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PREDICTING A STATIONARY PROCESS
WHEN THE CORRELATION FUNCTION IS CONVEX

JAROSLAV HAJEK, Praha
(Received June 1, 1957)

By the method worked out in the paper [1] it is proved, that, in the case of
a convex correlation function, it suffices to base the linear prediction on the last
observation only, because the relative reduction of the residual variance,
attainable by making use of any number of preceding observations, cannot
exceed 50°/,.

1. Introduetion and summary

Let us consider a wide-sense stationary process {x, — o0 <<t < o0}, and
suppose, that its mean value u, variance o2 and correlation function R, are known.
The best linear prediction of the state of the process at the moment ¢ 4 4,
say Pred z;,,, based on the single observation x; at the moment ¢, viz.

Predz,, s =p + By, —p), 4>0, (1)
is known to possess the residual variance
D{xt+d — Pred xt+A} = ol — Ril) - (2)

This variance may be reduced by making use of a certain number of preceding
observations, i. e. by putting

Pred@,, , = p + D ciw, —p), b <..<t,=t<t4+4, n>1.(3)

i-1

We know, however, that if the correlation function is exponential, R, = e~
(a > 0), then the last observation contains all “linear” information, so that no
reduction is possible in this way. The theorem below shows, that a somewhat
weaker result is valid for all other convex correlation functions, namely to the
effect, that the residual variance of (3) cannot be less than half of the right side
of (2). In fact, the right side of (2) is only 1 + R, times greater, than the lower
bound indicated by (4). '
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2. Theorem

Let {x,, — o0 <t << o0} be a wide-sense stationary process whose correlation
function B, is convex. Let Pred x,. ,be any linear prediction of ,, 4 defined by (3).
Then ‘

D{w;, g — Pred @, 4 = 0*(1 — R,), (4)

where ¢® = Dx, denotes the variance of x,.

Proof. Let us first suppose, that R, is continuous and R, = 0. In [1] it is
proved that such a convex correlation function is possessed by the process
2y = 2% @, e Y—ys Yor Yy, --.) defined by

x‘t’:y[;w], — o <t< o, (5)

. t

where [i -+ (p] denotes the integral part of ’ +@,and 4, ¢, ..., Y_1s Yos Yrs - - -
v v

are mutually independent random variables; the distribution function of 1 is

given by
P

__I [TdR'(A) =7 R @A) —RA)+1, 2<0,
0

F(l)_lo , A=0,

(6)

@ is distributed rectangularly over (0, 1), and ..., y_, %,, ¥;, ... have each the
same but otherwise arbitrary distribution with the mean value x and the
variance ¢2. As the validity of the inequality (4) for given instants ¢, < ... <
<t,=1t<t-+ A and constants c,, ..., ¢, depends only on the correlation
function R,, it suffices to prove it for any particular process possessing this
correlation function, e. g. for the process x; as defined above. This is the main
idea of our proof.

Let us choose an arbitrary » =1 and instants i, <<t, << ... <<t, =1t <

< tnyy =t + A, and keep them fixed in the course of all further considerations.
Under the condition that

2 .
[7+¢]:IC1’ v=1..,n+1, (7)
we may write
Tira — Prod iy =y, — 11— 2ol — 1) (8)

Owing to the independence of the random variables 4, @, ..., y—1, Yo, Y1, -+
the conditional distribution of {y,, ..., %, ..} under the condition (7) will be
identical with the non-conditional distribution, namely, the variance of y; .
will equal o and ¥, Wwill be independent of {y,,..., y;} when k, < ... <
=<k, < k,,- Consequently, denoting the conditional variance under the con-
dition 4 by D{. | 4}, we have
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¢
D{x(t’m — Pred i, 4 [—13 -+ <p] =k, v=1,..,n+ 1} =

= Dyiny — = 2 0y — 0} = Dy} + D D 0w} = (9)

Q=1 -
g D{yl"n-e-l} = o® .

From the inequality (9) follows that

D{x:m—Predx?M}g z P{[ﬁ—}—(p]:ki, 1 =1,..,m l}.
. E

1S e Shp<kyyy A

[%+q¢]: i @:_1,.,7&"{—]}2
k<o Skp<ky i1 7
— cﬂ’{[% + <p] < [t—tlﬁ - 99]} : (10)

. t -+
The probability P{[71 + qv] < [»J + (p]} may be found by means of the

0 0
D {xH.A —_ Pred L+ 4

~

A
" - 14 . A | .
conditional probability P y +ol < p + @ || A¢ withrespecttol.As 1
. . 4 t 4+ 4
and ¢ are independent, the probability P ’ 1l < 7 + | |Af can for

all 2 > 0 be chosen equal to the ordinary probability of [% + <p] < ['E__Z_A + o
when 1 is fixed and ¢ is distributed rectangularly over (0,1). The latter proba-
bility, however, as may be easily seen, equals 1 or -A/—l— according to whether
A = Aor 4 < 2, respectively. Hence, in accordance with (6),

LR S R L (R B

l 0

4 ) 2]
:de(z) +f% dF(2) = F(A) + A de'(r) —
J
0 a a4

= AR'(4) — R(A) +1 — AR'(A4) =1 — R(4) .
Inserting this result in (10) we get (4).

