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YexocnoBanknii maTeMaTHIeCKHil skypHaI, T. 7 (82) 1957, Ilpara

ON THE STRUCTURE OF THE SEMIGROUP OF MEASURES
ON A FINITE SEMIGROUP

STEFAN SCHWARZ, Bratislava.
(Received August 20, 1956.)

Let M(S) be the set of all measures u defined on a finite semigroup
S with u(S) = 1. Under a suitable definition of multiplication IN(S)
becomes a semigroup. The purpose of this paper is to study the
structure of the semigroup M(S), especially the role of the right, in-
variant measures on S in it (supposing that such measures exist).

Let S be a finite semigroup. By a measure x we shall mean an additive,
non-negative set function defined on the subsets of S such that u(S) = 1.

A measure 4 is called right invariant if for every subset £ C 8 and every
zeS u(lfz) = p(E) holds. In [5] we have found necessary and sufficient
conditions for the existence of right invariant measures on a certain type of
bicompact semigroups to which also all finite semigroups belong. The know-
ledge of the results of [5] is presupposed.

The purpose of the present paper is to study the structure of the set of all
measures on a given semigroup S and first of all to find the role of the subset
of right invariant measures in it.

An analogous problem for bicompact groups has been studied in the paper
of WENDEL [7]. The present paper has also some contacts with the paper
HEwITT-ZUCKERMAN [3], where arithmetic and convergence questions of
measures on a certain type of finite commutative semigroups are studied.

In the following § denotes always a finite semigroup. As in [5] it is the
non-commutative case in which we shall be principally interested. The symbol
M(S) will denote the set of all measures on S. The elements of the set IM(S)
will be denoted by small Greek types », , 4, ...

Let S = {x,, %y, ..., 2,}. A measure » ¢ M(S) can be considered in the usual
way as a point function on § so that denoting »(z;) = ¢, we have 0 = f, =1,
> t,, = 1. Conversely, a point function f(x), where f(x,) = t,, and 0 = t;, = 1,

z;e8
2 t,, = 1, can be used to introduce a measure on S by putting p{@iy -

xieS

ey xlk}) = t"”h + e —I— tm'k'

358



Definition. Let be v, v, € M(S). By the product v, * v, we shall mean the measure
defined by the relation
vy * vy(x) = Z vy (u) vo(v) .

UV =T
The product », * v, is again a measure since we have

Dor @) = > > (u)vy(v) = > vy(u) . D v) =1.1=1.

TieS T;eS UV =1x; ues veS
It is easy to see that the multiplication need not be commutative but is always
associative, i. e. (v * v,) * »; = v, * (v, % v;). Under this multiplication (con-
volution) IM(S) becomes a semigroup.
Let 2(S) be the semigroup algebra of S, i. e. the set of all formal real linear
combinations of elements of S, z ts, - %5, With termwise addition and scalar

multiplication and with the pI‘Odl'J.Ot defined by
(zt ) - ( z ta; xy) = Z Z ta;it;:kxixk . _ (1)
Tzes apeS Z;eS XpeS
By §(S) we denote the subset of all elements e A(S) with 0 <¢, =<1 and
> ty; = 1. Under the multiplication defined in (1) the set F(S) becomes clearly

&ieS

a semigroup.
It is well known and easy to show that §(S) and IM(S) are isomorphic semi-
groups. Consider to this end the correspondence

v(x) e MS) <—t, .2, + ... + 1, .2, € F(S), (2)
where ¢, = »(x;) for ¢ =1, 2, ..., n. This'is a one-to-one correspondence be-
tween the elements ¢ M(S) and F(S). Let

’ ’ ” ”
V<>t o F T, vt X .,

Then the element e §(S) corresponding to the product », * v, is

z ’”l(u)vz(v) x1+ + Z 111(71/)?/21/) Lp = Ztuv x1+ + Z ;Zn'

wY =2, uY =, uv =, uv =2y

But the last expression is exactly the product (Zt x:)( > ty, - ). This

;€8 TpeS

proves our assertion.

Remark 1. Denote by &, (x) the measure defined as follows:
0 for x + =z, ,
8”1_(:”) “N1lforz=u,.
We have clearly &, * ,, = &,.,. Denoting by S’ the set of these measures we
have 8§ =~ §’, i. e. M(S) contains a subsemigroup S’ isomorphic to S. It follows
especially that IN(S) contains idempotents, namely, at least all measures
£4,(2), where x; is an idempotent ¢ S.

Remark 2. It is possible to introduce in IM(S) such a topology that IM(S)
becomes a Hausdorff bicompact semigroup. But in the present paper the
topological properties of IM(S) will not be necessary.
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Definition. Let be v e M(S). The symbol C( ) will_denote in all the paper the
set {x;|x, € S, v(zx;) + 0}

Lemma 1,1. (See analogously Hewitt- Luckerman [3]; Theorem 4 J7.) If
vy, vy € M(S), then C(vy) . C(vy) = Clvy x v,).

