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YEXOCTOBAIKUNT MATEMATUUECKUN WYPHAT

Mamemamuueckuit uncmumym Yexocaogayroti Axademuu Havk
T. 7 (82) IIPATA 30. IV. 1957 r., No 1

DIRECT DECOMPOSITTIONS OF LATTICES, I

OTOMAR HAJEK, Prague.
(Received October 31, 1955.)

This article contains the foundations of the algebraical theory of
direct and subdirect decompositions of lattices and rings. Except for
theorem 14 and most of theorems 2 and 3, all non-trivial results are new.

We shall, in general, use the notation of LT, with some exceptions. (LT
means G. BIRkuHOFF, Lattice Theory, 2nd. ed., New York, 1948.) In lattices,
a is the set of < a, a the set of x 2> a, {a, b) the set (interval) of « < x < b;
2" is the complement of x even if not unique, x* the pseudocomplement. In
the general case, u, n and c are set-joins, meets and inclusions, reserving
v, A and <X for the lattice-operations; 6 is the Kronecker delta:

. Oif a + b \ fOifxnoneA
b A .
"“"‘{Iifa.—b’ md B = Tifrea

= is implication; * in the text means end of proof. “Homomorphism” always
means lattice-homomorphism.

For most of the elementary definitions use LT.

1. Preliminary notions

Definition. If S, (a € A) are abstract algebras of the same type with x-ary
operations X, then P,S, is the abstract algebra (direct product) consisting of all
maps

[@]e: 4 > U, 8, with =z,¢8,,
with x-ary operations X,[al], = [Zx%],. (For a finite 4 we shall, of course,
use S; X Sy X ... X Sy, [%4, ..., Z,], ete.; also, often, [z,] instead of [%,],.)

Definition. § = P,S,, read as ©“S is (decomposable into) the direct product of
8,8, means that there is an algebraic isomorphism between S and P,S,.



We do make an unlawful use of the equality sign here; but note that it is
only in definitions that the equality sign between an algebra and a direct
product is really justified — in such cases we shall use =. Similarly we write
x = [x,] for “a corresponds to [z,]”, usually adding “in P,S,”; thus if we
have two direct decompositions in which » = [z,] and « = [y,] respectively,
then x, + y, is usually true.

By definition, S; X S, =S, X S;; and Py 4(Ps.4,S8e) = PeoeSe with € con-
sisting of pairs [a, b] with a € 4,. Thus direct products are commutative and
associative.

Definition. S < P,S, read as ”’S is (decomposable into) the subdirect product of
S,’s” meansthat (a) there is an algebraic isomorphism between S and a subalgebra
of P,S,, and (b) to every b € A and x € S, there is an [z,] € S with x, = x.

Note that again S < P,;S,, S, < P, S, imply S < P, 3P, 8. and
Sy < PuesSaey implies P, 8, < P, (P, 3S4) (read carefully: subdirect product
of direct products). But S = 8, X 8, x 8;does not imply S < §; X (S, X S;);
e. g., for lattices, 2 < 2 X 2 X 2*) (the isomorphism is & — [, , z], while
2non < 2 X 4. Note also that 8; < S, means S, = S,, since S, = S, X 1,
where 1 is the one-element algebra (if it exists).

Obviously, there is an intimate connection between lattices (and generally,
algebras) and their direct decompositions. Thus if L = P,L,, then L has I if
and only if all L, have I, L is distributive if and only if every L, is such, z =
= [z,] is complemented if and only if every z, is complemented, and then
2" = [x,], etc. Equally obviously, not all of this is true for subdirect decompo-
sitions. The following theorem is therefore of some interest.

Theorem 1. Let L < P,L, with lattices L, L,. Then if L is modular, so are L,;
if L 1s distributive, so are L,.

Proof. Take z, y, z € L,; there exist u, v, w e L whose a-th coordinates are
z, ¥, z respectively.

Now let L be modular and z < z; set u; = 4 A w, v; = v, w; = w V w; then
Uy, v3, w; € L and their a-th coordinates are z, y, z respectively again, and
u, < wy; since L is modular, (u; Vo) Aw, = 4V (v, Awy) = (@ VY)Az =
=2V (yAz)in L,.

Finally let L be distributive; then (uvo)Aw J uv(@Aw), = (X VY)A
Az < xV(y Az2), so that L, is distributive (LT, IX, § 1, ex. 3).*

2. Central and neutral elements

In paragraphs 2 to 5 large letters denote lattices, excepting O, I, and 4,
which shall always mean a set of indices.

*) n is the chain of n elements.



Theorem 2. These properties of a (neutral) element e € L are equivalent:

(a) for any x, y € L, the sublattice generated by (e, x, y) is distributive;

(b) for any x,ye L, eA(xVy) = (eAx)V (eAy) and dually, x A (e Vy) =
= (xAe)V(xAy) and dually;

c) for any x,yeL, eA(x Vy) = (eAz)V (eAy) and dually, eAx = eAy,
eV =eVy =z =y,

(d) e = [0;), under some isomorphism between L and a sublattice of P,L,;

(e) e = [I, O] under some subdirect decomposition of L;

(f) there exist disjoint congruence relations ©,, O, such that x A eOx and
x V eO,x;

(g) any maximal distributive sublattice contains e.

