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STOCHASTIC BRANCHING PROCESSES WITH CONTINUOUS
STATE SPACE

MILOSLAV JIRINA, Praha
(Received June 10, 1957)

The paper is concerned with stochastic branching processes the
state space of which is the whole non-negative part of the n-dimen-
sional Buclidean space. Existence theorems and fundamental proper-
ties are proved and several kinds of degeneration are studied.

1. General properties. In the last few years the theory of stochastic branch-
ing processes with discrete valued realisations has been developed.*) The
values of the random variables describing the states of these processes are
vectors with non-negative integral coordinates and the n-th coordinate usually
means the number of particles of the n-th kind. As the quantity of particles
can sometimes be expressed by other means than by counting, it seems rea-
sonable to consider branching stochastic processes with more general states.
It is the purpose of the present paper to give the definition and to study some
properties of stochastic branching processes the state space of which is the
whole non-negative part of the Euclidean space. Throughout the whole paper
n will denote the number of different particles and, accordingly, the dimen-
sion of the state space.

The following notation will be used in the sequel. If a is a n-dimensional
row vector, a; will denote the i-th coordinate of ¢« and we shall write
a,). The corresponding transposed vector will be denoted by a

a=(ay, ...

and thus we can write ab instead of Z a;b;. To denote special vectors we shall
i1

write 0= (0,...,0), 1 =(1, ..., 1) and d® = (d, ..., d?), where d) =0
ifi + jand df) = 1. More generaly 0 will denote any zero matrix. The relations
<, =, = between two vectors means that the relation holds between all corres-

)

ponding coordinates. The same rule applies to the operations -+, —, [, % ete.
Thus, if f,(x), g.(2), k;(z), (¢ = 1, ..., n) are functions of n variables (z,, ..., z,) = «,
the relation f(z) = g(h(x)) means that f,(z, ..., x,) = ¢:(h(2y, ..., T,), .-

*) For the definition of these processes we refer to [1] or [2].
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weey hy(®y, ..., @) for every ¢ =1,2 ... n. For f(x) = f(x,, ..., x,) we shall

*

write fO(z) = 5?—; flag, ..., x,), fO)(z) = @, ..., z,). Since 4 +a

ox; 0x;
will be used in sec. 3 as a symbol for the shift of the set 4 by a, we shall denote
the set difference by \.

X, X, and X, will denote the n-dimensional Cartesian power of the set of
all complex numbers with non-positive real part, of the non-positive part
of the real line and of the interval (0, 1) respectively.

Let T' be any set of non-negative numbers such that 0¢ 7', let E be the
n-dimensional Cartesian power of the non-negative part of the real line, and
let & be the system of all Borel subsets of £. 7' will represent the parameter
set and F the state space of the process. We shall denote the characteristic
function of 4 ¢ K by d(a, A) and, more generally, if A is any subset of the
k-dimensional Cartesian product B X ... X E, by d(a®, ..., a®  A).

Any function P(s, a,t, A) defined for se T, a e E, s <teT, A e & will be
called a stochastic branching process with continuous state space or, more briefly,
a B-process, if the following conditions are fulfilled:

Cl. P(s, ., t, A) is a &-measurable function on E for every seT, s =teT,
Aeé.

C2. P(s,a,t, .) is a o-additive and non-negative measure on & for every
selT, s =teT, ackh.

C3. P(s,a,t, E) =1 for ecvery seT, acE, s <teT.

C4. Pt,a,t, A) = d(a, A) for every teT, ac K, A€ &.

C5. P, a, ty, A = [P(ty, b, t;, A) P(t,, a, t,, db) holds for all t;eT
(¢ =1, 2, 3) such that ¢, _é ty=tyand alla e B, Ac &.

C6. P(s,a®) - a®, ¢, A) =
=Ef Ef dO® + 6@, 4) P(s, a®, ¢, db®) P(s, a®, t, db®),

C 5 is the well known Chapman-Kolmogorov equation and C 6 is the cha-

racteristic property of-branching processes. From C 6 if follows that

[1®) Pls, a® + a®yt, db) = [ [{(bO + b®) P(s, a, t, dbd) P(s
E EE .

2

a®, t, db®)
(1.1)

for every bounded and measurable function f and using this relation we
easily obtain

k k k
P(s, > at, t, Ay = [ ... [d(> b, A)TTP(s, ad, t, db?)
i=1 E j=1 j=1

E
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for every natural k. In particular, if a ¢ £ has integral coordinates, the last
relation gives

n a; n a;

P(s,a,t, Ay = [ ... [d( z b, A) 1‘[]‘[1’5 do, t, dbEd)
E j=1

E i=1j i=1 j=

This is a direct generalisation of the relation defining branching processes
with discrete state space (see for example [1] (12) on page 53). Similarly to
(1.1), it follows from C 5 that

ff(C) P(tlr a’: tZ; dC) = fff(c) P(tz: b: t3: dc) P(t’b (l‘7 tZ) db) . (12)
E EE

Z will denote the Cartesian power ET and ¢4 the corresponding o-algebra
generated by the well known Kolmogorov procedure. Every & € & is a function
on 7' with values in = and thus, £(f) = (&,(¢), ..., £,(t)) is its value at time ¢. Let
P, be an arbitrary probability measure on E, corresponding to the probability
distribution at time 0. Using P, and P we can always define a probability
measure //p, p on ed such that

Hp p(A x BBy = [ [d(a®, ..., a®), A) P(t_y, a®Y, &, da®) ...

E E

- P(0, a®, t,, da®) Po(da®)

holds for every natural k, t,=1¢, < ... < ¢, ¢T and Ae & X ... X & This
probability measure satisfies the condition for Markov processes and we have
ITp,p(A X E™8E(s) = a) = P(s, a, t, A) almost everywhere. For any random
varlable non Z, Ep p(n) will denote its expected value (&) I pop(dE).

In accordance with methods of discrete space processes we define for s e 7,
ael, s =teT, xeX, the generating function

F(s,a,t x) = fxl‘x, ...x P(s, a, t, db)

and we write, in particular, Fy(s, t, x) = F(s,d®, ¢, 2), F(s, t, 2) =
= (F(s, ¢ ), ..., F.(st ). The followxng theorem states that the funda-
mental iteration rule for generating functions still holds.

1.1 For every x e XM and t, =<t, < t, e T we have
'F(tl) t37 .’/U) = F(tb tz; F(t2; t.’i: x)) .
Proof. From (1.1) it follows that F(s,a+ b,t, z) = F(s, a,t, ).
.F(s,b,t, ). Having in mind that F(s, a,t, x) is measurable with respect
to a we infer from the last functional equation that
F(s, a,t, x) 1_[[14’ s, t, )] . (1.3)
Combining (1.2) and (1.3) we complete the proof.
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Although generating functions have proved themselves to be a useful tool
for studying branching stochastic processes, we shall replace them in almost
all cases by complex Laplace transforms. There are several reasons for this,
the main being that the generating function does not define here uniquely
the corresponding transition probability. The ordinary characteristic functions
would not be appropriate because of the important relation (1.5). The de-
finition of X and £ enables us to define forevery se T, a e B, s <teT,ze X

®(s, a, t, x) = [e=P(s, a, t, db) (1.4)
E
and we write again @,(s, {, ) = D(s, dD, t, x), D(s, t, x), ..., D (s, t, x)). Clearly,
D(s, a, t, x) is continuous in z, &-measurable in a and |D(s, q,t, 2)| <1,
D(s,a,t 0)=1.

