 5 % %) ai\ Fur ther we set P(t, a, t7 A) = d{a, A) and 

define by recurrence 

P{t, a, t + s, A) = fP(t + 8—l,b,t + 8, A) P(t9 a, t + s — 1, db) . (2.2) 
E 

I t is well known tha t the function P(s, a, t, A) defined in this way satisfies 
С 1 —С 5. To prove С 6 we assume ai1), a(2) e E, s e T to be fixed. С б holds 
for t = s + 1 and for all A € <a by definition and suppose, by induction, tha t 
С 6 holds for some t > s and all A E S. For every function /(cC1), c(2)) which 
is bounded and $ X S measurable we define 

/( /) = f f [ f //(6(i), 6(8)) P(t, Ы1), t + 1, dd1)) P(t, 6(2), t + 1, dc(2))] . 
E E E E 

. P(s, ai1), t, dbi1)) P(s, ai2), t, d6(2)) . 

Starting with /(c(x), c(2)) =r did1), Ai1)) d(d2), Ai2)) and continuing by the usual 
procedure we deduce from С 6 

1(f) = / //(6(i), 6(2)) P{8, ai1), t + 1, dbi1)) P(s, ai2), t + 1, d6(2)) . (2.3) 
E E 
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By (1.1), (2.2) and our assumption we have 

P(s, ai1) + ai2), t+l,A) = fP(t, b,t + 1, A) P(s, ai1) + ai2), t, db) = 
E 

= f fP(t, Ы1) + Ы2), t + l,A) P{s, ai1), t, dbi1)) P(s, ai2), t, dbi2)) . 
E E 

Since P(t, a,t-\- 1, A) satisfies С 6, the last relation proves that 
P{s, ai1) + ai2), t+l,A) = 1(f) with /(cC1), d2)) =-d(c(1) + rt2), A). Inserting 
into (2.3) we complete the proof. 

C o r o l l a r y . If ¥/(1)(ж)7 Wi2)(x) are logarithms of two Laplace transforms of 
infinitely divisible probability measures on ê, then the same holds for the 
composite function Wi2)(Wi1)(x)). 

In the rest of this section we shall consider homogeneous Bd-processes only, 
i. e. we shall assume P(s, a, t, A) = P(0, a, t — s, A) for all s <t € T. We 
shall write P(a, t, A) instead of P(s, a, s + t, A) = P(Q, a, t, A), Pt(t, A) in­
stead of P(dil), t, A) andP^(^) instead of РД1, A). According to 2.1, the homo­
geneous B^-process is determined by n infinitely divisible probability measures 
Pi(A) i = 1, 2, ..., n. Similarly to the notation just described we shall write 
W(a, t, x) instead of W(s, a, s + t, x), W^t, x) instead of W(dii), t, x), Wt(x) in­
stead of ¥^(1, x) and further we shall write W(x) = (W^x), ..., Wn(x)). The 
same rule will hold for Ф and F. To denote the first moments of P(t, a, .) we 
shall write Mö(a, t) = fbjP(a, t, db). For simplicity reasons, M^di1), t) will 

È 

be replaced by M{j(t) and M (t) will denote the square matrix (M{j(t)), i, j = 
= 1, . . . , n. In particular, we shall write Mih M instead of М^(\), 31(1). Jus t 
as in the case of branching processes with discrete states it can be proved 
that , if all M{j (i, j = 1, . . . , n) are finite, then all Mu(t) (i, j = 1, . . . , n, 
t = 1, 2, ...) are finite too and 

M(t) = M* , (2.4) 

Mu{t) = #/>(*, 0) = V«\t, 0) . (2.5) 

We shall assume throughout the rest of this section 2 tha t all Mu are finite. 
The matrix M is non-negative and we shall denote its maximal characteristic 
number by R. 

GO 00 

We write At = {£ e S : £(t) = 0} and A = {J f\AT. From (1.4) we have 
t=l r=t 

s s 

P(Ö, *, {О}) = 1 and accordingly ПР^Р{(\ЛТ) = / . . . / ГИ а ( т > > {ö}) . 
x=t E E x=t 

. P(ais~1), 1, dais)) . . . P(a, t, da<*>) P0(da) = fP(a, t, {5}) P0(da) 
E 

and 
ПРоАЛ) = lim nP^P(At) = lim jP(a, t, {0}) P0(da) . (2.6) 
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The homogeneous B^-process P(a, t, A) will be said to converge 

a) strictly to zero, if for every P 0 we have ПРо,Р(Л) = 1; in other words, if 
JJpe,p almost all realisations are equal to 0, beginning from certain t. 

b) strongly to zero, if for every P 0 and every i = 1, 2, — ?г |г-(£) converges 
to zero Z7po>P — almost surely. 

c) weakly to zero, if for every P 0 and every о — I, 2, ..., n ^(t) converges 
to zero in /7po,p — probability. 

Clearly; the strict convergence implies the strong convergence, and the 
strong convergence implies the weak convergence. 

From [1], Theorem 9 it is apparent tha t in the case of branching processes 
with discrete state space and with finite first moments all three kinds of the 
convergence to zero are equivalent. In our case the equivalence ceases to hold. 
More precisely, the strict convergence to zero is not equivalent to the strong 
convergence to zero, as it follows from the remark to 2.2. On the other hand, 
according to 2.6 the strong convergence to zero is under sufficiently general 
conditions equivalent to the weak convergence to zero. The author does not 
know, whether this equivalence holds generally. 

2.2. The homogeneous Вd-process converges strictly to zero if and only if the 
system of n equations 

F(x) = x (2.7) 

has in the domain Хг no solution, except for x = 1. 