Proof. (See LT, II, § 10, including exer. 1a.) Obviously (e) = (d) = (a) =
= (b); (b) = (c) is implicitly contained in the proof of th. 10, 1. c.; for (c) = (e),
(g) <= (a) see LT again (th. 11). For (e) =- (f) use LT, VI, th. 9; for (f) = (b)
note that x VeBe (x VeO,(x Ve)Ae =e) and similarly = A eG,e, and then
(b) is proved directly (e. g., for the second identity x A (e V y) O A eOx =
=z V(@AY) O(xane)V(xAy) and zA (e VY) Oz AyOoe V (x Ay) Oy(x Ae) V
V(zAy); as O, A O, = O, this implies zA (e Vy) = (x Ae) V (x AY)).*

It will be useful to note that the decomposition of (e) is L < e X e with
homomorphism = — [z Ae, 2 V e].

Corollary 1. Let d, e € L, d neutral. If e satisfies the identities of theorem 2 (b)
whenever either x,y < d or z,y = d, then e is neutral. Such is the case when
either

(a) e = d, e = d (isomorphisms), or, more generally,
(b) there exist homomorphisms f, g taking d into e such that d, respectively d are
the images of sublattices.
Proof. If (b) holds and z, y < d, then
eA@VYy)=fdA(fuV ) =FfdA@Vv)=FfdAu)VidArv)=
— (eAZ) V(eAy)
and dually, and similarly for the second identity; and for z, y > d.

Now let «, y € L and use the decomposition of L corresponding to d by th. 2,
(e). Then

en(@xVy) =[ead,eVdIA([xAd,zVd]V[yAd,yVd])=
=[dAeA((®Ad)V(yAd), (dVe)A(xVdVyVd)]=
=[dAaen((zAd)V(yad), @dAa(@VdVyVd)V
V(eAa(@VvdVyVvd)]
since d is neutral, '
=[dA((eAzAd)V(eayAd), dV(eAa@Vd)ViayVd)]



sincex Ad,YyAd <d < xVd,yVd,
=[dA((eaz)V(eAy), dV(eAz)V(eAd)V(eAy)V(ead)] =
=[dA((erz)V(eAy)), dV(eAx)V(eAy)] = (eAx)V(eAy)
and dually; similarly x A (e Vy) = (x Ae) V (2 A y) and dually.*
Covollary 2. If d, e e L and both satisfy the first identity of th. 2 (b) and its
dual, then {e Ad, e> = {d, e V d).
Proof. The mapping f, fx =« Vd, takes {e o d, ¢> into {d, e Vd); with
our assumptions, f is homomorphic. If we set gx = x A e, then g takes {d,

eVdy into (ead,e> and gfr = (x Vd)Ae = (xAe) V(dAe) =z whenever
eAd < x < e so0that fis 1 — 1 onto. ¥

Theorem 3. Let L have extremal elements. Then these properties of a (central)
element e € L are equivalent:

(a) e is neutral and complemented;
b) e ts complemented and for all x € L, x = (x Ae) V (x Ae');
c) e is pseudocomplemented and for all x € L, x = (x Ae) V (z A €¥);
d) e = [I, O] under some direct decomposition of L;

—_~ e~~~

e) there exist disjoint congruence relations O, Oy and an d e L such that

€01, 0,0 and dO,0, dO,I;

(f) any mazximal Boolean subalgebra containing the extremal elements of L
contains e also.

Proof. Most of the proof is in LT, IT (corollary to th. 10, exer. a) in § 8).
(b) => (c) obviously; conversely, setting 2 = I we obtain e V e* = [, so that e*
is a complement — now (c) reduces to (b). (a) <==> (e) obviously. The proof
of equivalence of (f) follows the lines of th. 11 in LT, IT.*

It will be useful to note that the decomposition of (d) is L = ¢ X ¢’ with
isomorphism x — [z Ae, x Ae'].

Note also that (1) a pseudocomplemented neutral element need not be
central (e. g. in uncomplemented finite distributive lattices), and (2) the set-
-product of all the maximal Boolean subalgebras may be void — e. g. in
4 @ 1, — while central elements exist — O, I.

The decompositions of th. 2 (e) and th. 3 (d) we shall name corresponding to
the neutral or central element e.

Under lattice-homomorphisms onto, neutral elements go into neutral,
central elements into central; this is implied by th. 2 (¢), th.3 (a) respectively.
More precise results are given in th. 9 and 10.

