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Ч Е Х О С Л О В А Ц К И Й М А Т Е М А Т И Ч Е С К И Й Ж У Р Н А Л 
Математический инстит/ут. Чехословацкой Академии наук 

Т. 7 (82) ПРАГА 30. IV. 1957 г., No 1 

DIRECT DECOMPOSITIONS OF LATTICES, I 

OTOMAR H A J E K , Prague. 

(Received October 31, 1955.) 

ТЫв article contains the foundations of the algebraical theory of 
direct and subdirect decompositions of lattices and rings. Except for 
theorem 14 and most of theorems 2 and 3, all non-trivial results are new. 

We shall, in general, use the notation of LT, with some exceptions. (LT 
means G. B I R K H O F F , Lattice Theory, 2nd. ed., New York, 1948.) In lattices, 
a is the set of x ^ a, a the set of x ^^ a, (a, 6) the set (interval) of a ^ x <^ b; 
x' is the complement of x even if not nnique, x"^' the pseudocomplement. I n 
the general case, u , n and с are set-joins, meets and inclusions, reserving 
V, Л and ^_ for the lattice-operations; ô is the Kronecker delta: 

,,u f 0 if a Ф & , ,.. f 0 if a: non e A 
"* [I if a = h "^ \I if xeA 

=> is implication; * in the text means end of proof. ' 'Homomorphism" alwaj^s 
means lattice-homomorphism. 

For most of the elementary definitions use LT. 

1. Preliminary notions 

Definition. / / S^ {aeA) are abstract algebras of the same type with oc-ary 
operations Z, then Pâ Ŝ a ^̂  ^^ß abstract algebra (direct product) consisting of all 
maps 

\Xa\a ' Ä. -> Ußa w i t h Ж« € Ä^ , 

with a-ary operations I^ti^lla = l-^b^lla • (^^^ ^ finite A we shall, of course, 
use Si X S2 X ... X Sn, [Xi, . . . , Xn], etc.; also, often, [Xa] instead of [Xala-) 

Definition. S = PaSa, 'read as " S is {decomposable into) the direct product of 
Sa's", means that there is an algebraic isomorphism^ between S cmd Pa^a^ 



We do make an unlawful use of the equality sign here; but note that it is 
only in definitions that the equality sign between an algebra and a direct 
product is really justified — in such cases we shall use ==. Similarly we write 
X = [Xa] for ''x corresponds to |>'al", usually adding ''in Pa^a'l thus if we 
have two direct decompositions in which x = [х^] and x = [y„] respectively, 
then Xa + у a is usually true. 

By definition, S^ X Äg == S2 X AS\; and Pb^si^aeA^ab) "= ̂ ceo^c with С con­
sisting of pairs [a, b] лvith a e A^. Thus direct products are commutative and 
associative. 

Definition. S <I PgSa read as '\S is (decomposable into) the subdirect product of 
S^'s" means that (a) there is an algebraic isomorphism between S and a subalgebra 
of PaSa, and (b) to every b € A and x € S^ there is an [Xa] e S with Xj, = x. 

Note that again S ^ Р^в^ь, ^ь й ^аеЛь^аь imply S ^ РьеВ^а.Ль^аь; and 
Sb ^ РаеА'^аь impMcs PbeßSb ^ ^aeAi^beB^ab) (read carefully: subdirect product 
of direct products). But S ^. А\ X S^ X /Sg does not imply S ^ S^ X (S2 X S^); 
e. g., for lattices, 2 ^ 2 x 2 x 2 * ) (the isomorphism is x -> [x, x, x], while 
2 non <̂^ 2 x 4 . Note also that S^ ^_ S2 means S^ = 82, since S2 = S2 X 1, 
where 1 is the one-element algebra (if it exists). 

Obviously, there is an intimate connection between lattices (and generally, 
algebras) and their direct decompositions. Thus if i = Pa^a, then L has / if 
and only if all L^ have / , L is distributive if and only if every La is such, x = 
= [Xaj is complemented if and only if every x^ is complemented, and then 
x' — [x'^], etc. Equally obviously, not all of this is true for subdirect decompo­
sitions. The following theorem is therefore of some interest. 

Theorem 1. Let L ^ P^i« with lattices L, L^. Then if L is modular, so are L^; 
if L is distributive, so are L^. 

Proof. Take x, y, z e L^; there exist u, v,w € L whose a-th coordinates are 
X, y, z respectively. 

Now let L be modular and x <^ z] set щ = и h w, v^ = v, w^ = и y w; then 
Ui, Vi, w^e L and their a-th coordinates are x, y, z respectively again, and 
щ ^ w^; since L is modular, (щу v^) Aw^ = щу (v^ Aw^) :=> (x w y) Az = 
= xy (y Az)m La. 

Finally let L be distributive; then (u vv) A w ^ и У (v A w), :=> (xy y) A 
Az^xy {y Az), so that La is distributive (LT, IX, § 1, ex. 3).*̂  

2. Central and neutral elements 

In paragraphs 2 to 5 large letters denote lattices, excepting 0, / , and A, 
which shall always mean a set of indices. 

*) n is the chain of n elements. 