Proof. According to the definition we have », xw,(x;) = z vi(u). v4(v).

U =Xy

If vi(u) > 0, v(0) >0, i. e. uweCv), veOv,), we have », x v(uv) =
= > »y(u) vy(v) = vi(u) vy(v) > 0, therefore wuv e C(v; % vy) and C(y) .

u'v = uv

C(vy) S CO(vy % vy). )
Conversely: if for some z, € S v, % vy(x,) > 0, then the sum 3> v,(u) v,(v)

uv - Ty

contains at least one member > 0, i. e. there is a uw e S and v e S such that
wv = z; and v,(u) . v,(v) > 0. Therefore C(vy « v,) C C(»;) . C(v;). This proves
Lemma 1,1. ! :

- An element » ¢ M(S) is idempotent if » x » = ». In this case Lemma 1,1 im-
plies C(») . C(») = C(v  v) = C(v). This proves

Lemma 1,2. If v is an idempotent ¢ M(S), then C(v) is a semigroup. .

In the following we shall need often , ‘ »

Lemma 1,3. Let u be a right invariant measureon S. Then C(u) and S — C(u)

are right ideals of S. The set C’( ) is a left simple semigroup and for every x e S
we have O(u) . x = O’(,u) :

Proof. See [5], Theorem 1,1.

We give now an example on which we shall show later various propertles
of the semigroup M(S).

Example 1,1. Let S, = {x,, #,, ,, ,} be a semigroup with the following
multiplication table:
' ' kl T, Ty Ty X4

2, |z wy
Xy | Xy Ty Ty Xy
Xy | Ty By Ty T,
Ty Ty Ty Ty Xy -
To every measure v € M(S;) there corresponds an element e F(S,):
v e M(S,) <— bi@y '+ by + L5 + 14wy € F(S))

1 .
with Zti = 1. If » ¢ M(S,) is idempotent, then the corresponding element
7z 1

4 4 . 4
€ §(8,) satisfies the relation (> t,@;)(> t,) = > tx, Elementary calculations
’ -1 i1 i1 :

show that the idempotents e F(S;) are exactly all elements of the form
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t, (@, + ) + ts(x; + x,) and of the form t,x, + tyx,, where t, =0, t, =0,
t ity =4

The measure u <— t,(x, + x,) + t3(x; + x,) is right invariant for every
couple ¢, = 0, t; = 0 with ¢, 4+ t; = }. The measure v <— t,x; + ty2, is not
invariant whatever are the numbers ¢, ¢;.

CPut v e @ b my), v e 3@ xy), v < g F @), g
<~ 3@, + %y + x3 + z,). Then in M(S,) following relations hold: v, * v, =
= Y4 % Vyg = V3 % V5, = u. We shall need them later.

Theorem 2,1. Let 1 be a right invariant measure on S and v an arbitrary
element € M(S). Then y xv = u.

Proof. Since y is right invariant, we have for every couple u, ve S u(uv) =
= p(u). Therefore
per@) =3 p)ve) = 3 plun) o) = p@) 3 10).
If z; ¢ § — C(u), we have u(x;) = 0; hence u = v(z;) = 0, i. e. u % v(x;) = p(x,).
For x, e C(u) let us calculate Z v(v). According to Lemma 1,3 we have

uv = x;

C(u) . v = C(u) for every veS. This means: to every v e S there exists a unique
u e O(u) such that uv = x,. Therefore > »(v) = > »(v) = »(S) = 1. Hence

uv - T; veS

we have also u s« v(x;) = u(x,) for every z, e C(u). This proves Theorem 2,1.
Remark. Let u be right invariant on 8. A relation », x v, = p is of course

possible also with »; + u. E. g. in Example 1,1 we have v, s v3;, = u.

Corollary 2,1. Every right invariant measure on the semigroup S is an idem-
potent e M(S).

" Theorem 2,2. Every right invariant measure won the semigroup S is a minvmal
right ideal of the semigroup M(S).

Proof. This follows from the relation u x M(S) = u, which itself is a con-
sequence of Theorem 2,1.

Corollary 2,2a. Let u be a right tnvariant measure on S and v e M(S). Then
vx u 18 an idempotent e M(S).

Proof. With respect to Lemma 2,1 and Corollary 2,1 we have (v % u)? =
=vs(Uxv) s =vxud="7vsxu.

Corollary 2,2b. Let u be a right invariant measure on S. Then the left ideal
M(S) x u of M(S) contains only idempotent elements.
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3

Definition. Let T be a semigroup and e an idempotent € T. We shall say that
e 18 a primitive idempotent ¢ T if there does not exist an idempotent f + e, fe T
such that ef = fe = f.

Example. The idempotents » € M(S,) <— t,(x; + x,) + 323 + 24) € F(S,)
(t, = 0,t; =0, ¢, + t; = }) are primitive idempotents ¢ M(S,). The remaining
idempotents € IM(S,) are not primitive idempotents of M(S;).

