#### Czechoslovak Mathematical Journal

### Karel Černý К теории диофантовых приближений

Czechoslovak Mathematical Journal, Vol. 2 (1952), No. 3, 191-220

Persistent URL: http://dml.cz/dmlcz/100045

#### Terms of use:

© Institute of Mathematics AS CR, 1952

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

## ЧЕХОСЛОВАЦКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Центральный математический институт

T. 2 (77) ΠΡΑΓΑ 15. XI. 1952 \* № 3

# к теории диофантовых приближений

КАРЕЛ ЧЕРНЫ (Karel Černý), Прага. (Поступило в редакцию 24/XI 1950 г.)

Автор доказывает, что при некоторых условиях существуют системы чисел  $\Theta_1, \ldots, \Theta_s$ , которые допускают данное приближение  $\omega(q)$ , но не допускают другого, более сильного данного приближения  $\omega_1(q)$ .

Эту теорему доказал в 1931 г. другим, более сложным способом Ярник, который обобщил основную метрическую теорему Хинчина (1926 г.), пользуясь мерой Хаусдорфа. Автор пользуется (как и Хинчин) только мерой Лебега.

## . Введение.

Скажем, что система s вещественных чисел ( $\Theta_1, \Theta_2, \ldots, \Theta_s$ ) (система с s членами, или точка с координатами ( $\Theta_1, \Theta_2, \ldots, \Theta_s$ ) в s-мерном эвклидовском пространстве  $R_s$ ) допускает совместную аппроксимацию  $\omega(x)$ , (где  $\omega(x)$  положительная функция, определенная для  $x \geq 1$ ) если для каждого числа A > 0 существует система s + 1 целых чисел  $p_1, p_2, \ldots, p_s, q$  таких, что

$$q>A, \left|\Theta_i-\frac{p_i}{q}\right|<\omega(q),\ i=1,\,2,\,...,\,s.$$

Если такие неравенства осуществляются только для конечного числа систем дробей  $\frac{p_1}{q}, \frac{p_2}{q}, \ldots, \frac{p_s}{q}$  т. е. если существует число A>0 такое, что для каждой системы целых чисел  $p_1, p_2, \ldots, p_s, q$  с q>A, существует по крайней мере одно число  $\Theta_i$  ( $1\leq i\leq s$ ) такое, что

$$\omega(q) \leq \left| \Theta_i - \frac{p_i}{q} \right|,$$

то мы говорим, что система ( $\Theta_1,\ \Theta_2,\ \ldots,\ \Theta_s$ ) не допускает аппроксимации  $\omega(x)$ .

Хорошо извес**тно,** что каждая система с *s* членами допускает аппроксимацию

$$\omega(x) = \frac{1}{x^{1+\frac{1}{s}}}.1$$

Пусть теперь  $\omega_1(x)$ ,  $\omega_2(x)$  две функции,  $0<\omega_2(x)<\omega_1(x)\leq \frac{1}{1+\frac{1}{s}}$ , определены для  $x\geq 1$  ²);  $s\geq 1$  целое число. Теперь мы x

можем поставить вопрос, при каких условиях для  $\omega_1(x)$  и  $\omega_2(x)$  существует система с s членами ( $\Theta_1, \Theta_2, \ldots, \Theta_s$ ) которая допускает аппроксимацию  $\omega_1(x)$  но не допускает более точной аппроксимации  $\omega_2(x)$ .

Еще одно замечание. В случае s=1 эта проблема является тривиальной для рациональной точки ( $\Theta$ ). Также и в общем случае  $s \geq 1$  самый интересный случай тот, когда для системы ( $\Theta_1, \ldots, \Theta_s$ ) уравнение

 $k_0 + k_1 \Theta_1 + k_2 \Theta_2 + \ldots + k_s \Theta_s = 0, k_i$  целые  $(0 \le i \le s)$  имеет лишь нулевое решение

$$k_0 = k_1 = \ldots = k_s = 0.$$

Будем называть такие системы системами ,,собственными" (eigentliche Systeme).

В случае, когда s=1, теория непрерывных дробей дает совершенное решение этого вопроса, но в случае s>1 известные до сих пор результаты гораздо менее удовлетворительны. Главные результаты в общем случае:

Пусть 
$$s \ge 1$$
,  $\omega_1(x) = \frac{1}{\left(1 + \frac{1}{s}\right)x^{1 + \frac{1}{s}}}$ . Тогда существует, как

доказал  $\Pi eppoh^3$ ) постоянная  $0 < C_s < 1$  такая, что существует

$$\omega(x) = \frac{1}{1+\frac{1}{s}}x^{-\left(1+\frac{1}{s}\right)}$$

<sup>1)</sup> По Минковскому (Geometrie der Zahlen, Leipzig 1896, стр. 112) можем заменить эту аппроксимацию "более острой" аппроксимацией  $1 - \left(1 + \frac{1}{-1}\right)$ 

 $<sup>^2)</sup>$  Естественно предполагать, что аппроксимация  $\omega(x)$  убывающая для  $x \geq 1$  и  $\omega(x) \to 0$  для  $x \to \infty$ .

<sup>3)</sup> O. Perron: Über diophantische Approximationen, Math. Ann. 83 (1921), p. 77—84.

собственная система ( $\Theta_1, \Theta_2, \ldots, \Theta_s$ ), которая не допускает аппроксимации  $\omega_2(x) = C_s \omega_1(x)$ . (По Минковскому каждая система с s членами допускает аппроксимацию  $\omega_1(x)$ ). Это очень точный ответ, но лишь для аппроксимации  $\frac{1}{\left(1+\frac{1}{s}\right)x^{1+\frac{1}{s}}}$ .

На против, для очень скоро убывающей аппроксимации доказал Ярник<sup>4</sup>) теорему:

Пусть  $\omega_1(x) > 0$  и убывающая,  $\omega_1(x) x^2 \to 0$  для  $x \to \infty$ ;  $\omega_2(x) = c\omega_1(x)$  (с любое, 0 < c < 1).

Тогда существует (для каждого  $s \ge 1$ ) собственная система  $(\Theta_1, \Theta_2, \ldots, \Theta_s)$ , которая допускает аппроксимацию  $\omega_1(x)$ , но не допускает уже аппроксимации  $\omega_2(x)$ .

В 1925 году А. Я. Хинчин<sup>5</sup>) доказал теорему, которая является фундаментальной в метрической теории диофантовых приближений и которая имеет значения также для нашей проблемы.

Приводим теорему Хинчина:

Пусть  $s \ge 1$ ,  $\omega(x) > 0$ , функция  $\omega(x)$  непрерывна для  $x \ge 1$ ,  $\omega^s(x)$   $x^{s+1}$  монотонная и  $\omega^s(x)$   $x^{s+1} \to 0$  для  $x \to \infty$ .

- 1. Если  $\int_{1}^{\infty} \omega^{s}(x)x^{s} dx$  расходящийся, то почти все системы<sup>6</sup>) с s членами допускают аппроксимацию  $\omega(x)$ .
- 2. Если  $\int_{1}^{\infty} \omega^{s}(x) \ x^{s} \ dx$  сходится, то почти все системы с s членами не допускают аппроксимации  $\omega(x)$ .

Если функции  $\omega_1(x)$ ,  $\omega_2(x)$  таковы, что  $\int_1^\infty \omega_1^s(x) \ x^s \ \mathrm{d}x$  расходится,  $\int_1^\infty \omega_2^s(x) \ x^s \ \mathrm{d}x$  сходится (на пр.

$$\omega_1(x) = x^{-\frac{s+1}{s}} \log^{-\frac{1}{s}} x$$
,  $\omega_2(x) = x^{-\frac{s+1}{s}} \log^{-\frac{1+\varepsilon}{s}} x$ ,  $\varepsilon > 0$ )

и остальные условия теоремы удовлетворены, то почти все точки ( $\Theta_1,\ \Theta_2,\ \ldots,\ \Theta_s$ ) с пространства  $R_s$  имеют требуемые свойства. (Почти все точки в  $R_s$  собственные системы, потому

<sup>&</sup>lt;sup>4</sup>) V. Jarník: Über die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), p. 539—543.

<sup>&</sup>lt;sup>5</sup>) A. Khintchine: Zur metrischen Theorie der diophantischen Approximationen. Math. Zeitschr. 24 (1926).

 $<sup>^{6}</sup>$ ) То есть: все системы за исключением точек, которые образуют подмножество в  $R_{s}$ , мера  $\mathit{Лебегa}$  которого равняется нулю.

что несобственные системы образуют подмножество, мера которого в  $R_s$  равняется нулю).

Но если функция  $\omega_1(x)$  такая, что  $\int_1^\infty \omega_1^s(x) \, x^s \, dx$  сходится, то видно, что теорема Хинчина не дает ответа на нашу проблему. Для этого случая Ярник<sup>7</sup>) доказал следующую теорему:

Пусть  $s \ge 1$ ,  $\omega(x)$  функция положительная непрерывная для  $x \ge 1$ ,  $\omega^s(x) x^{s+1}$  монотонная для  $x \ge 1$ . Пусть  $\int\limits_1^\infty \omega^s(x) \, x^s \, \mathrm{d}x$  сходится. Пусть дальше  $\tau(x)$  функция с непрерывной производной для  $x \ge 1$ ,  $\frac{\tau(x)}{x} \ge 1$  и монотонная для  $x \ge 1$ ; пусть  $\frac{\tau(x)}{x} \to \infty$  для  $x \to \infty$ .

Тогда существуют собственные системы, которые допускают аппроксимацию  $\omega(x)$ , но не допускают аппроксимации  $\omega(\tau(x))$ .

Эта теорема является следствием теорем, доказательство которых основано на теории меры Хаусдцорффа и довольно сложно. В этой работе мы доказываем результат Ярника на основании теории меры Лебега. Результат содержиться в следующих теоремах:

**Теорема 1.** Пусть s>1; пусть  $\omega(x)$  функция положительная и непрерывная для  $x \geq 1$ , причем функция  $\omega^s(x)$   $x^{s+1}$  — монотонная для  $x \geq 1$ . Пусть  $\int_1^\infty \omega^s(x) \, x^s \mathrm{d}x \, cxo\partial umc$ я (и следовательно  $\omega^s(x) x^{s+1} \to 0$  для  $x \to \infty$ ) а  $\int_1^\infty \omega^{s-1}(x) \, x^{s-1} \, \mathrm{d}x$  разходится. Пусть далее  $\tau(x)$  — функция, определенная для  $x \geq 1$ ,  $\frac{\tau(x)}{x} \geq 1$  и пусть  $\frac{\tau(x)}{x} \to \infty$  для  $x \to \infty$ .