P roof . We omit the details of the proof, which would be the imitation of the 
methods developed for branching processes with discrete state space. The 
proof lies on the following three facts a) according to (2.6), the process con­
verges strictly to zero if and only if lim F(t, 0) = Ö; b) according to 1.1 

lim F(t, Ö) = у always exists and satisfies (2.7); c) if z e X± satisfies (2.7), then 
t->co 

R e m a r k to 2.2. The same statement holds for branching processes with 
discrete state space and is implicitely obtained in the proof of Theorem 9, [1]. 
However, the mentioned theorem gives the necessary and sufficient conditions 
in a different form, namely: a) R fg 1 b) there are no final groups. In our 
case, these conditions would not be true for strict convergence. This can be 
shown by the following example. We take n = 1 and define the fundamental 
probability measure Рг{А) by means of the density function (2.1) with X < /л. 
Then both a) and b) are satisfied, but F(0) == 0 and this implies, according to 
1.1, F(t, 0) = 0 for all t. On the other hand, conditions similar to a) and b) are 
necessary and sufficient for the weak convergence and, under one additional, 
condition, for the strong convergence to zero (see 2.4, 2.6). 

298 



Before we prove these theorems, we introduce some new notation. Every 
subset I = {ily ..., im} of {1, 2, ... , n} will be called an index set. For such a 
set I and for every x — (хъ ..., xn) e X0 we shall write x^) = (x{, . . . , x4 ). 
Further, Mj(t) will denote the matrix {Ми(Ь))ш1 and we shall write Мг in­
stead of iHfj(l). P f will denote the maximal characteristic number of Jff. 
The index set 7 will be said to be irreducible, if there exists no decomposition 
7 == 1г и 72 into two disjoint sets Il9 I2 such tha t Рг-({Ь € E : bj = 0) = 1 for 
each г e 71? j € I2. Clearly, a necessary and sufficient condition tha t 7 be ir­
reducible is tha t M j be irreducible. The index set 7 will be called a final group, 
if 7 is irreducible, BT = 1 and Pi(f\{b : b§ = M{j}) = 1 for each û / . Although 

in the following theorems the domain of the Laplace transform is restricted 
to X0, i. e. to real x only, the logarithms грг could not be replaced by the gene­
rating functions Ft. 

2.3. Under the assumption that the index set I is irreducible and Rx 5* 1, the 
following three statements hold: 

a) If there exists a vector 0 + x e l 0 such that xt = 0 for i non e I and 

Pi({b e E : xb = x{}) = 1 / о гай î e / , (2.8) 

Йе?г 7 is a final group. 
b) If there exists a vector 0 =f= x e X0 SWCÄ Йа£ #г- = 0 for i non e 7 and W^x) — xt 

for i € I, then I is a final group. 
G) If I is not a final group, then for any rj < 0 there exists a vector x e X0 such 

that Xi = 0 for i non e 7, and r\ < xt < 0, ^ (# ) > ^ /or г € 7. 

P r o o f of a). From (2.8) we get MjX1 = x1 and consequently 1 must be the 
characteristic number of MT. This shows, according to the assumption Rt 5g 1, 
tha t P j = 1. Further, Mt being irreducible, we have xx < Ö. For each i} j e I 
and for every Borel set А с <0, oo) we define Qu(A) = Рг({& e E :Ь,} e A). 
Because of С 6, ( ^ is an infinitely divisible probability measure and from 

(2.8) we deduce Q{j I < 0, — > I = 1. But it is proved in [3] tha t there exists 

no non-trivial infinitely divisible probability distribution on a bounded interval 
and hence P?({6 e E :bj = Mi})) = 1 for each i, j e I. 

P r o o f of b). Let J be the set of all indices, for which xt < 0. Note t ha t 
always J с I. According to the Taylor theorem and (2.5) we have 

ВД = 2 M(jx, + 2 ¥f,Ä%) % , (2-9) 
3d j,JceJ 

where y e X0 is a vector such tha t y{ = 0 for i non e J and x{ < yt < 0 for 
г e J . I t is easy to show tha t 
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for each j , k, e J and consequently 

2 Wfl°>(y) X& = [ФШ'1 f &j - П'\у)) xtf еуеРМЬ) ^ 0 . (2.10) 
3,k€J E jeJ 

Since Wi(x) = xt for all i e I, we have by (2.9) and (2.10) 

p f „ ( - x,) = - я, + 2 yth\y) ¥ * ^ " ^ ^ « , ( - *,) (2.11) 

for all г € / . Since a;(J) + 0, (2.11) proves tha t (— x(T)) is an extremal vector 
of Mh i. e. an eigen-vector belonging to Bv But then the sign of equality must 
hold in (2.11) and hence BT = 1, ^M^Xj = xt and ]T ^(iik)(y) xjxk = 0 for all 

n n 

г € / . By (2.10)? it now follows tha t РДЬеЕ : 2 & Ä = 2 ^ % ) XJ}) = 1 for 

r» n 

all ù / , and integrating we obtain â  = ^M{jXj = ^W{f>(y) xô. This proves 
5 = 1 i = i 

tha t Рг-({6 e E : xb = x{}) = 1 and the assertion of b) follows from a). 

P r o o f of c). Let F be the set of all x e X0 such tha t rj < â  < 0 for all г e / 
and â  = 0 for all i non e I. Mj being irreducible, there exists x(°) e V such tha t 
2 ^ 4 0 ) = Л1ЖГ ^ жг- By (2.9) and (2.10), we have W(x(0)) ^ a*°> and, ac-

cording to b), there exists at least one index iQ e I such tha t Wio(x(0s>) > х[0\ 
Suppose tha t a couple (J, xi1)) has already been found in such a way tha t 
J с I, xi1) € V, 

2 M^xf ^ xf for all ieI\J and F ^ 1 ) ) > 4 1 } for all i e J (2.12) 

({'h}> x(0)) is an example of such a couple. If J ф / , there exist i± e I ~ J , 
j \ € J such tha t Jfi3- > 0 because of the irreducibility of Ж7. W being conti­
nuous, we can find a?(2) € V in such a way tha t xf} = ^ 1 } for all г + ? ь a ^ < 
< 4 ! } < 0, Чу,(х(2)) > я<2> for all i e J. Since Mixh > 0, we have 
^Mixix{p > ^ 2 ) (2.12.) and then, according to (2.9) and (2.10), ¥\(x(2)) > a£>. 
J e l 

Finally, the inequality ^M^xp ^ xf} continues to be valid for i e I \ 
3el 

(J и {г-J) because jx e J. This proves tha t (2.12) continues to hold, if the couple 
(J, xi1)) is replaced by (J и {ix}, x(2)). Continuing in this way we obtain finally 
a couple (/, x) and this completes the proof of c). 