Let N, be the set of all neutral elements of L, C;, the set of all central ele-
ments of L (= center). Then N, ,, = N, X Ny, Cp = Cp X Cy. (This is
implied by th. 2 (¢), th. 3 (b) respectively.) If M is a sublattice of L, M n N c
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c N, if even extremal elements in L, M coincide, M n (', c Cy,. (This is
implied by th. 2 (a); th. 3 (a) respectively. See also th. 11.) If e is central in
L and a < e < b, then e is central in {a, b>. (e is neutral in {a, b>, and has
a relative complement there: @ V (b A €').)

Every element of a distributive lattice is neutral; every element of a Boolean
algebra is central;, and conversely. One of the minor objects of this article is
to examine which properties of distributive lattices and Boolean algebras can
be “localised” to neutral, respectively central elements.

3. Factor isomorphism, the unicity theorem

Theorem 4. Let d, e ¢ L and let A, (1 < i < 4) be disjoint; let L << P_,_ L,
acd;
under which d = [021Y42], e = [0 4] (a e Ui4,); and also L < PIM,, under
which d =[I,1,0,0], e =[I1,0,1,0]. Then M; < P, 4L, for 1 <i < 4.
Proof. Write corresponding elements under the sets they are contained in:
Pylna X Py Loy X PyLy, X PylLy, L, M;x M,x MyxM,.

Take any 2 € M,. There exists an a ¢ L with

aed

[[@al, [%al, (23], [23]] a [, @y, 23, 2,] .
Set fx = [x.]; then f is single-valued, since if

[zl [za], [23], [22]] b 225 2]
then

[[2,], [0], [0], [0]] andAe [x,0,0,0],

and

[[za), [0], [0]. [O]] badhe [z, 0,0,0],

so that (reading from right to left) aAdAe =bAadAe, = [x,] = [21]. Ob-
viously f is homomorphic. If x + yin M,, then forsomec e L

¢ |y’ Yas Ys» ?/4]
with aAdAe + cAdAe, implying fx + fy. Obviously then M, = P, L,,.
Similarly, for ¢ > 1 M; < P, L,, paralleling the above proof and using in
turn, instead of @ A d A ¢, the elements (e Ad) Ve, (aAe)Vd,aVeVd*

Note that if the first decomposition is L < (P, Ly,) X Py Ly, X Py Ly, X
X P 4Ly, then we can conclude My = P, L,,.

Theorem 4 is easily generalised to n neutral elements e;, grouping the former
direct decomposition into 2" subgroups; but the conditions become too com-
plex.

A special case (¢ = d, L,, = Ly, = 1) of th. 4 is the following.



Theorem 5. (Unicity theorem.) If Ly X L, > L < M; X Myand e = [I, O]
wn both, then L, = M,, L, = M,.

Note that without some condition such as that on e no conclusion of the
above type can be reached, not even L X M =L X N =M = N. E. g,
if B, is the Boolean algebra of (countably infinite) stationary sequences of
O, I, then B, = B, x 2 = B, X 4, etc.

Corollary. If e e L is central, then e = ¢’, ¢ = ¢'.

Proof. Use the decompositions of th. 2 (e), th. 3 (d) (namely, ¢ X e and
¢ X ¢') and the unicity theorem; dualise.*

This generalises the theorem stating that Boolean algebras are self-dual.
More precise results are given in the corollary to th. 15.

For lattices L , M we could define L/M thus: M = e for some neutral
eeL, and then LM = N if L < M x N. Then N is uniquely defined (by
th. 2 (e) and the unicity theorem, N = e), and if L = L;, M = M,, then
L|M = L,|M,. In this manner we could develop the theory of factor lattices;
many of the theorems on factor groups also hold for factor lattices.

4. Complementation, homomorphisms, associativity conditions

Theorem 6. If L < M X N ande = [I, O] € L is complemented in L, then L =
= M X N under the same homomorphism.

Proof. As e is complemented, L must contain extremal elements; then
M X N has extremal elements also, and they must coincide with those of L;
then, finally, e is complemented in M x N and ¢’ = [0, I]e L. If [x;, ,] €
e M X N, there exist u, v e L such that w = [z, u,], v = [v,, ®,], and then
[@y, 5] = [2,, O1 V[0, 5] = (wAe)V(vAe)el.*

A weaker form of theorem 6 follows from theorem 5: L < ¢ X e =¢ X €' =
= I, but the homomorphism is not the same.

We used the term corresponding decomposition, whether the element was
central or only neutral. Theorem 6 justifies this.

Theorem 7. The complement of a central element e is unique, and is an ortho-
complement in the following sense: if x € L and an 2 exists, then (x Ae) =z’ Ve’
and dually, e" = e.

Proof. Use the direct decomposition corresponding to e. If d = [u, v] and
dAhe=0, dVe=1, then O =[u,0], I =[I,v], so that d = [0, I] = ¢’;
this is unique, and e” = e.