Theorem 3,1. Every right invariant measure u on the semigroup S is a primitive
tdempotent of the semigroup M(S).

Proof. If 4 were not a primitive idempotent ¢ M(S) there would exist an
idempotent » + u such that pxv =»* pu =». But Theorem 2,1 implies
u*v = u. Hence 4 = », which is a contradiction.

The following examples!) show that the converse of Theorem 3,1 is not true.

Example 3,1. A primitive idempotent ¢ IM(S) need not be a right invariant
measure on S. Consider the semigroup S, = {,, z,, x;} with the multiplication
table

mm e
Ty | @y Ty X3
Xy | Xy Xy Ty
Xy | Ty Ty Xy

It is easy to show that IM(S,) contains exactly three idempotents. These are
the measures ¢,, ¢,, &; defined by the relation: &;(x;) = 0y (05 = 1 for ¢ = £,
8 = 0 for 4 = k). The element ¢, is the unique primitive idempotent e IM (S,).
But our semigroup is commutative and not a group. Therefore (see [5], Corollary
3,1) S, has no invariant measure at all.

Example 3,2. There exist also semigroups having right invariant measures
for which not all primitive idempotents ¢ IM(S) are right invariant measures
on S. Consider the semigroup S; = {x,, &,, Z,, x,} with the multiplication table
(see [5], Example 3,2)

| Ty Ty Xy Xy
Xy Xy Ty Xy
T, Xy Ty X
T3 ’ Ty X3 X3 Xy
Ty | Ty Ty Ty Xy -

The measures » defined by the correspondence

v e M(Sy) <— 12y 4 b3 + £424 € F(S5)

1) The construction of various examples is now facilitated by means of complete lists
of all semigroups of order 2, 3, 4 published in [4] and [2].
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with ¢, + ¢, + ¢, =1 (t; = 0) are exactly all idempotents ¢ IM(S;). Each of
them is a primitive idempotent ¢ IM(S,). But right invariant measures on S, are
only the measures defined by the correspondence

w € M(S;3) <> tsxy + Ly, € F(S5)
where t; +t, = 1 (t; = 0). [This last statement follows immediately from
the fact that the decomposition S = R + (S — R), R = {a,, a,} is the maximal
right u-decomposition of § in the sense of Theorem 3,3 of [5].]

Theorem 3,2. Suppose that S has at least one right invariant measure. Let
7 be a primitive idempotent ¢ M(S) and v € M(S). Then x * v = =.

Proof. a) Let pu be a right invariant measure on . We show first that
Tk Q= T

Denote v = 7 * p. According to Corollary 2,2 a 7 is an idempotent e ().
We have further

T* M=% U* T =7T% [l =T,
M*xT =% Wkl = T* U =71,
hence 7 * # = 7 * T = 7. With respect to the primitivity of = we have there-
fore t =m, 1. e. wx u = .
b) Let now be v arbitrary, » ¢ M(S). Then
arxy = (mrpu)xv=xx(uxv)=n*pu=m,
which proves Theorem 3,2.

Remark. The supposition that § has at least one right invariant mea-
sure is essential in Theorem 3,2 (and in this following theorems). We show
this on

Example 3,3. Let S, = {x,, z,, 3} be the semigroup with the multi-
plication table

l Ty Xy Ty
, i T T, x;
Xy | 7y Ty T,
Ty | Ty Ty Ty

This semigroup has no right (or left) invariant measure. Elementary cal-
culations show that all idempotents e M(S,) are a) » € M(S,) <~—> 12, + t,2, €
€F(S,), t,=0,¢6, =0, 8 + £, =1, b) g5¢ M(S,) ~— 25 € F(S,). Bach of the
measures ¥ is a primitive idempotent ¢ IM(S,). Choose = <«—> i(xy + z,),
v<—> ;. Then s+ v <— }(x; + 2,) 2, = 2, € F(S,). Hence zxv =» + x.

Theorem 3,3. Suppose that S has at least one right invariant measure. Then
every primitive idempotent w € M(S) is a minimal right ideal C M(S).

Proof. The statement follows from the relation = * M(S) = =, which is
itself a consequence of Theorem 3,2.
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Theorem 3,4. Suppose that S has at least one m'ghf wvariant measure. Then
M(S) contains one and. only one minimal left ideal £. £ -is exactly the set of all
primitive idempotents ¢ M(S). ¢ is at the same time  the minimal two-sided ideal
of M(S). |

Proof. a) Let [ be an arbitrary left 1dea,l of M(S), v el and & a primitive
idempotent ¢ M(S). Then we have

n—n*ven*[C(

i.e. mis contamed in {. Thus the intersection of all left 1deals € M(S) is non-
vacuous and it contains the set of all primitive idempotents ¢ IM(S). There
exists therefore a unique minimal left ideal ¢ containing all primitive idem-
potents € M(S).

b) It is known (see e. g. [1], Theorem 2,1) that a semigroup containing at
least one minimal left ideal has a kernel, i. e. a minimal two-sided ideal N and
the kernel is the class sum of all minimal left ideals. Therefore in our case
¢ = M, i. e. Lis the minimal two-sided ideal of IM(S).