Theorem 3 . These properties of a {neutral) element e e L are equivalent: 
(a) for any x, y e L, the sublattice generated by (e, x, y) is distributive/, 
(b) for any x,y € L, e A {x У y) = {e AX) V (e Ay) and dually, x A {e У y) = 

= (x A e) V (x Ay) and dually; 
(c) for any x,y € L, e A (x V y) = (e AX) У {e Ay) and dually, e AX = e Ay, 

еУх^еУу::=>х = у; 
(d) e = [0^]^ under some isomorphism between L and a sublattice of ?а^а] 
(e) e = [/, 0 ] under some subdirect decomposition of L; 
(f) there exist disjoint congruence relations 0^, 0^ such that x A e0iX and 

X V e02x; 

(g) any maximal distributive sublattice contains e. 
Proo f . (See LT, I I , § 10, including exer. la.) Obviously (e) => (d) => (a) => 

=> (b); (b) :=> (c) is implicitly contained in the proof of th . 10,1. c ; for (c) => (e), 
(g) <=:> (a) see LT again (th. 11). For (e) => (f) use LT, VI, th . 9; for (f) => (b) 
note tha t x V eö^e (x V e0j^{x V e) д e = e) and similarly x A е0ф, and then 
(b) is proved directly (e. g., for the second identity x A (e У y) 0^x A e0^x = 
= X У (x Ay) 0i{x Ae) У (x Ay) and x A (e У y) 0çpc A у0ф У {x Ay) ©aC^ л e) V 
V (a? Д y); as ©1 Д ©2 "== 0, this implies x A {e У y) = {x Ae) У (x A y)),^ 

I t will be useful to note tha t the decomposition of (e) is L ^ e x e with 
homomorphism x -^ [x A e, x У e]. 

Corollary 1. Let d, e e L, d neutral. If e satisfies the identities of theorem 2 (b) 
whenever either x, у ^ d or x,y ^ d, then e is neutral. Such is the case when 
either 

(a) e = d, e=: d {isomorphisms), or, more generally, 
(b) there exist homomorphisms f, g taking d into e such that d, respectively d^ are 

the images of sublattices. 
Proo f . If (b) holds and x, y ^ d, then 

eA{xyy) = fdA{fuy fv) = f{d A {u У v)) = f{d Аи)У f{d Av) ^ 
= {e AX) У {e Ay) 

and dually, and similarly for the second identity; and for ж, у ^ d. 
Now let x,y € L and use the decomposition of L corresponding to d by th . 2, 

(e). Then 
e A {x У y) ^ [e A d, e У d] A {[x A d, X У d] У [y A d, у У d]) = 

= [dACA {{x Ad)y {y Ad)) , {d У e) A {x У d У у У d)] = 
= [dA e A {{x Ad)y {y Ad)) , {d A {x У d У y У d)) V 
V (e Л (x V й V I/ V d))] 

since d is neutral, 
== [^ Л ((e Ax Ad)y {eA y A d)), d У {e A {x У d)) У {e A {y У d))] 



since X hd,y hd <^d '^x У d,y У d, 

•= [d Л ((e л ж) V (e A y)), dv {eAx) V (eAd) V (eAy) У {eA d)] -

== [d A ({e Ax) У {e Ay)) , d V (e Л a:) V (e Л у)] = {e АХ)У (e л у) 
and dually; similarly x A (e У у) ^ {x л в) V (a; л ?y) and dually.* 

Corollary 2. If d, e € L and both satisfy the first identity of th, 2 (b) and its 
dual, then <e л d, e> = (^d, e У d}. 

Proof . The mapping /, fx = x У d, takes <e д d, e) into {d, e V d}; with 
our assumptions, / is homomorphic. If we set gx = x A e, then g takes {d, 
e V dy into <(e A d, e> and д'/.т = {x У d) A e = (x A e) У (d A e) = x whenever 
e Ad ^ X S: 5̂ so tha t / is 1 — 1 onto. * 

Theorem 3. Let L have extremal elemeMs, Then these 'properties of a (central) 
element e e L are equivalent: 

(a) e is neutral and complefnented; 
(b) e 9̂ complemented and for all x e L, x = (x A e) V (^ A e'); 
(c) e is pseudocomplemented and for all x e L, x = (x A e) V (a: A e"^); 
(d) e = [/, 0 ] under some direct decomposition of L\ 
(e) there exist disjoint congruence relations 0^,0^ and an d e L such that 

e0J, e0ß and d0jO, d02l; 

(f) a7iy maximal Boolean suhalgehra, containing the extremal elements of L 
contains e also. 

Proof . Most of the proof is in LT, I I (corollary to th . 10, exer. a) in § 8). 
(b) => (c) obviously; conversely, setting x = / we obtain e V e* = / , so tha t e^^ 
is a complement — now (c) reduces to (b). (a)<==>(e) obviously. The proof 
of equivalence of (f) follows the lines of th. 11 in LT, I L * 

I t will be useful to note tha t the decomposition of (d) is L = e x e' with 
isomorphism x ~> [x A e, x A e/]. 

Note also tha t (1) a pseudocomplemented neutral element need not be 
central (e. g. in uncomplemented finite distributive lattices), and (2) the set-
-product of ай the maximal Boolean subalgebras may be void — e. g. in 
4 Ф 1 ^ __̂  while central elements exist — 0,1. 

The decompositions of th . 2 (e) and th. 3 (d) we shall name corresponding to 
the neutral or central element e. 

Under lattice-homomorphisms onto, neutral elements go into neutral, 
central elements into central; this is implied by th. 2 (c), th.3 (a) respectively. 
More precise results are given in th . 9 and 10. 