Тогда существует число  $\Theta_s$  такое, что почти для всех точек  $(\Theta_1, \Theta_2, \ldots, \Theta_{s-1})$  из  $R_{s-1}$  система с s членати  $(\Theta_1, \Theta_2, \ldots, \Theta_{s-1}, \Theta_s)$  собственная и допускает аппроксимацию  $\omega(x)$ , но не допускает аппроксимации  $\omega(x)$ , но не допускает аппроксимации  $\omega(x)$ .

Из теоремы 1. легко вывести следующую теорему.

**Теорема 2.** Пусть  $s \ge 1$ . Пусть  $\omega(x)$ ,  $\lambda(x)$  две функции положительные и непрерывные для  $x \ge 1$  Функции  $\omega(x)$   $x^2$ ,  $\omega^2(x)$   $x^3$ , ...,  $\omega^s(x)$   $x^{s+1}$ ,  $\omega(x)$   $x^{2+\epsilon}$  (для какого-нибудь  $\varepsilon > 0$ ),

<sup>7)</sup> В работе, цитированной под 4).

 $\lambda(x)$  пусть будут монотонными,  $\lambda(x) \to 0$  для  $x \to \infty$ , пусть интеграл

$$\int_{1}^{\infty} \omega^{s}(x) \ x^{s} \ dx$$

сходится.

Тогда существует собственная система ( $\Theta_1$ ,  $\Theta_2$ , ...,  $\Theta_s$ ), которая допускает аппроксимацию  $\omega(x)$ , но не допускает аппроксимации  $\omega(x)$   $\lambda(x)$ .

## § 1. Леммы.

**Пемма 1.** Пусть дана монотонная функция  $\mu(x) \geq 1$ , определенная для  $x \geq 1$ , причем  $\mu(x) \to \infty$  для  $x \to \infty$ . Тогда существует последовательность положительных чисел  $d_1, d_2, \ldots$  таких, что

1. 
$$\sum_{n=1}^{\infty} d_n \ pacxo \partial umcs, \ \sum_{n=1}^{\infty} \frac{d_n}{\mu(n)} \ cxo \partial umcs.$$

2. 
$$d_n \leq 1$$
,  $\frac{d_{n+1}}{d_n} < 1$ ,  $(n = 1, 2, ...)$   $u \lim_{n \to \infty} \frac{d_{n+1}}{d_n} = 1$ .

Доказательство. Выберем последовательность натуральных чисел  $n_0=1,\,n_1,\,n_2,\,\dots$  так, что

$$n_i > 2n_{i-1}, \mu(n_i) \ge 2^i, i = 1, 2, \dots$$

Положим

$$p_n = i + (n - n_{i-1}) \frac{1}{n_i - n_{i-1}}$$
 для  $n_{i-1} \leq n < n_i, \ i = 1, 2, \dots$   $\overline{\mu}(n) = \frac{1}{n} \sum_{k=1}^n p_k$ 

Очевидно, что  $\overline{\mu}(1) < \overline{\mu}(2) < \ldots$ ,  $\overline{\mu}(n) < p_n$  и  $\overline{\mu}(n) \to \infty$  для  $n \to \infty$  ( $\overline{\mu}(2n) > \frac{1}{2}p_n$ ). Определяем теперь

$$d_1 = 1, \ d_n = \overline{\mu}(n) - \overline{\mu}(n-1) > 0$$
 для  $x > 1.$ 

Очевидно,  $d_n \leq 1, \sum_{n=1}^{\infty} d_n$  расходится и  $\sum_{n=1}^{\infty} \frac{d_n}{\mu(n)}$  сходится

$$\left(\text{потому что}\sum_{n=1}^{\infty}\frac{d_n}{\mu(n)}<\sum_{i=1}^{\infty}\frac{\overline{\mu}(n_{i+1})}{\mu(n_i)}<2\sum_{i=1}^{\infty}\frac{i}{2^i}\right).$$

Кроме того "

$$d_n = \frac{1}{n} \sum_{k=1}^n p_k - \frac{1}{n-1} \sum_{k=1}^{n-1} p_k = \frac{1}{n(n-1)} \sum_{k=1}^{n-1} (p_n - p_k)$$

и по этому

$$d_n \ge \frac{1}{n(n-1)} \frac{n(n-1)}{2} (p_n - p_{n-1}) \ge \frac{p_{n+1} - p_n}{2}, \qquad (1)$$

где знак равенства имеет место лишь для  $n_0 \le n \le n_1$ . Но

$$d_{n+1} = \frac{1}{(n+1)n} \sum_{k=1}^{n} (p_{n+1} - p_k) = \frac{1}{(n+1)n} \sum_{k=1}^{n} (p_n - p_k) + \frac{1}{n+1} (p_{n+1} - p_n) = d_n - \frac{d_n}{n+1} \left( 2 - \frac{p_{n+1} - p_n}{d_n} \right)$$

и следовательно, в силу неравенств (1), имеем для  $n \ge n_1$ 

$$1-\frac{2}{n+1}<\frac{d_{n+1}}{d_n}<1,$$

что и доказывает лемму, потому что члены  $d_1,\ d_2,\ \dots,\ d_{n_1-1}$  в конечном числе могут быть изменены так, чтобы было  $\frac{d_{n+1}}{d_n} < 1$  тоже для  $1 \le n < n_1.$ 

Пемма 2. Пусть  $s \geq 1$  целое число,  $\varphi(n)$  функция Эйлера. $^8$ )

Тогда существует положительное число  $C_1 = C_1(s)$  такое,

$$\sum_{k=1}^{n} \left(\frac{\varphi(k)}{k}\right)^{s} > C_{1} \cdot n.$$

Доказательство. Э) Лемма верна для s=1. В самом деле, так как по оценке Мертенса

$$\sum_{k=1}^n \varphi(k) > Cn^2,$$

(С положительная постоянная), то мы сразу получаем

$$\sum_{k=1}^{n} \frac{\varphi(k)}{k} \geq \sum_{k=1}^{n} \frac{\varphi(k)}{n} > Cn.$$

<sup>8)</sup>  $\varphi(n)$  обозначает число положительных целых x < n, взаимно простых с n.

<sup>9)</sup> Доказательство почерпнуто из работы Хинчина, цитированной под 5).

В случае s>1 неравенство  $\Gamma$ елдер-Коши-Шварца $^{10}$ ) дает

$$\left(\sum_{k=1}^{n} \frac{\varphi(k)}{k}\right)^{s} \leq n^{s-1} \sum_{k=1}^{n} \left(\frac{\varphi(k)}{k}\right)^{s}$$

и потому

$$\sum_{k=1}^{n} \left( \frac{\varphi(k)}{k} \right)^{s} > \frac{1}{n^{s-1}} C^{s} n^{s} = C_{1} \cdot n.$$

Пемма 3. Пусть  $\varphi(n)$  функция Эйлера, a, b взаимно простые натуральные числа. Пусть k натуральное число, такое, что  $\log(a+kb)<\frac{1}{3}\frac{0}{6}k$ . Тогда существует натуральное число a+ib,  $0 \le i \le k$ , такое, что

$$\frac{\varphi(a+ib)}{a+ib} > \frac{1}{36}.$$

Доказательство. В этом доказательстве будем обозначать знаком  $\mu(n)$  функцию  $Me \delta uy ca.^{11}$ )

По хорошо известной формуле

$$\varphi(n) = \sum_{\boldsymbol{d} \mid \boldsymbol{n}} \mu(\boldsymbol{d}) \frac{n}{\boldsymbol{d}}$$

имеем

$$\sum_{i=0}^k rac{arphi(a+ib)}{a+ib} = \sum_{i=0}^k \sum_{d|a+ib} rac{\mu(d)}{d} = \sum_{d=1}^{a+kb} \left(rac{\mu(d)}{d} \sum_{a+ib \equiv 0 \pmod d} 1\right) =$$
 $= k+1 + \sum_{\substack{d=2 \ (d,b)=1}}^{a+kb} rac{\mu(d)}{d} \left(rac{k+1}{d} + \lambda_d\right), \ ext{где } |\lambda_d| \leq 1.$ 

Итак имеем ( $\Theta$ ,  $\Theta'$  обозначает числа, абсолютная величина которых меньше 1)

$$\sum_{i=0}^{k} \frac{\varphi(a+ib)}{a+ib} = k+1+\Theta \sum_{d=2}^{a+kb} \left(\frac{k+1}{d^2} + \frac{1}{d}\right) =$$

10) Пусть 
$$k > 1$$
,  $k'$  таково, что  $\frac{1}{k} + \frac{1}{k'} = 1$ .

Тогда

$$\sum_{i=1}^{n} a_i b_i \leq \left(\sum_{i=1}^{n} a_i^k\right)^{\frac{1}{k}} \left(\sum_{i=1}^{n} b_i^{k'}\right)^{\frac{1}{k'}}$$

для  $a_i \geq 0$ ,  $b_i \geq 0$ .

 $\mu(n)=0$ , если n делится на квадрат простого числа,  $\mu(n)=(-1)^r$ , если  $n=p_1,\,p_2,\,\ldots,\,p_r$ , где  $p_i$  различные простые числа;  $\mu(1)=1$ .

$$= k + 1 + \Theta' \left[ (k+1) \left( \frac{1}{4} + \frac{1}{9} + \int_{3}^{\infty} \frac{1}{x^2} dx \right) + \int_{1}^{a+kb} \frac{1}{x} dx \right] >$$

$$> (k+1) \frac{1}{36} - \log(a+kb) > \frac{1}{36}(k+1).$$

Следовательно, в сумме с k+1 членами существует по крайней мере один член

$$\frac{\varphi(a+ib)}{a+ib} > \frac{1}{36}, \ (0 \le i \le k).$$

Пемма 4. Пусть s>1. Пусть  $\omega(x)$  — положительная функция, монотонная для  $x\geq 1$ , и пусть  $\omega(x)\to 0$  для  $x\to \infty$ . Пусть интеграл

$$\int_{1}^{\infty} \omega^{s-1}(x) \ x^{s-1} \ \mathrm{d}x$$

расходится.

