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NOTES ON STOCHASTIC APPROXIMATION METHODS

VACLAV DUPAC, Praha

(Received March 11, 1957)

In section 1 and 2, asymptotic properties of the Robbins-Monro and
the Kiefer-Wolfowitz stochastic approximation methods are studied
under the assumption, that the solution lies in an a priori known finite
interval. In section 3, a stochastic approximation method is considered
for solving systems of linear equations with a symmetric matrix of
coefficients.

0. Introduction and summary

Stochastic approximation methods deal with the following problems:

M (x) is the (unknown) regression function of a family of random variables
{Y.}; we have to solve the equation M(x) = ~, or we have to find the value
of x for which M(x) achieves its maximum, by means of an iterative process,
using observations of } on various levels of 2. The former problem has been
solved by RosBins and Moxro [1], the latter by Kierer and WorLrowrrz [2];
both problems — so as the methods of solution — have multidimensional ana-
loga (Brum, [3]). The theoretical investigations of these methods go in two
directions:

1° they are conditions studied, under which the approximations x, converge
to the solution ® with probability one;

2° the asymptotic order of second moments E[(x, — ©)?], or the asymptotic
distribution of z, are studied, and conclusions are drawn about the optimal
choice of some eligible constants occurring in the approximation scheme.

In the second direction, the CHUNG’S paper [4], concerning Robbins-Monro
procedure, is the most advanced. Chung’s methods were adapted by DERMAN
[5] and — independently — by the author [6] to derive asymptotic properties of
Kiefer-Wolfowitz procedure.

The present paper contains two contributions to the investigations sub 2°.
First it is shown, that the conditions under which the approximation procedare
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Thas satisfactory asymptotic properties, can be considerably weakened, if the
approximations x, are all restricted to a finite interval known as containing
the solution @. This is done in Section 1 for the Robbins-Monro procedure, and
in Section 2 for the Kiefer-Wolfowitz method. Secondly, a multidimensional
modification of the Robbins-Monro procedure is considered in a special case
of linear regression with a symmetrical matrix. The upper bounds for the
quantities K[|z, — O||?] are given (Section 3).

In the following, K,, K,, ..., K, are positive constants numbered in order
of appearance. As [f(x)]Z will be denoted the function

A, if fle) < A4,
g(x) =1 f(x), if A < fx) < B,

B, if f(x) > B.
A lemma, due to Chung (Lemma 1 in [4]), will be used repeatedly:
Let {b,}, n = 1, be a sequence of real numbers such that for n =

Cc C
bn%l g (1 - %) bn + —

not1’

ng -

where ¢ > p > 0, ¢, > 0. Then

1. The Robbins-Monro stochastic approximation method

Let to each value x from a finite interval (A, B) correspond a distribution

©

function H(y | x), let M(x) = [y dH(y | ®) be a Borel measurable function

bounded in (A, B). Suppose that the equation M(z) = x has a unique root

x = 0 in (4, B), and that the inequality (M (x) — )@ — @) > 0 holds for all
x+ 6, xelA, B).

Let a be a positive constant. Take a, ¢ {4, B) arbitrarily and for n = 1 set
recursively

B
a
anrl = [‘xn v:“ —;L_ (X - yn)]d > (])

where 3, is a random variable whose distribution function, for given a,,
:’/], e yn’ lS H(?/ [ xn)'
We shall add the following assumptions:

ey Xy

Assumption (I;): There exists a constant ¢2, such that

o

[y — M@)PdH(y |z) = ¢ forall ze(A,B).

-
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Assumption (I1,): For every 6 > 0 we have

inf M) ] = Ky(8) > 0.
[&— 0] > 0, xe(A,B)

Assumption (I11,): We have M'(O) > 0.

We derive a simple consequence of the assumptions. For a given », 0 << 5 <<
<< 1, let d4(n) be the supremum of all d, such that

v, — O] < 6= |Mx,) —a] =nM(0O).

