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Чехословацкий математический журнал, т. 8 (83) 1958, Прага 

NOTES ON STOCHASTIC APPROXIMATION METHODS 

VACLAV DUPAÖ, Praha 

(Received March 11, 1957) 

In section 1 and 2, asymptotic properties of the Robbins-Monro and 
the Kief er-Wolfowitz stochastic approximation methods are studied 
under the assumption, that the solution lies in an a priori known finite 
interval. In section 3, a stochastic approximation method is considered 
for solving systems of linear equations with a symmetric matrix of 
coefficients. 

0. Introduction and summary 

Stochastic approximation methods deal with the following p r o b l e m s : 
M(x) is the (unknown) regression function of a family of random variables 

{Yx}; we have to solve the equation M(x) = oc, or we have to find the value 
of x for which M(x) achieves its maximum, by means of an iterative process, 
using observations of Y on various levels of x. The former problem has been 
solved by BOBBINS and MONRO [1], the latter by K I E F E R and WOLFOWITZ [2j; 
both problems — so as the methods of solution — have multidimensional ana-
loga (BLUM, [3]). The theoretical investigations of these methods go in two 
directions: 

1° they are conditions studied, under which the approximations xn converge 
to the solution в with probability one; 

2° the asymptotic order of second moments E[(xn — 0)2], or the asymptotic 
distribution of xn are studied, and conclusions are drawn about the optimal 
choice of some eligible constants occurring in the approximation scheme. 

In the second direction, the CHUNG'S paper [4], concerning Bobbins-Monro 
procedure, is the most advanced. Chung's methods were adapted by DERMAN 
[5] and — independently — by the author [6] to derive asymptotic properties of 
Kief er-Wolfowitz procedure. 

The present paper contains two contributions to the investigations sub 2°. 
First it is shown, tha t the conditions under which the approximation procedure 
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Tias satisfactory asymptotic properties, can be considerably weakened, if the 
approximations xn are all restricted to a finite interval known as containing 
t h e solution 0. This is done in Section 1 for the Robbins-Monro procedure, and 
i n Section 2 for the Kiefer-Wolfowitz method. Secondly, a multidimensional 
modification of the Robbins-Monro procedure is considered in a special case 
of linear regression with a symmetrical matrix. The upper bounds for the 
quantit ies ü?[||#n — &\\2] are given (Section 3). 

In the following, K0, Kv . . . , K9 are positive constants numbered in order 
of appearance. As [f(x)]* will be denoted the function 

(A, if f(x) <A , 
g(x) - f(x), if A ^ f(x) < В , 

[ В, if f(x) > В . 
A lemma, due to Chung (Lemma 1 in [4]), will be used repeatedly: 
Let {bn}, n ^ 1, be a sequence of real numbers such that for n ^ щ . 

where с > p > 0, cx > 0. Then 

* Iiol-i С — p П% 

1. The Ilobbins-Monro stochastic approximation method 

Let to each value x from a finite interval (A, B) correspond a distribution 
oo 

function H(y | x), let M(x) = f у dH(y | x) be a Borel measurable function 
- oo 

bounded in (A, B). Suppose tha t the equation M(x) = oc has a unique root 
x = в in (A, B), and tha t the inequality (M(x) — л)(# — 0 ) > 0 holds for all 
x ф 0 , J e ( i , В}. 

Let a be a positive constant. Take xx e <(̂ 4, J5> arbitrarily and for n 5̂ : I set 
recursively 

(i) г+1 — ; HT ~ (* - Уп) 

where yn is a random variable whose distribution function, for given xly . . . , .xri, 
7/1? ...,yn9 is H(y \xn). 

We shall add the following assumptions: 
Assumption ( Ï J : There exists a constant a2, such tha t 

да 

/ (у - Ж(ж))2 d £ % I x) ^ er2 for all x e (A, B) . 
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Assumption (IIj): For every ô > 0 we have 

inf \M(x) - x| = 7v0((5) > 0 . 
\x-Q\ >ô,Xe(A,B) 

Assumption (III1): We have M'(0) > 0. 