2.4. A homogeneous Bd-process with finite first moments converges weakly to 
zero if and only if 

a) JR.5*. 1, b) there are no final groups. 

R e m a r k . If R < I, then b) is always satisfied because Br ^ В for each 
index set / . 
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P r o o f of the theorem. We can assume without loss of generality that the 
indices are ordered in such a way that 

M 

Mi1) 
Mi1'2) 

Mi8*1) 

0 
Mi2) 

0 
6 

0 

Ö Ö 
Mi8'1) 0 

. Mi8*8-1) Mi8) 

(2.13) 

where Mij) (j = 1, 2, . . . , s) are irreducible square matrices. Let MO) be of 
i—i 

dimension т$ X mh so that 2 m * ~ n- ^ n e И1(^ех sets Ij = {^m{ + 1, . . . , 
j j=l i=l 

• • •> 2 mù a r e i r r e (iucible and from the form of M we see that , if i e Th the 

function Wi(x) does not depend on xt with £ e U^/c-

We prove first the sufficiency. Assuming tha t the conditions a), b) are 
satisfied, we shall prove tha t to each j = 1, 2, . . . , s there exists a vector 

Ji) 

M) 

0 for all i e {J I j , , 
k<j 

< 0 and Wt(xV)) > 4 5 ) for all i e U h • 
(2.14) 

This,is certainly true for г = s because of 2.3c). Suppose, by induction, that 
(2.14) holds for some j > 1. Since ¥^ is continuous, we can find ту < О in such 
a way tha t for an arbitrary vector y e X0 satisfying y{ = x(p for i e \J Ik and 

k±j-l 

(2.15) 

(2.16) 

?] < yi; 5^ 0 for г е J i - 1 we have 

4*i{y) >Vi ior ie\J Ik . 
k^j 

According to 2.3c), there exists z e X0 such tha t 

Zi = 0 for г e U Ik, 

rj <Zi < 0 and УДг) > 2i for i e 10_г . 

Let xV'1) e X0 be the vector the coordinates of which are x[j'1} = x(f for 
% € U h and х\§~г) = г, for г е 1Гшт1. Then by (2.14), $~X) = 0 for г € U 4 

kdpj-i k<j-i 
and (2.15) proves tha t !Р,(а*'--<)) > a//"1) for г с U /*. Finally, (2.16) implies 

WtixV-1)) > ^ _ 1 ) for i e Iô_ly because x(?~1} = z< for г с U /7c and because S^ 
fc<i-i 

with г e /,-__! does not depend on coordinates xx with l e U ^ This proves (2.14) 
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for / — 1 and, consequently, for all ; = 1, 2, . . . , s. In particular, taking j =1 we 
obtain a vector art1) < 0 suoh tha t ¥/

г(ж(1)) = x(/} for all i. Since Ï 7 is non-
decreasing in the domain X0, the last inequality yields, according to (1.6), the 
inequality W{t — 1, xi1)) < W(t, xi1)) for all t. Hence Km W(t, x(1)) = art0) exists, 

£—»00 

and using (1.6) we obtain ^(яК0)) = x(°h We now prove art0) = 0. Let y e X0 be 
the vector the coordinates of which are y{ = ^ 0 ) for г e Д and yi = 0 for 
г € U /fc. Then ¥^(2/) = ^ f ° r * € J, because ¥^ with i e I does not depend on 

#г with £ e U 7fc. But this shows, by 2.3b), tha t у = Ö and, consequently, 

x{®} = 0 for all i e 1г. This procedure is to be continued step by step for / 2 , 
/3 , . . . , ISJ and finally we obtain х[0) = 0 for all i. Summarizing our results we 
see tha t there exists a vector x^1) < () such tha t lim W(t, art1)) = Ö. Then, by 

t—>co 

(1.5), lim Ф(а, t, aK1)) = 1 for all aeE. This proves tha t 
t—>oo 

lim P(a, t,{beE : 6< > e}) = 0 
t—>co 

for all а, г and £ > 0, because of the inequality 

71/ ± n T1 7 ,4 ^ 1 — 0(a,t,x(V) 
P(a, t, {b e E : 6, > e}) ^ _̂  ' J . 

The assertion of the theorem now follows from the relation 

ПРо P({ÇeS: Ш > ef ) = fP(a, (,{ЪеЕ:Ъ{> s}) PQ(db) . 

To prove the necessity of the conditions we assume first tha t the condition 
a) is not satisfied, tha t is, we suppose В > 1. Then, according to the well 
known properties of non-negative matrices, there exist t0 e T and an 
index j such tha t М^(Ы0) > 1 for every natural k. But this implies 
Pj(1ct0, {b € E : bj = 0}) < 1 for all к and consequently 

Wßtc» dO) < 0 for all fc . (2.17) 

If 0(s) = ^(f0, ж) - xh then 0(5) = 0, ващ = M„Ц0) - 1 > 0 and accord-
ingly there exists ô < 0 such tha t 

ï ^ o , ж) < Xj for all ж with ô < xt < 0 . (2.18) 

Suppose tha t the process converges weakly to zero. Then, in particular, 
Km Р Д {b e E ibj > e}) = 0 for all s > 0, and consequently 
tf—>oo 

KmS^Bo, d('>) = 0 . (2.19) 

From (2.17) and (2.19) it then follows tha t there exists К such tha t 

ô < ЩЫ09 аЩ < 0 for aU к ^ К . (2.20) 
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Finally we see from (1.6) that Wj((k + 1) t0, x) = W^Q, !Р(И0? Х)), and applying 
this relation to (2.18) and (2.20) we obtain W^kt^ аЩ < Wj(Kt0, dV)) < 0 for 
all к > К. But this contradicts (2.19). 