Let N-f^ be the set of all neutral elements of L, Gj^ the set of all central ele­
ments of L (=== center). Then Nj^^^^ =: Nj^ X N^^, Cj^^j^^ == Cj^ X C^^. (This is 
implied by th. 2 (c), th . 3 (b) respective^.) If Ж is a sublattice of L, Ж n Nj^ с 



с Nj^.^] if even extremal elements in L, M coincide, M n Cj^c 6\^, (This is 
implied by th. 2 (a), th . 3 (a) respectively. See also th . 11.) If e is central in 
L and a ^_e ^ . 6, then e is central in <(a, 6>. (e is neutral in <(a, &), and has 
a relative complement there: аУ {Ъ he').) 

Every element of a distributive lattice is neutral; every element of a Boolean 
algebra is central; and conversely. One of the minor objects of this article is 
to examine which properties of distributi\^e lattices and Boolean algebras can 
be "localised" to neutral, respectively central elements. 

3. Factor isomorphismj the imicity theorem 

Theorem 4. Let d, e e L and let Ai (1 ^ i <^ 4) be disjoint] let L <^ ^i^i^J'tay 
a с A i 

under which d = [^^'^^''], e = [c^f'""^'] (a e U i ^ ^ ; (^"^d also L £, Р^Ж,-, under 
which d'^ [/, / , 0 , 0 ] , e =- [/, 0 , / , O]. Then Jf, <. ?a.A,Lia for 1 -£ г <! 4. 

P r o o f . Write corresponding elements under the sets they are contained in: 
^лМа X P^JL^a X ?^L^a X ?^^L^, , L , M,_ X M^ X Ж 3 X Ж ^ . 

Take any x e M^. There exists an a e L with 

I |.'Гд|, I j^aJ, L*̂ aJ? L^aJJ ? ^' L'^' -^г? «̂ З? ^ d • 

Set fx =: [o;^]; then / is single-valued, since if 

WÂl [Âl \АЪ \АЪ Ь [>, z^, 2̂ 3, z^] , 

t h e n 

t [ 4 l , [Ö], [0] , [OJ] a л Й л e [о;. О, О, О] , 

and 

[ Й ] , [О], [О], [О]] è л (i л в [х% О, О, О] , 

so tha t (reading from right to left) а л й л в = о л с ? л е , => [irj] =: [г^]. Ob­
viously / is homomorphie, lîx ^ y in Ж^, then for some с e L 

с [^, ^2, t/з, ^4] 

with a Ad A e Ф с A d A e, implying /x Ф /^. Obviously then Ж^ f̂  P^ Z/̂ ^̂ . 
Similarly, for i > 1 Ж ;̂ ^ Pj .î ^«, paralleling the above proof and using in 
turn, instead of a A d A e, the elements {a Ad) V e, (a л e) V d, a V e V {̂ .* 

Note t ha t if the first decomposition is i ^ {f^^^L^j) x P̂ 4.,l/2a X Pj,L^a X 
X P^ l̂/4(̂ , then we can conclude Ж^ = Pj^^L^^. 

Theorem 4 is easily generalised to n neutral elements ê ,̂, grouping the former 
direct decomposition into 2'^ subgroups; but the conditions become too com­
plex. 

A special case (e = d, L^a = L^^ == 1) of th . 4 is the following. 



Theorem 5. (Unicity theorem.) If L^ x L^^^ L ^ M^ x M^ and e = [/, 0] 
in both, then L^ = M^, L^ = Ж2. 

Note that Avithout some condition such as that on e no conclusion of the 
above type can be reached, not even LxM = LxN=>M = N. E. g., 
if B^ is the Boolean algebra of (countably infinite) stationary sequences of 
0, / , then B^ = B^ X 2 == B^ X 4, etc. 

Corollary. If e € L is central, then e = e/, e — e\ 
Proof. Use the decompositions of th. 2 (e), th. 3 (d) (namely, e x e and 

e X e') and the unicity theorem; dualise.^ 
This generalises the theorem stating that Boolean algebras are self-dual. 

More precise results are given in the corollary to th. 15. 
For lattices L , M we could define LjM thus: M = e for some neutral 

ее L, and then Ь/Ж = N if L ^_ M x N. Then N is uniquely defined (by 
th. 2 (e) and the unicity theorem, N = e), and if L = L^, Jf = M^, then 
L/M = L^/Mj^. In this manner we could develop the theory of factor lattices; 
many of the theorems on factor groups also hold for factor lattices. 

4. Complementation, homomorphisms^ associativity conditions 

Theorem 6. / / i ^ Ж x N and e = [I, 0] e L is complemented in L, then L = 
= M X N under the same hom^omorfhism. 

Proof. As e is complemented, L must contain extremal elements; then 
31 X N has extremal elements also, and they must coincide with those of L; 
then, finally, e is complemented in Ж X iV̂  and e' = [0,1] e L. If [x^, Xg] e 
e M X N, there exist u, v e L such that и =^ [x^, U2], v =^ \v^, x^^, and then 
[x^^ x^^ = [x^, 0] V [0, X2] = (u Ae) У {v A e') e -L. * 

A weaker form of theorem 6 follows from theorem 5: L ^ e x e = e x e' — 
= L, but the homomorphism is not the same. 