The semigroup ¢ is a left simple semigroup having at least one idempotent.
Hence £ is the sum of disjoint isomorphic groups. The group-components of
¢ are the sets z, * £, where z, runs through all idempotents € £ (See e. g. [6],
Theorem 3,3). According to Theorem 3,3 for a primitive idempotent =, the
relation =z, * £ = n, holds. Therefore all group-components of £ are one
point sets and every element ¢ £ is an idempotent.

To prove that every 7, is a primitive idempotent it is sufficient to show that
% v = v+ w, = », where » is an idempotent ¢ M(S), implies 7z, = ». The
relation v = 7, xve Lxp C ¢ 1mphes first that » e £. But since ¢ is a left
simple semigroup we have in ¢ z, * v = x,, hence » = z,. Theorem 3,4 is
completely proved.

Corollary 3,4. Suppose that S has at least one right invariant measure. Let 7t be
a primitive idempotent ¢ M(S) and v € M(S). Then v « 7 is a primitive idempotent
e M(S).

Proof. We have M(S) * = C M(S) * & = L. Since M(S) * = is a left ideal of
M(S) and ¢ is minimal we have M(S) * 7 = L. Therefore every element of the
form » * 7 is a primitive idempotent. :

Remark 1. If a semigroup contains also'a minimal right ideal, then the
kernel is also the sum of all minimal right ideals. Every element » ¢ IM(S)
satistying » « M(S) = v is clearly a minimal right ideal of IM(S). Therefore
the primitive idempotents € M(S) in Theorem 3,4 are exactly all elements
€ M(S) satisfying v+ M(S) = ».

Remark 2. In'analogy to Theorem 4.2 of [5] it Would be natural to expect
that those and only those of the idempotents € IMM(S) which are contained in

— [M(S) — &] = M(S) are primitive. This is not true. We show it on the semi-
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group S; [Example 1,1].. Here »;; is a non-primitive idempotent, therefore
v13 € M(S;) — £ Choose further vy e M(S;). Then »,3* v;, = p. But this is
a right invariant measure on §;, hence all right invariant measures need not
be contained in the set £ — [M(S;) — £ * M(S,) .

Remark 3. Theorems 3,2, 3,4 and Remark 1 show that (under the above
suppositions) the set ¥ is exactly the set of left zeros of the semigroup IM(S).
(A left zero of a semigroup 7 is an element n € T satisfying the relation nx = n
for all x € T'.) Theorem 3,4 is therefore a special case of the following general
statement: Let P be the set of all left zeros of the semigroup 7'. If P + 0, then
P is the minimal two-sided ideal of T'. At the same time P is a left simple
semigroup containing only idempotent elements.

Theorem 3,5. Suppose that S has at least one right invariant measure. Let
N be the minimal two-sided ideal of S and 7 an arbitrary pmmmve idempotent
€ M(S). Then

i) for all x € S we have C(z) . x = C(n);

ii) C(x) is a left simple semigroup, which is a sum of maximal subgroups of
the semigroup S,

iii) C(z) C N.

Proof. i) For every y ¢ M(S) we have x « v = z, hence C(x) . O(») = C(n).
Let z be an arbitrary element, x ¢ S. Choose v = ¢, (the point mass at z).
Then C(v) = {z}. Therefore C(n) .z = O(n). ‘

ii) The assertion i) implies especially that C(x) is a right ideal of S and at
the same time a left simple semigroup. Hence C(x) is a sum of disjoint iso-
morphic groups. But since C(x) is a right ideal of S, C(n) contains with every
element of a subgroup of S also all elements of the maximal subgroup €S
containing this element.

iii) In the relation C(n) x = C(x) choose espeCIally x e N. Then we have
C(n) = C(n) x € O(xw) N C N. Theorem 3,5 is completely proved.

4
The question arises what is the distinction between the primitive idempotents
that are right invariant measures and the remaining primitive idempotents.

In general, i. e. for an arbitrary primitive idempotent sz, the set S — C(x)
is not a right ideal of S. But, if x is at the same time a right invariant measure,
we proved in [5] (Theorem 1,1 and Corollary 1,4) that 8 — C(x) is. a right
ideal of S. In this section we shall show — among other results — that this
condition is also sufficient. ’ ‘

Lemma 4,1. Let y¢ be an idempotent ¢ M(S). Let C(u) - Z 8x be a left simple
semigroup. Then for every o (v =1,2,....m) and all x,yegq, ulx) = puy).
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Proof. Let , be such an element e g, in which u assumes: the greatest
value. Then (since x is idempotent) we have

1(@,) = p* plx,) = Zx p(w) u(v) . (*)