I t remains to consider the case where there exists a final group / and R = 1. 
I n fact, we see from the remark before the proof of this theorem that the even­
tuality R < 1 is impossible under the existence of a final group. Suppose 
again tha t the matrix M is of the normal form (2.13). Since the final group 
I is irreducible, there exists an index к (I fg к fg s) such that / с Ik. If / were 
a proper subset of Ik, then, by the well known properties of irreducible matri­
ces, the inequality Rx < RIk ^ R would hold. But this is impossible because 
Rj. = R = \9 and consequently I = Ik. Let — x{Ik) be the eigen-vector of the 
matrix MJk corresponding to RIk and let #(°) e X0 be the vector with the coor­
dinates х^0) = 0 for i non e Ik and ^ 0 ) — xfk) for г е /fc. Then 

Pt({b eE:S bjxfï = 40)}) = 1 for all i e Ik . (2.21) 
3 eh 

The function !FÄ with Û U ^ does not depend on хг with Z € Ik and conse­
i l 

quently, by (2.21), 
Wi(x<P)) = ж<0) for all г е и ^ • (2.22) 

The matrix Ж* (£) = M* being again of the same quasi-triangular form as M, the 
function Wi(t, x) with i e Ik does not depend on xt with I e U 13. Hence, by (1.6) 

and (2.22), W^t + 1, ж(0)) = Wt{t, ip{x(Q))) = У Д ж(°>) for all г € /fc, and from 
this and (2.22) if follows that Wt(t, x(0)) = ж(°) for all * and all г е Ifc. But this 
proves tha t W^t, x(0)) cannot converge to 0 because x{0) < 0 for i e Ik, and the 
proof is completed. 

2.5. Each homogeneous &d-process with finite first moments and with R < 1 
converges strongly to zero. 

Proof . We first suppose tha t the initial distribution P 0 has finite first 
moments, tha t is, M{ = J^P0(d&) < oo for all i = 1, 2, . . . , w. Then 

£p„ P(W*)) = /1,(0 nPt>P№ = / /6Л«, ', àb) P0(da) = 
2 ЕЕ 

n n 
= / I f ( a , t) P(da) = 12а,М„Ц) P0(da) = £ if,If„(*)-. 

E E j=l *'=1 

Since Mti(t) are members of the matrix M(t) = Jf*, we have -Jfw($) = O(R*0) 
for any P 0 such that R < R0 < 1. Hence, ЕРоР(|г(£)) = 0(i?o) and consequently 
2 ^ P o p{£i(t)) < oo for all i. Since £Д£) ^ 0, we see by a well known theorem 

tha t С$) -> 0 with /7Po P probability 1. To remove the assumption that the 
first moments of P 0 are finite, it is sufficient to represent the probability 
measure P 0 as a limit of probability measures whose first moments are finite. 
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2.6. Suppose that a homogeneous Bd-process has finite first moments and let 
the eigen-vector of the matrix My corresponding to the maximal characteristic 
number Ry be positive. Then the process converges strongly to zero if and only if 

a) R ^ 1, b) there are no final groups. 

Proof . In view of the theorems 2.4 and 2.5, it is sufficient to prove tha t the 
process converges strongly to zero, if both conditions R = 1 and b) are sa­
tisfied. As in the proof of 2.5 we can assume tha t all first moments Мг of P0 are 
finite. Let I = (l1} . . . , ln) be a positive eigen-vector of M corresponding t o 
R = 1 and define rj(t) = £(t) I. Using the method of [2] page 313 we can 
prove tha t the sequence rj(t) forms a bounded martingale process and con­
sequently lim rj(t) = ?] exists with 77Pop-probability 1 [See [4], Chap. VII , 

t—>00 

Theorem 4.1]. But according to 2.5 |г(£) converges to zero in /Zp^p-probability 
and this implies rj — 0 with ZTp^p-probability 1. Finally, since |Д£) 2> 0 and 
li > 0, we have lim |г(£) = 0 with i7P(pP-probabirity 1. 

R e m a r k . As follows from the theorems 2.4 and 2.6, the weak and the strong 
convergence are equivalent, if there exists a positive vector of the matrix 
M belonging to the characteristic number R. This last condition is always 
satisfied, if n = 1 or, more generally, if the matrix M is irreducible. 

3 . B-processes with continuous state space. In this section we allow the time 
parameter to assume any non-negative value, tha t is, we suppose T = <0, со.) 
We shall consider purely discontinuous processes only,*) tha t is, we shall 
suppose tha t the B-process satisfies in addition the condition 

С 7. There exist finite limits 

P(t,a, s, A) — (Ps,a,s, A) _. P(s, a, t, A) — P(s, a, s, A) 
lim — = lim -^ — = 
t—»s- t S t~->s+ t S 

= p(s,a,A) (3.1) 

for all s eT, aeE, Ate. 

The function p(s, a, A) defined by (3.1) is sometimes called a transition 
intensity. Every B-process with T == <0, со) which satisfies (3.1) will be called 
a Bc-process. Each Bc-process determines uniquely the corresponding transition 
intensity p(s, a, A). The essential par t of this section is devoted to the inverse 
problem, tha t is, to the construction of the Bc-process, if its transition intensity 
is given. To be able to do so, we must first examine the function p{s, a, A). 
We write E{(0) = {b e E : b, < 0} for all Ô < 0 and all г = 1, 2, .. v n. If 
Aeê and a e E, A ± a will denote the set {b e E : b =f a e A}. 
__ m 

*) See for example [5]. 
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3.1. Let p(s, a, A) be the transition intensity function of a Bc~process. Then 

a) p(s, ., A) is a S-measurable function for all s eT, A e ê, 

b) p(s, a, .) is a finite and a-additive set function for all s e T, a e E. 

c) p(8, a, {a}) ^ 0, p(s, a,E) = 0. 

d) p(s, a,A)^0 if A c E \ {a}. 

e) p(8, №), ВД) = 0 . 
n 

f) p(s, a, A) = 2 aiP($, d{i\ A + âM) — a) . 
г = 1 

Proof . The assertions a)—d) express well known properties of a transition 
intensity function and are easily derived from С 1 —С 5 and (3.1). To derive 
the others we define cp(s, a, x) = jexbp(s, a, ah) and %p{s, a, x) = e~xa(p{s, a, x) 