Now assume that ' = [u’, v'] is a complement of z = [u, v]; then z’ Ve’ =
= [u, I], zAe = [u, 0], so that [u', I]A[u, 0] = O, [«,I]V[u, 0] = 1.
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Conversely, if [r, s] is a complement of z A € = [u, O], necessarily » A u = O,
rVu=1 s=1, so that [r,?'] is a complement of * and ([u,v]Ae) =
= [r, v'] Ve'. Dualise. *

Theorem 8. T'he complement of a central element e is a pseudocomplement, and
ts an orthopseudocomplement in the following sense: if x € L and x* exists, then
(® A e)* = a* Ve and dually.

Proof. Use the direct decomposition corresponding I
to e. Let = [z, 2,], ¥ = [¥1, ¥,]. First, x Ae = 0 <==
<, =0 <=2 < ¢, so that ¢ is a pseudocomple-
ment. Note that the coordinates of a pseudocomple- d
ment are themselves pseudocomplements; i. e., a* =
= [z], 3]. Now

YATAe =0 <>y Az, =0 <=y, <af <y < a*ve, ¥ e
YyA(xVe)=0<yAe=0=yArzx <
<>y, =0 and y, < af <y la*rpe
Theorems 7,8 generalise the theorem stating the comple- Fg' L.

mentation in Boolean algebras is orthocomplementation.

Note that if a neutral element e is pseudocomplemented, then for all pseudo-
complemented x e L, (x Ve)* = a* Ae* (for yA(x Ve)=0<=>yre=0 =
=yrr<=>a* >yl e*r <=y a*¥Aae*), but that (xAe)* =a* Ve
e** = e need not hold. E. g., in the lattice of fig. 1.
we have (xAe)* = 0% = [, x* Ve* = eV = d, and d** = O0* = I.

Theorem 9. If L < M X N corresponding to the neutral element e, and h
maps L homomorphously onto K, then there'fem'st lattices R, S and homomorphisms
f, g such that: f(g) maps M(N) homomorphously onto R(S), and K < R X 8,
[f. gl e = [I, O], [f, 9] is an extension of h, if h is an isomorphism, so is [f, g].

Proof 1. For ¢ = [2;, x,] e M X N set fx, = h(x Ae), gr, = h(x Ve), B =
= fM, S = gN. (Note that x A e € L, for there exists an y = [z,, v] ¢ L, and
then z A ¢ = [, 0] = y A e ¢ L; similarly z Ve e L.) Obviously f, g are homo-
morphisms.

2. Prove that K is isomorphous to a sublattice of R x S: for & ¢ K choose
xeL with hx = &, and set @f = [h(xAe),h(x Ve)]e R X 8 (obviously, if
hy = & = hx, then h(y A €) = h(z A e) and dually); so that ¢ is a homomorphism
into B x 8. Now, if [a, b] e pK, take xz e L with a = h(x Ae), b = h(x Ve),
and set y[a, b] = ha. To prove that u is univalent, note that Az Ae) =
= My A e) and dually implies

hr =h(xA(xVe) =hxAh(xVe)=hxAh(yVe)=hzA(y Ve)) =
=hxAy)Vh(xAe)=h(xAy) Vh(yre) = h(yA(x Ve)) =
=hyAh(xVe)=hyAh(yVe)=hyAa(yVe)) =hy.



Now obviously 7§ = ¢ i, e., ¢ has an inverse, and is an 1 — 1 homomorphism
(into R x N).

3. Prove K = R » 8. Take ae R, so that a = h(x Ae) for some z e L;
setting & = hx, b = h(x v ¢), we have [a, b] = .

4. Finally, for x ¢ I, we obviously have h|z,x,] = ¢~ ![fx,, gx,]; thus [f, g]
is an extension of h. Obviously ki1, O] = ¢~ 1[I, O].*

Theorem 10. If I — M x N corresponding to the central element e, and h
maps L homomorphously onto IC, then there exist lattices R, S and homomorphisms
f. g such that {(9) maps M(N) homomorphously onto R(S), and K = R x 8,
If.gle=1[1,0, [}, g] is an extension of h, if h is an isomorphism, so is [f, g].
This follows from theorems 9 and 6.

Theorem 11. If d is neutral (central) in L, und e << d, then e is neutral (central)
wn d if and only if it 4s such in L.

Proof. Obviously, ¢ neutral or central in L =>e¢ neutral, respectively
central in d. Conversely, we have L < d x d, d<e x e, dy, so that L <
<< e X (e, d) X d; in this decomposition, ¢ = [I, O, O]; use theorem 2 (d). If
e, d are central, the preceding decompositions are direct (theorem 6) and
L =ex ({e x d) x d) with e = [I, 0].*

An alternate direct proof utilises only th. 2 (¢) and th. 3 (a). Corollary 1 to
theorem 2 is an interesting counterpart.

Theorem 12. If for three different a’s L < (P, , L) X L, under the same iso-
b#a

morphism, then L = P L,.