1.2 There exists exactly one function ¥(s, a, t, x) which is for every s <teT
and every a ¢ E continuous in x ¢ X and such that ¥(s, a,'t, 0) = 0,
D(s, a, t, x) = exp [P(s, a, t, x)]. Setting Vs, t, ) = Y(s, dO, t, ) and
Vs, t, x) = (Wils, t, @), ..., (s, t, x)) we have

@(s, a, t, x) = exp [F(s, t, ) a] (1.5)
andift, <t, <t,eT, then
Y](tb t37 x) = '{I(tb t27 T(tm t37 Z) . (16)

Proof. The first part (existence and uniqueness) of the theorem can be
considered as a generalisation of a weakened form of the theorem on character-
istic functions of infinitly divisible laws. Nevertheless, because of the funda-
mental importance of the theorem, we shall sketch how the theorem can be
proved directly in our case. First of all we deduce from (1.1) for all z ¢ X that

D(s,a+ b, t,x) = D(s,a,t x)D(s,b, ¢t x). (1.7)

Further we remark that (1.4) has meaning for all x ¢ X; and for these real
x (1.5) can be proved by the method used in the proof of 1.1. But (1.5) being
proved for x ¢ X, implies lim P(s, a,t,{be E :b = ¢ .i}) = 0 and from this
a—-0+4
and (1.7) it follows that D(s, a, t, ) is continuous in both a ¢ E and z € X,
and different from zero. Hence, we deduce that there exists exactly one
function ¥(s, a, t, ) which is continuous in both @ ¢ F, z ¢ X and such that
D(s, a, t, x) = exp [¥(s, a, t, )] and ¥(s, 0, 0) = 0. All other properties of
¥ follow from the uniqueness. In particular, to deduce (1.6) we combine (1.2)

and (1.5) and we obtain D(t,, a, t, x) = [ “”?’P(tl, a, t,, db) =
E

=/ Efe“’P(tz, ¢, ty, db) Pty a, ty. do) = [P, 0, ty, ) Pty 0, by, do) =
= Efexp [T(tz) ta: 2’}) E] P(tb a) t2; dC) = Q(th a; t27 T(tz; ta: x))
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2. B-processes with discrete parameter. In this section we assume that the
parameter set 7' is formed by non-negative integers, i. e., 7' = {0, 1, 2, ...}.
Any function P(s, a, t, A) satisfying C 1—C 6 with respect to this 7' will be
called a stochastic branching process with continuous state space and discrete
parameter or briefly, a B,-process. According to C 6, P(s, a,t, .) is for every
s, a, t an infinitely divisible probability measure on &. It is the aim of the
following theorem to show that, on the other hand, any sequernce of infinitely
divisible probability measures on & defines uniquely a B,-process. This proves
the existence of B,-processes because infinitely divisible probability measures
on & exist; as an example, we can instance for n = 1 the Poisson distribution
or, among absolutely continuous distributions, the I" distribution, defined by
the density function

e e~rgA-1 (u >0, 1>0). (2.1)
I'(2) ’ ’

2.1. Suppose that P t, A) are infinitely divisible probability measures on
& forall t =1,2,...,n and all t ¢ T. Then there exists exactly one Bg-process
such that P(l, d®,t + 1, A) = Py(t, A) for all 1 = 1,2, ..., n.

Proof. We denote for all x e X the logarithm of the complex Laplace
transform of P,(t, .) by Y;(t, ) and we define for all t ¢ 7" an all a ¢ £ the
function P(¢, a, t 4+ 1, A) as the probability measure on & the Laplace trans-
form of which is exp [Z Y.(t, x) a;]. Further we set P(f, a, t, A) = d(a, A) and

i=1
define by recurrence

P, a,t +s,A)= [Pt+s—1,b,t+ s, A) Pt,a, t +s—1,db). (2.2)

E .

It is well known that the function P(s, a, f, A) defined in this way satisfies
C1—-C5. To prove C6 we assume a®, a® e K, seT tc be fixed. C 6 holds
for t = s + 1 and for all 4 ¢ & by definition and suppose, by induction, that
C 6 holds for some ¢ > s and all 4 ¢ &. For every function f(c™, ¢) which
is bounded and & X & measurable we define

I(f) = [ [ [ [ [fO®, b®) P, b, £ + 1, de®) P(t, b®, ¢ + 1, de®)] .
EE EE '

. P(s, aM, t, dbMW) P(s, a®, t, db®) .

Starting with f(c®), ¢®) = d(cD, AD®) d(c®, A®) and continuing by the usual
procedure we deduce from C 6

I(fy = [ [{(bD, b®) P(s, a, t 4 1, db®) P(s, a®, t + 1, db®) .  (2.3)
EE
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By (1.1), (2.2) and our assumption we have

P(s, a® + a®, t + 1, A) = [P(t, b, t + 1, A) P(s, a® + a®, t, db) =
E
= [ [P(t, b0 + b®, t + 1, A) P(s, a®, t, dbM®) P(s, a®, ¢, db®) .
EE

Since P(t, a,t 4 1, 4) satisfies C 6, the last relation proves that
P(s, a® + a®, t + 1, 4) = I(f) with f(c®, c®) = d(cD + c¢®, 4). Inserting
into (2.3) we complete the proof.

Corollary. If YO(x), P®(x) are logarithms of two Laplace transforms of
infinitely divisible probability measures on &, then the same holds for the
composite function Y@ (WPM(x)).

In the rest of this section we shall consider homogeneous B;-processes only,
i. e. we shall assume P(s, a,{, A) = P(0,a,t — s, A) for all s <teT. We
shall write P(a, t, A) instead of P(s, a, s + ¢, A) = P(0, a, t, A), P;(t, 4) in-
stead of P(d®, ¢, A)and P,(A4) instead of P,(1, 4). According to 2.1, the homo-
geneous B;-process is determined by » infinitely divisible probability measures
P,(A)i=1,2, ..., n Similarly to the notation just described we shall write
Y(a, t, x) instead of Y(s, a, s + ¢, x), W,(t, ) instead of Y(dO, t, x), ¥;(x) in-
stead of W,(1, ) and further we shall write ¥Y(z) = (¥ (), ..., P.(x)). The
same rule will hold for @ and F. To denote the first moments of P(t, a, .) we
shall write M(a,t) = [b;P(a,t, db). For simplicity reasons, M;(d®,t) will

E

be replaced by M,;(t) and M(t) will denote the square matrix (M (t)), ¢, =
=1, ..., n. In particular, we shall write M ; M instead of M (1), M(1). Just
as in the case of branching processes with discrete states it can be proved
that, if all M,; (4,7 =1,...,n) are finite, then all M () (¢, j=1,...,n
t =12, ...) are finite too and

M@ty = M, (2.4)

Ms(t) = PP, 0) = PP, 0) . (2.5)

>

We shall assume throughout the rest of this section 2 that all M; are finite.
The matrix M is non-negative and we shall denote its maximal characteristic

number by R.
We write 4, = {£e Z: &) =0} and 4 = U n A,. From (1.4) we have

t=1 1=t
P(0,t,{0}) = 1 and accordingly I7p p( n/l f f Hd (a, {0}) .
. P(at=1, 1, da®) ... P(a, t, da®) Py(da) = [P(a, t, {0}) Py(da)
E
and

IIp p(A) = lim ITp p(A,) = hm fP a, t, {0}) Py(da) . (2.6)

t— o
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The homogeneous Bg-process P(a, t, A) will be said to converge

a) strictly to zero, if for every P, we have ITp p(A) = 1; in other words, if
11p,p almost all realisations are equal to 0, beginning from certain ¢.

b) strongly to zero, if for every P, and every ¢ = 1, 2, .... n &,(f) converges
to zero Ilp p — almost surely.

c) weakly to zero, if for every P, and every o =1, 2, ..., n &,(t) converges
to zero in IIp p — probability.