E 

for all x e X. We shall write again -cp^s, x) = (p(s, dil), x), cp(s, x) = 
= (<Pi(s, x), ..., <pn{s, x), and the same for ip. Since, by (3.1), <p(s, a, x) is the 
derivative of 0(s, a, t, x) with respect to t in the point t = 6', we have according 
to (1.7) <p(s, ai1) + ai2), x) = cp(s, ai1), x) eœZw + ф, ai2), x) e^(1) and consequent­
ly ip(s, ai1) -f- ai2), x) = ip(s, ai1), x) + y*(s, ai2), x). The function гр is regular 
enough to be then necessarily of the form ip{s, a, x) = ip(s, x) a and hence, 

n 

q>(8, a, x) - Ja^iis, x) ex(^^) . (3.2) 
г = 1 

This proves f). To prove e), consider 0 < ô < 1. Then, by c) and f), 
0 = p(s, ôdit), E) = ôp(s, d^), E + (i _ s) dit)) = _ ôpfa d(i)f Ei(l - ô) and 

hence we deduce с) by the relation E{(1) = \J EAl — - I . 

R e m a r k . As it appears from d) and f), the assertion e) can easily be gene­
ralised to the following proposition. If, for a given a = (al9 . . . , an) e E, E(a) 
denotes the union of all Е{(а{) with ai > 0, then p(s, a, A) = 0 for all А с Е(а). 

3.2. Let Pi(s, A) (i = 1, 2, ..., n} be functions on the domain T x S. Then, in 
order that there be on the domain T X E x S a function p(s, a, A) satisfying the 
conditions a)—f) of 3.1 and such that p(s, di{), A) = pt(s, a) for all i, it is ne­
cessary and sufficient that the functions Pi(s, A) satisfy the following three con­
ditions: 

с 1. Pi(s, .) is a finite and a-additive set function on S for all i = 1, ... , n 
and all s e T. 

с 2. Pi(s,A) :> 0 for all А с E \ {#*>}. 
с 3. Pi(s, {dit)}) ^ o, Pi(s, E) = 0, Pi(s, ВД) = О. 

/ / these conditons are satisfied, then the function p{s, a, A) is de'vermined uniquely 
by our requirements. 
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Proof . Suppose tha t с 1— c 3 hold. From f) we see tha t p(s, a, A) = 
n 

= 2 UiVii8, A + dW — a) is the only possible way of defining the function 
i - 1 

p(s, a, A). If p(sy a, A) is defined in this way, all properties required by the 
theorem are obvious except perhaps for p(s7 a, E) = 0. To prove this last, we 
distinguish two cases. If аг ^ 1, then E -f- di{) — a = E, and if at < 1, then 
E + dil) — a = E\Ei(l — a€). We have always p^s, E) = 0 and, in 
the case a i < 1, рД#, Et(l — аг)) = 0 by с 2 and с 3. Consequently, 
Pi(s, E -\- di{) — a) = 0 in both cases and p(s, a, E) = 0 follows from the 
definition. 

Because some regularity condition concerning the variable will be necessary 
in the sequel, we shall suppose tha t 

с 4. Pi(., A) is continuous on T = <0, oo) ^or eacA г аж£ eacÄ J. e <f. 

A vector function p(s, A) = (p^s, A), . . . , pn(s, A)) will be called a b-function, 
if all Pi(s, A) satisfy с 1 —с 4. 

Let p(s, A) be a b-function and let p(s, a, A) be the corresponding function 
defined in 3.2. Write p.^s) = pt(8, {**>}), p(s) = (Pi(a), . . . , pn(*)), g(s, a, J.) = 
= p(s, a, A \ {a}), qi(s, A) = q(s, d^\ A). Then, by 3.1f), we have 

p(s, ay {a}) = p(s) a , (3.3) 

q(s, ai1) + ai2), A) = q{s, ai1), A — ai2)) + q(s, ai2), A — ai1)) . (3.4) 

Finally, let us define in accordance with [5] 
s 

J(s, t) = | р (т ) dr, P<°)(s, a, £, J.) = d(a, A) exp [J(s, t) à], 

Pik)(s, a, t,A) = j exp [J(e, а) а] {РР-Ща, b, t} A) q(o,a, db) da 
s E 

00 

and P(s, a, t, A) = ]T ^ ( 7 c )(^ «, *, -4) for all 5 g « e T, a e # , 4 e i . 
& = o 

Let a b-function p(s, A) be given. Then the function P(s, a, t, A) de­
fined by the procedure just decribed will be said to be the corresponding 
?{b)~function. A Bc-process whose intensity function p(s, a, A) satisfies 
p(s, di1), A) = p^s, A) will be called a Bc-process generated by the b-function 
p(s, A). The following theorems prove tha t under certain conditions the 
P(b)-function is the Bc-process generated by p(s, A). This insures the existence 
of Bc-processes because the existence of b-functions is obvious. 

3.3. Let p(s, A) be a b-function. Then the corresponding P(b)-function satisfies 
С 1, С 2, С 4—С 7 (with respect to p(s, a, A) defined in 3.2) and we have 

0 < P(s, a, t,A)<l for all s ^ t, a, A . (3.5) 
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Proof . The t ru th of C-l, C 2 , C4 , C 5 , C 7 and (3.5) is the assertion of 
Theorems 1, 2 of [5]. Therefore it remains to prove С 6. According to (3.4) we 
have for any bounded and measurable function / and all a(°), ai1) e E 

i 
ff(b) q(8, a<°> + ai1), db) = 2 * //(a«+1> + 6) g(«, a«), db ) , (3.6) 

# г = 0 E 

where the symbol 2 * means tha t the indices of the members of the sum are 
to be taken mod 2. We now prove 

Pik){s, a(°) + ai1), t,A) = 
(3.7) 

for all & = 0, 1, . . . The relation (3.7) holds for к = 0 by definition, and suppose, 
by induction, tha t it holds for some &. Using (3.6) we get 

P(7c+1>(s, a + a, *, A) = 

= / e x p [J(e, a ) ( ^ T H U ) j ] /pt t)( a > 6, (, A) q(a, a<°> + a<», db) da = 