Proof. Take [z,] e P, L,. There exist a;ed, y, eL,, z;el (i=1,2,3)
such that ¢; + a, + a; + a,;, and
2= e Yap Tap Tasy -]y 2o =1 e @y, Yy Tapy ool Zg == [cvr Tups Xuy Yaus -+ 3
1 ap “ay Yag ’ 2 ap Jay Yag> 1> 3 ap Yay Jag )

(this notation is perhaps obvious; only the a,-th coordinates are written out;
all other b-th coordinates are x,). Now set

Uy =23 A (22 V23) = [oon Yoy A Ty Ty Ty ---] 5
and u,, u; cyclically. Then u; € L, and also

L>uy V(uy Aug) = [... Zyyy oy T,y -] = [@a] F

Care must be taken to interpret ‘‘the same isomorphism’ strictly; so as to
exclude cases such as 4 <X (2 X 2) X 2,4 <2 x (2 X 2).

Slight generalisations of the above proof yield

Theorem 13. If L < (P, 4 L.) X Py 4.La X PpyM, with i = 1,2, 3 under
the same isomorphism, and also — A;c A; n Ay, for @ £ £k +1, A; + 0,
then L < (P,L,) X PyM,.

The conditions — A4;c A; n 4, are equivalent to A,> — A4,, —4,cC
cd,n A4,
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5. The factor-theorems

'Theorem 14. (Birkhoff factor-theorem.) If L is a lattice with O, I and P4 M, =
= L = P, N,, then there exist lattices Ly for [a,b] e Ay X Ay such that L =
= Py Lo Mo = Pyg, Ly, Ny = P aLiay

ab>

This is theorem 7 in LT, II.

The factor-theorem yields many elegant proofs. E. g., to prove that the
center of a lattice is a sublattice (this is of course implied byth. 2 (f)), take
central elements e, d and the corresponding direct decompositions L = M, x M,
L =N, X N, Using the factor-theorem, there exists a direct decom-
position L = Ly; X Ly, X Ly X Ly, such that My = Ly X Ly, My = Ly X
X Ly, Ny = L3 X Ly, Ny= Ly, X Ly. Now, as d =[1,0] in M; x M,
and e = [I,0]in N, X N,,wehaved =[I,1,0,0],e=[1,0,1,0]in L;; X
X Lyy X Lgy X Ly, so that d Ve =1[I,1,1,0], dae=[I,0,0,0O]. Thus,
for example, d Ve = [I,0] in (Ly; X Ly X Ly) X Ly, = L, and is therefore
central. .

aeAy

We shall generalise the factor-theorem in two theorems; one is the following
th. 15 and the other is in the second article of this series. :

Theorem 15. [f L < M, X M, corresponding to d and L << N, X N, corres-
ponding to e (d, e neutral), then there exists a subdirect decomposition L < L, X
X Ly X Ly X Ly, such that

J'II g Lll X LIZ > 'Z‘IZ ;<: L21 X L22’ i\rl S Lll X ])21 s Zv2 (;;: Ll2 X L22 >
and that d = [I, 1,0, 0], e = [I, O, I, O] in the third decomposition.

Proof. By th. 2 (g) eVd and eA d are also neutral; by th. 11 ¢ is neutral
ine Vd,eAd is neutral in e. Using th. 2 (e) thrice, we have L < e Vd x e Vd,

d,,\,dx<d evdy, d<endx {ead,d>, so that L<ecAad x <eVd,
> X d,eVdy x eVd with the homomorphism fx =[xz AeAd, (x Ve)Ad,
a:Ae)Val, xVeVvd]l. Thus fd =[eAd,d,d,evd]=1[I, I, O, O], f[)=
=lead,end,eVd,eVvd] =[I,0,I,0]. Using th. 2 (e) again

—

M*ﬁ(esl\—dX(eAd d> under gz =[zxAernd,zV(end)],
I, =d < {d,eVdy X eVd under g =[xA(eVd),zVeVd],
Nl:e\e/\dx<d evd>) under hzx=I[xAd xVd],
N, =e<<end,d> x eVd under hyx =[x Ad,z Vd].*

Corollary 1. If d, e are central in L, then
O, d" hNey={d"Ae,d>=<{dre,dVe)A(d Ve)) ={dnre e) =
=, d Ve ={dAre)V(d Ae),d Ve) =
=d{d, dVed=<d" Ve, I).
Taking d < e, we have {0, d’ Aed = (e, d'> =<d,ed> ={d Ve, I).



Proof. In the decomposition constructed before th. 15 d = [I, I, O, O],
e=1[1,0,1,0], so that, e. g., (0,d" Ae> = {[0,0,0,0],[0,0,I,0]) = Ly,
{d'ne,d> = {[0,0,0,I],[0,0,1,1]> = Ly, etc. If d < e, then L;, = 1.%

Corollary 2. If d is central and e neuiral in L, then

O0,d" Aey =<d,dVey and {eAad,dy=d Ve, I).