Tогда существует функция положительная, тонотонная и непрерывная  $\pi(x)$  такая, что

- 1.  $\pi(x) \to \infty$  для  $x \mapsto \infty$ .
- 2.  $\int_{1}^{\infty} \omega^{s-1}(\pi(x) \cdot x^{s-1} dx) \ pacxodumcs.$

Доказательство. Положим

$$\varepsilon(x) = \int_{0}^{x} \omega^{s-1}(x) \ x^{s-1} \ \mathrm{d}x$$

(для x < 1 положим  $\omega(x) = \omega(1)$ ). Вследствие наших условий функция  $\varepsilon(x)$  — положительная, непрерывная и возрастающая для x > 0,  $\varepsilon(x) \to \infty$  для  $x \to \infty$ . Интеграл

$$\int_{-1}^{\infty} \frac{\omega^{s-1}(x) \, x^{s-1}}{\varepsilon(x)} \, \mathrm{d}x$$

расходится, потому что для каждого п

$$\int_{n}^{n+p} \frac{\omega^{s-1}(x) x^{s-1}}{\varepsilon(x)} \mathrm{d}x > \frac{1}{\varepsilon(n+p)} \int_{n}^{n+p} \omega^{s-1}(x) x^{s-1} \, \mathrm{d}x = 1 - \frac{\varepsilon(n)}{\varepsilon(n+p)} > \frac{1}{2},$$

(при достаточно большом p).

Интеграл

$$\int_{1}^{\infty} \frac{x^{s-1}}{\varepsilon(x)} \, \mathrm{d}x$$

расходится тем более.

Положим теперь

$$l(x) = \left(\int_{1}^{x} \frac{x^{s-1}}{\varepsilon(x)} dx\right)^{\frac{1}{s}}.$$

Очевидно l(x) — положительная возрастающая и непрерывная функция,  $l(x) \to \infty$ , но  $\frac{l(x)}{x} \to 0$  для  $x \to \infty$ , потому что

$$\frac{l(x)}{x} = \left(\frac{1}{x^s} \int_{-\epsilon(x)}^{x} \frac{x^{s-1}}{\varepsilon(x)} dx\right)^{\frac{1}{s}} < \left(\frac{1}{\varepsilon(1)}\right)^{\frac{1}{s}} \frac{\log x}{x} + \frac{1}{\varepsilon(\log x)}.$$

Пусть  $\lambda(x)$  — обратная функция к l(x). Тогда  $\lambda(x)$  — положительная, возрастающая, непрерывная функция,  $\frac{\lambda(x)}{x} \to \infty$  для  $x \to \infty$ . Положим

$$\pi(x) = \inf_{y \ge x} \frac{\lambda(y)}{y}.$$

Тогда  $\pi(x)$  имеет нужные свойства, так как условие 1. очевидно выполняется, и

$$2. \int_{1}^{N} \omega^{s-1}(\pi(x) \cdot x) \ x^{s-1} \ \mathrm{d}x \ge \int_{1}^{N} \omega^{s-1}(\lambda(x)) \ x^{s-1} \ \mathrm{d}x =$$

$$= \int_{\lambda(1)}^{\lambda(N)} \omega^{s-1}(t) \ l^{s-1}(t) \ l'(t) \ \mathrm{d}t = \frac{1}{s} \int_{\lambda(1)}^{\lambda(N)} \frac{\omega^{s-1}(t) \ t^{s-1}}{\varepsilon(t)} \ \mathrm{d}t \to \infty \ \text{для} \ N \to \infty.$$

Пемма 5. Пусть s>1. Пусть непрерывная, положительная функция  $\omega_1(x)$  определена для  $x\geqq 1$ , функция  $\omega_1^s(x)$   $x^{s+1}$  монотонна. Пусть  $\int\limits_1^\infty \omega_1^s(x) \; x^s \; \mathrm{d}x \; cxo\partial umc$ я (и следовательно  $\omega_1^s(x) \; x^{s+1} \to 0$  для  $x\to\infty$ , функция  $\omega_1(x)$  — убывающая), в то время, как интеграл  $\int\limits_1^\infty \omega_1^{s-1}(x) \; x^{s-1} \; \mathrm{d}x$  (и, следовательно, также ряд

 $\sum_{n=1}^{\infty}\omega_1^{s-1}(n)\ n^{s-1})\ pacxodumcs$ . Пусть дальше  $\omega_2(x)=\omega_1(\tau(x)),\ ede$   $\tau(x)$  — непрерывная, положительная функция определенная для  $x\geq 1,\ u\ \frac{\tau(x)}{x} o \infty$  для  $x o \infty$ .

Tогда существует бесконечная непрерывная дробь ( $b_{\it i}$  натуральные числа)

$$\Theta = \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \cdots}}}$$

u натуральные числа  $k_1, k_2, \ldots$  такие, что

1. 
$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_1^{s-1} (iq_n) (iq_n)^{s-1} \quad pacxodumcs,$$

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_2^{s-1} (iq_n) (iq_n)^{s-1} \quad cxodumcs,$$

$$2. \ \frac{\varphi(q_n)}{q_n} > \frac{1}{36} \ , \qquad (\varphi(n) - \varphi y$$
нкция Эйлера),

3. 
$$\omega_1((k_n+1) q_n) \leq \left| \Theta - \frac{p_n}{q_n} \right| = \frac{1}{\lambda_n q_n^2} < \omega_1(k_n q_n), (\lambda_n > 1),$$

 $\{q_1,\ q_2,\ \dots\$  являются знаменателями подходящих дробей  $\frac{p_n}{q_n}$  непрерывной дробы  $\Theta$ ).

Доказательство. Потому что функция  $\omega_1^s(x)$   $x^{s+1}$  невозрастающая, имеем  $\omega_2^s(x)$   $\tau^{s+1}(x) = \omega_1^s(\tau(x))$   $\tau^{s+1}(x) \leq \omega_1^s(x)$   $x^{s+1}$  и потому

$$\frac{\omega_2(x)}{\omega_1(x)} \leq \left(\left(\frac{x}{\tau(x)}\right)^{\frac{(s-1)(s+1)}{s}}\right)^{\frac{1}{s-1}} \leq \left(\frac{1}{\mu(x)}\right)^{\frac{1}{s-1}},$$

где положим

$$\mu(x) = \inf_{y \ge x} \left( \frac{\tau(y)}{y} \right)^{\frac{(s-1)(s+1)}{s}}.$$

Функция  $\mu(x)$  удовлетворяет условиям леммы 1. Итак можно построить последовательность положительных чисел  $d_1, d_2, \ldots$ ,

такую, что  $\sum_{n=1}^{\infty} d_n$  расходится,  $\sum_{n=1}^{\infty} \frac{d_n}{\mu(n)}$  сходится,  $d_n \leq 1, \frac{d_{n+1}}{d_n} < 1$  и  $\frac{d_{n+1}}{d_n} \to 1$ . Можно предполагать, что  $\frac{d_{n+1}}{d_n} > \frac{1}{2}$  для всех  $n=1,2,\ldots$  (потому что можно модифицировать конечное число членов последовательности  $\{d_n\}$ ).

Построим теперь натуральные числа  $q_0,\ q_1,\ q_2,\ \dots$  при помощи индукции.

Положим  $q_0 = 1$ . Выберем  $q_1$  так, чтобы

1. 
$$q_1$$
 было простое число и  $(q_0, q_1) = 1, \frac{\varphi(q_1)}{q_1} > \frac{1}{36}$ .

2. 
$$q_1 > \alpha^2 \frac{1}{d_1^{2(s+1)}}$$
, где  $\alpha > 2s^{s+1}$ ,

a) 
$$\omega_1^s(q_1) q_1^{s+1} < 1$$
;  $q_1 > 2^{4(s+1)}$ ,

б) для 
$$q \ge q_1$$
 имеем  $\log 4q < \frac{10}{36 \cdot 2} q^{\frac{1}{3}}$ .

Предположим, что уже построено n+1 натуральных чисел  $q_0=1< q_1< \ldots < q_n, \ (n\ge 1)$  таких, что

1. 
$$(q_0, q_1) = (q_1, q_2) = \dots = (q_{n-1}, q_n) = 1$$
 if  $\frac{\varphi(q_k)}{q_k} < \frac{1}{36}$ ,  $(k = 1, 2, \dots, n)$ ,

2. 
$$q_k > \alpha^2 \frac{1}{d_k^{2(s+1)}}$$
  $(k = 1, 2, ..., n)$ .

(a), (б) будут автоматически выполняться с  $q_n$  вместо  $q_1$ .

Имеется следовательно в силу 2,а)

$$\omega_1^{s-1}(q_n) q_n^{s-1} < \frac{1}{q_n^{1-\frac{1}{s}}} \leq \frac{1}{q_n^{\frac{1}{2}}} < \frac{1}{\alpha} d_n^{s+1} < \frac{1}{10} d_n.$$

Так как ряд  $\sum \omega_1^{s-1}(n) \ n^{s-1}$  расходится, то мы можем выбрать натуральное число  $k_n'$  так, что

$$d_n \leq \sum_{i=1}^{k'_n} \omega_1^{s-1} (iq_n) (iq_n)^{s-1} < \frac{1}{10} d_n,$$
 (2)

следовательно,

$$d_{n} \leq \sum_{i=1}^{k'_{n}} \frac{1}{(iq_{n})^{\frac{s-1}{s}}} < \frac{1}{q_{n}^{\frac{s-1}{s}}} sk'_{n}^{\frac{1}{s}}$$

$$k_n' > s^{-s}q_n^{s-1}d_n^s. \tag{3}$$

Положим<sup>12</sup>)

$$q'_{n+1} = \left[\frac{1}{q_n \omega_1(k'_n q_n)}\right] + 1 = \frac{\beta}{q_n \omega_1(k'_n q_n)}, \ (1 < \beta < 2)$$
 (4)

откуда (в виду (3), (2)) —

$$q'_{n+1} > \frac{(k'_n q_n)^{1+\frac{1}{s}}}{q_n} > \frac{1}{s^{s+1}} q_n^s d_n^{s+1} > \frac{\alpha}{s^{s+1}} q_n^{s-\frac{1}{2}} > 2q_n^{s-\frac{1}{2}} \ge 2q_n^{\frac{3}{2}} > q_n^{\frac{1}{2}} (q_n + q_{n-1}).$$
(5)

Мы можем теперь найти натуральное число  $b'_{n+1} \geq 1$  такое, что

$$q'_{n+1} < b'_{n+1}q_n + q_{n-1} = q''_{n+1} < 2q'_{n+1}$$

Очевидно  $(q''_{n+1}, q_n) = 1$ . Рассмотрим теперь числа

$$q''_{n+1} + iq_n, i = 0, 1, 2, ..., b'_{n+1}.$$

Имеем с одной стороны

$$\log(q''_{n+1} + b'_{n+1}q_n) < \log 2q''_{n+1} < \log 4q'_{n+1}.$$

С другой стороны, в силу неравенств (5),

$$b'_{n+1} = \frac{q''_{n+1} - q_{n-1}}{q_n} > \frac{q'_{n+1} - q_{n-1}}{q_n} > \frac{1}{2} \frac{q'_{n+1}}{q_n} =$$

$$= \frac{1}{2} q'^{\frac{1}{3}}_{n+1} \frac{q'^{\frac{2}{3}}_{n+1}}{q_n} > \frac{1}{2} q'^{\frac{1}{3}}_{n+1}.$$

По этому на основании б) (и принимая во внимание  $q'_{n+1} > q_1$ ) имеем

$$\log(q''_{n+1} + b'_{n+1}q_n) < \frac{10}{6}b'_{n+1}.$$

Следовательно, согласно лемме 3, существует целое  $i_0, 0 \le i_0 \le b'_{n+1}$  такое, что

$$\frac{\varphi(q''_{n+1}+i_0q_n)}{q''_{n+1}+i_0q_n}>\frac{1}{36}.$$

Положим

$$q_{n+1} = q''_{n+1} + i_0 q_n = b_{n+1} q_n + q_{n-1}, \ q_n < q'_{n+1} < q_{n+1} < 4q'_{n+1}.$$

Имеем

1. 
$$(q_n, q_{n+1}) = 1$$
,  $\frac{\varphi(q_{n+1})}{q_{n+1}} > \frac{1}{36}$ .