We used the term corresponding decomposition, whether the element was 
central or only neutral. Theorem 6 justifies this. 

Theorem 7. The complement of a central element e is unique, and is an ortho-
complement in the following sense: if x e L and an x' exists, then {x Ae)' = x' У e' 
and dually, e" = e. 

Proof. Use the direct decomposition corresponding to e. If d = \u, v\ and 
й л е = = 0 , dy e=: I, then 0 = [u, 0], I == [I, v], so that d = [0,1] = e'; 
this is unique, and e" = e. 

Now assume that x' = [u', v'] is a complement of ж = [и, v]; then x' У e' = 
= [и', I], X Ае = [и. О], so that [и\ I] А [и. О] = О, [и', I] У [и, О] = I. 



Conversely, if [r, s] is a complement of x Л e == [u, O], necessarily r AU = 0, 
r V и = I, s = I, so t ha t [r, v'] is a complement of x and ([u, v] A e)' = 
= b% ^'] V e'. Dualise. * 

Theorem 8. The complement of a central element e is a pseudocomplement, and 
is an orthopseudocomplement in the following sense: if x e L and x^ exists, then 
[x A e)* = x^ V e' and dually. 

P r o o f . Use the direct decomposition corresponding 
to e. Let X = [Xj^, X2], y = [уг, y^l- First, :r л e = 0 <==> 
<=r> î i = 0<==>a? ^ e', so tha t e' is a pseudocomple-
ment. Kote t ha t the coordinates of a pseudocomple-
ment are themselves pseudocomplements; i. е., a;* = 
- \xt, xtl Now 

у A X A e = О о y^ A Xi = 0 <=> y^ ^ Xi <=> у ^ x"^ У e', 
у A {x V e) = 0 <=>y AC = 0 = у AX <=> 

<=> У1 — О and У2 ^ X2 <=> У ^ x"^ A e' ."̂  

Theorems 7,8 generalise the theorem stating the comple­
mentation in Boolean algebras is orthocomplementation. 

Note tha t if a neutral element e is pseudocomplemented, then for all pseudo-
complemented x e L, (x V e)* = x^ A e^ (for у A {x У e) = 0 <=^^=>y A e = 0 = 
= Î/ A a; <= => X* ^ ^ ^ e* <= => 1/ ^ a;*̂  Л e*), but tha t {x л e)* == ж* V e*, 
e**̂  = e need not hold. E . g., in the lattice of fig. I . 
we have {x A e)^ = 0 * = / , ^'^ V e* = e V a: — d, and c?** =z 0^ ~ I. 

Theorem 9. If L ^ If x N corresponding to the neutral element e, and h 
maps L homomorphously onto K, then there*exist lattices R, S and homomorphisms 
/, g such that: f{g) maps M(N) homomorphously onto R(S), and К ^ R X ^^ 
[Д g] e = [I, 0 ] , [/, g] is an extension of A, if h is an isomorphism, so is [/, g]. 

P r o o f 1. For X = [Xi, X2] € M X N set fx^ = h{x л e), gx2 = h(x V e), i î ^ 
EÊ  fM, S = gN. (Note tha t x Ae e L, for there exists an ^ == [x^, v] e L, and 
then X A e = [Xi,0] = y Ae e L; similarly x V e e X.) Obviously /, g are homo­
morphisms. 

2. Prove tha t К is isomorphous to a sublattice of R X S: for ^ e К choose 
X € L with hx = I, and set 9?! = [h{x л e), h(x У e)] e R X S (obviously, if 
hy = ^ = hx, then h(y A e) = h{x л e) and dually); so tha t 99 is a homomorphism 
into R X S. Now, if [a, b] e q)K, t ake x e L with a = h{x Ae), b = h{x V e), 
and set гр[а, Ъ] = hx. To prove tha t yj is univalent, note tha t h{x л e) = 
= h{y A e) and dually implies 

hx = h{x А{хУ e)) == hx A h(x У e) = hx A h{y V e) = h{x A (y У e)) = 
= h(x Ay) У h(x Ae) = h(x Ay) У h(y Ae) = h{y л (a: V e)) = 
= % Л h(x У e) = hy A h{y У e) = h{y A (y У e)) = hy . 



Now obviously f <pf == i:^ i, е., cp has an inverse, and is an 1 — I homomorphism 
( in toE X S). 

3. Prove К £:, M X S. Take a e E, so tha t a = Цх A e) for some x € L; 
setting I = hx, b ==: ц^ у ,̂)̂  ^.^ have [a, b] = (p^. 

4. Finally, for x ç £ ^^e obviously have ^[^1^2] = <p"'̂ [/̂ i5 9^2]'^ thus [/, g] 
is an extension of h. Obviously Ц1, O] =^ qr^I, 0 ] . * 

Tlieorcni 10. / / L =:= M x N corresponding to the central element e, and h 
7пщ\я L howimnorphously onto К, then there exist lattices B,, S and hommnorphisms 
/, g such that f(g) mups M{N) homomorphously onto R{S), and К = R x S, 
[/' 9] e ^̂-̂  [/? ^ ] ' I/' 9̂ ] is ö''̂  extension of h, if h is an isomorphism, so is \f, g]. 
This follows from theorems 9 and 6. 

Theorem 11. / / d is neutral (central) in L, and e f£ d, then e is neutral {central) 

in d if and only if it is such in L. 

