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YexocaoBankuii MaTeMaTHIeCKnii kypHad, T. 4 (79) 1954

STRUCTURAL RELATION -

VACLAV FABIAN, Praha.
(Received May 8, 1954.)
The author finds two conditions for a function C to be identifi-
able from a relation 7 = C(£) between two random variables and

studies the dependence between random variables if the observed
quantities are obtained with random errors.

1. Introduction and summary.

Let &, ~, f, X. Y be random variables and
- X = &4 «x,
Y=0C¢ +8,
where C is a function measurable in the Borel sense (further B-measurable).
(& x, B are called latent variables, X,Y observable variables, (1.1) structural

(1.1)

relation, x, f components of error.)

Under the assumption C(x) == ax + b, REIERSgL [8]') found necessary and
sufficient conditions for C' to be identifiable by knowledge of F'y ;?).

In the present paper the identification problem is studied without the
assumption that C'is a linear function. Certain knowledge of I , 4 is required:

In sections 3, 4 we suppose that F, and F, are known, that the sets
A ={t; p,(t) & 0} and B={t; p4(t) = 0} are dense in B, (by E, we denote the
k-dimensional Euclidian space) and that & is independent of ~ and of . Thus
@¢ is determined by ¢, and ¢,, for

(/)x(t) .
r t) = lf {e A R
el =)

¢ is continuous and 4 is dense. Similarly ¢ is determined by ¢, and ¢.
Hence in the sections 3,4 we give sufficient conditions for C' to be identifiable
by the knowledge of F; and Fq,.

In section 5 we suppose that F, is known, ¢,(f) + 0 on a set dense in K,
&, x, p are independent and E(f) = 0. Then F¢ is determined by the knowledge

1) See references at the end.of the paper.

2) The distribution function of a vector random variable (7', ..., T',) is denoted by

Fr,, .. r,. Similarly we use the letters ¢ and f for denoting the characteristic and fre-
quency functions respectively.
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of Iy and F,, B (Y) = E(C(&)). Hence in the section 5 we give a sufficient
condition for (' to be identifiable by knowledge of F; and B (C(&)).

In section 5 the conditions imposed on I, , and on C are cssentially less
restrictive than those in sections 3,4. But when the conditions of sections 3, 4
are satisfied, we can determine C' by ¥, and F,. which is easier than in sec. 5..
where we need the knowledge of ¥ (V).

In section 6 the results of sections 3, 4. 5 are applied to prove that (i) if
F;and F, are normal distribution functions, C' is monotone or C has a con-
tinuous derivative, then ' is a linear function (ii) if F, is normal or F, is
a Poisson distribution function, then ' is linear when and only when E ()
is linear.

2. Basie definitions and notations.

If 7 is a transformation of a set 4 into a set B, I is a transformation of the
set B into a set C, we denote by V7' the transformation of 4 into (' defined
by the relation V7'(x) = V(T'(x)) for all x € A. For M C A we denote by T(M)
the set {y; y = T'(x), x ¢ M} and by 7', the transformation of M into B defined
by T',(x) = T(x) for x ¢ M. For N C B we denote T-(N) ={z; x ¢ A, T(x)e N}.
If there exists an inverse function to the function 7', we denote it 7'-1.

A probability space (2, F, P) is a set £, a o-algebra F of subsets 4 C £
and a probability measure P on F. A random variable X is a function measur-
able (F) and defined and finite on a set 4 ¢ F, P(4) = 1. Frequently we shall
write P(X € A) instead of P(X-(4)). The d. f. FF; is defined by the relation
F (x) = P(X < x) for all real x. .