<sup>[</sup>x] обозначает найбольшее целое число не превышающее x.

В силу неравенств (5), а) и 2.

$$q_{n+1} > q'_{n+1} > 2q_n^{s-\frac{1}{2}} > 2\alpha^2 \frac{1}{d_n^{2(s+1)}} q_n^{\frac{1}{2}} > \alpha^2 \frac{1}{\left(\frac{d_n}{2}\right)^{2(s+1)}} > \alpha^2 \frac{1}{d_{n+1}^{2(s+1)}}.$$

И потому также

2. 
$$q_{n+1} > \alpha^2 \frac{1}{d_{n+1}^{2(s+1)}}$$
.

 $q_0, q_1, q_2, \dots$  которые по конструкции являются знаменателями подходящих дробей непрерывной дроби

$$\Theta = \frac{1}{b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \dots}}}$$

причем

$$\frac{\varphi(q_n)}{q_n} > \frac{1}{36}, \ (n = 1, 2, \ldots).$$

Теперь определим натуральные числа  $k_1, k_2, \ldots$  при помощи неравенств 3.

$$\omega_1((k_n+1)q_n) \leq \left|\Theta - \frac{p_n}{q_n}\right| < \omega_1(k_nq_n).$$

В силу (4) —  $(q'_{n+1} < q_{n+1} < 4q'_{n+1})$  имеем

$$egin{align} rac{1}{16}\omega_{1}(k'_{n}q_{n}) &= rac{1}{16}rac{eta}{q_{n}q'_{n+1}} < rac{1}{2q_{n}q_{n+1}} < \left| arTheta - rac{p_{n}}{q_{n}} 
ight| < \ &< rac{1}{q_{n}q_{n+1}} < rac{eta}{q_{n}q'_{n+1}} = \omega_{1}(k'_{n}q_{n}), \end{split}$$

потому

$$\frac{1}{16}\omega_1(k'_nq_n) < \omega_1(k_nq_n) \leq \omega_1(k'_nq_n)$$

для всех достаточно больших  $n^{13}$ )

$$k_n' \leq k_n < c_1 k_n'.$$

и так 
$$\frac{1}{16} < \frac{\omega_1 k_n q_n}{\omega_1 (k_n' q_n)} \le \left(\frac{k_n'}{k_n}\right)^{\frac{s+1}{s}}$$
, следовательно  $k_n < 16^{\frac{s}{s+1}} \, k_n'$ .

<sup>13)</sup> Через  $c_1, c_2, \ldots$  мы обозначаем в дальнейшем положительные постоянные. Неравенство  $k_n' \leq k_n$  мы получаем непосредственно  $(\omega_1(x))$  не возрастает). С другой стороны  $\omega_1^{(s)}(k_nq_n)(k_nq_n)^{s+1} \leq \omega_1^s(k_n'q_n)(k_n'q_n)^{s+1}$ 

Следовательно имеем с одной стороны

$$d_n < \sum_{n=1}^{k'_n} \omega_1^{s-1}(iq_n) (iq_n)^{s-1} \leq \sum_{i=1}^{k_n} \omega_1^{s-1}(iq_n) (iq_n)^{s-1}$$

откуда следует расходимость ряда

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_1^{s-1}(iq_n) (iq_n)^{s-1}.$$

Сдругой стороны имеем — (2),  $k_n < c_1 k_n'$ ,  $\omega_2(x) \le \omega_1(x) \left(\frac{1}{\mu(x)}\right)^{\frac{1}{s-1}}$  –

$$\sum_{i=1}^{k_n} \omega_2^{s-1} (iq_n) (iq_n)^{s-1} < c_2 \sum_{i=1}^{k'_n} \omega_2^{s-1} (iq_n) (iq_n)^{s-1} < c_2 \sum_{i=1}^{k'_n} \omega_1^{s-1} (iq_n) (iq_n)^{s-1} \frac{1}{\mu(iq_n)} < c_3 \frac{d_n}{\mu(n)},$$

откуда следует сходимость ряда

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_2^{s-1}(iq_n) (iq_n)^{s-1}.$$

Итак лемма полностью доказана.

Замечание. Неравенства  $k_n q_n > q_{n+1}$  быть может возможны (для чисел  $k_n$ ,  $q_n$  построенных в ходе доказательства леммы). Но  $k_n q_n < q_{n+2}$  для каждого n, потому что вследствие неравенств (5) имеем

$$k_{n}q_{n} < \frac{1}{(\omega_{1}(k_{n}q_{n}))^{\frac{s}{s+1}}} < (2q_{n}q_{n+1})^{\frac{s}{s+1}} < 2q_{n+1}^{\frac{s}{s+1}} q_{n+1}^{\frac{s}{s+1}} \stackrel{2}{\overset{2s-1}{\sim}} < 2q_{n+1}^{\frac{3}{2}} < q_{n+2}.$$

В дальнейшем мы будем рассматривать меру Лебега не-которых множеств в пространстве  $R_{s-1}$ .

Если дана положительная функция  $\omega(x)$  и последовательность натуральных чисел  $n_1, n_2, \ldots$ , то будем обозначать через

$$W(r_1, ..., r_{s-1}; n_i), (0 \le r_i < n_i, l = 1, 2, ..., s-1)$$

куб состоящий из точек  $(x_1, \ldots, x_{s-1})$  удовлетворяющих неравенствам

$$\left|x_{l}-\frac{r_{l}}{n_{i}}\right|<\omega(n_{i}),\ (l=1,\,2,\,...,\,s-1).$$

Сумму всех кубов  $W(r_1, \ldots, r_{s-1}; n_i)$ ,  $(0 \le r_l < n_i, l = 1, 2, \ldots, s-1)$ , обозначим  $E(n_i)$ .  $F(n_i, n_k)$  будет обозначать (для  $i \le k$ ) множество всех точек из  $E(n_k)$ , которые не содержатся ни в каком множестве  $E(n_i)$ ,  $E(n_{i+1})$ , ...,  $E(n_{k-1})$ ; положим  $F(n_i, n_i) = E(n_i)$ ; |A| обозначает меру Iебега множества A.

**Пемма 6.** Пусть дана последовательность натуральных чисел  $n_1 < n_2 < n_3 < \dots$  Пусть функция  $\omega(x)$  положительная и убывает для  $x \geq 1$ .

Tог $\partial a$ 

$$|F(n_i,n_k)| \geq 2^{s-1}\omega^{s-1}(n_k) n_k^{s-1} \left\{ \left( \frac{\varphi(n_k)}{n_k} \right)^{s-1} - 4^{s-1} \sum_{\substack{(n_i \leq n_j < n_k)}} \omega^{s-1}(n_j) n_j^{s-1} \right\}. 14)$$

Доказательство. Множество  $F(n_i,n_k)$  содержит наверное каждый куб  $W(r_1,\ldots,r_{s-1};\ n_k)$  ( $0 \le r_i < n_k$ ),  $l=1,2,\ldots,s-1$ ), который не имеет совместной точки с кубами  $W(r_1',\ldots,r_{l-1}';\ n_i)$  ( $0 \le r_l' < n_i,\ l=1,2,\ldots,s-1,\ n_i \le n_i < n_k$ ). Оценим число этих кубов.

Для того, чтобы куб  $W(r_1, \ldots, r_{s-1}; n_k)$  имел совместную точку с кубом  $W(r'_1, \ldots, r'_{s-1}; n_j)$ , необходимо выполнение неравенств

$$\left| \frac{r_l'}{n_j} - \frac{r_l}{n_k} \right| < \omega(n_j) + \omega(n_k), \ (l = 1, 2, ..., s - 1)$$

тем более

$$|r'_{l}n_{k}-r_{l}n_{j}|<2n_{j}n_{k}\omega(n_{j}),\ (l=1,2,...,s-1).$$
 (1)

Фиксируем теперь  $n_j$ . Пусть  $(n_j, n_k) = d$  найбольший общий делитель чисел  $n_j, n_k$ . Согласно (1) целые  $r'_i, r_l$  должны быть таковы, чтобы числа  $r'_l n_k - r_l n_j$  были кратными d, и по абсолютной величине были меньше чем  $2n_j n_k \omega(n_j)$ . Число тех кратных d, которые неотрицательны и меньше чем  $2n_j n_k \omega(n_j)$ , равно

$$\left\lceil rac{2n_j n_k \omega(n_j)}{d} 
ight
ceil + 1.$$

Если при заданных  $n_k, n_j$ , число  $r_l$  принимает все значения  $0, 1, 2, \dots$ 

 $<sup>\</sup>Sigma$  будет обозначать сумму, которая относится к членам последовательности  $n_1,\ n_2,\ \dots$ 

...,  $n_k - 1$ , тогда (для подходящего  $r'_l$ ) каждое неотрицательное кратное d может встречаться на левой стороне неравенства (1) не больше чем 2d раз (число решений сравнения  $r_l \frac{n_j}{d} \equiv \pm \lambda \left( \operatorname{mod} \frac{n_k}{d} \right)$  с  $0 \leq r_l < n_k$  равняется 2d). Если  $r_l$  принимает только такие значения, что  $r_l$  и  $n_k$  являются взаимно простыми, тогда не может  $r'_l n_k - r_l n_i$  равняться нулю. Итак число целых  $r_l$ .