Clearly, the strict convergence implies the strong convergence, and the
strong convergence implies the weak convergence.

From [1], Theorem 9 it is apparent that in the case of branching processes
with discrete state space and with finite first moments all three kinds of the
convergence to zero are equivalent. In our case the equivalence ceases to hold.
More precisely, the strict convergence to zero is not equivalent to the strong
convergence to zero, as it follows from the remark to 2.2. On the other hand,
according to 2.6 the strong convergence to zero is under sufficiently general
conditions equivalent to the weak convergence to zero. The author does not
know, whether this equivalence holds generally.

2.2. The homogeneous B -process converges strictly to zero if and only if the
system of n equations

Fx) =« (2.7)

fas in the domasn X, no solution, except for x = 1. '
Proof. We omit the details of the proof, which would be the imitation of the
methods developed for branching processes with discrete state space. The

proof lies on the following three facts a) according to (2.6), the process con-
verges strictly to zero if and only if lim F(¢, 0) = 0; b) according to 1.1

t—>0
lim F(¢, 0) = y always exists and satisfies (2.7); ¢) if z ¢ X, satisfies (2.7), then
t—>o0
z=y.

Remark to 2.2. The same statement holds for branching processes with
discrete state space and is implicitely obtained in the proof of Theorem 9, [1].
However, the mentioned theorem gives the necessary and sufficient conditions
. in a different form, namely: a) B <1 b) there are no final groups. In our
case, these conditions would not be true for strict convergence. This can be
shown by the following example. We take n = 1 and define the fundamental
probability measure P;(4) by means of the density function (2.1) with 2 < u.
Then both a) and b) are satisfied, but F(0) = 0 and this implies, according to
1.1, F(t, 0) = 0 for all . On the other hand, conditions similar to a) and b) are
necessary and sufficient for the weak convergence and, under one additional,
" condition, for the strong convergence to zero (see 2.4, 2.6).
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Before we prove these theorems, we introduce some new notation. Every
subset I = {4y, ..., 1,,} of {1, 2 ... »n} will be called an index set. For such a
set I and for every x = (z,, ..., x,) ¢ X, we shall write ) = (z;, ..., %, ).
Further, M,(f) will denote the matrix (M ;(¢));.; and we shall write M, in-
stead of M,(1). R; will denote the maximal characteristic number of M.
The index set I will be said to be irreducible, if there exists no decomposition
I =1, u I, into two disjoint sets I, I, such that P;({be £ :b; = 0) = 1 for
each 7 e I,, jeI,. Clearly, a necessary and sufficient condition that I be ir-
reducible is that M; be irreducible. The index set I will be called a final group,
if I is irreducible, R; = 1 and P,(\{b: b, = M;;}) = 1 for each 7 ¢ I. Although

jeI
in the following theorems the domain of the Laplace transform is restricted
to X,, i. e. to real x only, the logarithms v, could not be replaced by the gene-

rating functions F,.

2.3. Under the assumption that the index set I is irreducible and R; < 1, the
following three statements hold:

a) If there exists a vector 0 + x e X, such that x; = 0 for i non e I and

P(beEB:ab=2a}) =1 forall icl, (2.8)
then I is a final group.

b) If there exists a vector 0 = x € X, such that x; = 0 for i non e I and W,(x) = ;
for i e I, then I is a final group.

¢) If I is not a final group, then for any n << 0 there exists a vector x € X, such
that x; = 0 for inon e I, and n < x; < 0, py(x) > @; for i ¢ L.

Proof of a). From (2.8) we get M,27 = 2! and consequently 1 must be the
characteristic number of M ;. This shows, according to the assumption R; < 1,
that R; = 1. Further, M, being irreducible, we have z; < 0. For each ¢, j e I
and for every Borel set A c <0, ®©) we define Q;(4) = P,({bel :b;e A4).
Because of C6, @, is an infinitely divisible probability measure and from
(2.8) we deduce Q,; (< 0, % >) = 1. But it is proved in [3] that there exists

i
no non-trivial infinitely divisible probability distribution on a bounded interval
and hence P,({be E :b; = M;;}) = 1 for each 7,jel.

Proof of b). Let J be the set of all indices, for which z; << 0. Note that
always J C I. According to the Taylor theorem and (2.5) we have

Yi(x) = Z M;m; + Z PO y) @, (2.9)

jel kel
where y € X, is a vector such that y; = 0 for snoneJ and z; <y, < 0 for
i e J. It is easy to show that

PER(y) = [Dy(y)]* [ (0; — PP(y)) (b — PP(y)) °Py(db)
E
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for each 4, k, ¢ J and consequently

3 W) a = (D)7 [ T30 — PPO) wF PAds) = 0. (2.10)

ikeJ

Since ¥;(x) = x; for all ¢ € I, we have by (2.9) and (2.10)
SMy(— ) = —x; + > L YO y) x2, = — ; = Ry(— ;) (2.11)

jet e

for all 7 e I. Since ) + 0, (2.11) proves that (— x(D) is an extremal vector

of My, i.e. aneigen-vector belonging to R;. But then the sign of equality must

hold in (2.11) and hence R, = 1, > M o; = x; and Z PEP(y) 22, = 0 for all
jed

1 e 1. By (2.10), it now follows that P,({beE : ijxj = Z YO(y) z;}) =1 for

i=1
n

all 7¢I, and integrating we obtain z;, = > M ua; = Z'P‘” x;. This proves

=1

that P;({be E : ab = z;}) = 1 and the assertion of b) follows from a).

Proof of ¢). Let V be the set of all z € X, such that y <, < Oforallierl
and x; = 0 for all s non € 1. M, being irreducible, there exists 2 ¢ V such that

> M2 = Rl = x,. By (2.9) and (2.10), we have ¥(2(®) = 2(® and, ac-
jel

cording to b), there exists at least one index i, e I such that ¥, () > (%

Suppose that a couple (J, x®) has already been found in such a way that
Jcl,aMeV,

> M = afb forallie INJ and W (x®) > 2t forall ieJ (2.12)

jel

({#o}, @) is an example of such a couple. If J = I, there exist ¢, e I — J,
j1 € J such that M, ; > 0 because of the irreducibility of M;. ¥ being conti-
‘nuous, we can find #® e V in such a way that 2 = a{b for all i + j,, o}V <

<afP <0, V(x®) > a for all ieJ. Since M,; > 0, we have
Zﬂ[z ]96(2) > af¥ (2.12.) and then, according to (2.9) and (2.10), ¥, (x®) > a®.