Proof. Under L < dAae x {eAd,d) x (d,dVe> x dVe we have d =
=[I,1,0,0] and e =[I,0,1,0]. Since d is also central, L < d Ae X
X eAd,d> x {(d,d Ved x d' Ve, under which d' = [I, 1,0, 0], e=
=[I,0,1,0] so that d = [0, O, I, I. Rearranging the last decomposition,
LKA, d'Vey xd' Vex d ne X {eAd’,d >, under which d = [I, I, O, O],
e = [I, 0, I, O]. Using factor isomorphism (th. 4), we obtain

0,dAey=Xd,d'"Vey, <(end,dy=<{d"Ve, I,
ddydVery={L0,d"rne>, <dVel) =< ead,d).*

These two corollaries have some interesting consequences in the lattice-
theory of projectivity. E. g., projective intervals with neutral end-points are
isomorphic.

6. Application to ring theory

It has long been known that there is come connection between ring theory
and lattice theory; this is suggested, for instance, by Stone’s theorem on
the correspondence between Boolean algebras and Boolean rings, and New-
man’s system of axioms common to Boolean rings and Boolean algebras.

Here we attempt to extend the conmection to general lattices and rings.
We shall not be concerned with the application to ring theory of facts, but
only of the ideas and methods underlying the preceding sections. The treat-
ement of the subject follows Stone’s notions rather than Newman’s. To a certain
extent, we examine the consequences of the definition of the center of a ring
(this is Boolean ring, but not a subring), paralleling the definition of the center
of a lattice (this is a Boolean subalgebra).

In this paragraph, large letters always denote rings (not necessarily associat-
ive).

Definition. Define a cross-ordering < in R thus: x < y whenever xy == yx = x.

Elementary consequences. < is antisymmetric and transitive, and is
reflexive only on idempotent elements. 0 < z, and = < 1 if 1 exists. If 2, y, 2
associate, y > rxlz=>x<yz, ySae>z=>y+z<ax >yt z—y2 If
x, z commute and z, ¥,z associate, y S x=>yz < r >y Yy r=>—y<
and ny <{z for integral n. If R < U x V (subdirect decomposition), then
(21, 2] < [Y1, Yol <=2, S 9y and 2, < v,

10



If R has 1 and ring opera,ti()ns x -+ Y, 2y, let dual R be the same set, with
(ring-) operations x +y =2 +y— 1, *.y =2 + y — ay. Then dual R is
a ring, the zero and unit of dual R are 1, 0 respectively, the inverse element is
~ x = 2 — x, substraction x —y =« — y + 1. As can be shown directly,

x -+ Yy =2+ y, x:y = xy, so that dual dual R = R. Also dual R = R, with
isomorphism 2 — 1 — z (“dual automorphism”, “involution”).  idempotent
in R <=z idempotent in dual R; z, y commute in B <=- x, y commute in
dual R; x, v, z associate in R <==x, ¥, z associate in dual R. x < y in R <=
<=y g z in dual B. x central in B <==>z central in dual R; centers of R and
dual R are dual. Thus the definition of dual rings is natural and (dual R = R)

uninteresting — as in Boolean algebras.

Theorem 16. These properties of a (central) element e of a ring R are equivalent:
(a) e s tdempotent, for all x, y € R: x, e commute, x, ¥y, e associate,

(b) e == [6:], under some subdirect decomposition of R,

(¢) e = [1, 0] under some direct decomposition of R,

(d) there exist disjoint congruence relations ©,, @, such that for all x ¢ R:
exO,x@ xe , €6,0.

In commutative associative rings of characteristic 2, properties (a)—(e) are
equivalent, where

(e) every maximal Boolean subring containing 1 contains e also.

Proof. (¢) =- (b) obviously, (b) = (a) directly. Prove (a) =>(c): For x ¢ R
set fx = we, gr = x — xe. Then f, g are homomorphisms onto subrings U, V; if
xe = ye, x — xe = y — ye, then x = y, so that x — [fz, gx] is a 1 — 1 homo-
morphism into U, V. For any [z,y] e U X V take z = xe + y — ye € R; then
ze = xe, z — ze = Y — Yye, so that the homomorphism is onto U X V. Finally,
fafe = xeee = xe = fx, ge = O, so that e —[1, 0]. Note that U is the subset
of x < e and V the subset of all x with ze = O, and both are ideals. For (c) =
= (d) set [x;, ;] Oy, y,] if and only if ,0,y; (¢ = 1, 2); (d) = (a) is proved
directly. To prove (a) = (e) note that if B is a Boolean subring with 1, then the
subring generated by e, B consists of ex + y with z, ¥ € B; this is Boolean, so
that e ¢ B if B is maximal. Conversely, in the special case of (e) there exist
maximal Boolean subrings with 1; then e is idempotent, so that (a) holds.*

If R has 1, condition (d) is much simpler: ¢©,1, €0,0.

Note that if R has 1, then 1 — e is an associated divisor of zero (the least,
in the cross-ordering), and 1 — e = [0, 1] in the decomposition of (c¢). Thus
decomposable rings with 1 have zero-divisors. But there exist indecomposable
rings with 1 and non-trivial zero-divisors, see 2. in the following paragraph.