только такие значения, что  $r_l$  и  $n_k$  являются взаимно простыми, тогда не может  $r_l'n_k - r_ln_j$  равняться нулю. Итак число целых  $r_l$ ,  $0 \le r_l < n_k$ ,  $(r_l, n_k) = 1$  для которых неравенство (1) выполняется, не превышает

$$2d\left\lceil \frac{2n_jn_k\omega(n_j)}{d}\right\rceil \leq 4n_jn_k\omega(n_j).$$

Число кубов  $W(r_1,\ldots,r_{s-1};\,n_k)$  для которых  $0 \le r_l < n_k$ ,  $(r_l,\,n_k)=1,\,(l=1,\,2,\,\ldots,s-1)$  равняется  $\varphi^{s-1}(n_k)$  и не более чем  $(4n_jn_k\omega(n_j))^{s-1}$  таких кубов имеет совместную точку с каким нибудь из кубов  $W(r_1,\,\ldots,\,r_{s-1};\,n_j),\,(0\le r_l < n_j,\,l=1,\,2,\,\ldots,s-1).$  Следовательно, число тех кубов, которые не имеют совместной точки с множеством  $\sum_{(n_i\le n_j< n_k)} E(n_j)$ , равняется по крайней  $(n_i\le n_j< n_k)$ 

мере

$$\varphi^{s-1}(n_k) - (4n_k)^{s-1} \sum_{\substack{(n_i \leq n_j < n_k)}} \omega^{s-1}(n_j) n_j^{s-1},$$

откуда

$$\begin{split} |F_{(n_i, n_k)}| &> 2^{s-1}\omega^{s-1}(n_k)\{\varphi^{s-1}(n_k)\} - (4n_k)^{s-1} \sum_{(n_i \leq n_j < n_k)} \omega^{s-1}(n_j) |n_j^{s-1}\} = \\ &= 2^{s-1}\omega^{s-1}(n_k) |n_k^{s-1}| \left\{ \left(\frac{\varphi(n_k)}{n_k}\right)^{s-1} - 4^{s-1} \sum_{(n_i \leq n_j < n_k)} \omega^{s-1}(n_j) |n_j^{s-1}\right\}. \end{split}$$

**Пемма 7.** Пусть s > 1. Пусть  $\omega(x)$  будет такая же функция, как  $\omega_1(x)$  в лемме 5; пусть  $q_1, q_2, \ldots, k_1, k_2, \ldots$  будут последовательность натуральных чисел, построенные так, как указано в этой лемме.

Tогда для каждого достаточно большого n существует натуральное число  $t \geq 0$  такое, что

$$\left|\sum_{\substack{1 \leq i \leq k_{n+j} \\ 0 \leq j \leq t}} E(iq_{n+j})\right| > C_2 > 0,$$

 $r\partial e$  число  $C_{\mathbf{2}}=C_{\mathbf{2}}(s)$  зависит только от s.

Доказательство. По замечанию к лемме 5, каждая из последовательностей

$$q_1, 2q_1, \ldots, k_1q_1, q_3, 2q_3, \ldots, k_3q_3, q_5, \ldots$$
 (1)  
 $q_2, 2q_2, \ldots, k_2q_2, q_4, 2q_4, \ldots, k_4q_4, q_6, \ldots$ 

является возрастающей. По лемме 5, одна из этих последовательностей — обозначим ее кратко через  $\{iq_n\}$  — такова, что ряд

$$\sum_{(iq_n)} \omega^{s-1}(iq_n) (iq_n)^{s-1}$$

расходится. Возьмем в этой последовательности  $\{iq_n\}$  член  $q_n$  достаточно большой, чтобы мы могли определить член  $mq_{n+t} > q_n$  таким образом, что

$$\sum_{\substack{(q_{n} \leq iq_{n+j} \leq mq_{n+t})}} \psi(iq_{n+j}) \leq \frac{C_1}{36 \cdot 2 \cdot 4^{s-1}} < \sum_{\substack{(q_{n} \leq iq_{n+j} \leq m+1q_{n+t})}} \psi(iq_{n+j}),$$

где для краткости полагаем  $\psi(x) = \omega^{s-1}(x) x^{s-1}$ ; при этом  $C_1$  является постоянной из леммы 2.15)

Очевидно

$$\sum_{\substack{1 \leq i \leq k_{n+j} \\ 0 \leq j \leq t}} E(iq_{n+j}) \supset \sum_{\substack{(q_n \leq iq_{n+j} \leq mq_{n+t})}} E(iq_{n+j}) \supset \sum_{\substack{(q_n \leq iq_{n+j} \leq mq_{n+t})}} F(q_n, iq_{n+j}).$$

Множества  $F(q_n, iq_{n+j})$  не пересекаются, как вытекает из определения. Итак, по лемме 2 и 6 имеем

$$igg|_{\substack{(q_n \leq iq_{n+j} \leq mq_{n+t})}} F(q_n, iq_{n+j}) igg|_{\geq 2}^{s-1} \sum_{(...)} \psi(iq_{n+j}) rac{\varphi(iq_{n+j})}{iq_{n+j}} - 2^{s-1} rac{C_1}{36 \cdot 2} \sum_{(...)} \psi(iq_{n+j}) \geq 2^{s-1} \sum_{(...)} \psi(iq_{n+j}) \left(rac{\varphi(iq_{n+j})}{iq_{n+j}}
ight)^{s-1} - rac{1}{4 \cdot 2^{s-1}} \left(rac{C_1}{36}
ight)^2.$$

Для удобства вычисления положим  $\sum_{i=1}^p \frac{\varphi(i)}{i} = \sigma_p > C_1 p;$  по лемме 2 и 3 имеем  $\left(\frac{\varphi(nm)}{nm} \geq \frac{\varphi(n)}{n} \cdot \frac{\varphi(m)}{m}; A_1, A_2, \dots$  числа положительные, убывающие).

m+1  $q_{n+t}$  обозначает член, который следует за членом  $mq_{n+t}$  в указанной последовательности  $\{iq_n\}$ ,  $\Sigma$  обозначает, что суммирование  $(iq_n)$  относится лишь к членам указанной последовательности.

$$\begin{split} \sum_{i=1}^k \left( \frac{\varphi(iq_{n+j})}{iq_{n+j}} \right)^{s-1} A_i &> \frac{1}{3\cdot 6} \sum \left( \frac{\varphi(i)}{i} \right)^{s-1} A_j = \\ &= \frac{1}{3\cdot 6} \left[ \sigma_1 A_1 + (\sigma_2 - \sigma_1) A_2 + \ldots + (\sigma_k - \sigma_{k-1}) A_k \right] = \\ &= \frac{1}{3\cdot 6} \left[ \sigma_1 (A_1 - A_2) + \sigma_2 (A_2 - A_3) \ldots + \right. \\ &+ \left. \sigma_{k-1} (A_{k-1} - A_k) + \sigma_k A_k \right] &> \frac{C_1}{3\cdot 6} \sum_{i=1}^k A_i. \end{split}$$

Подобным образом получим

$$2^{s-1} \sum_{(...)} \psi(iq_{n+j}) \left( \frac{\varphi(iq_{n+j})}{iq_{n+j}} \right)^{s-1} > 2^{s-1} \frac{C_1}{36} \sum_{(...)} \psi(iq_{n+j}) = \frac{1}{2 \cdot 2^{s-1}} \left( \frac{C_1}{36} \right)^2 + o(1).$$

Следовательно для достаточно больших п

$$\left| \sum_{\substack{1 \le i \le k_{n+j} \\ 0 \le j \le t}} E(iq_{n+j}) \right| \ge \left| \sum_{(...)} F(q_n, iq_{n+j}) \right| \ge \frac{1}{2 \cdot 2^{s-1}} \left( \frac{C_1}{36} \right)^2 + o(1) - \frac{1}{4 \cdot 2^{s-1}} \left( \frac{C_1}{36} \right)^2 > \frac{1}{6 \cdot 2^{s-1}} \left( \frac{C_1}{36} \right)^2 = C_2 > 0.$$

§ 2. Доказательство теорем.

Доказательство теоремы 1. Пусть s>1. Пусть даны функции  $\omega(x)$ ,  $\tau(x)$  удовлетворяющие условиям теоремы 1. К функции  $\omega(x)$  построим по лемме 4. функцию  $\pi(x)$ ,  $(\pi(x)$  непрерывная,  $\pi(x) \to \infty$  для  $x \to \infty$  и  $\int_{1}^{\infty} \omega^{s-1}(\pi(x) \cdot x) \; x^{s-1} \; \mathrm{d}x$  расходится). Тогда существует функция  $\tau_1(x)$ , например

$$\tau_1(x) = \min\left(\frac{\tau(x)}{x}, \ \pi(x)\right), \ x \geq 1$$

такая, что  $au_1(x)$  непрерывна для  $x \geq 1$ ,  $au_1(x) o \infty$  для  $x o \infty$  и

$$\omega(\tau(x)) \leq \omega(\tau_1(x) \cdot x) = \omega_2(x) < \omega(x \log \tau_1(x)) = \omega_1(x) < \omega(x). \quad (1)$$

Функции  $\omega_1(x)$ ,  $\omega_2(x)$  удовлетворяют условиям леммы 5. Применив эту лемму, построим непрерывную дробь  $\Theta_s$  и последовательность натуральных чисел  $k_1, k_2, \ldots$  такую, что

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_1^{s-1}(iq_n) (iq_n)^{s-1}$$
расходится

$$\sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \omega_2^{s-1}(iq_n) (iq_n)^{s-1} \text{ сходится}$$
 (2)

$$\omega_{1}((k_{n}+1) q_{n}) \leq \left| \Theta_{s} - \frac{p_{n}}{q_{n}} \right| < \omega_{1}(k_{n}q_{n}). \tag{3}$$

Достаточно теперь доказать:

- 1. Почти для всех точек ( $\Theta_1$ ,  $\Theta_2$ , ...,  $\Theta_{s-1}$ ) в  $R_{s-1}$  система ( $\Theta_1$ ,  $\Theta_2$ , ...,  $\Theta_{s-1}$ ,  $\Theta_s$ ) допускает одновременную аппроксимацию  $\omega(x)$  а именно при помощи дробей со знаменателем  $iq_n$ .
- 2. Множество точек ( $\Theta_1, \Theta_2, \ldots, \Theta_{s-1}$ ), для которых неравенства

$$\left|\Theta_i - \frac{r_i}{q}\right| < \omega(\tau(q)), \ (i = 1, 2, ..., s)$$

имеют бесконечно много решений  $\frac{r_1}{q}, \frac{r_2}{q}, \ldots, \frac{r_s}{q}$ , где  $\frac{r_s}{q}$  подходящая дробь числа  $\Theta_s$ , имеет меру нуль в  $R_{s-1}$ .