The existence of such 0’s follows from (ITL,). From (I1,) it follows that

M (@) — | = Ko(oon) = 00 1001 for 1w, — 0] = sy,

B4
since |¢, — @] < B — A, by the definition of x,. Now set
o(n) = Min (n M'(O®), Hyo(90()) and K; = sup o(n) .
B— A4 0=
Evidently,
[M(x,) — x| = K|z, — O holds forall n = 1,2, ... . (2)

Similarly, from (III,) and from the boundedness of M (z) in (A, B) it follows

that
[M(x,) — ~| = Kylx, — O] for all n =1,2,.... (3)
We shall denote the second moment E[(x, — ©)?] as b,,.

Theorem I. Suppose that the assumptions (1,), (IL,) and (11L,) are satisfied,

b, = O (—l) .
n

Yemark. The choice of ¢ depends on the unknown constant K,. We can

1
d that a > -—.—- . Then
and that a > SK,

’

avoid this fact by replacing the factor :— in (1) through —(;L— log n, where now a’

is an arbitrary positive constant. Then — under the same assumptions —

b, = o0 (7111—5) for every & > 0, as could be easily shown.
Proof of the Theorem 1: From (1) it follows
m_@wmm_@+%u=W<A—@,
mﬂ_w:]m~@wmm*@+%o—w>8—@,

(, — O + — (1, — ) — ~ (x, — O)(y, — ~) otherwise.

nz o n

l a2 2a
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_If we square the inequa.ities z, — O +- % (x —y,)<A—06,or >B— 6

wespectively, and note tl:wt 4 — 6 is negative, B — @ positive, we get

a?
( n+1_()) (x “0) ;772_(.2/,7143(\5_

7 )(Z!, - W) (4)
for all three possibilities.

Writingy, — x =y, — M(x,) + M(z,) — ~, taking conditional expectations
on both sides of (4), and using (I,), we get

E((es — O] < (5, — 00 + % (o + (M(z,) — 0)3 —

— 2y — OYM(z,) — ) 5

hence by (2) and (3)

a’ 2a .
bn+l é bn “" E" (02 -+ Kgbn) - ';: ]£1bn B

by < (1 2K,a + 0(1)) X o%a? ‘

n 'ﬂz

Hence by Chung’s lemma

o?a? 1 1 1
<. 7T = i
b = 2K,a —1 " n +0 (nz T nZKl") )
In order to prove the asymptotic normality of z, we shall make further
assumptions.
Assumption (IV,): For every even integer p > 2 there exists a constant C,,

such that
[y — M(x)»dH(y |2) < C, for all ze (4, B).

Assumption (V,): The function

oz) = [ (y — M(z)? dH(y | 2)

— 00

is continuous and nonvanishing at * = 6.

Theorem 2. Suppose that the assumptions (1), (I1,), (IIL,), (IV,) and (V,) are

. Then the random variable nz(r — 0O) tends n

a2(0) a?
“M'(@)a—1°

2K,

histribution to the normal distribution with mean 0 and variance

Proof is very similar to that of an analogous theorem in [4], and will be only
sketched here, with some dlfferen( es pointed out.
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1° Under the additional assumption (IV,), the asymptotic order of the

higher absolute moments 9’ = E[|x, — O] = O(n‘;) will be deduced by
induction with respect to even r; (for odd r it follows then by Lyapunov’s ine-
quality). As a consequence we get by Chebyshev’s inequality,

[ F,x)dP = On") (5)

12— Ol >0
for every Borel measurable function F bounded in (4, B) and for every § > 0,
q > 0 (i. e. for ¢ arbitrarily small and ¢ arbitrarily large).
2° We observe that

4m+%@~m¢>ﬂgpﬁf—@>b3‘74P€m~mm>3§ﬂg

&

(2 N —
g o ﬂn fl) s E”},,,, ynlq] — 0(7’2‘”"),

(B —0\* ' [B— O\t

2 2
and, similarly, P(xn -+ % (x — y,) < A) = 0(n=%), ¢ > 0 arbitrary. Therefore
a
Bl — 01 = Bl @ — 0 [y 15 (=) e, B | 4 00 =

Zy, +% ({\ - yn) € <A> B>] _F O(n——q) =

— E[(x — 0+ (v — @/))

— F[(x ) +% (x — y))] + O(n-7), for arbitrary ¢ > 0.
Denoting b” = E[(x, — 0)"], we get

b&:w+éfwm%mm—@Mm—WHﬁww

Evaluating expectations on the right sidé, we can by (5) reduce the integration
to the interval |z, — 0| < 6, where by"means of (II1,) and (V,) more precise
estimates are available; this enables us to prove (inductively) that