FmaJlly the inequality ZM @) = ¥ continues to be valid for ie I\

(J v {i,}) because 7, € J. ThIS proves that (2.12) continues to hold, if the couple
(J, ™) is replaced by (J u {i,}, ®). Continuing in this way we obtain finally
" a couple (Z, x) and this completes the proof of c).

2.4. A homogeneous Bg-process with finite first moments converges weakly to
zero if and only if

a) R < 1, b) there are no final groups.

Remark. If R < I, then b) is always satisfied because R; < R for each
index set [.
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Proof of the theorem. We can assume without loss of generality that the
indices are ordered in such a way that
Mo 0 0

M@2) M@ 6

M= ) . 2.13
0 o (2.13)
. Me 0
Men .. L MEsHY M
where MO (j=1,2,...,s) are irreducible square matrices. Let M be of
ji—1
dimension m; X m;, so that > m; =n. The index sets I; = {Zml + 1,
j=1
Z m;} are irreducible and from the form of M we see that l_f 1 €T, the
i=1
function ¥;(x) does not depend on x; with [ ¢ U/1,.

k>3
We prove first the sufficiency. Assuming that the conditions a), b) are
satisfied, we shall prove that to each j =1, 2 ... s there exists a vector
z( e X, such that
9 =0 forall 2eUl,,
k< (2.14)
2 <0 and W (x®) > 2P forall ieUI,.
kzj
This is certainly true for ¢ = s because of 2.3¢). Suppose, by induction, that
(2.14) holds for some j > 1. Since ¥, is continuous, we can find # < 0 in such

a way that for an arbitrary vector y e X, satisfying y, = 2/ for i ¢ U I, and
k+j-1

n <y; = 0foriel;_; we have

Yiy) >y, for 1eUl,. (2.15)

kzj
According to 2.3c), there exists z ¢ X, such that

2,=0 for ve U I,
-1 (2.16)
n<z; <0 and YY) >z for 1el;_,.

Let 20-1) ¢ X, be the vector the coordinates of which are 2~V = 2! for
ie U I and o™ =z, for i e I,_;. Then by (2.14), 2/~" = 0 for i ¢ U L
ankcfj(g.lfx) proves that ¥,(z¢-9) > 2~V for ¢ ¢ U I,. Finally, (2.16) i,:;li)vlizes
Y (a=1) > 2! "V fori eI, ;, because x D = z, If%; ie U I, and because ¥,
with ¢ € I;_; does not depend on coordinates x; with ! ekaj—llk This proves (2.14)

kzj
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forj — land, consequently, forall j =1, 2, ..., s. In particular, taking j =1 we
obtain a vector M < 0 such that ¥, (M) = (" for all i. Since ¥ is non-
decreasing in the domain X, the last inequality yields, according to (1.6), the
inequality P(t — 1, z®) < P(I, ) for all £. Hence lim P(t, 2V) = z(® exists,

t—o0

and using (1.6) we obtain ¥ (2©®) = x(®. We now prove z(® = 0. Let y ¢« X, be
the vector the coordinates of which are y;, = 2!¥ for i<, and y; = 0 for

t € UI,. Then V,(y) = y, for i € I, because ¥; with ¢ ¢ I does not depend on
k=1
@, with le U I,. But this shows, by 2.3b), that ¥y = 0 and, consequently,
k-1
2 = 0 for all ¢ e I,. This procedure is to be continued step by step for I,,
I,, ..., I, and finally we obtain 2*) = 0 for all 1. Summarizing our results we
see that there exists a vector ) < 0 such that lim (¢, ) = 0. Then, by

t—>o0
(1.5), lim @(a, t, ) =1 for all a e . This proves that

t—>0

lim P(a, t, {be B :b; > ¢}) = 0

t—w
for all a, ¢+ and & > 0, because of the inequality

| — d(a, t, '
Plat, beBib e = L P@bal)

N B
The assertion of the theorem now follows from the relation
IIp p ({Ee B &(t) > e&) = [P(a,t, {bekl:b;, > &}) Py(dd) .
E

To prove the necessity of the conditions we assume first that the condition
a) is not satisfied, that is, we suppose R > 1. Then, according to the well
known properties of non-negative matrices, there exist t,e 7' and an
index j such that M(kt;) > 1 for every natural k. But this implies
Pj(kty, {be B :b; = 0}) < 1 for all k and consequently

Yi(kty, d») < 0 forall k. (2.17)

If Q(x) = P,(ty, ®) — x;, then G(0) = 0, GN(0) = M(t,) — 1 > 0 and accord-
ingly there exists 6 << 0 such that

Yity, ®) < z; forall x with éd < z; < 0. (2.18)

Suppose that the process converges weakly to zero. Then, in particular,
lim P;(t, {b e B : b; > ¢}) = 0 for all ¢ > 0, and consequently

t—00

lim ¥,(kto, dY) = 0 . (2.19)
o t—o0 R
From (2.17) and (2.19) it then follows that there exists K such that
0 < W,(kty, d9) <0 forall k=K. (2.20)
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Finally we see from (1.6) that ¥,;((k + 1) ¢, ) = ¥;(t,, ¥ (kty, x)), and applying
this relation to (2.18) and (2.20) we obtain ¥;(kt,, d") < ¥;(Kt,, d9) < 0 for
all £ > K. But this contradicts (2.19).

It remains to consider the case where there exists a final group I and B = 1.
In fact, we see from the remark before the proof of this theorem that the even-
tuality R <1 is impossible under the existence of a final group. Suppose
again that the matrix M is of the normal form (2.13). Since the final group
1 is irreducible, there exists an index k£ (1 < k < s) such that I c I,.. If I were
a proper subset of I;, then, by the well known properties of irreducible matri-
ces, the inequality RB; << E; =< R would hold. But this is impossible because
R; = R = 1, and consequently I = I,. Let —a'"® be the eigen-vector of the
matrix M, corresponding to E; and let 2(» ¢ X, be the vector with the coor-
dinates 2" = 0 for 4 non e I, and ¥ = a{ for ¢ e I,. Then

P({beBE:>ba) =a") =1 forall iel,. (2.21)
ieh
The function ¥; with ¢ ¢ U I; does not depend on x, with I ¢ I, and conse-
i<k
quently, by (2.21),
Py @©®) =i forall ieU ;. (2.22)
isk
The matrix M(t) = M* being again of the same quasi-triangular form as M, the
function Y,(t, x) with 7 € I, does not depend on z, with I« U I;. Hence, by (1.6)
i>k
and (2.22), Yt + 1, @) = P (¢, p(x®)) = P,(t, «®) for all i eI, and from
this and (2.22) if follows that P(t, ) = z© for all ¢ and all 7 ¢ I,. But this
proves that ¥;(£, (™) cannot converge to 0 because \» < 0 for i ¢ I,, and the
proof is completed.

R.5. Each homogeneous Bg-process with finite first moments and with R <1
converges strongly to zero.