3. Множество точек ( $\Theta_1,\,\Theta_2,\,\ldots,\,\Theta_{s-1}$ ), для которых неравенства

$$\left|\left|\Theta_{i}-rac{r_{i}}{q}
ight|<\omega(q),\;i=1,\,2,\,...,\,s$$

имеют бесконечно много решений  $\frac{r_1}{q}, \frac{r_2}{q}, \ldots, \frac{r_s}{q},$  где  $\frac{r_s}{q}$  не является подходящей дробью  $\Theta_s$ , имеет меру нуль в  $R_{s-1}$ .

4. Система ( $\Theta_1$ ,  $\Theta_2$ , ...,  $\Theta_{s-1}$ ,  $\Theta_s$ ) является собственной системой почти для всех точек ( $\Theta_1$ ,  $\Theta_2$ , ...,  $\Theta_{s-1}$ ) в  $R_{s-1}$ .

Доказательство утверждения 1. По лемме 7, для каждого достаточно большого n существует такое t, что мера суммы множеств  $E(iq_{n+j})$  ( $1 \le i \le k_{n+j}, \ 0 \le j \le t$ ), определенных в  $R_{s-1}$  неравенствами

$$\left|x_{l} - \frac{r_{l}}{iq_{n+j}}\right| < \omega_{1}(iq_{n+j}), \ (l = 1, 2, ..., s-1; \ 0 \le r_{l} < iq_{n+j})$$
 (4)

больше чем положительная постоянная  $C_2$ .

Пусть E — множество тех точек единичного куба W, т. е. точек  $(x_1,\ldots,x_{s-1})$  с  $0 \le x_l \le 1$ ,  $(l=1,2,\ldots,s-1)$ , которые принадлежат бесконечному числу множеств  $E(iq_n)$ .

По одной теореме теории меры<sup>16</sup>) имеем

$$|E| \geq C_2 > 0.$$

Теперь, по теореме  $Bumanu^{17}$ ) существует для каждого  $\varepsilon>0$  натуральное число m такое, что среди  $m^{s-1}$  кубов гранью  $\frac{1}{m}$ , на которые разбивается единичный куб, существует по крайней мере один куб  $W_1$  такой, что

$$|EW_1| > (1-\varepsilon) |W_1| = (1-\varepsilon) \frac{1}{m^{s-1}}.$$

Пусть  $W_2$  будет любой куб, принадлежащий к этой системе  $m^{s-1}$  кубов; пусть  $Q_2 \subset W_2$  означает множество, конгруэнтное с  $E:W_1$ , т. е. каждой точке  $(x_1, x_2, \ldots, x_{s-1}) \in EW_1$  отвечает точка  $(y_1, y_2, \ldots, y_{s-1}) \in Q_2$  при помощи переноса

$$y_l = x_l + \frac{a_l}{m}, \ (l = 1, 2, ..., s - 1),$$

где  $a_{l}$  — целые числа.

Согласно (4) имеем

$$\left|x_{l} + \frac{a_{l}}{m} - \frac{a_{l}}{m} - \frac{r_{l}}{iq_{n}}\right| = \left|y_{l} - \frac{r'_{l}}{miq_{n}}\right| < \omega_{1}(iq_{n}), \ (l = 1, 2, ..., s - 1);$$

так, что если  $iq_n$  достаточно велико, чтобы  $\log(\tau_1(iq_n)) \ge m$ , то будет

$$\left| y_{l} - \frac{r'_{l}}{miq_{n}} \right| < \omega(miq_{n}), \ (l = 1, 2, ..., s - 1).$$
 (5)

- ^16) Пусть N множество точек, которые принадлежат бесконечному числу множеств  $N_i$  ( $i=1,\,2,\,\ldots$ ). Пусть  $M_n=\sum\limits_{i=n}^\infty N_i$  (так, что  $M_n\supset M_{n+1}$ ). Тогда  $N=\prod\limits_{i=1}^\infty M_i$  и потому (если  $N_i$  измеримы)  $|N|=\lim\limits_{n\to\infty}|M_n|$ .
- 17) Пусть  $\mathfrak{v}$  система кубов W, покрывающих множество E такая, что для каждого  $\varepsilon > 0$ ,  $x \in E$  существует в  $\mathfrak{v}$  куб W(x) такой, что  $x \in W(x)$ ,  $|W(x)| < \varepsilon$ . Тогда в системе  $\mathfrak{v}$  для каждого  $\varepsilon > 0$  существует конечная система кубов  $W_1, W_2, \ldots, W_n$  такая, что (при предложении, что мера E положительна)

$$\sum_{i=1}^{n} |W_i| - \frac{1}{2}\varepsilon |E| \leq |E| \leq \sum_{i=1}^{n} |EW_i| + \frac{1}{2}\varepsilon |E|$$

и, следовательно

$$\sum_{i=1}^{n} |EW_i| \geq \frac{1-\frac{1}{2}\varepsilon}{1+\frac{1}{2}\varepsilon} \sum_{i=1}^{n} |W_i| > (1-\varepsilon) \sum_{i=1}^{n} |W_i|.$$

Так как мера двух конгруэнтных множеств одинакова, то множество тех точек единичного куба, для которых неравенства (5) выполняются (для бесконечно многих чисел  $miq_n$ ), имеет меру большую чем  $1-\varepsilon$ . Так как это верно при любом  $\varepsilon>0$ , то мера множества точек  $(x_1, x_2, \ldots, x_{s-1}) \in W$  для которых неравенства

$$\left| x_{l} - \frac{r_{l}}{iq_{n}} \right| < \omega(iq_{n}), l = 1, 2, ..., s - 1; 1 \leq i$$

имеют бесконечное число решений, равняется 1.

Кроме того имеем

$$\left|\Theta_s - \frac{mip_n}{miq_n}\right| = \frac{1}{\lambda_n q_n^2} < \omega_1(iq_n) < \omega(miq_n).$$

Доказательство утверждения 2. Обозначим  $E'(iq_n)$  множество точек  $(x_1, x_2, ..., x_{s-1})$  удовлетворяющих соотношениям

$$\left|x_{l} - \frac{r_{l}}{iq_{n}}\right| < \omega_{2}(iq_{n}), \ l = 1, 2, ..., s - 1; \ 0 \le r_{l} < iq_{n}$$
 (6)

и E' — множество всех точек единичного куба, которые входят в бесконечное число множеств  $E'(iq_n), (n=1,2,\ldots,1 \le i \le k_n)$ . Для каждого N>0 имеем

$$E'\subset \sum_{iq_n>N} E'(iq_n);$$

следовательно, согласно (2), для каждого  $\varepsilon > 0$  существует такое  $N(\varepsilon)$ , что

$$|E'| \leq \sum_{iq_n > N} \omega_2^{s-1} (iq_n) (iq_n)^{s-1} < \varepsilon$$

и потому |E'|=0.

Итак множество точек из  $R_{s-1}$ , которые удовлетворяют условиям (6) для бесконечного числа знаменателей  $iq_n$  (1  $\leq i \leq k_n$ ), имеет меру нуль.

Остается доказать, что аппроксимация  $\omega_2(x)$  не может быть осуществлена (для почти всех систем ( $\Theta_1, \ldots, \Theta_{s-1}$ )) дробями со знаменателем  $iq_n, i > k_n$ . Это следует непосредственно из определения (3) чисел  $k_n$ ; имеем

$$\left|\Theta_s - \frac{ip_n}{iq_n}\right| = \frac{1}{\lambda_n q_n^2} \ge \omega_1(iq_n) > \omega_2(iq_n), i > k_n.$$

Доказательство утверждения 3. Надо доказать, что множество точек  $(x_1, x_2, \ldots, x_{s-1})$ , которые удовлетворяют неравенствам

$$\left|x_{l}-\frac{r_{l}}{q}\right|<\omega(q),\ (l=1,2,...,s-1),$$
 (7)

и одновременно неравенству

$$\left|\Theta_s - \frac{r_s}{q}\right| < \omega(q) \tag{8}$$

для бесконечного числа дробей  $\frac{r_s}{q} \neq \frac{p_n}{q_n}$   $(n=1,\,2,\,\ldots),$  имеет меру нуль в  $R_{s-1}.$ 

Будем говорить, следуя методу  $Ярника^{18}$ ), что пара натуральных чисел p, q является особенной парой (ausgezeichnetes Zahlenpaar) порядка t, если

1. 
$$2^t \leq q < 2^{t+1}$$
,  $\left|\Theta_s - \frac{p}{q}\right| < \omega(q)$ ,

2.  $\frac{p}{q}$  не является подходящей дробью для  $\Theta_s$ .

Обозначим через N(t) число особенных пар порядка t. Найдем верхнюю оценку функции N(t).

С одной стороны, для каждой особенной пары p, q порядка t существует пара целых чисел v, w такая, что

$$w > 0, (v, w) = 1, \frac{v}{w} = \frac{p}{q}, \frac{1}{2w^2} \le \left| \Theta_s - \frac{v}{w} \right| < \omega(q) \le \omega(2^t).$$
 (9)

С другой стороны, для каждой пары v, w удовлетворяющей (9), существует не более  $\frac{2^{t+1}}{w}$  особенных пар порядка t.

Пусть u будет натуральное число. Обозначим N(t, u) число пар v, w удовлетворяющих (9) с  $2^u \leq w < 2^{u+1}$ . Для того, чтобы были выполнены эти условия, необходимо, чтобы  $u \geq u_0$ , где  $u_0$  дано неравенствами

$$2^{u_0-1} \leq \frac{1}{(2\omega(2^t))^{\frac{1}{2}}} 2^{u_0}.$$

<sup>18)</sup> Смотри например:

Ein Existenzsatz aus der Theorie der diophantischen Approximationen. Prace Matematyczno-Fizyczne, 39 (1932), p. 5—9.

С другой стороны, разность любых двух разных дробей, знаменатели которых меньше  $2^{u+1}$ , превышает по абсолютной величине число  $2^{-2u-2}$ . Вследствии этого, число таких дробей, которые принадлежат отрезку ( $\Theta_s - \omega(2^t)$ ,  $\Theta_s + \omega(2^t)$ ) не превышает числа  $2\omega(2^t)$   $2^{2u+2} + 1$ .