. 2 * / e x p [J(s, a)(o<») + a (1»)]/P«((x, a<*«> + 6, «, Л) g(a, a«>, db) der = 
l * 

. 2 2 * / e x p [J(s, o J ^ T + ä ü ) ) ] / / Me<°> + c(1>, 4 ) P<»(a, a^+1), *, dr«») 
5 = 0 i = 0 

. P<*-fl(ar, 6, *, dc<1))g((7, a '«, db) da = 

= 2 * / M c < 0 ) + c(1)- ^ ) (exp [J( e , <) ä<*+1>] d{a«+», dc(e>) . 
г0 ЕЕ 
t 

• / ( exp [J(e, a) S(*>] JP^(o, 6, *, dc<D) g((T, a«>, db) da) + 
s I? 

fc 1 £ г 

. 2 2 * / M c ( 0 ) + c«1', 4 ) / / e x p [J(s, a) à<« + J(a, t) ä«+1>] 
j 1i^O E E 

. (fPV-V(T9V
Q\ t, dc<°>) g(r, a<*+1), dW0)))(JPCfc-i)(a, 6(D, *, dc<«) g(a, a«>, db<*>)) d r d a . 

In the last step, we used a rule for interchanging the order of integration 
which can be proved by usual methods mentioned in the proof of 2.1. Inter­
changing once more the order of integration with respect to G and r in the 
terms with г = 0 and j > 0, we get finally 

P<*+i)fo a(°) + ai1), t, A) = 

= 2 * / № ( 0 ) + c(1)> 4 ) Р ( ° ) ( ^ a('+1)^ ^ dc(0)) P(Jfc+1)(«, «**>, *, dec1)) + 

+ V / /rf(c(°) + с*1), ̂ 4)(/ехр [/<*, т) a<°)] / P ( ' - I > ( T , b(°), t, dc(°)) g(T, a<°>, d&(<>>) d r ) . 
i = l E Ê s £ 

. ( /exp [/(*, а) аЩ fPP~4<r, &(4 *, dcC1)) ?(cr, aa>, dbW) da) = 
s E 

J°y f fd(d°) + d1), А) РЩ*, a<°), t, dc(°)) P(*+1-')(s, a<i>, *, dcO)) . 
^ 0 S E 
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This proves (3,7) for all к and С 6 follows from the relation 
CO 

P(s, a<°> + ai1), t, A) = 2 P ( 4 * , a<°> + a<x>, t, A) = 
fc = 0 

oo fe 

== / /d(W°> + Ы1), A) 2 2 P ( i ) ( ^ tt(0)> h db(0)) PP-'H*, a(1>, % d&(1)) = 
ЕЕ ft=0i=0 

00 00 

= / fd(b(Q) + Ы1), A)( 2 P^(s, ^°\ t, dbi°)))(^Pil)(s, aP\ dU1))) . 
E E & = 0 Z = 0 

I t is well known tha t the "transition probabilities" constructed by the^ 
procedure we have used here need not satisfy С 3 and in general, all known con­
ditions tha t insure the validity of С 3 are either too complicated or too re­
strictive. Even the relation (3.4), which is essential for our theory, does not 
remove generally this undesirable fact, as it appears from the example which 
will be given later on. 0 i \ the other hand, it enables us to derive simple and 
sufficiently general conditions for С 3. 

If p(s, A) is a b-function, we shall write, in accordance with the notation 
used in the proof of 3.1, yj^s, x) = fexbpi(s, db), ip(s, x) = (ip^s, x), ..., ipn(s, x). 

E 
The first moments of p(s, A) will be denoted by m^s) = fbjp^s, db). 

E 

3.4. Let p(s, A) be a b-function and suppose that, for every t > 0, the system-
of n differential equations 

y'(8) = - y>(8, y(s)) (3.8) 
has in the interval <0, t} exactly one non-positive solution y(s) such that y(t) = Ö. 
Then there exists exactly one Bc-process generated by p(s, A) and it is equal to 
the ?(b)-function. Moreover, the corresponding function W(s, t, x) defined in 
sec 1 satisfies as a function of s the system (3.8) with the initial condition 
W(t, t, x) = x for allt > 0, x e X. The condition of the theorem is always satisfied, 
if m^s) < oo for all s e T and all i, j . 

Proof . In view of 3.3, С 3 is the only missing condition for P(b) to be a. 
Bc-proeess. According to 3.3, the P(b)-function P(s, a, t, A) satisfies С 6 and 
hence, in particular, P(s, ai1) + ai2), t, E) = P(s, ai1), t, E) P(s, ai2), t, E). As i t 
appears from the definition of the P(b)-function, P(s, a, t, E) > 0 and con­
sequently there exists Q(s, t) = (Q^s, t), . . . , Qn(s, t)) such tha t P(s, a, ty E) — 
= exp [Q{s, t) a]. Then 

n.f ., r P(s,hd«\t,E) - 1 / o m 
Qt{8, t) = hm — ^ y-— . (3.9) 

Moreover, Q(s, t) ̂  0 by 3.5), and Q(t, t) = 0 by the definition of P{t, a, t, E).. 
From the definition of P(s, a,t, A) we have 

P(s, a,t,A) = 

= d(a, A) exp [J(s, t) à] + / e x p [J(8, o) à] jP(a, b,t,A) q{d, a, db) da 
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and, in particular, P(s, a, t, E) = 
t 

= exp [,/(s, t) a] + / e x p [J($; a) a] / e x p [Q(o, t) b] q(a, a, db) da = 
s E 

= exp [J(s, £) a] + / e x p [J"(s, a) à](<p(o, a, Q(o, t) — exp [Q(a, t) a] p(a) a] da . 
s t 

Then, according to (3.9), Q^s, t) = f<Pi{a,Q(o, t)) exp [— $?:(ст, *)] der = 
s 

t 

= /у,г(°", öl«7; 0) da. Differentiating with respect to 5, we see tha t Q(s, t) 
s 

considered as a function of s only is a non-positive solution of (3.8) with the 
initial condition Q{t, t) = Ö for all £ > 0. But then, according to the assumption, 
Q(s, t) is the only solution and consequently Q(s, t) — 0 for all s ^ t . This 
implies P(s, a, t, E) = 1 for all a and 5 ^ t, tha t is, С 3 holds. Concerning 
the unicity we remark that Markov processes for which С 7 holds always 
satisfy the backward integro-differential equation and it is well known tha t 
the Вc-function satisfying С 3 is the only Markov process which is the solution 
of this equation. The assertion that 4J(s, t, x) satisfies (3.8) can be deduced 

from the relation W^s, t, x) = lim - [Ф(в, hd(i\ t, x) — 1] and from (3.10) by 

the method used in the beginning of the proof. If mi:j(s) < 00, then 
0 <̂  ip\j)(s, x) ^ f(bj — d{p) Pi(s, db) 5g miß) < 00 and the Lipschitz con-

E 

dition for (3.8) is fulfilled. 