0 for r =25 — 1,
lim n2bo — 52(0) a2
e (ZM’(@} a — 1
which implies the statement of the theorem.

s
) (2s — L)l for » = 2s,

2. The Kiefer-Wolfowitz stochastic approximation method

Let again {H(y |x)} be a family of distribution functions and M(z) =
= [y dH(y | x) the corresponding regression function. Suppose that M(x)

achieves its maximum for a value x = @ from a (known) finite interval (4, B)
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and that M(x) is increasing or decreasing according to x << @ or x > @ in
a larger interval (4 — ¢/, B + ¢/).
@ c
Let @ >0, 0<c¢=¢, 0<y <} be constants; denote O P C,.
Take x, € (4, B) arbitrarily and for n = 1 set recursively

B

Yon — Yon
xn+1 = xn + a’n C >
n A

where ¥,,, ¥s,—; are random variables, which for given , ..., Z,, ¥, ..., Ya,—2
have distribution functions H(y | x, + ¢,), H(y | «, — ¢,) respectively, and are
independent.

We shall still add the following assumptions.

Assumption (1,): There exists a constant o2, such that

[y — M@)*dH(y | x) = ¢ for all xe {4 — ¢, B +¢'>.

Assumption (I1,): There exist K, > 0, K, > 0 such that
Kz — 0| < |[M'(x)] < K,Jx — O] in some neighbourhood of & .

Assumption (I11,): There exists a K; > 0 and for every 6 > 0 a Ky(d) > 0,
such that '
|M'(x)] = K5 forall xe {4 — ¢, B+ ¢,

[M'(x)] = Kg(0) for all [x — O >0, xe{d —c, B +c).
Remark. The assumption (IL,) is certainly satisfied, if M"(0) < 0 exists.
We deduce first some consequences of the assumptions. Denote M, (x) =

1/ ~ 7 N
— ‘,'@,J,’f),_ ,j{(x.,,,, 1) for xe (A4, B,, 0 << ¢ < ¢'; we have

o

M, (x) = M'(x + 9,8) + M'(x — 95¢) with 0 < 9; < 1, 2 =1,2. (6)

Set () — — ;[(’2) for @ + 0, (0) = Ky by (IL) it holds K, < (z) < K,

in some neighbourhood of O, say for jx — @] < 0.
Suppose that ¢ << 1o. We have
M (x) = [=(x + 0e) + x(x — Dpe)|(@ — O) + [J; n(x — Dye) —
— 9wl + )] e,
hence
(@ —O) M (x) < — 2K,(x — O + Kyelx — 0| for o — 0| =< 6—¢. (7)

On the other hand, by (I11,) and (6), we have
M () = 2K, (—’;) for |x — 0] >0 —¢, (8)
M) < 4K: for all xe 4, B). (9)

L)
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Returning to the approximation scheme, we see that |z, — @] < B — 4 for
all n, and ¢, << 46 for all n > ny(d); hence

. ((5)
2K, =
[Meo(,)] > ’73‘37 &, — 6] for |z, — O >0 —¢,, n>mnd),

or, taking in account that M (x) is increasing or decreasing as x << @ or x > 6,

(xn - 0) A[cn(xn) = B __Z (xn - 0)2 for I‘Tn - 0' >0 — Cps N> ”0(5) .

Combining this with (7), we get
(v, — O) M, (v,) = — K;. (v, — OF 4+ Ky,|x, — O] for n>ny(d) (10)
(without restriction on z,).
Theorem 3 Suppose that the assumptions (1,), (IL,) and (111,) are satisfied, and

that a > ?_KR Then

Remark. These upper bounds for b, cannot be lowered in general; therefore

the choice y = 1, giving b, = O (%), is the optimal one (under the assumptions
n

made above).
In order to prove the statement in the remark, we use a family {H(y | x)} with
- (x — O) for x < O
M(@) = {—— (x — O) for z > O
leads — for every choice of y — to b, of exactly that order which is given as
vpper bound in Theorem 3. (Cf. [6]!)

