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Yexocnopanknii MaTeMaTH4Yecknii :xkypnaix, T. 5 (80) 1955

ON CONDITIONAL EXPECTATIONS

VACLAV ALDA, Praha.
(Received April 19, 1955.)

The paper contains a new proof concerning the sequence of condi-
tional expectations of an integrable function f on countable Cartesian
product of measurable spaces with the given probability u.

Theorem. Let (X, S) be a countable Cartesian product of measurable spaces
(Xs, 8,). On (X, 8) let be given a probability . Let f be a u-integrable function and

fn tts conditional expectation given the first n coordinates. Then lim f, = f almost
everywhere. n—>®

This theorem is demonstrated by L#vy [3] for characteristic functions;
a demostration is in Harmos [2] too. For all functions this theorem is a con-
sequence of more general theorem in SPARRE ANDRESEN and JESSEN [4]; see
also Doos [1].

For demonstration we are starting with the following
Lemma. f, is convergent to f in L™,

Proof. Let ¢ be a positive number and g a simple function with [|f — g| du <
.

<< &. We can suppose that ¢ is a linear combination of characteristic functions
of cylindrical sets.

Let g, be conditional expectation given the first n coordinates. Then g, =
= g[u] for n sufficiently large.

Let 4, = E[f,(x) — g.(x) > 0]. 4, is a cylindrical set and the definition of
z

conditional expectation gives

f(fn—*gn)du=df(f—g)dﬂ.

Ay
Similary
X_fA n(fn — ¢,) du :X~fAn(f —g)du.
Now

Tl =014 < [f —gldu+ [ |f —g|du < 3
4, . X—4,
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and hence

e —gldp < 2

x
for n sufficiently large. We have therefore

Xflfn —fldp < 3¢ q.e. d.

Proof of the theoreni. 1. We are choosing an integer m and ¢ > 0. For
£ m<i<n 4
— fml®) < — €], o= B, — U B
O, C» are n-cylindrical disjoint sets and hence
(O = [(f — ) = [(f ~ fo) du = [If — Fu] dp

T
and similarly

e w(Ch) i;é(ﬁ[\f — fol dpe .
From this
€ I”’(UC’:L) _g f\f - fm‘ dlu? € /L(UO;:) ;<; \;[U - fm} dllt .

X
Finally, we have .
€ IU‘(BM) §: 2fi.f h‘ fm” d/u’

where B,, is the set of x for that sup |f,(x) — f.(x)| > .
n>m

2. Following the lemma we can now choose m in the manner to have

iﬂf - fM1 du << §e?
and hence

;U(Bm) < e.

3. Let the subsequence {f, };”.; have the properties
“1. f,,— f almost uniformly,
2. n;, = m for e =172,
Let 6 > 0 and j so large that > i=2 < $d. Let G be a measurable set with

[y
w(@) < $dandf,,—f on X — G uniformly. Then u( U B,,UG) < d and
fn — f outside this set uniformly. >
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Pesome

VCJIOBHBIE OXUITAHUA

BAIJIAB AJIBJJA (Viaclav Alda), IIpara.
(ITocrynuizo B pegakiuio 19/I'V 1955 r.)

CraThsi COJlepsRUT HOBOE HEIOCPEJCTBEHHOe J0Ka3aTeJbCTBO TEOPEMEl, Ka-
caueiica 1MocJae0BaTeIbHOCTH YCIOBHBEIX OMUTAEeMBIX 3HAYEHUH MHTErpupy-
emoit QyHKimu f, omnpejeseHHOil Ha CYETHOM [EKapTOBOM IIPOUBBEJCHUM W3-
MEpPUMBIX IPOCTPAHCTB € NAHHOM MepOoil BepoATHOCTH u.
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