By/hdFyx we understand the Lebesgue-Stielties intergral [A dv, where
A A
(B) = P(X-1(B)) for every Borel set B. Thus if [fh dFy| < + oo, then
A
ﬂkl dFx < + . When 4 = E,, we write fh dFy ;fh dFy. If two functions
A By

h and g, defined on E, satisfy h(x) = g(z) for all x € A, where P(X e 4) = 1,
we say that b = g almost everywhere (Fx), or h(z) = g(z) for almost all x (Fx).
or write shortly & = g (Fx). If X and Y are random variables, |[E(Y)|< 4 0.
then we denote E;(Y) the conditional expectation of ¥ with respect to X,
which is defined by the relation

[ fY dpP f::fEx(Y) dFyx for every Borel set A] (2.1)
x~Y(a) 4 .
almost everywhere (F,). (See KoLmoGcorov [6], HaLmos [5] and Doos [3].)
From (2.1) it follows, that

fEx(Y) dFy — fY AP — E(Y) (2.2)

Q
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It is known that there exists a class of distribution functions {y.zFr}ees,
such that for every integrable function &

fh Ay oFy = Ex_s h(Y)) : (2.3)

for almost all x (Fx).

3.

Theorem 3.1. Let & and y) be random variables, n = C(£), where C is a non-decreas-
ing function, defined almost everywhere (F¢). Then C is identifiable by the know-
ledge of Fy and F,, 1. e., the value C(x) is uniquely determined by Fy¢ and F, for
almost all x (Fy).

Proof: For brevity, let us denote F; = F, F,,, = H. It is for all  (we can
eventually complete the definition of C' in such a way, that C remains non
decreasing and defined on E,)

E<w=>C0@¢) < Cx),
E<ax<=0(¢) < Cx)
and thus (denoting F(x — 0) = lim F(y) and similarly for H)

Yy—>T —
F(z) << HC(x), F(x — 0) > H(C(z) — 0) ;
hence
H(C(zx) — 0) <2 F(x) < HCO(x) , (3.2)
H(C(z) — 0) < F(x — 0) < HC(z) (3.3)
for all x ¢ £,.
Let us denote by B, resp. B, resp. B, the set of such @ ¢ E,, that H acquires
the value F(x) in no point resp. in one and only one point resp. in more
3
points. Obviously U B, = F, and B, are disjoint.
i=1

1. Let € B,. ]
If 0 < F(x) << 1, then there exists one and only one y ¢ B, such that

H(y—0) < F(z) < H(y) (3.4)
and from 3.2 it follows, that C(x) = y.
If F(x) = 0 (F(z) = 1), then obviously C(x) = — w0 (C(x) = + ).

2. Let x ¢ B,. Then there exists one and only one % such that H(y) = F(x)
and C(x) = y. according to (3.2) and the following implications:

Cx) <y= HCx) < Hy) = F(x)
C(x) = y = H(C(x) — 0) > H(y) = F(x)

3. Let 2 € B,. Define
I = {y; H(y) = F(x)}, J, = {y; F(y) = F(x)}.
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1, and J, are non empty intervals, closed or closed to the left (for the distri-
bution functions are continuous to the right) and the intervals 7, have non
empty interiors. For every x; e B,, x, ¢ B, it is either [, ==/
I, 0l =0, J, 0lJ, -

Denote by M the class of the sets I, and N the class of the sets .J,. M is at
most countable, because it contains disjoint intervals with non empty interiors.
We can easily define a one-to-one correspondence between M and N and thus
N is at most countable.

Let now A be the set of such left edges a of intervals J &N, that P(¢ = a) > 0.
Following implications hold:

JeN, J={<ab) >Pec(ab)=Fb—0) - Fa)-—0
JeN, J=<a,b)=Pec(ab))=Fb)— Fa) =0,

for F is constant on J € N.

oy o, == g Jor

Thus, from countability of M it follows, that
PleBy — A) = P&elUJ — A) = 0Q
JeN

Let xe 4. It is then C(x) = inf I,. Lét us denote (a, b) the closure of I,.
We shall prove, that C(z) = a. But this is an immediate consequence of (3.2),
(3.3) and the following implications:
C(x) < a = HC(z) << F(x), which contradicts (3.2)
Clx) > b= H(C 1) ——0) > F(x), which contradicts (3. 2)
C(x)e(a,b) =0 = H(b-—0)— H(a) = P(C(&) e (a,b)) == P(&=2) > 0.
C (x) = b_>H(("( ) — 0) = F(x) and F(x ——0) < F(x) f01 P =2) > 0=

> H(C(x) — 0) > F(x — 0), which contradicts (3.3).