Let us complete our proof by examining an arbitrary convex correlation
function. Every convex correlation function is continuous for 0 < 7 < 0,?)

1) LirtELwoop, HARDY, Porvya, ,,Inequalities“. The possible discontinuity may occur
in the point 7 = 0 only.
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non-negative and non-increasing (see [1]), so that there exist limits 0 << R
= Ry, = 1.

<
0 ==

Let us introduce mutually independent stationary processes 9, v, z; = z
such that

Dylzag(R0+_Rw)7 “w<t<w;
Dv, = o*(1 — R,,) ,
: .,( 0+) (10)
Dz = ¢’R,, ,
Cov {yh yt+r} = 02(R1 - Roo) >
COV {vh vt+1} =0 ’ T 4: 0 H
and put 2} =y, + v, +2, — 0 < ¢ < 0. Process x| is obviously stationary

and has the variance ¢ and correlation function R,. Furthermore, owing to
the independence of y,, v; and z, = z, the relation
D{x(t)—{—A — Pred x(t)+A} = D{y, 4, — Pred y, 4} +
+ D{v,, , — Pred v, _,} + D{z — Predz} - (12)

holds. The component y; ‘possesses the correlation function II:Li}—;—g which
04+ T Hloeo

is clearly continuous and tends to 0 when 7 — 0. Applying the first part of our
proof, we may therefore write

D{yt-l—A — Pred ?/l+A} 2 0’2(R0+ — Rm) (1 — __‘WT_..*_) = 0’2(R0+ — Rw) .

Further, as the component v, is a stationary process with uncorrelated compo-
nent random variables, v,, 4 is uncorrelated with every prediction of the form
(3), and accordingly

D{v, .4 — Pred v,, 4} = D{v, 4} = o*(1 — R,,) . (14)
Now, inserting (13), (14) and D{z — Pred z} = 0 in (12), we can see that the
inequality (4) is proved for all convex correlation functions.

Remark 1. The result applies obviously also to processes with discontinuous
parameter { = ..., —1,0,1,....

Remark 2. The lower bound established in (4) is exact. Indeed, if we take
the convex correlation function

l—7z, <1,
0, =1,

r(r) = {
and 4 < 1, then we obtain for
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_ SIS0 PR B W o o B =t
Pred 214140 = u +iﬁ’)xt4|:n+l 1 P w1 ;::Ox“r'd%nq‘—l

. . . L2 A .
the residual variance D{x;+ 4 — Pred x4 4} = o® ZL—{-— A1 ———, which
n -+ 1 + 2

tends to 024 = 6*(1 — r4) as n — 00; for 4 > 1 the right side of (4) is exactly
atained when we put Pred x;, 4 = /.
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Peswome

IMPOTHO3 CTAIMOHAPHOTO TTPOITECCA C BBIITVKJIONI
KOPPEJIALINONTION OYHKINEN

APOCJIAB I'AEK, (Jaroslav Héjek), ITpara

(ITocrynuao B pegakmuio 1/VI 1957 r.)

Teopema. [lycmu dan cmayuonapmulic cayuaiinsii npoyecc {,, — 00 << t < c0};
0003HaYUM €20 cpedHee 3HaMenUe Hepe3 w, OUCNepPCculo Yepe3 6% U KopPeaauuoriyio
Pynryuro wepes R,; co3bmem NPOU3COALHUIIL AUHELHLIL NPOHO3 COCIMOSHUS
npoyecca ¢ momenme t + 4, )

Preda,, s =p + D cfx, —p), h<.. <t +t<t+4, n=1. (3)
-1

Ecau koppeasyuonnas gynkyus R, euinyraa, mo umeem mecmo
Diz, g — Pred a4 = %1 — R,) . (4)

HuwskHsist TpaBuna Aas 0CTaTOYHOM Jucnepeny, onpejeiisieMasl HepaBeHCTBOM
(4), nmms B 1 4+ R, pa3 MeHLme ocTaTodHO# aAmciepcun (2) mporuo3sa (1),
OCHOBaHHOTO TOJIBKO HA IOcJefAHeM HalOmoneHnu &, VTak, ecim KOppessiiinon-
Hasg QYHKIMA BBIIYKJA, TO NPH 00Pa30BaHWM JMHEHHOTO IIPOTHO3a MOIKHO
OTpPaHNIUTHCS NI NOCTACTHIM HAOTIOICHIEeM, TaK KaK UCI0Ib30BaHme 106010
qpeia larbHeHmuX npeABYNIX Ha0II0 e il He MOKeT IPUBECTH K CYHICCTBeH-
HOMY YJIy4IIeHUIO TOUHOCTH.
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