We derive a simple consequence of the assumptions. For a given rj, 0 < n < 
< 1, let ô0(rj) be the supremum of all ô, such that 

\xn - 0[ ^ à => |ЛГ(жп) - л | ^ ч Ж' (0) . 

The existence of such <5's follows from ( I H J . From (II,) it follows that 

\M(xn) - «| ^ tf0(a0fo)) ^ § ^ J ) I«, - 6>| for \x„ - (9| > < Ш , 

since |x„ — 0\ i^L В — A, by the definition of xn. Now set 

Q{TJ) = Min /r/ J f ' (0) , ^ ( M £ ) \ and Z j = sup p(/?) . 
\ В — A j o</?<i 

Evidently, 
[ЛГ(жя) — л | ;> Zx|a;n — 0 | holds for all n = 1, 2, . . . . (2) 

Similarly, from (III r) and from the boundedness of M(x) in <\4, ii> it follows 
tha t 

\M(xn) - oc\ g Z2 |xw - ©| for all я = 1, 2, . . . . (3) 

WTe shall denote the second moment E[(xn — 0)2] as 6n. 

Theorem I. Suppose that the assumptions (I t), (IIJ а?гй ( I I I J are satisfied, 

and that a > - -= - . TAew 
-5 A i 

è« = ° f i 
иг 

R e m a r k . The choice of a depends on the unknown constant Кг. We can 

avoid this fact by replacing the factor — in (1) through — log n, where now a' 

is an arbitrary positive constant. Then — under the same assumptions — 

°n = ° ( 1_g[ for every s > 0, as could be easily shown. 
P r o o f of the Theorem 1: From (1) it follows 

(A - 0) 2 for xn - 0 +• - (ос -уп) <А~~в, 

(xn+l - &f = (B - 0)2 for sn - 0 + Ü (> - Уя) > Б - 0 , 
тг 

о 2 Оху 

(#л - 0)2 + — {уп — л)2 (жп - 0)(г/п — (х) otherwise. 
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a 
H f we square the inequalities xn — 0 -f- —- (# — 2/w) < -4 — &, or > JB — 0 

n 
irrespectively, and note tha t A — 0 is negative, В — 0 positive, we get 

fo« - ©)* =S (*. - Of +i(y«~ <*)a - ^ (*« - <9)(2/,.. - «) (4) 

if or all three possibilities. 
W r i t i n g s — л = yn — M{xn) + M(xn) — a, taking conditional expectations 

o n both sides of (4), and using ( I J , we get 

я [(*.+i - @)*Ы £ (*„ - #)2 + ^ {*2 + W * . ) - .*)•) -
9/7 

- — ( * „ - &)(M(xn) - «) ; 

hence by (2) and (3) 
a2 2tf 

K+1 ^ bn + ™2 (a* + Zîbn) - - f # A , 

l. е., 
/ 2 Ä > + o( l ) \ , a8«2 

ôn+1 S> ^1 - — J bn + — 

Hence by Chung's lemma 

b < 
ла — 1 ' n ^ [n2^ n2K>aJ 

In order to prove the asymptotic normality of xn we shall make further 
assumptions. 

Assumption (IVj): For every even integer p > 2 there exists a constant Cf^ 
such tha t 

00 

/ (y - J f (я))* d # ( y I ж) ^ (7„ for all ж € 6 4 , J5> . 
- CO 

Assumption (V±): The function 
oo 

a2(x) = f (y - Ж(ж))2 cLE% J ж) 
- 00 

is continuous and nonvanishing at x = 0 . 