Proof. We first suppose that the initial distribution P, has finite first
moments, that is, M; = [b;Py(db) < oo for alli =1, 2, ..., n. Then

E

Ep, p(&:(1)) :in(t) ITp, p(d&) ZEfEfbiP(a, t, db) Py(da) =
= [M(a, t) P(da) = fiajll[ji(t) Py(da) = iM,-Mﬁ(t) .
E , E i=1 iz

Since M,(t) are members of the matrix M(t) = M*, we have M,(t) = O(R})
for any R, such that R < B, < 1. Hence, Ep p(£,(t)) = O(R{) and consequently
Z Ep, p(&:(t)) < co for all i. Since &(f) = 0, we see by a well known theorem
t=1

that £,(t) — 0 with IIp p probability 1. To remove the assumption that the
first moments of P, are finite, it is sufficient to represent the probability
measure P, as a limit of probability measures whose first moments are finite.
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2.6. Suppose that a homogeneous Bg-process has finite first moments and let
the eigen-vector of the matrix M, corresponding to the maximal characteristic
number R, be positive. Then the process converges strongly to zero if and only if

a) B =<1, b) there are no final groups.

Proof. In view of the theorems 2.4 and 2.5, it is sufficient to prove that the
process converges strongly to zero, if both conditions B = 1 and b) are sa-
tisfied. As in the proof of 2.5 we can assume that all first moments M, of P,are
finite. Let [ = (I, ..., l,) be a positive eigen-vector of M corresponding to
R =1 and define #(t) = 5(t)l~. Using the method of [2] page 313 we can
prove that the sequence #(f) forms a bounded martingale process and con-
sequently lim #(t) = 5 exists with //p p-probability 1 [See [4], Chap. VII,

t—w

Theorem 4.1]. But according to 2.5 &,(t) converges to zero in I1p p-probability
and this implies = 0 with //p p-probability 1. Finally, since £,() > 0 and
l; > 0, we have lim &,(t) = 0 with /I p-probability 1.
o0

Remark. As follows from the theorems 2.4 and 2.6, the weak and the strong
convergence are equivalent, if there exists a positive vector of the matrix
M Dbelonging to the characteristic number E. This last condition is always
satisfied, if » = 1 or, more generally, if the matrix M is irreducible.

3. B-processes with continuous state space. In this section we allow the time
parameter to assume any non-negative value, that is, we suppose 7' = (0, o0.)
We shall consider purely discontinuous processes only,*) that is, we shall
suppose that the B-process satisfies in addition the condition

C 7. There exist finite limits

lim li(t, a,s, A) — (Ps,a,s, A) — lim P(s,a,t, A) — P(s,a,s, 4) _

18— t—s t—>s+ I —s

= p(s, a, A) (3.1)

forall seT, aecl, Acé&.

The function p(s, a, 4) defined by (3.1) is sometimes called a transition
intensity. Every B-process with 7' = <0, o0) which satisfies (3.1) will be called
‘a B,-process. Each B,-process determines uniquely the corresponding transition
intensity p(s, @, 4). The essential part of this section is devoted to the inverse
problem, that is, to the construction of the B -process, if its transition intensity
is given. To be able to do so, we must first examine the function p(s, a, A4).
We write H,(0) ={beE :b; <6} for all 6 <0 and all 1 =1,2,...,n. If -
Aeé&and aeE, A+ a will denote the set {be E:bF ae A}

9
*) See for example [5].

304



3.1. Let p(s, a, A) be the transition intensity function of a B -process. Then

a) p(s, ., A) is a E-measurable function for all se T, A € &.

b) p(s, a, .) ts a finite and o-additive set function for all se T, a ¢ E.
c) p(s,a, {a}) =0,p(s,a, BE)=0.

d) p(s,a, 4) =0 if AcE\{a}.

e) p(s,d®, B(1)) = 0.

f) p(s: d, A) = Za/ip(sJ d(i)r A + d(i) - a) '
i=1

Proof. The assertions a)—d) express well known properties of a transition
intensity function and are easily derived from C1—C 5 and (3.1). To derive

the others we define ¢(s, a, #) = [ emzp(s, a, db) and y(s, a, x) = e‘“z‘(p(s, a, x)
E
for all x e X. We shall write again gis, ) = @(s, d®, ), ¢(s, z) =
= (@u(s, ), ..., (s, ), and the same for p. Since, by (3.1), ¢(s, @, x) is the
derivative of @(s, a, t, x) with respect to ¢ in the point ¢ = s, we have according
to (L.7) ¢(s, a® 4 a®, ) = ¢(s, a®), x) P + (s, a®, x) ¢ and consequent-
ly (s, a® + a®, ) = (s, a®, ) + (s, a®, x). The function y is regular
enough to be then necessarily of the form w(s, a, ) = (s, ) & and hence,

(])(8, a’} x) = za’i%(é’, x) ew(m) . (32)
i=1
This proves f). To prove e), consider 0 << < 1. Then, by ¢) and f),
0 = p(s, 6d®, B) = ép(s, dD, B + (1 — 0) d®) = — dp(s, d®, E(1 — ) and
hence we deduce c¢) by the relation E;(1) = U Ei(l — 7lc)
k=1

Remark. As it appears from d) and f), the assertion e) can easily be gene-
ralised to the following proposition. If, for a given a = (a,, ..., a,) € £, E(a)
denotes the union of all £,(a;) with a; > 0, then p(s, @, 4) = 0 for all A c E(a).

3.2. Let py(s, A) (1 =1, 2, ..., n} be functions on the domain T X &. Then, in
order that there be on the domain T X E X & a function p(s, a, A) satisfying the
conditions a)—1f) of 3.1 and such that p(s, d®, A) = py(s, a) for all i, it is ne-
cessary and sufficient that the functions p,(s, A) satisfy the following three con-
ditions: :

cl. pys, .) s a finite and o-additive set function on & for all ¢ =1,...,n
andallseT.

¢ 2. pys,A) > 0 for all A c E\ {d®}.

c3. pi(s: {d(‘)}) 2 0, pi(s) E) = 07 pi('s) Ez(l)) = 0.

If these conditons are satisfied, then the function p(s, a, A) is desermined uniquely
by our requirements.
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Proof. Suppose that ¢cl—c3 hold. From f) we see that p(s, a, 4) =
= > a;pis, A + d® — a) is the only possible way of defining the function

i-1

(s, a, A). If p(s, a, 4) is defined in this way, all properties required by the
theorem are obvious except perhaps for p(s, a, E) = 0. To prove this last, we
distinguish two cases. If ¢; = 1, then B 4 d® — a = E, and if a;, << 1, then
E+4+d®o —a=EN\NE( —a,). We have always pys, ) =0 and, in
the case a; < 1, p(s, B(1 — a;)) = 0 by c¢2 and ¢ 3. Consequently,
pi(s, B 4+ d® — a) = 0 in both cases and p(s, a, £) = 0 follows from the
definition.

Because some regularity condition concerning the variable will be necessary
in the sequel, we shall suppose that

c4. py., A)is continuous on T = <0, c0) for cach i and each A € &.

A vector function p(s, 4) = (pi(s, 4), ..., p.(s, A)) will be called a b-function,
if all p,(s, 4) satisfy ¢ 1—c 4.