Proof of Theor. 3. As in Sect. 1, it is easily seen that

and with ¢*(x) == ¢* > 0. This special case

(xn+1 _ @)2 § (xn . @)2 + az ﬁ/zn — Yon— 1/ n 2 (z _ @) Yon — Yan ,

c2 Cp,
hence
El(x,4; — 9)2 (2] = (@, — O + 26%a50,” - an Mg (¥,) + 2a,(x, — O)M , (x,) .
Taking once more expectations and using (9) and (10) we get

20%a2¢—2 4K202 2K .a 2K ,ac
o o Oty Bllw, — 61

upr S bn + 55—



By means of the inequality Efjx, — O|] < ¢, + 1 b, we obtain
871

(setting &, = 2Ky

2 1
Kot with 0 < ¢ < o (a
bn+]

)

| _ 2= o) Kua) 4KiK7 e lac?
= n n2-2vy

20t 4 of1)
The application of Chung’s lemma completes the proof.

nitey

The proofs of the following three theorems will be omitted; they are entirely
analogous to the proofs of corresponding theorems in [6].

Assumption (IV,); The bounded third derivative M”(x) exists in some neigh-
bourhood of 6.

Theorem 4. Suppose that the assumptions (1,), (I1,), (II1,) and (IV,) are satis-
fied, and that @ > -+

Yo Then

Remark. These bounds for b, cannot be lowered without adding further

restrictive assumptions; therefore the choice y = 1, giving b, = 0(
the optimal one.

1 .
z]> 18
Assumption (V,): The function M () is analytical and symmetrical about & in
some neighbourhood of 6.

7

Theorem 5. Suppose that the assumptions (1), (I1,), (I1L,) and (V,) are satis-
fied, and that a > —1 —. Then

.
b — 0 (TH?) forall 0 <y <} .
such that

Assumption (VI,): For every even integer p > 2 there exists a constant C,

[ (y — M) dH(y | x) < O, forall zed, B).
Assumiption (VIT,): The function

o*x) = [ (y — M(x) dH(y | 2)
.is continuous and nonvanishing at z = @
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Theorem 6. Suppose that the assumptions (1,), (IL,), (I1IL,), (VI,) and (VIL,)

.. 1 . .
are satisfied, and thalt a > oK. Then in each of the following three cases
=f7

1° y = § and the continuous M"(x) << 0 exists in some neighbourhood of 0,
2° y > ¢ and the assumption (IV,) is satisfied,
3° the assumption (V,) is satisfied,

the ramdom variable w7 (x, — O) tends in distribution to the normal distribution
0(0) a2
(— 20" (O)a—§ +y) e

with mean 0 and variance

3. Solving systems of linear equations by a stochastic approximation method

In this section, the (column) vectors will be denoted by z, x,, ..., 6, and by
& Eniy v O, (1 =1, ..., ) — their coordinates. The rows of a matrix 3, consi-
dered as row vectors, will be denoted by M. The Euclidean norm [z] = (> &2)}

=1

and the corresponding norm of a matrix ||| == (M?,X (M’ M))? will be used.

Let to each x ¢ £, correspond a distribution function of » variables H(y | x).
Suppose that the regression of y on z (i. e. the vector function, whose ¢-th coor-

dinate is given by the integral [y dH,(y |x), where H,(y | ) = H(+ oo, ...,

7, ..., + 00), 5 on the i-th place) is of the type Mz, where M is a matrix with
constant elements. Suppose that 3 is nonsingular, so that, for given o, the
system of linear equations Mx = ~ has a unique solution 6.

Let a be a positive constant. Define the approximation procedure by taking
x, arbitrarily, and for n = 1 setting recursively

Ty = Xy — % Yn > - » (]1)

where v, is a random vector whose distribution function, for given z,, ..., z,

Yy e U Yy e Yneyy 18 H(y | yx — a),and g, is a random vector whose distri-
. . . . k % .
bution function, for given @, ..., ., Y35 -« o, Yn—15 Y1 - - > Yn—1> 18 H(y | 2,).

Remark. The realization of this approximation scheme is the following:
Given z,, we get first y,  as a result of an observation on the level z,; then we
get y, as result of an observation on the level y, — ~, and construct z,.,
according to (11).