Since u[S — C(n)] = 0, it is sufficient to consider in (x) only summands
corresponding to those solutions of uv = x, for which u ¢ C(1) and v e O(u).
The equation uv = z, has for a fixed v e C(u) a unique solution u, e C'(u),
which is necessarily contained in g, (see [5], section 2). Further, if » runs
through all elements e C(u), then w, runs (eventually more times) through

all elements e g,. Since > u(v) = 1, we have
veC(p)

3 ) wl0) = @) 3 p0)s 3 o) [ — plw] = 0. (3)

velC(u) ‘UeL'(;[) veC(p)
In (3) every member p(v) is > 0 and every member u(z,) — u(u,) is = 0.
Therefore we have for every «, u(z,) — u(%,) = 0. Since u, assumes all values
€ g4, we have u(z,) = u(y) for all y € g,. This proves our Lemma.

We prove conversely:

Lemma 4,2. Let S be an arbitrary semigroup and C an arbitrary left simple
subsemigroup of S, C C 8. Let v be an element ¢ M(S) satisfying the following
conditions: a) C(v) C C, b) in all elements of a group-component of C v assumes
the same values. Then v is an tdempotent € M(S).

Proof. Write C' = 3 g,, where g, = {2;”, ..., 2{*}. (The groups g, are sub-
1

groups of § but not necessarily maximal subgroups of S.) The measure »
with the required propertieshas then the form

v e M(S) <—>zt (@ + ... + 27 e §(S), ins.tazl.
a1

Since every g, (x =1,...,m) is a minimal right ideal of C, we have
8 - Y = g, for every y e C. We have therefore in (S)

(30l ot ]y = S+ ). (4
oa=1

This implies at once that » is an idempotent ¢ IM(S) as the following calculations
show: :

[ﬁt R S ) [?tx<ﬁ>+ +x“3’]—[2t(x'“’ I
a=1

m s
3 S0 b o) S S v,
=14- o=

Theorem 4,1. Let u be an idempotent ¢ M(S). Suppose that C (/t) is a left
simple semigroup. Then u is a right mvarmnt measure on C(u)-
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m

Proof. Write again Cp) = Z 8+ Since the suppositions of Lemma 4,1 are
a=1

satisfied, x4 assumes the same values in all elements of a group-component g,.

Let E be a subset of C(#) and = an element ¢ C(1). We have to show that
p(Bz) = p(@).

If e, is the unit element of the group g, we have clearly £ N g, = (£ N g,,) €a-
Hence we have also (E N g,) x = (B O g,) e,x. Since e,x e g,, the sets B N g,
and (£ N g,) z have the same number of different elements and we have
pl(E 0 g.)] = ul(E N g,) x]. Therefore

u(Bz) = p{[3(B 0 g)] o} = p{S(E 0 g,) 2} = DB N g,) =

= W[S(E O 8.)] = w(E) .
This proves Theorem 4,1.

Remark 1. If y is idempotent, C(x) need not be a left simple semigroup.
E. g. in Example 3,3 the measure v ¢ M(S,) <~ L(z, + x,) € F(S,) is an idem-
potent, but C(v) = {x,, x,} is not a left simple semigroup.

Remark 2. The measure y from Theorem 4,1 need not be a right invariant
measure on the whole semigroup S. Consider for instance the semigroup S,
(see Example 1,1) and the measure e M(S;) <— 3@, + x;3) € F(S;). This is
a right invariant measure on C(u) = {®,, #;}. But u is not right invariant as
a measure considered on the whole semigroup S. (We have e. g. u(x,2;) =
= wxg) = 0 + p(x,).) s

Theorem 4,1 and Theorem 3,5 imply

Theorem 4,2. Suppose that S has at least one right invariant measure. Let
7 be. a primitive idempotent € IN(S). Then 7 is a right invariant measure on C(r).

Theorem 4,3. Suppose that S has at least one right invariant measure. Let
7 be a primitive idempotent ¢ M(S). Then n assumes the samevalues in all points
of a maximal subgroup of S.

Proof. According to Theorem 3,5 C(x) is a left simple semigroup which

a class sum of maximal subgroups of S. Write § = Z @,, where (7, are some
oxed

maximal subgroups of S. Lemma 4,1 implies that n(x) = z(y) for all z, y € G,,.

Since (according to Theorem 3,5) C(x) is a right ideal of S, every maximal
group of § is either contained in C(x) or has an empty intersection with C(x).
Our assertion is true also for maximal groups contained in S — CO(x), since
for all elements x ¢ § — C(x) we have n(x) = 0.

. Theorem 4.4. Suppose that S has at least one' right invariant measure. Let
N = Z G, be the minimal two-sided ideal of S. Let v be a measure on S having the
Lo . .

following properties: a) C(v) C N, b) v assumes the same value in all points of the
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group G, (x =1,.., k). Then v is a primitive idempotent € M(S). Moreover,
all primative idempotents e M(S) are obtained in this manner.