Итак имеем

$$N(t, u) = 0$$
 для  $u < u_0,$   $N(t, u) \leq \omega(2^t) \ 2^{2u+3} + 1$  для  $u_0 \leq u \leq t.$ 

Тогда

$$N(t) \leq \sum_{u_0 \leq u \leq t} N(t, u) \frac{2^{t+1}}{w} \leq \sum_{u_0 \leq u \leq t} N(t, u) 2^{t-u+1} \leq \sum_{u_0 \leq u \leq t} (\omega(2^t) 2^{2u+3} + 1) 2^{t-u+1} \leq 2^5 \omega(2^t) 2^{2t} + 2^{t+2-u_0} \leq \sum_{u_0 \leq u \leq t} (\omega(2^t) 2^{2u+3} + 2^t 2^{t+2-u_0} \leq 2^5 \omega(2^t) 2^{2t} + 2^4 \omega^{\frac{1}{2}}(2^t) 2^t.$$

Пусть будет опять  $W(r_1, ..., r_{s-1}; q)$  куб

$$\left|x_{l} - \frac{r_{l}}{q}\right| < \omega(q) \ (l = 1, 2, ..., s - 1; \ 0 \leq r_{l} < q, \ r_{l}$$
 целые).

Пусть  $E_t$  — сумма всех кубов  $W(r_1, \ldots, r_{s-1}; q)$  для всех величин  $0 \le r_l < q$  и для всех особенных знаменателей q порядка t. Очевидно

$$|E_t| \leq 2^{s-1}\omega^{s-1}(2^t) 2^{(t+1)(s-1)} N(t) \leq 2^{2s+3}\omega^s(2^t) 2^{(s+1)t} + 2^{2s+2}\omega^{s-\frac{1}{2}}(2^t) 2^{st}.$$

Пусть E'' — множество точек единичного куба, которые содержаться в бесконечном числе  $E_t$  (иначе говоря, для которых бесконечно много раз осуществляется одновременно (7) и (8),

где  $\frac{r_s}{q} + \frac{p_n}{q_n}$ . Имеем  $E'' \subset \sum_{t>T} E_t$  для каждого T и следовательно

$$|E''| \leq |\sum_{t>T} |E| \leq 2^{2s+3} \sum_{t>T} \omega^{s}(2^{t}) 2^{(s+1)t} + 2^{2s+2} \sum_{t>T} \omega^{s-\frac{1}{2}}(2^{t}) 2^{st}.$$

 $\sup_{x \in \mathbb{R}^n} \sup_{x \in \mathbb{R}^n} \sup_{$ 

Итак |E''|<arepsilon для каждого arepsilon>0 и потому |E''|=0.

Доказательство утверждения 4. Очевидно множество точек  $(x_1, x_2, \ldots, x_{s-1})$ , для которых

$$k_1 x_1 + k_2 x_2 + \ldots + k_{s-1} x_{s-1} + k_s \Theta_s + k_0 = 0$$
 (10)

с  $\sum_{i=0}^{s} k_i^2 > 0$ ,  $k_i$  целые, является счетной суммой подпространтв в  $R_{s-1}$  и, следовательно, имеет меру нуль в  $R_{s-1}$ . В самом деле, из (10) вытекает  $\sum_{k=1}^{s-1} k_i^2 > 0$ , потому что  $\Theta_s$  иррациональное; множество систем  $(k_1, k_2, \ldots, k_s, k_0)$  очевидно счетное.

## Доказательство теоремы 2.

- 1. Предположим, что  $\int_{1}^{\infty} \omega(x) \, dx$  сходится; следовательно  $\omega(x) \, x^2 \to 0$  для  $x \to \infty$  и можно применить теорему  $\mathcal{A}$  рника (смотри 4), доказательство которой не представляет труда.
- 2. Предположим, что  $\int\limits_{1}^{\infty}\omega(x)\;x\;\mathrm{d}x$  расходится; тогда существует k целое такое, что

$$1 \le k < s$$
,  $\int_{1}^{\infty} \omega^{s-k+1}(x) x^{s-k+1} dx$  сходится,  $\int_{1}^{\infty} \omega^{s-k}(x) x^{s-k} dx$  расходится.

Определим  $\tau(x)$  так:

$$\omega(\tau(x)) = \omega(x) \, \lambda(x).$$

Так как интеграл  $\int_{1}^{\infty} \omega(x) dx$  расходится, то монотонная функция  $\omega(x) x^{2+\varepsilon} \to \infty$  для  $x \to \infty$ ; следовательно (если x является достаточно большим, чтобы  $\lambda(x) < 1$ )

$$\lambda(x) = \frac{\omega(\tau(x))}{\omega(x)} > \frac{x^{2+\varepsilon}}{\tau(x)^{2+\varepsilon}},$$

так, что

$$\frac{\tau(x)}{x} \to \infty$$
 для  $x \to \infty$ .

Достаточно найти собственную систему, которая допускает аппроксимацию  $\omega(x)$  но не допускает аппроксимации  $\omega(\tau(x))$ .

Существование такой системы следует из теоремы 1., если k=1 (для каждого s>1). Продолжаем доказательство при помощи индукции.

Пусть будет 1 < k < s и предположим, что теорема верна, если k заменить через k-1, а s через любое число > k-1. Предположим, что

$$\int_{1}^{\infty} \omega^{s-k+1}(x) \ x^{s-k+1} \ dx \ \text{сходится}$$

$$\int_{1}^{\infty} \omega^{s-k}(x) \ x^{s-k} \ dx \ \text{расходится}. \tag{1}$$

Эти предположения соответствуют случаю, когда k, s заменены через k-1, s-1. Тогда существует собственная система  $(\Theta_1, \ldots, \Theta_{s-1})$ , которая допускает аппроксимацию  $\omega(x)$ , но не допускает аппроксимации  $\omega(x)$   $\lambda(x)$ .

Следовательно существует последовательность систем целых чисел  $p_{n,1}, \ldots, p_{n,s-1}, q_n$  ( $n=1,2,\ldots$ ), такая, что  $1 < q_1 < q_2 < \ldots$ ,

$$\left|\Theta_{i} - \frac{p_{n,i}}{q_{n}}\right| < \omega(q_{n}) \ (i = 1, 2, ..., s - 1).$$

Выбрав, если нужно, подходящую подпоследовательность этой последовательности, мы можем достичь того, чтобы

$$q_{n+1} > \max\left(4q_n, \frac{2}{\omega(q_n)}\right). \tag{2}$$

Определим несчетное множество последовательностей целых чисел

$$p_{1,s}, p_{2,s}, p_{3,s}, \ldots,$$
 (3)

следующим образом:  $p_{1,s}=0$  и для каждого  $p_{n,s}$  можно подыскать  $p_{n+1,s}$  по крайней мере двумя разными способами так, чтобы

$$\left|\frac{p_{n,s}}{q_n} - \frac{p_{n+1,s}}{q_{n+1}}\right| \leq \frac{1}{q_{n+1}}.$$

$$\tag{4}$$

Положим

$$\Theta_s = \lim_{n \to \infty} \frac{p_{n,s}}{q_n};$$

легко видеть, что (принимая во внимание (4), (2))

$$\left|\Theta_{s} - \frac{p_{ns}}{q_{n}}\right| \leq \frac{1}{q_{n+1}} + \frac{1}{q_{n+2}} + \dots < \frac{2}{q_{n+1}} < \omega(q_{n}),$$
 (5)

так, что  $(\Theta_1, \ldots, \Theta_{s-1}, \Theta_s)$  допускает аппроксимацию  $\omega(x)$ , но не допускает уже  $\omega(x)$   $\lambda(x)$  (потому что система  $(\Theta_1, \Theta_2, \ldots, \Theta_{s-1})$  ее не допускает). Двум разным последовательностям (3)  $p'_{n,s}; p''_{n,s}, (n=1,2,\ldots)$  отвечают два разных числа  $\Theta'_s, \Theta''_s$ , ибо если  $p'_{n,s} \neq p''_{n,s}$  для какого-нибудь n, то по (5) имеем

$$|\Theta_s' - \Theta_s''| \ge \left| \frac{p'_{n,s}}{q_n} - \frac{p''_{n,s}}{q_n} \right| - \frac{4}{q_{n+1}} \ge \frac{1}{q_n} - \frac{4}{q_{n+1}} > 0.$$

Но множество всех чисел  $\Theta_s$  для которых уравнение

$$k_1\Theta_1 + \ldots + k_{s-1}\Theta_{s-1} + k_s\Theta_s + k_0 = 0, k_i$$
 целые,  $\sum_{i=1}^n k_i^2 > 0$  (6)

выполняется, счетно, потому что система ( $\Theta_1, \ldots, \Theta_{s-1}$ ) является собственной системой, итак из (6) вытекает  $k_s \neq 0$ . Мы можем следовательно выбрать последовательность (3) так, чтобы система ( $\Theta_1, \ldots, \Theta_s$ ) была собственной. Теорема этим доказана.

Закончим эту работу следующим замечанием: Теорему 2. можно в известном смысле усилить. В случае, когда интеграл  $\int_{1}^{\infty} \omega^{s-k}(x) \ x^{s-k} \ dx$  расходится. тогда как интеграл  $\int_{1}^{\infty} \omega^{s-k+1}(x)$ .  $x^{s-k+1} \ dx$  сходится,  $(s-k \ge 1)$ , мы можем заключить непосредственно из доказательства теоремы 2., что существует множество  $E_k$  содержащее почти все точки пространства  $R_{s-k}$ , и такое, что для каждой точки  $(\Theta_1,\Theta_2,\ldots,\Theta_{s-k}) \in E_k$  существует k — членная система  $(\Theta_{s-k+1},\ldots,\Theta_s)$  такая, что система  $(\Theta_1,\ldots,\Theta_{s-k},\Theta_{s-k+1},\ldots,\Theta_s)$  имеет свойства, указанные в теореме 2.

### Résumé

## Sur les approximations diophantiennes

KAREL ČERNÝ, Praha. (Reçu le 24 Novembre 1950.)

Nous allons dire qu'un système de s nombres réels  $(\Theta_1, \Theta_2, ..., \Theta_s)$  (un système à s termes, ou un point avec les coordonnées  $(\Theta_1, \Theta_2, ..., \Theta_s)$  dans l'espace cartésien à s dimensions  $R_s$ ) ( $s \ge 1$ , entier) admet l'approximation simultanée  $\omega(x)$  ( $\omega(x)$  une fonction positive, définie pour  $x \ge 1$ ), s'il existe pour chaque A > 0 un système de s + 1 nombres entiers  $p_1, p_2, ..., p_s, q$  tel que

$$q>A, \left|\left. \Theta_i - rac{p_i}{q} 
ight| < \omega(q), \ i=1,2,...,s.$$

Si ces inégalités ne peuvent être réalisées que par un nombre fini de systèmes des fractions  $\frac{p_1}{q}, \frac{p_2}{q}, ..., \frac{p_s}{q}$  au plus, c'est-à-dire s'il existe un nombre A>0 tel que pour chaque système des nombres entiers  $p_1$ ,  $p_2, ..., p_s$ , q avec q>A il existe au moins un nombre  $\Theta_i (1 \le i \le s)$  tel que

$$\omega(q) \leq \left| \Theta_i - \frac{p_i}{q} \right|,$$

nous disons que le système  $(\Theta_1, \Theta_2, ..., \Theta_s)$  n'admet pas l'approximation  $\omega(x)$ .