Theorem 17. If U Xx V= R < W X Z and e = [1, 0] in both, then U = W,
V=2

11



The proof follows that of th. 5., using ae, @ + ¢ — ae instead of ¢ A e, @ Ve
respectively.

Theorem 18. If R < U x V and ¢ = [1,0] e R, then R = U x V under the
same homomorphism.

Proof. For [z,y]eU x V there exist [u,v]e U X V such that [z, v]e R
and [u, y] € R. Then also R > [u, y] + ([z, v] — [u, y]) [1, 0] = [z, y]. *

Theorem 19. If R = U x V with e = [1, 0] and if h maps R homomorphously
onto S, then there exist rings W, Z and homomorplisms f, g such that f(g) maps
U(V) homomorphously onto W(Z) and S = W x Z, [f,gle = [1, 0], [f, g] s
an extension of h, if h is an isomorphism, then so s [f, ¢].

The proof follows the lines of that of th. 9, using fo = h(ze), gr = h(x — xe).

Theorem 20. If d is central in R and e < d, then e is central in d if and only
of ot 18 such in R.

This follows immediately from th. 16 (c).

Theorem 21. If R is a ring with 1, and if P,U, = R = P,V,, then there exist
rings R, ([a, bl e A, X A,) such that

D _ - L
[" - P,vl;x A»_,Rab ) (]a - PI;EA-‘._,RU() 5 Vb - P(uAlRu,h .

Proof. Set ¢, = [07];4,in P Uy, dy = [07];0, In Py Vo, foy = €udy, By = fup
(in R). Then & — [2f,],, is @ homomorphism into P, . 4, R.. Itis 1 — 1, since
if @f,, = Yfa, for all a, b, then ze, = ye, for all a (since [(ze,) d,], = [(ye.) d,]s
in R = P,V,), and then x = y (since [@e,], = [ye,], in B = P, U,). The rest
is obvious.*

Note that the center (= set of central elements) of a ring is generally not
a subring; if R has 1, a necessary and sufficient condition is 2 = 0. But it is
a Boolean ring under these ring operations: sum x + y — 2y, product xy.

Associative rings are a special case of commutative groups with endo-
morphisms. This suggest another generalisation of central elements.

Let A be a set of endomorphisms of an additive abelian group G. If 4, ¢
are subdirectly factorisable into 4, X 4, G, X G,in such a manner that
[q, ag][@y, Xy] = [y, p2s], and if w € 4 is such that w = [1, 0], then o is
idempotent and commutes with all x € 4.

Conversely, let w ¢ 4 commute with all a € 4 and be idempotent. Let R
consist of 1 and all endomorphisms X7e;x,, where x; ¢ A and ¢; = + 1 ((Z7e;)(x)
is defined as X7¢,(x, @); since G is Abelian, this is an endomorphism). Then R is
an associative ring containing 4, and o commutes with all elements of R, so
that (th. 16 (c)) R is directly decomposable into R, X R, in such a manner
that w = [1, 0]; in this decomposition « goes into [wx, (1 — w) x]. G is also
decomposable, ¥ «— [wz, (1 — w) ].

If o = [0y, x5] € A, x = [%4, ®,) € G, then
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[y, ][y, 23] = [0, (1 — o) al[ox, (1 — ) 2] = [wax, (1 — o) az] = «x .
The decomposition of G is direct: if [u, v] € G4 X G, then 4 = wz, v = y — oy
for some z, y € G; then taking z = y — wy + wz € ¢, we have wz = u, z —
— wz = v, = |u, v] € G. The factorisation of A is of course only subdirect;
it is direct if 4 is a ring, orif o = 1 or w = 0.

7. Examples

1. Let D, be the (commutative and associative) ring of n-vectors with
numerical coordinates. Then

x e D, is central if and only if each coordinate is 0 ot 1.

Thus there are exactly 2n direct two-factor decompositions, of which exactly
I:;;] are non-trivial nonisomorphic, i. e., D), = Dy X D, .

2. Let R, be the (associative) ring of n» X » matrices with numerical coeffi-
cients. Then R, is directly indecomposable, since the only commutative
matrix is A/, and this is idempotent only for 4 = 0, 1. (Let ||d,;/| be a commutat-
ive matrix, and set 2 = d,; then X\d;, . v, = X dyx;, is 0 = d,y for k + v,
and d;; = d,, for k = v.)

3. Let 7T be a topological 7';-space. Let L, be the lattice of its closed sets
(ef. LT, IV, § 2). Let R, be the ring of continuous real functions on 7' (cf.
LT, v XI, § 4). Then L, is complete and distributive, so that using th. 3 (a),

X € Ly is central if and only if it is closed and open.

R, is commutative and associative, so that central elements are the idem-
potent elements (th. 16 (a)); as the x ¢ B, are continuous,

x € Ry is central if and only if it is the characteristic function of some closed
and open set.