We malke further following two assumptions:
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Assumption (1,): There exists a constant S? such that
[lly — Mx|2dP, < 82 forall xeH,,
E,

where P, denotes the probability measure in £, induced by H(y | x).

Assumption (II;): The matrix M is symmetrical.

Set Ky == Min 73, Ky = 1 4 Max 2} = 1 - |[M|]’, where 1, are the latent
roots of the (symmetrical!) mateix M. Denote b, = L[|z, — O|]].

Theorem 7. Suppose that vhe assumptions (1,) and (IL,) are satisfied, and that
. Then

- 1
a
2K,

b, =0 (%), or, more precisely, b, < 2%{5?2%{1 . »71; + 0 (% -+ ;Llesa) .
Proof. First we observe that ‘
Bl | yns @] = My — ), (12)
B | €] = E[M(yn — ») |2, = M, M(x, — 0). (13)

Then we shall find an upper bound for E[|y,|[ | =.]:

Wall? = 2ars = 2dTmms — Ml — )] + My — ) = M M, — O)] +
+ [M; M(x, — O)]}*,
hence by (12)
Byl | yn, w] = Ellly, — Mlyn — ~|F | ym, @] +
My — M)+ | M3, — O) + 2 Zl[M Y — Ma,)] . [M; Mz, — O)];

further, by the definition of ¥, by (I,) and by (13),
Ellly|P | 2] = 8% + E[|M(yy — Ma,)|? | 2,] + [ M(x, — O)F =
= (U [Py s 4 Mt o, — O (14)
Now, by (11) and in the next row by (13),

2a

1" 11 1" ’ az ] 1
g1 —— @'52 = % — 01!2 - 77 (xn - @) Yn + ’I_'lé ‘itg/rz'P’

B0 — OF | 2,] = g, — OF — o (2, — ) Mx(w, — 6) + = iy, 2.].

(15)

Since M is nonsingular and symmetrical, the matrix M? is positive definite, so
that

(xn - 0)’ M2(xn - 0) 2 KSHxn - @HZ (16)

.with K4 equal to the smallest latent root of M2.
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Inserting (14) and (16) into (15), we obtain

2Kqa Oll2 @’ LAY Q2 4
'_n_ ilxn - 0” -+ ’;}; [(1 + ‘lJIiI ) S e

+ 1M e, — O],

ey — OF | 2,] = o, — O] —

and finally,

n n?

2K, 272
bnil § (1 —_ i!‘,ga + 0(1)) bn _|~ IfgS(l )

Applying Chung’s lemma, we get the statement of the theorem.
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Pesome

BAMETKI K CTOXACTHUECKUM ATITPOKCHMAIMOIITLIM
METOJIAM

BAILJIAB JIVITAY, (Vaclav Dupaé), IIpara
(IToctynuao r pepaxynio 11/I11, 1957 r.)

Acumnrornveckue CBOWCTBA CTOXACTHYECKOIO AMITPOKCUMATTMOHHOIO METOJA
PoG6unca-Monpo Obvimnm yeranoBmeRw UYixywom [4]; oOMeHmBass MONXOJ
Wxyna, Japman [5] n aBrop [6] BeBe/M aHATOTHIHBIC CBOICTBA AUNPOKCH-
mammorHOro Merofa Hndepa-Bonsdosuna; pesyabrarel BceX TpexX padoT BHI-
BeeHbl P! JIOBOJIBHO OTPAHNYNBAIOIINX YCIOBHUAX.

B §§ l-om m 2-om macrosimeil craThbu IOKA3aHO, YTO ITU YCJIOBUs MOMKHO
3HAYATESILHO OCJIA0HTH, ECJIHM IPCIOJIORATE, UTO WCKOMOE pPeIIeHWe JIeHnT
B HEKOTOPOM 3apaHee M3BECTHOM KOHEYHOM IIPOMEKYTKE.

B § 3-em uccaenyercss croXacTHYeCKMII aNNPOKCHMAIMOHHEBIM METON, JUIS
pemeHus cucreM JAHEHHBIX ypaBHEHUH ¢ CHMMETPHYECKOH MaTpumell Koaddu-
IIAEHTOB.
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