Il est bien connu que chaque système à s termes admet l'approximation (simultanée)

$$\omega(x) = \frac{1}{x^{1+\frac{1}{s}}} \cdot 1$$

Soient maintenant  $\omega_1(x)$ ,  $\omega_2(x)$  deux fonctions,  $0 < \omega_2(x) < \omega_1(x) \le \frac{1}{x^{1+\frac{1}{s}}}$  pour  $x \ge 1^2$ ),  $s \ge 1$  un nombre entier. Alors nous

pouvons poser la question aux quelles conditions doivent satisfaire  $\omega_1(x)$  et  $\omega_2(x)$  pour qu'il existe un système à s termes  $(\Theta_1, ..., \Theta_s)$  qui admet l'approximation  $\omega_1(x)$  et n'admet plus l'approximation ,,plus précise  $\omega_2(x)$ .

Ajoutons encore la remarque suivante. Dans le cas s=1 ce problème est trivial pour un point rationnel  $(\Theta)$ . De même, dans le cas général  $s \geq 1$ , le cas le plus intéressant est celui d'un système  $(\Theta_1, ..., \Theta_s)$  pour lequel l'équation

$$k_0 + k_1 \Theta_1 + k_2 \Theta_2 + \ldots + k_s \Theta_s = 0$$
,  $k_i$  entiers  $(0 \le i \le s)$ 

entraîne

$$k_0 = k_1 = \dots = k_s = 0.$$

Nous allons appeler de tels systèmes "systèmes propres" (eigentliche Système).

Dans le cas s=1 la théorie des fractions continues donne une réponse bien complète à cette question, mais dans le cas s>1 les résultats connus sont beaucoup moins satisfaisants. Les principaux résultats dans le cas général sont les suivants:

Soit 
$$s \ge 1$$
,  $\omega_1(x) = \frac{1}{\left(1 + \frac{1}{s}\right) x^{1 + \frac{1}{s}}}$ . Alors il existe, comme a démontré

 $M. \, Perron^3$ ) une constante  $0 < C_s < 1$  telle qu'il existe un système propre  $(\Theta_1, \Theta_2, ..., \Theta_s)$  qui n'admet plus l'approximation  $\omega_2(x) = C_s \omega_1(x)$ .

<sup>1)</sup> D'après H. Minkowski (Geometrie der Zahlen, Leipzig, 1896, p. 112) nous pouvons remplacer cette approximation par une approximation un peu plus précise:  $\omega(x) = \frac{1}{1+\frac{1}{s}}x^{-\left(1+\frac{1}{s}\right)}$ .

<sup>&</sup>lt;sup>2</sup>) Il est naturel de supposer que l'approximation  $\omega(x)$  est une fonction décroissante pour  $x \ge 1$  et  $\omega(x) \to 0$  pour  $x \to 0$ .

(D'après Minkowski tout système à s termes admet l'approximation  $\omega_1(x)$ .) C'est une réponse très précise à notre question, mais seulement

pour l'approximation 
$$\frac{1}{\left(1+\frac{1}{s}\right)x^{1+\frac{1}{s}}}$$
. Au contraire, pour les approxima-

tions très rapidement décroissantes, M. Jarník4) a démontré:

Soit  $\omega_1(x) > 0$  et décroissante,  $\omega_1(x)$   $x^2 \to 0$  pour  $x \to \infty$ ;  $\omega_2(x) = c\omega_1(x)$  (c quelconque, 0 < c < 1).

Il existe alors (pour chaque  $s \ge 1$ ) un système propre  $(\Theta_1, \Theta_2, ..., \Theta_s)$  qui admet l'approximation  $\omega_1(x)$  mais qui n'admet plus l'approximation  $\omega_2(x)$ .

En 1925 M. A. Chinčin (A. Я. Хинчин) a démontré un théorème<sup>5</sup>) — fondamental dans la théorie métrique des approximations diophantiennes — qui contient aussi une contribution à notre problème. Voici le théorème de M. Chinčin:

Soit  $s \ge 1$ ,  $\omega(x) > 0$ , continue pour  $x \ge 1$ ,  $\omega^s(x) x^{s+1}$  monotone et  $\omega^s(x) x^{s+1} \to 0$  pour  $x \to \infty$ .

- 1. Si  $\int_{1}^{\infty} \omega^{s}(x) x^{s} dx$  est divergente, alors presque tous les systèmes<sup>6</sup>) à s termes admettent l'approximation  $\omega(x)$ .
- 2. Si  $\int_{1}^{\infty} \omega^{s}(x) x^{s} dx$  est convergente, alors presque tous les systèmes à s termes possèdent la propriété de ne pas admettre l'approximation  $\omega(x)$ .

Si donc  $\omega_1(x)$ ,  $\omega_2(x)$  sont des fonctions telles que  $\int_1^{\infty} \omega_1^s(x) \, x^s \, dx$  est divergente et  $\int_1^{\infty} \omega_2^s(x) x^s \, dx$  est convergente (par ex.  $\omega_1(x) = x^{-\frac{s+1}{s}} \log^{-\frac{1}{s}}(x)$ ,

 $\omega_2(x) = x^{-\frac{s+1}{s}} \log^{-\frac{1+\varepsilon}{s}} x$ ,  $\varepsilon > 0$ ) et satisfaisantes au reste des suppositions de ce théorème, alors presque tous les points  $(\Theta_1, ..., \Theta_s)$  de  $R_s$  ont les propriétés demandées. (Presque tous les points de  $R_s$  sont des systèmes propres parce que les systèmes impropres constituent un sousensemble dont la mesure dans  $R_s$  est évidemment égale à zéro.)

<sup>3)</sup> Über diophantische Approximationen, Math. Ann., 83 (1921), p. 77—84.

<sup>&</sup>lt;sup>4</sup>) Über die simultanen diophantischen Approximationen, Math. Zeitschr. 33 (1931), p. 539—543.

<sup>&</sup>lt;sup>5)</sup> A. Khintchine: Zur metrischen Theorie der diophantischen Approximationen, Math. Zeitschr., 24 (1926).

 $<sup>^6)</sup>$  C'est à dire tous les systèmes, excepté les points d'un sous-ensemble de  $R_s$  de mesure le besgueienne zéro dans  $R_s.$ 

Mais, si la fonction  $\omega_1(x)$  est telle que  $\int_1^{\infty} \omega_1^s(x) x^s dx$  est convergente, on voit que le théorème de M. Chinčin ne donne aucune réponse à notre question. Or, dans ce cas M.  $Jarnik^7$ ) a démontré le théorème suivant:

Soit  $s \ge 1$ ,  $\omega(x)$  une fonction positive et continue pour  $x \ge 1$ ,  $\omega^s(x) x^{s+1}$  monotone pour  $x \ge 1$ . Soit

$$\int_{1}^{\infty} \omega^{s}(x) \ x^{s} \ dx \ \text{convergente.}$$

Soit, ensuite,  $\tau(x)$  une fonction ayant une dérivée continue pour  $x \ge 1$ ,  $\frac{\tau(x)}{x} \ge 1$  et monotone pour  $x \ge 1$  et  $\frac{\tau(x)}{x} \to \infty$  pour  $x \to \infty$ .

Il existe alors des systèmes propres  $(\Theta_1, \Theta_2, ..., \Theta_s)$  qui admettent l'approximation  $\omega(x)$  mais qui n'admettent plus l'approximation  $\omega(\tau(x))$ .

Ce théorème — assez précis — est un corollaire des théorèmes dont la démonstration basée sur la théorie de la mesure de Hausdorff est assez difficile.

Dans ce travail nous prouvons ce résultat en employant la théorie de la mesure de Lebesgue. Le résultat est contenu dans les théorèmes suivants.

Théorème 1. Soit s > 1,  $\omega(x)$  une fonction positive et continue pour  $x \ge 1$ ,  $\omega^s(x)$   $x^{s+1}$  monotone pour  $x \ge 1$ . Soit

$$\int_{1}^{\infty} \omega^{s}(x) \ x^{s} \ dx \ convergente \ (et \ alors \ \omega^{s}(x) \ x^{s+1} \to 0 \ pour \ x \to \infty),$$

$$\int_{1}^{\infty} \omega^{s-1}(x) \ x^{s-1} \ dx \ divergente.$$

Soit ensuite  $\tau(x)$  une fonction définie pour  $x \ge 1$ ,  $\frac{\tau(x)}{x} \ge 1$  et  $\frac{\tau(x)}{x} \to \infty$  pour  $x \to \infty$ .

Il existe alors un nombre  $\Theta_s$  tel que pour presque tous les points  $(\Theta_1, \Theta_2, ..., \Theta_{s-1})$  de  $R_{s-1}$  le système à s ternes  $(\Theta_1, \Theta_2, ..., \Theta_{s-1}, \Theta_s)$  est propre et admet l'approximation  $\omega(x)$  mais n'admet plus l'approximation  $\omega(\tau(x))$ .

Comme une conséquence facile du Théorème 1, nous allons déduire le théorème suivant:

Théorème 2. Soit  $s \ge 1$ . Soient  $\omega(x)$ ,  $\lambda(x)$  deux fonctions positives et continues pour  $x \ge 1$ . Les fonctions  $\omega(x)$   $x^2$ ,  $\omega^2(x)$   $x^3$ , ...,  $\omega^s(x)$   $x^{s+1}$ ,

<sup>7)</sup> Dans le Mémoire cité sub 4.

 $(x) x^{2+\epsilon}$  (pour un certain  $\epsilon > 0$ ),  $\Lambda(x)$  souch  $\rightarrow \infty$ . L'intégrale

 $\int_{1}^{\infty} \omega^{s}(x) x^{s} dx$ 

Alors il existe un système propre  $(\Theta_1, \Theta_2, ..., \Theta_s)$  qui admet l'approximation  $\omega(x)$  mais n'admet plus l'approximation  $\omega(x)$   $\lambda(x)$ . pit convergente.