Proo f . Obviously, e neutral or central in L => e neutral, respectively 
central in d. Conversely, we have L ^^ d X d, d !̂̂  e x <e, d}, so tha t L ^ 
5>_ e X <e, d} X d; in this decomposition, e = [/, 0 , 0 ] ; use theorem 2 (d). If 
e, d are central, the preceding decompositions are direct (theorem 6) and 
L =-- e X « e X d) X d) with e = [I, 0 ] . * 

An alternate direct proof utilises only th . 2 (c) and th . 3 (a). Corollary 1 to 
theorem 2 is an interesting counterpart. 

Theorem 12. / / for three different a\s L <l (P^,^^if,) x La under the same iso-

TYhorphism, then L -~- Pj_La. 

P r o o f . Take [Xa\ € P^i«- There exist a^ e A, y„. e L^., z^ e L (i = 1, 2, 3) 

such tha t «1 Ф «2 + ^̂ 3 + 1̂5 ^^d 

^ 1 ""^ L • • • t/ai^ ^^ay? ^ag? • • -J > Z2 = [ . . . Д^а^, Уа,^у ^a^, • • -J ? ^g = - - [ • • • ^a^^ ''^a.^ Уа^^ • • -J ? 

(this notation is perhaps obvious; only the a,-th coordinates are written out; 
all other &-th coordinates are x^). Now set 

u-^ = z^h (̂ 2 V 2:3) = [... ?/,,̂  Л .X,,,, Xa^, a;«,̂ , . . . ] , 

and cyclically. Then Uf с Ь , and also 

ЬВЩУ (ЩА Щ) = [... X^^, Xa^, Xa.^, . . .] = [Xa] ^ 

Care must be taken to interpret ' ' the same isomorphism" strictly; so as to 
exclude cases such as 4 ^ (2 x 2) x 2, 4 <;̂  2 x (2 x 2). 

Slight generalisations of the above proof yield 
Theorem 13. / / L ^ (Pa^^X«) X ^аел^л^^а X Рьев^ь with г -= 1, 2, 3 under 

the same isomorphism, and also — Ai с Aj n Aj, /or г Ф ;/ Ф fc Ф г, ^^- Ф 0, 
thenL£{P^,L,) X Pj,M,. 

The conditions — AiCA^nAj^ are equivalent to A^D — A^, — ^ з С 
с J.1 n J-g. 



5. The factor-theorem s 

Theorem 14. (Birkhoff factor-theorem.) / / L is a lattice with 0,1 and Р^^Ж« = 
z:= L =z Pj^^Nb, then there exist lattices Lab for [a, b] e Ai X A^ such that L '^• 

This is theorem 7 in LT, I I . 
The factor-theorem yields many elegant proofs. E . g., to prove tha t the 

center of a lattice is a sublattice (this is of course implied byth. 2 (f)), take 
central elements e, d and the corresponding direct decompositions L = M^ x M^ 
L =^ N^ X N^. Using the factor-theorem, there exists a direct decom­
position L = jLii X i>i2 X -Lai X 1/22 such tha t M-^ = L^^ X -L12, M^ = ^21 X 
X 1̂ 22, ^ 1 = ivii X L^i, iVg = i i 2 X 1̂ 22' Now, as d = [/, 0 ] in M^ x M^ 
and e =: [/, 0 ] in N^ X N^, we have d = [I, I, 0, 0 ] , e = [/, 0 , / , 0 ] in L ^ x 
X i i 2 X i g i X 1.22, SO tha t dy e = [IJ, I, 0 ] , dhe= [/, 0 , 0 , 0 ] . Thus, 
for example, d^ e •= [/, 0 ] in ( i n X i i a X ^21) X ^зг = 1̂? ^^d is therefore 
central. 

We shall generalise the factor-theorem in tлvo theorems; one is the following 
th . 15 and the other is in the second article of this series. 

Theorem 15. / / L ^_, M^ x. Ж2 corresponding to d and L ^ N^ x N^ corres­
ponding to e (d, e neutral), then there exists a subdirect decomposition L <I L^^ X 
X L12 X £'21 X i>22 «̂ гбСА that 

^1 й -^11 X i i 2 , M^ £ /^21 X 1̂ 22, -^1 £ L^l X iv2i , N^ £ i i 2 X £22 . • 

and that d =^ [/, / , 0,0], e == [/, 0 , / , 0] in the third decomposition. 

Proo f . By th . 2 (g) e V d and e A d are also neutral; by th. 11 e is neutral 

in e У d, e A d is neutral in e. Using th . 2 (e) thrice, we have L £ e У d X e V d, 
e У d £ d X (d, еУ d}, d £ e Ad X {e Ad, d}, so tha t L £ e Ad X <e V d, 

, dy X <^d, еУ dy x e У d with the homomorphism fx = \xAeA d, {x У e) Ad, 
(x Ae)y d, хУ eyd]. Thus fd = [e A d, d, d, e У d] = [I, I, 0, 0 ] , /(e) -
== [eAd,eAd,eyd,e yd] = [I, 0,1, 0]. Using th. 2 (e) again 

M^ = d £ e Ad X (^e Ad, dy under g^x = \x A e A d, x У {e A d)] , 
-̂ 2̂ = ^ ^- (Л^ e у dy X еУ d under g^x --^^ [x A {e У d), x У e У d] , 
^1 = ^ ^ ß A <̂  X (^d, e У dy under h^x = [x A d, x У d] , 
^2 =" 5 r^ {ß Л d, dy X e У d under /^2^ '=' \ß Ad, x У d]. ^ 

Corollary 1. / / d, e are central in L, then 

<0, d' A e> --- (d' A e', d'y = (d л e\ {d У e) A {d' V e')> - - (d л с, e> -
- <e', d' y c'y - Ф л e) V {d' A e'), d' V e> = 
= (d, d y e> =- (d' y e\ J> . 