3.5. If n = 1, that is, if E — <0, 00), then the first condition of 3.4 is not only 
sufficient but also necessary for the P(b)-function to satisfy С 3. 

P roof . Suppose tha t the P(b)-function satisfies С 3. From the preceding 
proof we see tha t W{s, t, x) as a function of s satisfies (3.8) with the initial 
condition W(t, t,x) = x for a l U > 0 and all x <L 0. Further, 0 S ^ ( 1 ) ( ^ «) = 
= f(b — 1) еж(&_1) p(s, db) < 00 for x < 0, and this implies that the system 

E 

(3.8) has for any t > 0 and x < 0 in the neighbourhood (t, x) exactly one non-
positive solution y(s) such tha t y(t) = #. Using these two facts we can easily 
prove tha t (3.8) has exactly one non-positive solution with y(t) = 0 for a given 
t > 0. 

The author does not know whether the condition is necessary in the general 
case n > 1. 

R e m a r k . If n = 1 and if the b-function p(s, A) does not depend on s, tha t 
is, if p(s, A) = #>(̂ 4) and tp(s, x) = ^(#) for all 5, then according to a well 
known theorem on differential equations the necessary and sufficient condition 
for P(b) to satisfy С 3 is tha t 

о о 

/
-—r— dx = I —j— dx = — со 
<p(x) J гр(х) 
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where xQ < 0 and ----- = -—- = — oo if <p(x) = wipe) = 0. This condition 
<p(x) w(x) 

is closely related to Theorem 7 of [5]. 

E x a m p l e . Suppose n = 1 and take an arbitrary e e (0, 1). Let us define 

a measure q(A) on ê by means of its Radon-Nikodym derivative -—- where 

dq , . 1 „ _ л dq 
"TT \a) = "тт: ior a > 1 and -r-r 
dA a1 + e dA 

Я is the Lebesgue measure, - ~ (a) = -TT- for a > 1 and —nr (a) = 0 for 

0 g: a <: 1. If p = — q(E) = — /a~<1 + e) da and p(J.) = g ( J ) + d(l , A) p, 
о 

oo 

then p(A) is a b-function and <p(x) = (— x)e(— e) _ 1 / e~uu~e du. In the case 
— ж 

oo 

Г i 
в < 1, the integral I —— dx is finite and according to the preceding remark 

J Cp[X) 
x0 

the corresponding P(b)-function does not satisfy С 3. In the case e = 1? 
00 00 

m n = I одК^а) — °° °ut I "7~7 do: = — oo and consequently, С 3 holds. 
0 x0 

This shows tha t the condition of finite first moments mi:j(s) in 3.4 is not 
necessary. 

We suppose in the rest of this section tha t the Bc-process is homogeneous 
and we write again P(a, t, A) instead of P(s, a, s + t, A). Then the transition 
intensities and the b-functions do not depend on s and we shall denote them 
by p(a, A) and p(A) = (px(A), . . . , pn(A)) respectively. The first moment of 
p(A) will be denoted by ти — Jbjp^db) and their matrix by m. As in the 

E 

case of branching processes with discrete states, all Mi:j(t) are finite, if all 
rrtij are finite, and then M(t) = ew*. We shall denote the maximal character­
istic roof of M (I) and m by Ä and r respectively. Then, J? = er. 

The weak, strong and strict convergence to zero of Bc-processes can be 
defined in the same way as for B^-processes, the strong and strict ones under 
the assumption tha t the process is separable, of course. But we have the 
following theorem: 

3.6. None of the three kinds of convergence to zero exists for Bc-processes with 
finite first moments ти. 

Proof . I t is sufficient to prove tha t weak convergence cannot exist. Suppose, 
on the contrary, tha t the process converges weakly to zero. Then also the 
B^-proeess P(a, t, A) [t = 0, 1, . . . ] converges weakly to zero and hence, by 
2.4, В <S 1 and there are no final groups. But then r fg 0 and mu ^ 0 for all 
i and hence, according to the property с 3, Pi({b e E : b{ Ф 1}) = 0 for all i. By 
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3.4, the Bc-process is identical with the corresponding P(b)-function and we 
see from the definition of the P(b)-function tha t Р{{{Ъ e E : 6t- = 1}) = 1. 
This proves that all {i} are final groups and the process cannot converge to 
zero. 

4. The extension of branching processes with discrete state space to B-pro-
cesses. In this last section E will denote the set of all vectors a e E with in­
tegral coordinates and ê will denote the (Т-algebra of all subsets of E. If we 
replace in the definition of a B-process the sets E and S by E and ê respectively, 

we obtain the definition of a branching stochastic process with discrete state 

space. We shall call it a B-process and we shall denote the corresponding 

transition probability function by P(s, a? t, A). Generally, any symbol supplied 

with a bar will denote an object the definition of which we obtain if we replace 

in the preceding theory the sets E and é> by E and ê respectively. Thus, we 

obtain the definition of Bd-processesy Bc-processes7 transition intensity functions 

p(s, a, A) and P(b)-functions. The only exception concerns the b-function, which 

will be defined later on. Each probability measure P on ê induces in an ob­

vious way a probability measure P on <f. If this P is infinitely divisible, then 

P will be said to be infinitely divisible, too. A B-process P(s, a, t, A) will be 

said to be an extension of a B-process P(s, a, £, A), if P(s, a, t, A) = P(s, a, t} A) 

for all a e E, s f^t e T and A e S. Clearly, the extension is always unique if it 

exists. 