Since P(§ e By u B, u A) =: 1, the proof is completed.

In the proof, the assumption that C' is non-decreasing, is essential. In the
next section we shall prove a theorem analogous to (3.1) without this assump-
tions. Other conditions, of course, are required.

e

Theorem 4.1. Let U be a random variable, h a function with a continwous de-
rivative on (0, 1). Let Fy(x) = Fy,)(x) == & for x € (0, 1).

Then it is h(x) = a for all x € (0, 1), or h(x) = 1 — x for all x € (0, 1).

.Proof: Denote by L the Lebesgue measure. It is for every Borel set
AC 0,1

L(A4) — L(h-1(4)). (4.2)

It is sufficient to prove that A is a monotone function, the assertion of (4.1)
being then a consequence of the theorem (3.1).
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Let A be non monotone on (0, 1). Then there exists a z, ¢ (0, 1) such that
h'(x,) == 0. But &’ is continuous and thus there exists a 4 > 0 such that

vel = {wy— 0,2y + 0) = |[B'(x)] < 1. (4.3)

The function A acquires on / a minimum value ¥, and a maximum value .;
let @; and 2, be these points. Without loss of generality, we may assume,
that @y << ay, h(x)) = ¥y, < ¥y == h(x,).

From the first mean value theorem
0 yy—yy = W) (0 —2), pel

and thus, according to (4.3)

0y — Yy <& —a;. (4.4)
Further, if z ¢ <x,, x,>, then y; < h(z) <C y, and thus
Cy > Ch (Y ) - (4.5)
From (4.5) and (4.2) it follows
Ly, 2ep) = LRM({yh y20)) = Ly ya)) (4.6)
and
Ty =X S Yy U (4.7)

which is a contradiction to (4.4)

Thus A is monotone and the theorem is proved.

Theorem 4.8. Let & and 5 be random variables, (a, b) an interval (finite or in-
finite), F¢(b) — Fe(a) = 1, C a function with a continuous derivative on (a, b),
7 = C(&). Let Iy and F, be continuous on K,. Let F; have a continuous positive
derwative on (a, b), let F, have a continuous derivative on C((a, b)).

Denote H == (Fu)o(u,b)’ G = (1’15)(,1,1;),

Then H is a tncreasing function and either

C = H'd
or
C=HY1—@Q)
Proof: Define new variables
U=Fy&), V=Fm=FO0e. (4.9)
Thus & == (-4(U) almost everywhere (P) and
V — F,0G(U) (4.10)

almost everywhere (P) .

Denote F,0G " == h. From (4.9) and (4.10) it follows, that Fy(z) = Fj)(x) =
= z for all z ¢ <0, 1)>. Futher G- has a continuous derivative in (0, 1), C has
a continuous derivative on /-1(0, 1) = (a, b) and F, has a continuous deriva-
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tive on C(a, b). Thus A has a continuous derivative on (0, 1). Hence it follows
from the preceding theorem, that A(x) = x or A(x) = 1 —x for all xe (0, 1).
Denoting E the identical transformation of (0. 1) on (0, 1). we have

E=FCG1 or 1 — FE=FCG",;
hence
G=F,(C orl1—G=FC.

F, is increasing on C(a, b), since ¢ is increasing. Thus

C—=H"'Q or C-=H1—{(G) q. e d

>
.

Theorem 5.1. Let &, ~ be independent random variables, X — &+ x. C' a
B-measurable function. Let E(£), E(x), E(C(£)) be finite. Let ¢ (t) = 0 on a set
dense in B,. Let for some functions h, G,

E(e"h(X)) = q.()E(eEG(E)). (5.2)
Then:
(5.2) holds for
h = E (C(&)) and G = C . (5.3)
1} (5.2) holds, then
h = Ey(C(8) (Fy) when and only when G = C (). (5.4)

Consequence 5.b. Let & o, X, ¢,, C be as in the preceding theorem, let C
be a B- measurable function and K (C(&)) = E(Cy(&)) (Fy). Then C = €, (F).