Taking d <I e, we have <0, d/ Л e> = <e', d'y = <d, e> = <d V e',, /> . 



Proof . In the decomposition constructed before th. 15 rl == [/, i , 0 , 0 ] , 
e = [/,.0, J, 0 ] , so tha t , e. g., <0, d' Ae} = <[0, 0 , 0 , 0 ] , [0 , O, / , 0]> -^ i^ i , 
<й' л e/, d'y = <[0, 0 , О, / ] , [О, О, / , i]> - : i g i , etc. If d £^ e, then L^^ = t.* 

Corollary 2. / / d is central and e neutral in L, then 

(0, d' Ae} = (d, d V e> and <e Ad,d} = (d/ V e, /> . 

P roo f . Under L ^ d Ae x {eAd,d} X <й, й V e> x ^ Ve we have й = 
= [/, / , О, О] and e = [/, О, I, О]. Since d is also central, L ^ d' he X 
X <e л d', d'> X id', d' V e> X d' V e, under which d' -= [/, / , 0 , 0 ] , e == 
= [/, O, / , 0 ] so tha t d = [0 , 0 , / , / ] . Rearranging the last decomposition, 
L ^ <d', d̂ ' V e> X (1̂  Ve X бГТе x <e л d', d'>, under which d = [/, / , 0 , 0 ] , 
e = [/, 0 , / , 0 ] . Using factor isomorphism (th. 4), we obtain 

<0, dAey-= <dt', d' V e> , <e A d, d} = (d' V e, /> , 

<cl, dvey = <0, d' л e> , <d V e, 1> - <e л d', d'y :'' 

These two corollaries have some interesting consequences in the lattice-
theory of projectivity. E . g . , projective intervals with neutral end-points are 
isomorphic. 

6. Application to ring theory 

I t has long been known tha t there is come connection between ring theory 
and lattice theory; this is suggested, for instance, by Stone's theorem on 
the correspondence between Boolean algebras and Boolean rings, and Нелу-
man's system of axioms common to Boolean rings and Boolean algebras. 

Here we a t tempt to extend the connection to general lattices and rings. 
We shall not be concerned with the apf)lication to ring theory of facts, bu t 
only of the ideas and methods underlying the preceding sections. The treat-
ement of the subject follows Stone's notions ra ther than Newman's . To a certain 
extent, we examine the consequences of the definition of the center of a ring 
(this is Boolean ring, bu t not a subring), paralleling the definition of the center 
of a lattice (this is a Boolean subalgebra). 

In this paragraph, large letters always denote rings (not necessarily associat­
ive). 

Definition. Define a cross-ordering ;^ in R thus: x ^y whenever xy = yx = x. 
Elementary c o n s e q u e n c e s , ^ i s antisymmetric and transitive, and is 

reflexive only on idempotent elements. 0 ^ x, and x ^ 1 if 1 exists. If x, y, z 
associate, ^ ^ ^ ^ 2: => a: ^ ^;г, У ^ ^ ^ ^ ^^У -{- ^ ^^^У Л- ^ -~ У^- If 
x\ z commute and x, y, z associate, У ^_ ^ '=>yz ^ x ^zy. у ^ x :=> — у ^ x 
and ny ^x for integral n. If R ^U x V (subdirect decomposition), then 
[^ъ ^2] й. ij/i^ У2] <='=>^iuyi and x^ й 2/2-
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If R has 1 and ring operations x + y. xy, let dual R be the same set, with 
(ring-) operations x -\~ y = x -\- y — I, x . y = x + y — xy. Then dual R is 
a ring, the zero and unit of dual R are 1, 0 respectively, the inverse element is 
-^~ X = 2 — X, substraction x-^y = x~~y-\-l. As can be shown directly, 
x^y=:x-\-y,x:y = xy, so tha t dual dual R ^^ R. Also dual R =: R, with 
isomorphism x -> I — x ("dual automorphism", ' ' involution"), x idempotent 
in R <==>x idempotent in dual R; x, y commute in R <=> x, y commute in 
dual R] X, y, z associate in R <=:=>x, y, z associate in dual R. x "^y \iiR-^^=> 
<==>«/ ^ :r in dual R. x central in Л <= => a; central in dual R\ centers of R and 
dual R are dual. Thus the definition of dual rings is natural and (dual R = R) 
uninteresting — as in Boolean algebras. 

Theorem 16. These froferties of a {central) element e of a ring R are equivalent: 
(a) e is idempotent, for all x, у e R: x, e commute, x, y, e associate, 
(b) e = lôf]a under som^e subdirect decomposition of R, 

(c) e = [1, 0] under some direct decomposition of R, 

(d) there exist disjoint congruence relations 0^, 0^ such that for all x e R: 
ex0^x0^xe , e02O. 