Theorem 2. Suppose that the assumptions ( I J , (II t) , ( H I J , ( IVJ awrf (Vx) are 

satisfied, and that a > ~-=r-. Then the random variable пцхп — 0) tends in 

a2(0) a2 

distribution to the normal distribution with mean 0 and variance ^-чтттттг—-—; • 
"M (в) а — 1 

P r o o f is very similar to tha t of an analogous theorem in [4], and will be only 
sketched here, with some differences pointed out. 
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1° Under the additional assumption (IVJ, the asymptotic order of the 
r 

higher absolute moments ß^p — E[\xn — 0\r] = 0(n 2) will be deduced by 
induction with respect to even r; (for oddr it follows then by Lyapunov's ine­
quality). As a consequence we get by Chebyshev's inequality, 

/ Fn(x) dP = 0(n~") (5) 
\xn-&\>ô 

for every Borel measurable function F bounded in (A, B} and for every ô > 0, 

g > 0 (i. e. for ô arbitrarily small and q arbitrarily large). 

2° We observe tha t 

1 \Xn 

( * = * ) " ' ( ^ 

and, similarly, P\xn -\ (a — yn) < A\ = 0(n~1'), q > 0 arbitrary. Therefore 

(«»« - ®Y \ *n + °z (* - У.) « <̂ > #>] + 0(n-o) = 

= Я [ L - в + \ (« - y,,))" xn + £ (« - y„) « <4, 5>J + 0(n~«) = 

= i7 J lxn — в + - (л — yn)\ + 0(и-«) , for arbitrary g > 0 . 

Denoting b(
n
r) = E[(xn — в)г], we get 

%i = Ky + i ( - 1 ) ' (Я 5 * « - 0) r~' (y- - «я + °(№_3) • 
t—l \v l lb 

Evaluating expectations on the right side, we can by (5) reduce the integration 
to the interval \xn — &\ fg ô, where by imeans of ( I I I J and (VJ more precise 
estimates are available; this enables us to prove (inductively) that 

( 0 for r = 2e — 1 , 
lim w«b^ = I / CJ2(<9) a2 

n—>oo (25 — 1)!! for r = 2s 
[ \2ilf '(©) a - 1 

which implies the statement of the theorem. 

2. The Kiefer-Wolfowitz stochastic approximation method 

Let again {H(y \ x)} be a family of distribution functions and M{x) = 
00 

= f у dH(y | #) the corresponding regression function. Suppose tha t Ж(х) 
— oo 

achieves its maximum for a value x = 0 from a (known) finite interval (A, B) 
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and tha t M(x) is increasing or decreasing according to x < & or x > & in 
a larger interval (A — с', В + О « 

Let a > 0, 0 < с < с', 0 < у < A be constants; denote — = an, — = е.. 

Take a;x 6 <^4, JB) arbitrarily and for тг ^ 1 set recursively 

[ Vin î/2n-l I 

where y2n, y2n-i
 a r e random variables, which for given xl9 ..., xn, уг, . . . , y2n-2 

have distribution functions H(y \ xn + cn), #(?/ | xn — cw) respectively, and are 
independent. 

We shall still add the following assumptions. 
Assumption (I2): There exists a constant cr2. such tha t 

00 

/ (y - Ж(х))2 <Ш(2/ I ж) ^ ex2 for all x[€ (A — с', В + c'> . 
- со 

Assumption (II2): There exist K3 > 0, iv4 > 0 such tha t 

Къ\х ~ &\ ^ \ M ' { x ) \ fg i £ 4 b — 0\ in some neighbourhood of в . 

Assumption (III2): There exists а К5 > 0 and for every à > 0 a 7v6(r5) > 0, 
such tha t 

|ЛГ(ж)| ^ l i 5 for all я * {A — c\ В + c'> , 
[Ж'(ж)| ^ #e(<5) fo r a11 И - ©[ > (5, же <J. - c', i? + c'> . 