Proof of Consequence: It is E(C,(£)) = E(E(C(§))) = E(E(C(&))) =
= KE(C(¥)) and thus E(C,(%)) is finite and C, satisfies the conditions of theorem
5.1 imposed on C. From E (C(&)) == E.(C,(£)) and from (5.3) it follows, that
(5.2) holds for A == K (C(§)) and G = C,. From (5.4) it follows, that C' = C,
(F¢), q. e. d.

For the proof of theorem (5.1) we need the following lemma, which is a con-
sequence of the one-to-one correspondence between characteristic and distri-
bution functions.

Lemma 5.6. Let I be a distribution function, H a measurable function and
femH(x) dF(x) = 0 forallte K,
Then H = 0 (F).

Proof of Theorem 5.1. It is

7’.Y,0(§)(t, 1)) — E(e‘(&*‘t"‘*"m@))) - (}!a(t)fei(t’y+vc(y)) (11115(;2/) .



But
Preelt, v) = H(et*e®) — E(Hx(e' ™)) - fe‘”f}(x, v) dFyz) ,

where
Gz, v) = Hyx_o(e¥®) ::fe“’”(") dy_ole(y)  (Fy) . (5.7)
Thus .
q)a(t)fe‘("’”"(”)) dF(y) :fc”’”G(x, v) dF ¢() . (5.8)
G, v)

t
Let us compute P

The function -ai e?c@ — jC(y)e?*®) has the integrable majorante C. Thus
v

,d,g_.(d‘&_"f)_ — if(j(y)eivc(y) d—\' .—JnF’g(?j)
v
for almost all x (#,).
Tt is obvious that
} 0Q(x, v)

|
lTi gf(/'(lj) dx'jacFE())

for almost all x(Fy) and the last integral, as function of x, is integrable
with respect to Fy.

Thus
{; ez, v) dFx(x) = ife””[f(f(y)e‘”"(”) (1xﬁng(,1/)] dFx(x)
Similarly
?(;f Q) AR (y) == i f Cy)etn ) dFy) .
7

Hence and from (5.8), putting v = 0, we get

f By _o(C(6)) dFx(z) = (1) f C(y) dFg(y) (5.9)
or
B Bx(C(£)) = ga(t) BCEC) . (5.10)

Thus (5.3) is proved. 4
We shall prove (5.4). Let h = E(C(£)) (F) and let (5.2) hold. Then

B EL(C(8)) = q.()B(G(&)e™) (5.11)
and hence and from (5.10)
7.(t) B(e“(0(8) — G(&))) = 0 (5.12)
for all £. Thus
B (C(5) —d(£) =0 (5.13)
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for all ¢, since this is a continuous function of ¢ and ¢,(f) + 0 on a set dense
in £,. From (5.13) and lemma 5.6 it follows, that (' = ¢/ (F). The proof of the
implication C = G (F;) = E(C(§)) = h (F,) is analogous and simpler. Thus
the theorem is proved.

6. Special cases.

Theorem 6.1. Let in (1.1) either C be monotone, or C have continuous derivative
on (— o0, + o). Let F, and F, be normal distribution functions. Let & be inde-
pendent of « and f.

Then C is linear (Fy).

Proof: According to CraMER [2] & and (&) being normally distributed. the
theorem follows from theorems 3.1 and 4.8.

Theorem 6.2. Let in (1.1) &, x, f are independent. fE([I) < L ow. Let Fy be a
normal distribuiton function.

Then C is a linear function (F¢) if and only if E(Y) s a linear function (Fy).