Proof. a) It follows from Theorems 3,5 and 4,3 that every primitive idem-
potent e M(S) has these properties.

b) Let be G, = {x*, ..., 2!™"}. Construct an arbitrary element z e IMM(S)

of the following form
N

13
7 e MS) <> t, (@ + ...+ ) e FS), Drt,=1.
a1 1

It follows from Lemma 4,2 that z is an idempotent e IM(S).

To prove that =z is a primitive idempotent ¢ IM(S) it is sufficient to prove
that there does not exist an idempotent » % # such that z*xv =vs 7 =,
The equation »x z = » implies that C(») = C(»)C(zx) CC») NCN, i. e.
C(v) € N. Therefore we can write

k r . Lk r
ve MS) <> >t eF(S), where > S, =1. (5)
¢ a-117 1 x 172 1
The relation = * v = » written in the corresponding elements e F(S) requires
E

3 E 7
St 4 2lY) S S e = St
~ 1 v-17 1 y-13 1

k
With respect to the relations (4) and (5) the left hand side is again z (@ 4.

a1
3 kv
...+ 2¥). Hence thx(m(l"" 4+ 42y = 21 >ty i. e. m =v, which
L= P 7 1
completes the proof. '

We take now into consideration the set R = N — (8 — N) S, where N is
the minimal two-sided ideal of S. In [5] we proved: if S has at least one right
invariant measure, then B =+ ¢ and the decomposition S = R + (S — R) is
the maximal right u-decomposition of the semigroup S in the sense of Theorem
3,3 of [5].

Theorem 4,56. Suppose that S has a right invariant measure. A primitive
tdempotent = € M(S) is a right invariant measure on S if and only if C(x) C R.

Proof. a) The condition is necessary since for every right invariant measure
n C(z) C R. (See [5], Theorem 3,3.)

b) Suppose conversely that = is a primitive idempotent e IM(S) with
C(n) S R. According to Theorem 3,5 C(x) is a sum of maximal groups of
8S: C(n) = Z @,. Bach of these groups is contained in R and is one of the

xed
group-components of the left simple semigroup C(z). According to Theorem
4,3 & has the same value in all points of the group @,. According to Theorem
5,2 of [5] a measure having these properties is a right invariant measure on the
semigroup S. : -
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This result can be reformulated in the following manner:

Theorem 4,6. Suppose that S has a right invariant measure. A primitive
tdempotent 7t ¢ M(S) 1s a right invariant measure on the semigroup S if and only
tf S — C(x) is a right ideal of S.

Proof. a) In the introduction to section 4 we have mentioned yet that this
condition is necessary.

b) We show that it is also sufficient. Suppose “that S — C(x) is a right
ideal of S. With respect to Theorem 3,5 the decomposition S = C(x) +
+ [S — C(x)]is then a right u-decomposition of §. Hence according to Theorem
3,3 of [5] we have necessarily C(x) C R. Therefore according to Theorem 4,5
x is a right invariant measure on S.

5

In this section we show the role of left simple semigroups among all semi-
groups having at least one right invariant measure.

Lemma 5,1. Let S be a left simple semigroup and u an idempotent ¢ M(S).
Then u is right invariant on C(u).

Proof. According to Lemma 1,2 C(u) is a semigroup. Since every subsemi-
group of a left simple semigroup is itself left simple, C(u) is a left simple
semigroup. The proof follows now from Theorem 4,1.

Theorem 5,1. Let S be a left simple semigroup. An element u € M(S) s a right
movariant measure on S if and only if u is a primitive idempotent ¢ IN(S).
Proof. a) The necessity of this condition follows from Theorem 3,1.

b) Let conversely = be a primitive idempotent ¢ IM(S). For a left simple
semigroup we have always B = §. Hence C(x) C S = R. Therefore according
to Theorem 4,5 7 is a right invariant measure on S.

Theorem 5,2. Let S be a finite semigroup having at least one right invariant
measure. Then the set of all primitive idempotenis ¢ M(S) s identical with
the set of all right invariant measures on S if and only if S is a left simple semi-

group.
Proof. According to Theorem 4,4 we obtain all primitive 1dempotents

e M(S) in the following manner. Construct the decomposition N = z G,.

Construct the measure v, defined as follows: »,(G,) = 1, v,(S — Ga) =0,
where », assumes in all points € G, the same value. Then all primitive idem-
potents € M(S) are of the form ¢y, + ... + £, wheret, = 0,¢, + ... + ¢, = 1.
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According to Theorem 5,2 of [5] we get all right invariant measures in the
following manner. Construct the decomposition R =N — (S — N)S =

= z Ga‘, where o, &,, ..., &, is a suitable chosen subset of the set of indices

{1 2, ..., k}. Then all right invariant measures on S are of the form t;va‘ 4+ ...
o+ tmvam (t; >0, t; 4+ ... + t, = 1).
These two sets of measures are identical if and only if N = N — (S — N) 8.
Theorem 3,4 of [5] says that this is the case if and only if § = N, i. e. §is
a left simple semigroup.