We suppose first T = {0, 1, 2, . . . } . The following extension theorem follows 
easily from С 6 and 2.1. 

4 .1 . Let P(s, a, t, A) be a Bd-process. Then the extension to a Bd-process exists 
if and only if the probability measures P(srd({\ s -\- I, A) are infinitely divisible 
for all s € T and all i = 1, 2, . . . , n. 

We now suppose T = <0, со). I t can be easily verified tha t the transition 
intensity p(s, a, A) has all the properties stated in 3.1 with the exception 
of e). In accordance with this last fact, we define a b-f unction as a vector 
function p(s, A) = (px(s, A), . . . , ~pn(s, A)) whose domain of definition is T X & 
and which satisfies the following two conditions: 

a) Pi(., A) is continuous for all A e S and all i, 
b) Pi(s, •) is a finite and a-additive set function such that p^s, {a}) ^ 0 if 

а Ф dW, Pi(s, {d<*>}) ^ 0, p{(8, E) = 0 for all i and all s eT. 

We remark tha t the corresponding P(b)-function need not satisfy С 3 just as 
in the case of continuous states. To remove this fact, conditions similar to 
those of 3.4 could be given. 
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4.2. Let .p(sLA) =•- {рг(в,А)9 . . . , pn(s, A)) be a b-function such that the cor­
responding P(byfunction P{s, a, t, A) is a \-process. Then the Bc-process 
generated by p(s, A) can be extended to a Bc-process if and only if 
PÎ(S, {b e Ё : bt = 0}) = 0 for all i. 

Proof . The necessity of the condition follows from 3.1 e). Suppose conversely 
tha t the condition holds and define p(s, A) = p(s, A n E) for all A <~ ê. Then 
p(s, A) is a b-function and it is easily seen tha t the corresponding P(b)-function 
is an extension of the P(b)-function. Moreover, it is a Bc-process because 
P(s, d(*\ t, E) = 1 by hypothesis. The following theorem is a trivial bu t 
surprising consequence of 4.2 and С 6. 

4.3. Let the assumption of 4.2 be satisfied and let p^s, {b e Ë : bt = 0}) = 0 
for all i. Then all transition probabilities P(s, a,t, A) are infinitely divisible. 
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Р е з ю м е 

ВЕТВЯЩИЕСЯ С Л У Ч А Й Н Ы Е ПРОЦЕССЫ С Н Е П Р Е Р Ы В Н Ы М 
ПРОСТРАНСТВОМ СОСТОЯНИЙ 

МИЛОСЛАВ ИРЖИНА (Miloslav Jifina), Прага 

(Поступило в редакцию 10/VI 1957 г.) 

Обозначим через Е множество всех тг-мерных векторов а — (аА, . . . , ап) 
с неотрицательными компонентами, через ^-систему всех борелевских 
подмножеств пространства Е и через Т — некоторое множество неотри­
цательных чисел такое, что 0 е Т. Множество Е представляет пространство 
состояний процесса, а Т — множество значений параметра. Всякую функ­
цию P(s, a, t, А), определенную для a e E, s^teT,Ae^ будем называть 
ветвящимся случайным процессом с непрерывным пространством со-
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стояний, или коротко В-процессом, если она выполняет условия Cl—Сб. 
Вместо производящих функций F (s, a, t, х), удобных для исследования 
процессов с дискретными состояниями, пользуемся в статье логарифмами 
Wis, a, t, х) комплексных и действительных преобразований Лапласа, для 
которых опять имеет место фундаментальное соотношение (1.6) — (Тео­
рема 1.2). 

В-процесс с множеством параметров Т = {0, 1, 2, . . .} называется Bd-npo-
цессом (Часть 2.). Всякий Вй-процесс можно построить при помощи про­
извольной последовательности безграничного делимых вероятностных мер 
P(s, d(0, s + 1, A) [s == 0, 1, .. ,;'г = 1, . . . , п], где d(<> = (0, ...., О, 1 ,0 , . . . , 0) 
с единицей на г-том месте. (Теорема 2.1.) Скажем, что В^-процесс сходится 
к нулю 

а) строго, если почти все выборочные функции равны, начиная с неко­
торого места, нулю, 

б) сильно, если почти все выборочные функции сходятся к нулю, 
в) слабо, если выборочные функции сходятся к нулю по вероятности для 

всякого начального распределения. 

Процесс сходится строго к нулю тогда и только тогда, когда существует 
в замкнутом единичном кубе только одно решение системы (2.7) — (Тео­
рема 2.2). Услоивя, высказанные в [1] — Теорема 9, являются здесь не­
обходимыми и достаточными для слабой сходимости к нулю, если удобно 
определим понятие финального класса (Теорема 2.4). Они также необхо­
димы и достаточны для сильной сходимости к нулю, если максимальному 
характеристическому числу матрицы первых моментов соответствует 
положительный вектор (Теорема 2.6). 

В-процесс с множеством Т = <0, оо) называется Вс-процессом, если вы­
полняет добавочное условие С 7 (Часть 3). Функция p(s, A) == (Pi(s, A), . . . , 
. . . , pn(s, А)), определенная на Т х <о, называется b-функцией, если вы­
полнены условия с 1—с 4. Доказывается, что при некоторых довольно 
общих условиях регулярности существует точно один Вс-процесс, для 
которого имеет место С 7 с а = dW и p(s, й(г'), А) = p^s, A) (Теорема 3.4). 
Ни один из приведенных видов сходимости к нулю не существует для 
Вс-процессов (Теорема 3). 

В последней части (4) изучается расширение ветвящихся процессов 
с дискретными состояниями на соответствующие В-процессы. Самым ин­
тересным и в некотором смысле поразительным результатом является 
следующее утверждение (Теорема 4.3): Если для ветвящегося процесса 
с дискретньшш состояниями невозможны переходы из состояния d(*) в со­
стояние (..., аг_1? 0, а{+19 . . . ) , то все вероятности перехода такого процесса 
безгранично делимы. 
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