Proof: The assertion that, if € is lincar (F), then K, (Y) is linear (F,).
is obvious and known (see e.g. Fix[4]). We shall prove the inverse implication.
Now, let E,_(Y) — B{p) = E,_.(C(&) = ax + b (Iy),

BE() =m, E(h—m,)*=d}
E(&) =-m, E(&— m,)? = o;.
L
Then, using the symbol f for denote frequency functions, it is
f
_Ix
e = i el

After casy caleulations, we verify that f. is a normal frequency function with
mean

2
o2
(x — my) — ——f — My P
[ 1 703
and variance
oio}
0% + o}
s
Putting
o5 o a s
Ci(x) = -2 ax + b + — (m,03 — myo}),
o o3

we get Bx(C,(&) = ax 4+ b = Ex(C(§)).
Applying theorem (5.5), we get C' = C, (F) and thus C is linear (/). q. e. d-
Theorem 6.3. Let in (1.1) &, «, f are idependent. \E(B) < + 0. Let

Fy(x) = ¢ Z - -

n__ v n!
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Then C is linear (F¢) if and only if Ex(Y) is linear (Fx).

Proof: Denote F(x; 1) = e™? > A
. n< xn'
From a theorem of Rasrov [7] it follows that
Fo(w) = F(ﬁ:—’i; Al), Fe(x) = F (’— e ;ag) ,
o, G,

where ¢, > 0, 4; =2 0 (¢ = 1,2). We can assume A, > 0 (; = 1,2), the proof
being trivial in the opposite case. From the relation ¢x = ¢, ., We can
verify, that o, = o, = 1; without loss of generality we may assume, that
1y = g, = 0. Put h(x) = ax + b. It is E(h(X)e? ) = aE(Xe'**) + bE(e'¥)=—=

4 yl
= oM =D [qleit - b]. Put G(z) = azx <4 b. It is similarly

E(G(E)eit;‘) - ez,(eitl)[wlext 4 b]
Further :
Falt) — D
and thus
7a(t) B(Q(£)e™) — X" Diage 4 b].

Now, (5.2) holds for ours A and ¢ and the theorem follows from (5.4).

Remark: EveLYyNE Fix [4] has proved this very interesting

Theorem: Let &, ~, B be independent random variables. and E(E) < + o,
or B(a?) << 4 oc. Let .
= & + X
at -, a4 0.

“<><

I

Ure S

Let there exists a non empty interval (cy,c,) such that for every c e (¢y.¢y) Hy(Y)
is linear. Then Fy s a normal distribution function.

From the theorem (6.3) it follows, that it does not suffice to require linearity
of E(Y) only for one value of c.
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Pesiome.

CTPYHTVPHBIE COOTHOIIEHUA

BAIJIAB ®ABUAH (Va:lav Fabidn), Ilpara.

[Hocrymuno B pegaxumio 8/V 1954 r,
A 1

Hyers & &, p, X, Y — cayuaiinbie HepeMeHHbIe, YJI0BACTBOPAIOUIE COOTHOLIC-
o (1.1). B paGote BuBojisiTCS jlocTaTounbIe YCA0BUSA, TPU KOTOPBIX Pyurimio (!
MOMHO HACHTHYUIIPOBATD, €CJUM M3BECTHBI Feym Fy, van ecom ussecrnnt
Fyy, F., Fys. O6mme pesy.brarst TIPUMEHAIOTCA K cnyqamvr rorga X u Y o6-
AIAAAIOT HOPMAABNLIM  paciIpefie/leleM BeposTHocTell, wit worna X umeer
HOPMAIbHO® pacipejieenne BeposATHoCTeli, WM Korfa, nakomer, X ofajgaer
TIYACCOHOBBIM  paclpefesieHneM BeposithocTeii. B mocmeannx apyx CIayqasx
HEOOXO/WMMBIM 1 JIOCTATOYHBIM YCJIOBUEM JUHeHRH0CTH Gynriun ' sasercs
Jmueifnocts perpeccun K (Y), ecan HMPeJIOT0KATE, UTo &, X, f He3aBUCUMDL

n|B()| < + .

363



		webmaster@dml.cz
	2020-07-02T17:11:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