Thus central elements of L, of R, and the closed-open sets of 7' correspond.
Finite direct multiplication (of L, or R,) corresponds to the seldom used
operation of topological addition. The factor-theorems have an interesting,
though trivial, interpretation in 7. Note also that conversely, if L is a complete
distributive lattice with O, I, then with M-closure, L forms a topological space
T and L = Ly.

4. Let X be a linear space and L the set of its endomorphisms (linear maps
into itself). Then

x € L is central if and only if x is a commutative projection.

It is interesting that for normed linear spaces and closed (but not neces-
sarily commutative) projections, some of the results of 6. are well-known. (E.
g., that  + y — 2y is a projection whenever z, y are projectiors and com-
mute.)
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5. Let R be a set of real functions on (— oo, + o0), with 2 4 y, 2y ¢ R when-
ever z,ye R ((x +y)t = «t + yt, (xy)t = z(y(¢))). Then the idempotent
elements of R are constructed thus. Take a set X, and for £ e X set ef = ¢,
for ¢ non e X choose et arbitrarily in X. Obviously eisidempotent, and all idem-
potent elements of R are of this form. Now, if R contains a constant, c,
and if an idempotent e is central, it must commute with ¢; this implies ce X (zc =
= (xc¢)t = (cx)t = ¢). This will help us to construct an R with non-trivial
central elements.

Define et: for rational ¢, et = ¢, and et = O otherwise. Let R consist of all
functions of the form mlI + ne with m, n rational. Then R is obviously closed
under addition; and the superposition of z, y € R is

(mI + ne)(pl + qe) = mpl + mge + n(p + q) e

since e(pt 4 ge(t)) = (p + q) e(t) for rational p, ¢; and this implies that R is
commutative. The central elements of R are I, e, I — e, O.

Pesome

IMPAMBIE PA3JIOKEHUS B CTPYHTYPAX

OTOMAP T'AEK (Otomar Héjek), Ilpara.

(IToctymmto B pegakuuio 31/X 1955 r.)

B crarpe nsygaoTca anredpandeckie cBOACTBA LEHTPOB M HEHTPAIbHEIX 3JIe-
MEHTOB CTPYKTYPH M COOTBeTCTBYIOIIMX HPAMBIX, COOTB., HOJYIPSAMEIX pas-
nokeHmit crpykrypsl. Ha Bropom miaHe crour 3ajlada McclefloBaTh TaKHe
cBoiicTBa 6yseBBIX ajre0p, KOTOpPHE MOryT OBITh ,,JIOKAJIM3HPOBaHBI® HA OT-
JeJIbHBIe BJIEMEHTHl CTPYKTYPHL.

B § 2 mompo6HO pasbupaercs onpefesieHye MEHTPA H HEATPAIBLHOTO HJIEMEHTA
U BHIBORATCA HEKOTOPHIE IIPOCThIE CJIENCTBUA 9THX onpeneneHmil. B § 3 mowa-
3bIBaeTCA TeopeMa 00 m30MOp(H3ME MHOKUTeNeil JBYX IIOJYIPAMBIX pasyo-
JKeHU#l CTPYKTYPH (TeopeMa eMHCTBEHHOCTH).

B § 4 mccuenyerca MONOTHATENBHOCT HEHTPOB M HEHTPATLHBIX DIEMEHTOB
(opro- m ICeBMO-NOIOJIHATENBHOCTD); M3ydYaeTcd IPAMOe M HOJYIPSAMOe pas-
JI03KeHWe NP roMoMopduaMe; HaKOHeI, BBIBOJUTCA OJHO MHTEPECHOE YCJIOBHE
JUIA TOTO, YTOOHI HOJYNPAMOE PasyoKeHHe OBITIO PAMBIM.

B § 5 npmBomntca (HeckosbKo Gosiee ciabasd) BapmaHTa BayKHOM TEopPeMBbl
Bupxroga o6 ofmem ,,yIJIOTHEHUU ' ABYX NPAMBIX PasilOjKeHUNl CTPYKTYDHI,
KOTOpaA Mo;Ker OBITH IPHIIOYKEHA M K IOJYNPAMBIM PaslIOKeHHsAM — BCJeJl-
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CTBHE HOJIy‘IaeTCH NpeJUioyKeHue O NMPOeKTUBHOCTA WHTEPBaJOB C Hef/'l'l‘pa.ﬂb-
HBIMM KOHI[aMM.

B § 6 npuBoasTeA H0IOKeHMs, aHAJIOTUYHEIEe H3JIOHKEHHOR TeopHHU, NMEIHe
MeCTO B KOJBIAX; B HEKOTOPOM CMbIcJe JeJlo Kacaercs pasioykeHuit [Tempre.
B xoapnax Hesnb3s OTIMYUTH LEHTPHI OT HEHTPAJILHBIX HJIEMEHTOB; ¢ TAKIM
IIOJIOKeHNeM He BCTpedaeMcs B ciiydyae a0esieBBIX IPYNII ¢ olepaTopami, Ha
KOTOpHIe 0GOGIEHO WM3II0KeHue.
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