R e m a r k . The assumption (II2) is certainly satisfied, if M"{&) < 0 exists. 
We deduce first some consequences of the assumptions. Denote Me(x) — 
M(x + e) - M(x ~~ в) £ . , Ö4 . ^ , , 

= —• '— for x e (A, B), 0 < £ < с ; we have 

Me(x) = Ж'(ж + #xe) + Ж'(ж - 0ae) with 0 < dt < 1, i = 1, 2 . (6) 

Set « (ж) = - ^ ^ for ж Ф 0 , »(в) = Z 3 ; by (II2) it holds i i 3 <I «(ж) <£ iT4 

in some neighbourhood of 0 , say for \x ~~ 0 | fg (3. 
Suppose tha t в < ^ô. We have 

Же(ж) == [x(x f # l £ ) + «(ж - {)2e)](x — 0) + [#2 «(« ~ #2*0 — 
— д1к(х +#1е)]е, 

hence 

(ж - 0 ) Ж » fg - 2K3(x - 0) 2 + # 4 ф - в\ for jx - 0 | < Ô - в . (7) 

On the other hand, by (III2) and (6), we have 

\Me(x)\ ^ 2Ke lj\ for \x - <9| > Ö - в , (8) 

Жв
2(а;) ^ 4if2 for all xe(A, B) . (9) 
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Returning to the approximation scheme, we see that \xn — &\ < В — A for 
all n, and cn < \d for all n > n0(ô); hence 

(I) 
SAL \xn - ©I 

2K6 

\Mcn(xn)\ > \°' \xn - S\ for |arn _ 6>> ><5 - cn , n > n0(ô) , 
В — A 

or, taking in account that M(x) is increasing or decreasing as x < в or x > в, 

ô) 
2КГс 

(xn — 0) ЖС№(хп) £ - - д J ^ (яя — Of for |жп — в\ > ô ~ crt , n > п0(в) 

Combining this with (7), we get 

fo - 0 ) Жвж(агя) ^ - K 7 . (xn - 6>)2 + K,cn\xn - 0\ for n > я0(й) (10) 

(without restriction on xn). 

Theorem 3. Suppose that the assumptions (T?), (II2) and (III2) ewe satisfied, and 

that a > —-=r-. TAew 2Л7 

for у ^ £ , 

R e m a r k . These upper bounds for bn cannot be lowered in general; therefore 

the choice у — £, giving bn = О I—т), is the optimal one (under the assumptions 

made above). 
In order to prove the statement in the remark, we use a family {H(y \ x)} with 

Mix) =\ , , ^L о == ^ and with a2(x) == a2 > 0. This special case 
[— t\x ~ ®) * o r x > & 

leads — for every choice of у — to bn of exactly that order which is given as 
upper bound in Theorem 3. (Cf. [6]!) 

P r o o f of Theor. 3. As in Sect. 1, it is easily seen tha t 

(*«+i - Of ^ (xn - Of + а* {У2п " 7 2 * - l ) 2 J- 2an(xn - в) У*п = ^ , 

hence 

№ » + i ~ 6>)2 ! s„] ^ (жя - Of + 2o*a2
ncn

2 + al M2
Cn(xn) + 2an(xn - 6)MCn(xn) . 

Taking once more expectations and using (9) and (10) we get 

i ^ h . 2 ^ 2 c ~ 2 , 4 ^ 2 ^K7a _ , 2if4ac _ r | 
*.+ 1 ^ Ья + ^ ^ + - J J - 6W + — l y . ^ [ K - 0 ! ] . 
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By means of the inequality E[\xn — 0\] <g sn + — bn we obtain 

(setting en = - ^ with 0 < s < Ца - ^ ) ) 

/ (2 - e)K7a\ 2a2a2c~2 + o(l) 4JK\K^1s-1ac2' 
ьм g î - _ - j ьп + — -—r— + ^ ^ . 

The application of Chung's lemma completes the proof. 
The proofs of the following three theorems will be omitted; they are entirely 

analogous to the proofs of corresponding theorems in [6]. 