Let p(s, 4) be a b-function and let p(s, @, A) be the corresponding function
defined in 3.2. Write p,(s) = pi(s, {d®}), p(s) = (pa(s), .-, Pa(5)), q(s, a, A) =
= p(s, a, A \ {a}), qi(s, A) = q(s, d®, A). Then, by 3.1f), we have

(s, a, {a}) = p(s) a, (3.3)
q(s, a® + a®, A) = q(s, ad, A — a®) + q(s, a®», A — a®) . (3.4)

Finally, let us define in accordance with [5]

JGs, 1) = [p() ds, POXs, a1, A) = d(a, 4) exp [J(s, 0 @],

t
) ¢
P®)(s, a,t, A) = [ exp [J(s, 0) a] [P* (o, b, t, A) q(0,a, db) do
s E

and P(s,a,t, A) = > P®(s,a,t, A)foralls <teT,acE, Acé.
k-0

Let a b-function p(s, A) be given. Then the function P(s, a,t, A) de-
fined by the procedure just decribed will be said to be the corresponding
P(b)-function. A B,-process whose intensity function p(s, a, A) satisfies
(s, d®, A) = p,(s, A) will be called a B,-process generated by the b-function
p(s, A). The following theorems prove that under certain conditions the
P(b)-function is the B -process generated by p(s, 4). This insures the existence
of B -processes because the existence of b-functions is obvious.

3.3. Let p(s, A) be a b-function. Then the corresponding P(b)-function satisfies
C1, C2, C4—C 17 (with respect to p(s, a, A) defined in 3.2) and we have

0 Ps,a,t, A) <1 forall s=ta A. (3.5)
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Proof. The truth of C1, C2, C4, C5, C7 and (3.5) is the assertion of
Theorems 1, 2 of [5]. Therefore it remains to prove C 6. According to (3.4) we
have for any bounded and measurable function f and all a®, ¢ ¢ E

Eff(b) q(s, a® +a®, db) = Z* [Ha#h +b) q(s, ao, db), (3.6)
i=0 E

where the symbol > * means that the indices of the members of the sum are
to be taken mod 2. We now prove

P(k)(s, a® -+ a®, t, A) —
k

A 3.7
= > [ [dDO® + b, A) PO)(s, a®, t, db®) PE=i (s am) t, dbM) (3.7
j E

i=0E

)

forallk = 0, 1, ... The relation (3.7) holds for k = 0 by definition, and suppose,
by induction, that it holds for some k. Using (3.6) we get

PO g a,t, A) =
t
= [exp [J(s, 0)(@® I aM)] Ef P®(a, b, t, 4) q(0, a® + oW, db) do =

1 i

— Z* fexp [J(S a)(a(") + a(l) ] fP(Ic) ()‘ alit1) + b, t, A) q(o_’ a®, db) do

=0

I
M;N
M»—i

e,

exp [J (s, 6)(a® + a® ]fffd ¢© L ¢, 4) Pi)(g, glétD, t da®) .
. P&=i(5, b, t, dc<1>)q(o a™®, db) do =
1
= 2. [ JA(e® + ¢, A)(exp [ (s, 1) @¢* D] d(a#, de®) .

zOE

. f (exp [J (s, o) @?] f P®(g, b, t, deW) g(o, a?, db) do) +

t ¢t
»-Z 2 f fd c@ ¢, 4) f Jexp [J(s, 0) & + J(s, 7) a6+D] .

j=11i=

([P0, 1, 0e®) g, 64, QBOY) [ P50, 5D, £, de) o, a0, db) e do.
E E

"In the last step, we used a rule for interchanging the order of integration
which can be proved by usual methods mentioned in the proof of 2.1. Inter-
changing once more the order of integration with respect to ¢ and 7 in the
terms with ¢ = 0 and § > 0, we get finally

PE(s, a® + aM), ¢ A) =

1 . .
Z f d(c® + ¢, A) PO(s, at™*D, ¢ de®) PED(s, a), ¢ de®) +
-0EE

t ~
+ ﬁ [ [d(c® + e, A)(fexp [J(s,7) @] [PG=D(z,bO), 1, de®) g(z,a®, db®) ).
’ B
i=1EE s

(ftexp [J(s, o) am] fp(k—a')(a, b, ¢ de®) g(o, o, db) do) =

—kZI [ [d(c® + ¢, A) POs, a, £, de®) PO+173)(s, a®, ¢, doth) .

j-0 E E
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This proves (3.7) for all £ and C 6 follows from the relation
P(s, a® 4 aM, t, 4) = ZPOC)(s, a® - ad t, A) =
=0

o k
= [ [d(b® 4 bD, A) > > PO(s, a®, t, db®) PE=i(s, a®), t, dbD) =

EE k-03j=0

f jd (b 4 b, A) i P (s, a®, t, db©®)) §P(l>(s, a®, dbm)) .
= =0

It is well known that the “transition probabilities” constructed by the
procedure we have used here need not satisfy C 3 and in general, all known con-
ditions that insure the validity of C 3 are either too complicated or too re-
strictive. Even the relation (3.4), which is essential for our theory, does not
remove generally this undesirable fact, as it appears from the example which
will be given later on. On the other hand, it enables us to derive simple and
sufficiently general conditiens for C 3.

If p(s, A) is a b-function, we shall write, in accordance with the notation

used in the proof of 3.1, y,(s, ) = fe’”’rpi(s, db) , w(s, ) = (p(s, @), ..., wa(s, x).
The first moments of p(s, 4) will be denoted by m;;(s) = f b;p(s, db).

3.4. Let p(s, A) be a b-function and suppose that, for every t > 0, the system.

of n differential equations

y'(s) = — w(s, y(s)) (3.8)
has in the interval {0, ty exactly one non-positive solution y(s) such that y(t) = 0.
Then there exists exactly one B,-process generated by p(s, A) and it is equal to
the P(b)-function. Moreover, the corresponding function (s, t, x) defined in
sec 1 satisfies as a function of s the system (3.8) with the initial condition
Pt t, &) =z for allt > 0, x e X. The condition of the theorem is always satisfied,
tf my(s) < oo for all s € T and all i, j.

Proof. In view of 3.3, C 3 is the only missing condition for P(b) to be a.
B,-process. According to 3.3, the P(b)-function P(s, a,t, A) satisfies C 6 and
hence, in particular, P(s, a® 4 a®, t, E) = P(s, a®, t, E) P(s, a®, t, K). As it.
appears from the definition of the P(b)-function, P(s, a,t, E) > 0 and con-
sequently there exists Q(s, t) = (Q(s, 1), ..., @,(s, 1)) such that P(s, a, ¢, E) =
= exp [Q(s, t) a]. Then
0.(s, t) — lim P(s, hdD, 1, E) — 1 '

h -0+ h

(3.9)
Moreover, Q(s, t) = 0 by 3.5), and Q(¢, t) = 0 by the definition of P(, a, ¢, E).
From the definition of P(s, a, {, A) we have

P(s, a,t, A) =
t

- 3.10
— dla, 4) exp [J(s, 1) @ + [exp [T(s, 0) @] [Plo, b, 1, 4) glo, @, dbyda
8 E
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and, in particular, P(s, a,t, E) =
13
= exp [J(s, t) a] + fexp [J(s, 0) a] [exp [Q(o,t)b] q(o, a, db) do =
B

— oxp [J(s, 1) ] + fexp[Js 0) @l(p(5, a, Q(o, 1) — exp [Q(c, 1) a] plo) @] do -
Then, according to (3.9), Q.s, t) = f (0,Q(a, 1)) exp [— Qi(o, t)] do =

~

= f vi(o, Q(o, t)) do. Differentiating with respect to s, we see that @(s,?)