In commutative associative rings of characteristic 2, properties (a)— (e) are 

equivalent, where 

(e) every maximal Boolean subring containing 1 contains e also. 

P roo f , (c) => (b) obviously, (b) => (a) directly. Prove (a) => (c): For xeR 
set fx = xe, gx = X — xe. Then /, g are homomorphisms onto subrings U, V; if 
xe = ye, X — xe = y — ye, then x = y, во t ha t x -> [fx, gx] is a I — 1 homo-
morphism into U, V. For any [x,y]€U x V t ake z = xe -{- у — ye e R; then 
ze = xe, z -— ze = у — ye, so tha t the homomorphism is onto U x V. Finally, 
fxfe = xeee = xe == fx, ge == 0, so tha t e -> [1, 0]. Note tha t U is the subset 
of a; ^ e and F the subset of all x with xe = 0, and both are ideals. For (c) => 
=> (d) set [xi, X2] 0г{Уъ y^z\ if and only if Xi0iyi {i = I, 2); (d) => (a) is proved 
directly. To prove (a) => (e) note tha t if JB is a Boolean subring with 1, then the 
subring generated by e, В consists oî ex -{- у with x,y € B; this is Boolean, so 
tha t e € Л if 5 is maximal. Conversely, in the special case of (e) there exist 
maximal Boolean subrings with 1; then e is idempotent, so tha t (a) holds.* 

If JÎ has 1, condition (d) is much simpler: eo^l, eög^-

Note tha t if R has 1, then 1 — e is an associated divisor of zero (the least, 
in the cross-ordering), and 1 — e = [0, 1] in the decomposition of (c). Thus 
decomposable rings with 1 have zero-divisors. But there exist indecomposable 
rings with 1 and non-trivial zero-divisors, see 2. in the following paragraph. 

Theorem 17. If U x V > R £W x Z and e = [1, 0] in both, then U = W, 
V = Z. 
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The p r o o f folloAVs tha t of th . 5., using ae, a + e — ae instead of Ö̂̂  Л e, 0 V e 
respectively. 

Theorem. 18. / / В ^ Ü x F and e = [1, 0] e B, then В = U x V under the 
saws homomorphism. 

Proof . For [x, y] eU X V there exist \u, v] eU X V such tha t [ж, v] e В 
and [u, y] € B. Then also В э [и, у] + ([x, v] — [и, y]) [1, 0] = [x, y]. * 

Theorem 19. / / В = U x V ivith e = [1, 0] and if h maps В hoînomorphously 
onto s, then there exist rings W, Z and homomorphisms f, g such that f{g) maps 
U{V) homomorphoitsly onto W{Z) and S = W X Z, [/, g] e == [1, 0], [/, 9] i^^ 
an extension of h, if h is an isomorphism, then so is [/, g'\. 

The p r o o f follows the lines of tha t of th . 9, using/2; = h{xe), gx = h(x — xe). 

Theorem 20. / / d is central in В and e <^ d, then e is ceritral in d if and only 
if it is such in B. 

This follows immediately from th. 16 (c). 

Theorem 21. / / В is a ring with 1, and if ?^JJa. =̂̂  В = PßVb, then there exist 

rings Bab {{f^i Щ ^-^1 X A 2) such that 

P r o o f . S e t Ca --= [^ r i ieJ i i n P^Pa, db = [ôtïuA^ i n P^Jb, fab = ^adfj, I^ab = fab 

(in B), Then x -> [xfablafi is a homomorphism into ^Aiy-Aj^ab- I* is 1 — 1. since 
if xfa-b '=-- y fab f̂ ^ ^^ ^' ^' then xCa = ус^ for all a (since {{xe^j) d^l^y = [(у^^а) ^ь]ь 
in В = РА-2^Ь), and then x = y (since {xea]a = [у('а]а in В =-- Pj^î/«). The rest 
is ob\dous.'^ 

Note t ha t the center ( = set of central elements) of a ring is generally not 
a subring; if В has 1, a necessar}^ and sufficient condition is 2 == 0. But it is 
a Boolean ring under these ring operations: sum x -{- у -— 2xy, product xy. 

Associative rings are a special case of commutative groups Avith endo-
morphisms. This suggest another generalisation of central elements. 

Let ^ be a set of endomorphisms of an additive abelian group G. И A, G 
are subdirectly factorisable into A^ x A 2, G^ x G2 in such a manner tha t 
[c^i, Äglfĵ i, X2] = [ ^ A J «̂ а̂ г]? and if o) € A is such tha t œ = [I, 0], then m is 
idempotent and commutes with all л e ^ . 

Conversely, let m e A commute with all oc e A and be idempotent. Let В 
consist of 1 and all endomorphisms Z^e^a^-, where a^eA and e, = zb 1 ((^1^г^г)(^) 
is defined as ^'^^^(л, x); since G is Abelian, this is an endomorphism). Then В is 
an associative ring containing A, and OJ commutes with all elements of B, so 
tha t (th. 16 (c)) J^ is directly decomposable into B^ x В2 in such a manner 
tha t CO = [1, 0]; in this decomposition a goes into [ojoc, (1 — со) a], G is also 
decomposable, x <—> [cox, (1 — м) x]. 