Assumption (IV2); The bounded third derivative M'"(x) exists in some neigh­
bourhood of 0. 

Theorem 4. Suppose that the assumptions (I2), (II2), (П12) and (IV2) are satis­
fied, and that a, > ——- . Then 

-iK7 

b„ = 
— ) O b * f°rr^ 

•l-̂ -J 
R e m a r k . These bounds for bn cannot be lowered without adding further 

restrictive assumptions; therefore the choice у = | , giving Ъп = О I —^-1, is 

the optimal one. 
Assumption (V2): The function Ж (ж) is analytical and symmetrical about 0 in 

some neighbourhood of 0. 
Theorem 5. Suppose that the assumptions (I2), (II2), (III2) and (V2) are safe-

/iedf, emä1 £Ла£ а > —r=- • УАетг 

6» = ° l^y) f°r ай 0 < у < i . 

Assumption (VI2): For every even integer p > 2 there exists a constant C^ 
such tha t 

00 

/ (y - i f (я))* (Lff(j/ | ж) ^ C„ for all ж € Ç4, Б> . 
— CO 

Assumption (VII2): The function 
CO 

a2(x) = / (y — if(x))2 d # ( y I ж) 
— CO 

is continuous and nonvanishing at x = 0. 
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Theorem 6. Suppose that the assumptions (I2), (TL), (III2), (VI2) and (VII2) 

are satisfied, and that a > — Tr • Then in each of the following three cases 

1° y =§; ,4 ßwd the continuous M"(x) < 0 exists in some neighbourhood of 0, 

2° у > б я^й £/ге assumption (IV2) is satisfied, 
3° Йе assumption (V2) is satisfied, 

the random variable n2~v(xn — 0) Semite ш distribution to the normal distribution 
a2(0) a2 

with mean О «??rf variance 23Г{0) а 

3. Solving systems of linear equations by a stochastic approximation method 

In this section, the (column) vectors will be denoted by x, xn, . . . , 0, and by 
£i9 £ni, . . . , &i (i = 1, . . . , r) — their coordinates. The rows of a matrix M, consi-

r 

dered as row vectors, will be denoted by Mt. The Euclidean norm ||a?|| = ( У ff)t 
i = i 

and the corresponding norm of a matrix j|ilf|| = (Max Xt(M'M))^ will be used. 
i 

Let to each x e Er correspond a distribution function of r variables II (у \ x). 
Suppose tha t the regression of у on x (i. e. the vector function, whose г-th coor-

00 

dinate is given by the integral f r\ dH^rj | x), where H^rj \ x) — H(-\- oo, . . . , 
- 00 

rj, . . . , + oo), rj on the г-th place) is of the type Mx, where Ж is a matrix with 
constant elements. Suppose tha t M is nonsingular, so that , for given a, the 
system of linear equations Mx = a has a unique solution 0. 

Let a be a positive constant. Define the approximation procedure by taking 
x± arbitrarily, and for n ^ 1 setting recursively 

where ?/n is a random vector whose distribution function, for given xl9 . . . , xn 

У*> • • •? У*> Ун • • -3 2/n-u i s -Щ^ 12/n — л )J a n ( i 2/n is a random vector whose distri­
bution function, for given xx, . . . , xn, y*, . . . , y*^l9 yx, . . . , yn-x, is Я(г/ | xn). 

R e m a r k . The realization of this approximation scheme is the following: 
Given xn, we get first y* as a result of an observation on the level xn; then we 
get yn as result of an observation on the level y* — a, and construct xn+1 

according to (11). 

We make further following two assumptions: 
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Assumption (I3): There exists a constant S2 such that 
f\\y - Mxf dPx ^ S2 for all xeEr, . 