00ns1dered as a function of s only is a non-positive solution of (3.8) with the
initial condition Q(¢, ) = 0 for all ¢ > 0. But then, according to the assumption,
Q(s, t) is the only solution and consequently @(s,t) = 0 for all s < ¢. This
implies P(s, a, t, E) = 1 for all a and s =< ¢, that is, C 3 holds. Concerning
the unicity we remark that Markov processes for which C 7 holds always
satisfy the backward integro-differential equation and it is well known that
the B -function satisfying C 3 is the only Markov process which is the solution
of this equation. The assertion that ¥(s, t, x) satisfies (3.8) can be deduced
from the relation ¥(s, ¢, x) :}Egl }l;[@(s, hd,t, ) — 1] and from (3.10) by
+ .
the method used in the beginning of the proof. If m,(s) < oo, then
0= 9Ps,z) = I!(bj — d¥) pi(s, db) < m;s) < co and the Lipschitz con-

dition for (3.8) is fulfilled.

3.5. If n = 1, that 1s, if E = <0, o), then the first condition of 3.4 is not only
sufficient but also necessary for the P(b)-function to satisfy C 3.

Proof. Suppose that the P(b)-function satisfies C 3. From the preceding
proof we see that ¥(s, ¢, z) as a function of s satisfies (3.8) with the initial
condition ¥(t, t, ) = z for all £ > 0 and all x < 0. Further, 0 < P)(s, x) =
= [(b — 1) €21 p(s, db) < oo for & < 0, and this implies that the system

E

(3.8) has for any t > 0 and # < 0 in the neighbourhood (¢, ) exactly one non-
positive solution y(s) such that y(¢{) = z. Using these two facts we can easily
prove that (3.8) has exactly one non-positive solution with y(t) = 0 for a given
t> 0.

The author does not know whether the condition is necessary in the general
case n > 1.

Remark. If » = 1 and if the b-function p(s, 4) does not depend on s, that
is, if p(s, 4) = p(4) and y(s, ) = yp(zx) for all s, then according to a well
known theorem on differential equations the necessary and sufficient condition
for P(b) to satisfy C 3 is that

0 0
1 1
i[(p—@—)dx:;/‘mdxz—oo
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1 1 . s
where z, < 0 and — = — o0 if g(x) = y(x) = 0. This condition
is closely related to Theorem 7 of [5].

Example. Suppose n = 1 and take an arbitrary ¢ e (0, 1). Let us define

a measure ¢(A) on & by means of its Radon-Nikodym derivative —3% where

1
A is the Lebesgue measure, % (@) = —for a > 1 and % () = 0 for

0==a=1l If p=-qf)=— fa +erda and p(A) = q(A4) +d(1, A) p

then p(A4) is a b-function and ¢(x) = (— x)(— &)~ [ e~*u~*du. In the case

i .. . .
e << 1, the integral f () dx is finite and according to the preceding remark

m()

the corresponding P(b)-function does not satisfy C 3. In the case ¢ =1,

oo o0

my, = fap(da) = oo but f‘ﬂ% dr = — o and consequently, C 3 holds.
Ly

This shows that the condition of finite first moments m;(s) in 3.4 is not

necessary.

We suppose in the rest of this section that the B, -process is homogeneous
and we write again P(a, {, 4) instead of P(s, a, s 4+ t, A). Then the transition
intensities and the b-functions do not depend on s and we shall denote them
by p(a, A) and p(4) = (p(4), ..., p.(4)) respectively. The first moment of
p(4) will be denoted by m,;; = [b;p;(db) and their matrix by m. As in the

E

case of branching processes with discrete states, all M (t) are finite, if all
m,; are finite, and then M(t) = emt. We shall denote the maximal character-
istic roof of M (1) and m by R and r respectively. Then, B = e".

The weak, strong and strict convergence to zero of B,-processes can be
defined in the same way as for B,-processes, the strong and strict ones under
the assumption that the process is separable, of course. But we have the
following theorem:

3.6. None of the three kinds of convergence to zero exists for B,-processes with
finite first moments m;. '

Proof. It is sufficient to prove that weak convergence cannot exist. Suppose,
on the contrary, that the process converges weakly to zero. Then also the
B;-process P(a,t, A) [t =0, 1,...] converges weakly to zero and hence, by
2.4, R =< 1 and there are no final groups. But then » =< 0 and m;; =< 0 for all
¢ and hence, according to the property ¢ 3, p,({b e E : b; + 1}) = 0 for all 4. By
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3.4, the B, process is identical with the corresponding P(b)-function and we
see from the definition of the P(b)-function that P,({beE :b; = 1}) = 1.
This proves that all {¢} are final groups and the process cannot converge to
Zero.

4. The extension of branching processes with discrete state space to B-pro-
cesses. In this last section £ will denote the set of all vectors a ¢ B with in-
tegral coordinates and & will denote the o-algebra of all subsets of E. If we

replace in the definition of a B-process the sets £ and Eby E and @;respectively,
we obtain the definition of a branching stochastic process with discrete state

space. We shall call it a E—process and we shall denote the corresponding
transition probability function by P(s, a, t, A). Generally, any symbol supplied
with a bar will denote an object the definition of which we obtain if we replace
in the preceding theory the sets E and & by E and & respectively. Thus, we
obtain the definition of B,- -processes, B, -processes, transition mtensmy functions
p(s, a, A) and P( b)—/‘unctwns. The only exception concerns the b-functlon, which
will be defined later on. Each probability measure P on & induces in an ob-
vious way a probability measure P on &. If this P is infinitely divisible, then
P will be said to be infinitely divisible, too. A B-process P(s, a, t, 4) will be
said to be an extension of a B-process P(s a, t, 4),if P(s, a,t, A) = —P(s a,t A)

forallac B, s <teT and A &. Clearly, the extension is always unique if it
exists.

We suppose first 77 = {0, 1, 2, ...}. The following extension theorem follows
eagily from C 6 and 2.1.

4.1. Let P(s, a,t, A) be a B;-process. Then the extension to a B,-process exists
if and only if the probability measures ﬁ(s,.d@'), s + 1, A) are infinitely divisible
for all seT and all 1 =1,2,...,n

We now suppose 7' = <0, c0). It can be easily verified that the transition
intensity (s, @, 4) has all the properties stated in 3.1 with the exception
of e). In accordance with this last fact, we define a b- function as a vector
function p(s, 4) = (py(s, 4), ..., Pa(s, A)) whose domain of definition is 7' X &
and which satisfies the following two conditions:

a) pi(., A) is continuous for all A ¢ & & and all i t,

b) pi(s, .) ts a finite and o-additive set function such that p(s, {a}) = 0 if
a %+ do, py(s, {dD}) < 0, py(s, B) = 0 jor all i and all s € T.