If oc = [oci, a2] € A, X =: [Xi, X2] € G, then 
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[(%!, ^2][^i, x^] = [coa, (1 — ш) ix][oiX, (1 — ш) x] = [ojax, (1 — со) ax] = ax , 
The decomposition of G is direct: if [u, v] e G^ X ög, then t̂  = mx, v = y — my 
for some x, y e (?; then taking z = y — ojy -\- cox e G, we have coz = u, z — 
— a)z = V, => [u, v] € G. The factorisation of A is of course only subdirect; 
it is direct if A is a ring, or if ш = l or ш = 0. 

7. Examples 

1. Let Dn be the (commutative and associative) ring of n-vectors with 
numerical coordinates. Then 

X € Dn is central if and only if each coordinate is 0 ot 1. 
Thus there are exactly 2?^-direct two-factor decompositions, of which exactly 

Пг I are non-trivial nonisomorphic, i. е., i \ = 1)^ X I^^k-

2. Let Bn be the (associative) ring of n x n matrices with numerical coeffi­
cients. Then En is directly indecomposable, since the only commutative 
matrix is Д/, and this is idempotent only for Я = 0, 1. (Let ||й,^|| be a commutat­
ive matrix, and set ж̂^̂  = ôl; then U,\dix . ^̂ ДА; = ^л^лк^гх is О = d^,j^ for к Ф v, 
and da = d^,, for к = v.) 

3. Let T be a topological Tj-space. Let Lrp be the lattice of its closed sets 
(cf. LT, IV, § 2). Let Erf be the ring of continuous real functions on T (cf. 
LT, V XI , § 4). Then Lr^ is complete and distributive, so tha t using th . 3 (a), 

X € Lrp is central if and only if it is closed and open. 
Ej^ is commutative and associative, so tha t central elements are the idem-

potent elements (th. 16 (a)); as the x e Erp are continuous, 
X e ЕгрШ central if and onty if it is the characteristic function of some closed 

and open set. 
Thus central elements of Lrp, of Erp and the closed-open sets of T correspond. 

Finite direct multiplication (of Lrp or .R^) corresponds to the seldom used 
operation of topological addition. The factor-theorems have an interesting, 
though triлdal, interpretation in T. Note also tha t conversely, if i is a complete 
distributive lattice with 0 , / , then with M-closure, L forms a topological space 
T and LJ = Lrp. 

4. Let X be a linear space and L the set of its endomorphisms (linear maps 
into itself). Then 

ж e -L is central if and only if a; is a commutative projection. 
I t is interesting tha t for normed linear spaces and closed (but not neces­

sarily commutative) projections, some of the results of 6. are well-known. (E. 
g., t h a t X -\- у — xy Ш d^> projection whenever x, у are projections and com­
mute.) 
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5. Let i? be a set of real functions on (— oo, + oo), with x + y,xy € R when­
ever X, y € R {{x -\~ y)t = xt -\- yt, {xy) t = x{y{t))). Then the idempotent 
elements of R are constructed thus. Take a set X, and for t e X set et = t, 
for t non e X choose et arbitrarily in X. Obviously e is idempotent, and all idem-
potent elements of R are of this form. Now, if R contains a constant, c, 
and if an idempotent e is central, it must commute with c; this implies ceX {xc = 
z= {xc) t = (ex) t = c). This will help us to construct an R лvith non-trivial 
central elements. 

Define et: for rational t, et = t, and et =^ 0 otherwise. Let R consist of all 
functions of the form ml + ^^ with m, n rational. Then R is obviously closed 
imder addition; and the superposition of x, y € R is 

(ml + ne)(pl -\~ qe) = mpl + mqe -f- n(p ~{- q) e 

since e(pt -f- qe(t)) = (p ~{- q) e(t) for rational p, q; and this implies that R is 
commutative. The central elements of JS are / , e, I — e, 0. 

Резюме 

ПРЯМЫЕ РАЗЛОЖЕНИЯ В СТРУКТУРАХ 

ОТОМАР ГАЕК (OtOmar Hâjek), Прага. 

(Поступило в редакцию 31/Х 1956 г.) 

В статье изучаются алгебраические свойства центров и нейтральных эле­
ментов структуры и соответствующих прямых, соотв., полупрямых раз­
ложений структуры. На втором плане стоит задача исследовать такие 
свойства булевых алгебр, которые могут быть ,,локализированы'' на от­
дельные элементы структуры. 

В § 2 подробно разбирается определение центра и нейтрального элемента 
и выводятся некоторые простые следствия этих определений. В § 3 дока­
зывается теорема об изоморфизме множителей двух полупрямых разло­
жений структуры (теорема единственности). 

В § 4 исследуется дополнительность центров и нейтральных элементов 
(орто- и псевдо-дополнительность); изучается прямое и полупрямое раз­
ложение при гомоморфизме; наконец, выводится одно интересное условие 
для того, чтобы полупрямое разложение было прямым. 

В § 5 приводится (несколько более слабая) варианта важной теоремы 
Биркгофа об общем ,,уплотнении'' двух прямых разложений структуры, 
которая может быть приложена и к полупрямым разложениям — вслед-
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ствие получается предложение о проективности интервалов с нейтраль­
ными концами. 

В § 6 приводятся положения, аналогичные изложенной теории, имеющие 
место в кольцах; в некотором смысле дело касается разложений Пеирце. 
В кольцах нельзя отличить центры от нейтральных элементов; с таким 
положением не встречаемся в случае абелевых групп с операторами, на 
которые обобщено изложение. 
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