6

In this last section we prove some further results and we find a new express-
ion for the set of all right invariant measures on S.

Lemma 6.1. Let u be a right tnvariant measure on S. Let be v,, v, € M(S) and
vy x vy = u. Then C(v)) C C(u). Hereby C(v;) has a non-vacuous intersection
with every group-component of C(u). ,

Proof. Lemma 1,1 implies C(v;) C(»,) = C(u). Denote C(vl) NCu)=A4
and suppose that B = C(v;) n (S — C(u)) =+ 0. Then

(4 + B) Cvy) = C(p) »
- A.C) + B.Cl) = Cu) . (6)
But (see Lemma 1,3) B . C(vy) C [S — O(u)] C(v,) 8 — C(u). This is a contra-
diction with (6). Hence B = 0, i. e. C(»;) C O(n).
Let O(u) = > g, be the decomposition of C(u) into the group-components.

aed

Suppose that (‘(1/1) N gy, = 9. Since g, (x e ) is a right ideal of S (see [5],
Lemma, 3,2) we have g, C(,) C g, for every « « A. Hence the product C(v,) .

. C(v,) would not contain the grotip g,. This is a contradiction to C(»;) C(v,) =
= C(p). ,

Remark 1. In Lemma 6.1 the equality C(»,) = C(u) need not hold. This
can be shown on the semigroup S; of Example 1,1. We have v, * v5, = p,
hence C(vy,) C(v34) = C(p), but C(vy,) + C(u), since C(r,,) = {x;, z,} + C(u) =

Remark 2. An analogous lemma for primitive idempotents is in general
not true. This means: if »; * v, = z.is a primitive idempotent, C(»,) C C(x)
need not hold. Choose in Example 3,2 v, <— }(x, + x,), v, = &, <— ;.
Then », x v, = e,, but C(»,) = {x;, 2;} D Cle,) = {2,}.

Lemma 6,2. Suppose that S has at least one right invariant measure. Let
‘7 be a primitive idempotent € M(S ) Then v = 7 18-@ right invariant measure if
-and only if C(») C R. ' ’ ‘
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Proof. a) We know from Corollary 3,4 that » * &= = p is a primitive idem-
potent ¢ M(S). If x is a right invariant measure, it must hold (according to
Lemma 6,1) O(») C C(» * n) = O(u) C R. (We use Theorem 4,5 according to
which for a right invariant measure C(u) C R.)

b) Let be conversely C(v) C R. Then for the primitive idempotent u = v x #
we have C(u) = C(v) C(n) CR.C(n) C B. Hence (see again Theorem 4,5)
p is a right invariant measure on S. This completes the proof.

Suppose that S has at least one right invariant measure. Denote by I (S)
the set of all » ¢ M(S) with C(») C R. Then we have:

Lemma 6,3. The semigroup M(S) can be written as a sum of two disjoint
right ideals of M(S) in the form M(S) = M,(S) + [M(S) — M,(S)]-

Proof. Let be v; € M(S), v e M(S). Then C(v, + v) = C(»;) .C») CR.SC
CR,i e.v xveM(S). Hence M,(S) is a right ideal of M(S).

If R = S, the second assertion is trivial. Suppose therefore ¢ + R + 8. Let
be v, € M(S) — M(S), i. e. C(»,) N (S — R) + ¢ and v e M(S). Then

Oy * v) = Cvy) C) = [C() OV R] C) + [C(va) 0 (S — R O) -
We have further ¢ # [C(vy)) N (S — R)]C(») S (S — R)C(») €S — R, hence
C(v, * v) has a non-vacuous intersection with S — R. Therefore v, * v € M(S) —
— ML(S).

Remark. The semigroup M,(S) is — in general — not left simple. This
is shown by Example 1,1 in which I ,(S) = M(S). Choose e. g. v ¢ M(S;) «—
<~ §(x, + 25) € §(S,). Then :

a
MSy) * v <— ( z i) - Ry + ) = 3t + ) (@, + @) + (6 + L)@ + @)
i1

4
with > ¢; = 1. Hence IM(S,) * » does not contain all elements ¢ M(S,).
i1

Theorem 6,1. Suppose that S has at least one right. invariant measure. Then
ML(S) N &= MS) . L and each of these sets is exactly the set of all right
nvariant measures on S. .

Proof. Theorem 4,5 implies that - M,(S) N ¢ is exactly the set of all right
invariant measures on S. Lemma 6,2 implies that all elements € M,(S) . &
and only these elements are right invariant measures on S. Therefore IM,(S) N
N £ = M,(S) . & which proves our assertion.
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Pesiwome
O CTPYKTYPE MHOKECTBA MEP HKOHEYHOWM TOJYIPVIIIIbI

INTE®AH IIBAPI] (Stefan Schwarz), Bparuciasa.

(Hocrymmito B pegaxuuio 20/VIII 1956 r.)