We remark that the corresponding F(E)-function need not satisfy C 3 just as
in the case of continuous states. To remove this fact, conditions similar to
those of 3.4 could be given.
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4.2, Let ZZ(SLA) = (51(3’_14), ey P, A)) be a T)—function such that the cor-
responding P(bz-function P(s,a,t, A) is a B,-process. Then the B,-process
genemtedk by p(s, A) can be extended to a B,-process if and only if

D8, {be B :b; = 0}) = 0 for all 1.

Proof. The necessity of the condition follows from 3.1 e). Suppose conversely
that the condition holds and define p(s, 4) = p(s, A n E) for all 4 ¢ &. Then
p(s, A) is a b-function and it is easily seen that the corresponding P(b)-function
is an extension of the P(—b—)—function. Moreover, it is a B, process because

P(s,d®, ¢, E) =1 by hypothesis. The following theorem is a trivial but
surprising consequence of 4.2 and C 6.

4.3. Let the assumption of 4.2 be satisfied and let py(s, {be E :b;, = 0}) = 0
for all 3. Then all transition probabilities P(s, a, t, A) are infinitely divisible.
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Peswme

BETBAMMECST CJAVYATIHBIE 1TPOIECCHI C HEITPEPHIBHBIM
MPOCTPAHCTBOM COCTOSAHWA

MUJIOCJIAB UPHMHA (Miloslav Jitina), ITpara
(IToctynuao B pegakxnuio 10/VI 1957 r.)

O6osnaunm dyepes £ MHOMKECTBO BCEX M-MEPHBIX BEKTOPOB @& = (@y, ..., G,)
¢ HEOTPUIATEJIPHBIMM KOMIIOHEHTaMH, dYepe3 &-CHCTEMY BceX O0OpPelIeBCKUX
NOJIMHORecTB npocrpaHcrBa B u depes 7' — HexoTopoe MHOKECTBO HEOTpPH-
maTeabHBIX ducelt taxkoe, 410 0 € 7. MHOKecTBO K mpesicTaBiger ITPOCTPAHCTBO
cocTOsTHUI 1porecca, a 7' — MHOKeCTBO 3HaUeHHMIl mapamerpa. Beskyo QyHk-
o P(s, a, t, A), onpenenennywo it ae B, s <teT, A e & Gynem Ha3pBaThH
BeTBAILMMCS  CIAYYaliHBIM TPOIECCOM ¢ HENPEPBHIBHBIM HPOCTPAHCTBOM  CO-
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CTOSIHUI, WM KOPOTKO B-mpomeccom, ecnim oma soimosaser yeiaopus C1—C6.
Bmecro mpousBojsmux ¢yurnnii F(s, a, ¢, €), yIoOHBIX [JIsi MCCIeTOBAHNSA
HPONEcCOB ¢ AMCKPETHBIMI COCTOSHMAME, NMOJB3YeMcA B CTaThe JOTapu@MaMm
Y(s, a, t, *) KOMIIEKCHBIX W JIeficTBUTEIIbHBIX TIpeobpasoBanuii Jlanmaca, s
KOTOPHIX OHSITH mMeeT Mecro (ymmamenranbroe coornomenye (1.6) — (Teo-
pema 1.2).

B-nponecce ¢ mHO%ecTBoM Hapamerpos 1" = {0, 1, 2, ...} nasniBaercs B,-mpo-
neccom (Yacrs 2.). Beswuii Bg-miporece MOKHO HOCTPOUTH MPU JIOMOIIH IIPO-
U3BOJBHOIM IOCJEH0BATEeIHLHOCTA 0e3rpAHNYHOTO Je1MMBIX BePOSATHOCTHBIX Mep
P(s,d®, s +1,4) [s=0,1,..;0=1,...,n], rae d® =(0,...,0,1,0,...,0)
¢ epumnunei Ha ¢-TtoM Mecre. (Teopema 2.1.) Crasxem, 4ro Bg-1pouece cxomuresa
K HYJIO

a) CTpPoOro, eciim NoYTH Bce BBHIGOPOYHBIE (DYHKIIMM PABHBI, HAYMHAS ¢ HEKO-
TOPOTO MecTa, HYJIO,

6) CHIIBHO, GCJIM IIOYTH BCe BBIOOPOUYHBIC (PYHKIUM CXONATCHA K HYJIO,

B) cy1abo0, eciiu BEIOOPOUHBIC (DYHKIIMI CXOJSITCA K HYJIO 110 BEPOATHOCTH A
BCAKOTO HAYaJIbHOTO paclipeieIe s .

ITpouece cxomurest cTPOTo K HYJIIO TOTJA M TOJIBKO TOTAA, ROTJ@ CYIECTBYeT
B 3aMKHYTOM €JIMHNYHOM KyOe ToJbKo ofHO pemenne cucreMsl (2.7) — (Teo-
pema 2.2). Ycaouss, Boickaszauuble B [1] — Teopema 9, siBisiiorcsi 37ech He-
00XOIMMBIMI U JOCTATOYHBIMU JJI ¢1ab0il CXOIMMOCTH K HYJIO, ecilnm yIOOHO
onpenennm nousitne guuansHoro riaacca (Teopema 2.4). OHn rTarxe HeoGXo-
JWIMBL ¥ JIOCTATOYHBI LT CHIIBHOM CXOMMMOCTH K HYJIO, €CJIN MaKCUMAILHOMY
XapaKTepUCTHUCCKOMY UMCJY MAaTpUIBI HepBBIX MOMEHTOB COOTBETCTBYeT
nosioskuresibHBIT BeKTOp (Teopema 2.6).

B-niporiecc ¢ muOskecrBom 7' == {0, c0) HazmBaercs B -mpoueccoM, eciau BBI-
nosusier obasoynoe yeaosue C7 (Hacrs 3). Oyurmus p(s, 4) = (py(s, 4), ...,
.., Pul(s, 4)), onpenietennas Ha 7T X &, naswiBaercss b-QyHKIwmel, ecim BBI-
noxHeHsl yenosust ¢ 1—c¢ 4. JlokassiBaercst, 4to HpH HEKOTOPBIX JOBOJIBHO
00INX  YCIIOBUAX PEryJsipHOCTH CVINECTBYeT TOYHO OanmH B -mponece, mms
roroporo mmeer mecto C7 ¢ a =d® u p(s, d®, A) = py(s, 4) (Teopema 3.4).
Hwu opmu w3 npwBelleHHBIX BHIOB CXOAUMOCTH K HYJI0 He CYIECTBYET MNJIA
B,-nponeccos (Teopema 3).

B mocinenmert wactu (4) maydaercs pacHIMpeHMe BEeTBAMIMXCs TPOIECCOB
¢ JMCKPeTHBIMU COCTOAHMAME HA COOTBeTCTBYIOIMe B-npomeccs. CaMbiM mH-
TEPeCHBIM W B HEKOTOPOM CMBICIE IIOPA3UTEJIBHLIM pEe3YIbTATOM SBJISETCS
caegyomee yrepskiaenue (Teopema 4.3): Ecnm nas BerBamerocss mpoiecca
¢ IUCKPETHBIMI COCTOSIHWSIMU HEBO3MOKHBI IIepexXcsl u3 cocTosTHNs d() B co-
crostaue (..., @;_y, 0, @;,4, ...), TO Bce BePOSITHOCTH TepeXoja TaKOr'o Ipoiecca
0e3rpaHMIHO JeIJIMMBL
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