Er 

where Px denotes the probability measure in Er induced by H(y \ x). 
Assumption (II3): The matrix Ж is symmetrical. 
Set K8 = Min 1% K9 = 1 + Max A J = 1 + ||Ж||2, where %i are the latent 

г г 
roots of the (symmetrical!) matrix Ж. Denote 6W — ü?[||#№ — $||2]-

Theorem 7. Suppose that ihe assumptions (I3) <mrf (II3) are satisfied, and that 
a > —•=-. Тйетг, 

bn = (J I— , or, more precisely, bn < - ^ -— . h ^ h i — m F ^ I • 
\?i/ ' ^ i" n — 2K8a — 1 w \n2 ' и2*»*/ 

Proof. First we observe that 
% И ^ ^ = ^ п " ^ ) 5 (12) 

•»fo** 1 » J = #[Ж,(*/П* - a) | *я] - Ж, l/(x ï ï - 0) . (13) 

Then we shall find an upper bound for ^[Ц^Ц2 [ xn]: 

Ы\2 = â " , = lilrjni ~ Mt(if* ~ a)] + [Mt(y; - cc) - Ж, M(xn - &)] + 

+ [Ж, Ж(*„ - в)]}2, 
hence by (12) 

Щ\Уп\\2 | yt «.] = Щ\Уп - ЩУ1 - «)||2 I yt, *n\ + 

+ \\M(y* - Жх„)||« + ||Ж«(хи - 0)11« + 2 2 [ЩУ; - ü b j ] . [Ж, Ж(*„ - ©)] ; 

further, by the definition of ?/*, by (I3) and by (13), 

я[|Ы|« i « j ^ я« + ^[||ж(У; - Mxn)f | * j + \\м*(хп - 0)||« ̂  
^ (1 + ЦЖЦ2) Ä2 + ||Ж|14 \\хп - 0||2 . (14) 

Now, by (11) and in the next row by (13), 
2a a2 

II*»« - 0P = IK - 0|l2 - — (*» - 0)' ?/„ + - j l!?/„il2, 

Я[||*и+1 - 0Ü2 | xn] = ||x.„ - 0||« - ^ (*„ - 0) ' Ж2(жя - 0) + 2 ^ Ы 2 1 x«] • 
n n 

(15) 
Since Ж is nonsingular and symmetrical, the matrix M2 is positive definite, so 
that 

(xn - &У M2(xn - 0) ^ JSTelK - ©II2 (16) 
.with Ks equal to the smallest latent root of Ж2. 
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Inserting (14) and (16) into (15), we obtain 
9 К a a2 

Щ\К+1 - ©У2 I xn] £ \\x„ - 9\f - ^f- \\xn - 0||> + J [(1 + \\Mf) № + 
+ ||i¥||* \\xn - 0||»] , 

and finally, 

h <L 2Ksa+o(l)\ KJ3W 

°n+1 ~\l T~ / °n + ~ ^ ~ • 
Applying Chung's lemma, we get the statement of the theorem. 
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Р е з ю м е 

ЗАМЕТКИ К СТОХАСТИЧЕСКИМ АППР0КСИМАЦИ0Ш1ЫМ 
МЕТОДАМ 

ВАЦЛАВ ДУПАЧ, (Vaclav Dupac), Прага 
(Поступило в редакцию 11/III, 1957 г.) 

Асимптотические свойства стохастического аппроксимаиионного метода 
Роббинса-Монро были установлены Ч ж у н о м [4]; обменивая подход 
Чжуна, Д э р м а н [5] и автор [6] вывели аналогичные свойства аппрокси-
мационного метода Кифера-Вольфовица; результаты всех трех работ вы­
ведены при довольно ограничивающих условиях. 

В §§ 1-ом и 2-ом настоящей статьи показано, что эти условия можно 
значительно ослабить, если предположить, что искомое решение лежит 
в некотором заранее известном конечном промежутке. 

В § 3-ем исследуется стохастический аппроксимационный метод для 
решения систем линейных уравнений с симметрической матрицей коэффи­
циентов. 

149 


		webmaster@dml.cz
	2020-07-02T17:58:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