IMycrs 8 — woneunass nosryrpynua. Mepoit x4 HasbiBaeM HEOTPHIATEIIHHYIO
AIUIUTUBHYI0 MHOKECTBEHHYIO (QYHRIMIO, ONPEeIeHHY0 HA IIOMHOKECTBAX
S, nas woropoit u(S) = 1. O6o3maunm cumBosom IN(S) MHOKECTBO BceX mep
nonyrpyrnst 8. Ilyers vy, v, € M(S). TMpousseneHuem v, * v, 6yaeM Ha3bHBATH
Mepy, ollpejie/IeHHYI0 ¢BepPTKOM, T. e. Mepy, KoTropas s 1060To0 & € S yaoBie-

TBOPAET COOTHOIMICHUIO v, * 1o(X) = Z v1(u) . v(v). Mo oTHOmeHHIO K oIpepe-
uv =T

JIEHHOMY TaKHUM 06pasoM yMHOKeHuo MHO;kecTBO IM(S) obpasyer momyrpyu-
ny. (Ecau S copepsur 6osee opHoro smementa, 1o mosayrpyima. M(S) Gecro-
HeYHa.)

Mepy p HaszoBem clpaBa MHBapHaHTHON, ecim JUIs JIOG0TO TOAMHOMKECTBa
EC S u mo6oro xzeS u(Ex) = u(E). B pa6ore [5] MBl Hamum HeobXogumoe
M JOCTAaTOYHOE YCIJIOBUE CYI[ECTBOBAHUs cIIPaBa WHBAPUAHTHBHIX MepP HA HEKO-
TOPHIX THUAX GHKOMIAKTHBIX HOJYLPYII, K KOTOPHIM OTHOCATCA M BCe KO-
Heunple noayrpynnsl. Llems macroAmeil paGoTel — W3yunTh CTPYKTYPY MOIY-
rpynust M(S) u uccienoBaTh Mpesie Beero, KAKY POk B Heil UTPAIOT cIpaBa
MHBapUaHTHBIE MePHI NOJYrpyHIHsL S.

Wnemnorent e nomyrpynmsr 7' HassiBaeM TPUMETHBHEIM MIEMIOTEHTOM, €CIIT
He CYMIeCTBYeT HE OfHOTO miuemnorenta fe T, f =& e, YIOBIETBOPAIOMEro CO-
oTHomeHuio e . f = f.e = f. VlzBecrHo, 4r0 Kaskjasg KoHewHas (U Jaye Kas-
Has XaycnopdoBa GUKOMIIAKTHAS) HOJYrpynia o6jagaet XoTh ONHUM HPUME-
TUBHBIM UEeMIIOTEHTOM.

ITycrs S mmeer Xors ojHy clpaBa uHBapuaHTHYI0 Mepy. Torma mosyrpymnmna
M(S) obnamaer ogHUM eIMHCTBEHHBIM MUHIMAJBHBIM JIeBKIM maeajiom L. MHo-
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skecTBO € TOIKIECTBEHHO € MHOKECTBOM BCeX TPUMUTHBHBIX WMIEMIIOTEHTOB
e M(S) u apuderca B TO ke BPeMsA MAHUMAJIBHBIM JIBYCTOPOHHUM HleaJiOM
noayrpyumst M(S).

Rasknast cmpaBa mHBapuMaHTHas Mepa HOJyrpynust S siBsercss TPAMUTHB-
HBIM mjemnorenToM noayrpymnst IM(S), Ho He HAOGOPOT.

Ilyers C(v) = {x;x; € S, »(x;) == 0}. Ilycrs, mamee, N — MuUHUMaIBLHBI
ABycropoHHUIl upean uoxyrpymnsl S u ayerh B = N — (8 — N) S. Torma
mMeeT MEcTO yTBepikaeHnme: ecqm S obajaer Xorh OJHOI cIpaBa HHBAPHAHTHON
Mepoif, To HpUMHTHBHBI ujemnorent z e M(S) Gymer cnpasa WHBAPWAHTHOI
Mepoii momyrpynusl S Torga m ToabKo Toria, ecim C(z) € R. B wacraocrn,
MHOJKECTBO IMPUMUTHUBHBIX HIEMIOTEHTOB Ioxyrpyuns M(S) ToskmecTBeHHO
MHOKECTBY BeeX clipaBa WHBAPHAHTHBIX MeP IOJYrpynnsl S Torma W TOIBKO
rTorja, ecim S — cJeBa Hpocras MOJIyrpyniia.

B npepnososmkennn, aro S obaajgaer XOTh OJHOW clpaBa WHBAPHAHTHOW Me-
poii, B pabore ONMCaHO MOCTPOEHWE BCeX HPUMHATHBHBIX WIEMIIOTEHTOB IOJY-
rpynnst M(S) v BeIBefieH psif AasbHEHIHX ¢BoiicTB nomayrpynmst M(S).
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