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ON SEMIGROUPS HAVING A KERNEL
STEFAN SCHWARZ, Bratislava.
(Received February 8, 1951.)

The author investigates the structure of left and two-sided
ideals in semigroups containing a minimal two-sided ideal, which is
called a kernel of the semigroups. Further, he passes to the discussion
of the structure of simple semigroups with a kernel. Finally some
semigroups are considered the study of which may be reduced to the
study of simple left or two-sided ideals and simple semigroups.

The purpose of this paper is to find a number of new theorems con-
cerning the theory of semigroups. At the same time we generalise some
vesults previously found by SuscHkewrrscu (Cymkesud), REgs, CLIF-
FORD and the author.

By a semigroup we mean a non-vacuous set S of elements a, b, ¢, ...
closed under an associative univalent operation: (ab)c = a(bc).

In such a system we introduce in the usual way the notion of left
(right, two-sided) ideals. The non-vacuous subset L (R) of S is called
a left (right) ideal if — in the sense of the calculus of complexes — the
relation SL C L (RS C £2) holds. A two — sided ideal is a subset which
is both left and right ideal.

The intersection, (if it is non-vacuous) and the union of two left
(right, two-sided) ideals is a left (right, two-sided) ideal.

A semigroup S can contain, (but needs not contain) at most one ele-
ment z with the property: az = za = z for every a € S. Such an element
is termed a ,,zero element‘.

A left (right) ideal of S is called a minimal left (right) ideal of S if it
does not contain any proper subset which is itself a left (right) ideal of S.
A semigroup needs not contain naturally minimal left (right) ideals. Two
minimal left (right) ideals have no element in common.

A semigroup has at most one minimal two-sided ideal n. The set n is
then contained in every two-sided ideal of S. Hence 1 can be described as
the intersection of all two-sided ideals of S. The ideal n is called the
»kernel of the semigroup S*. (It is often called also ,,Suschkewitch
kernel” after SUSCHKEWITCH [1] who described first its structure in the
finite case.) If S has a zero clement z, it has also a kernel and it is clear
that n equals the set {z} consisting of z alone.



CLIFFORD [3] gave a very general condition that assures the existence
of a kernel. Tt is casy to show that if S contains at least one wminimal left
ideal, then it has a kernel. The kernel is then the sum of all minimal left
ideals of S. If .S has morcover at least one minimal right ideal, then n is
a ..completely simple semigroup® in the sense of REEs [1].

REegs [1], [2] and CrrirrorD |2]. {3] call a semigroup S simple if it
does not contain any proper two-sided subideal of S except possibly the
zero ideal {z}. In his paper [3] CLIFFORD studies first the structure of
a simple semigroup S assuming that S has no zero element. In his paper
{4] he is studying semigroups having a zero element. In this connection
it is necessary to alter the definition of minimal ideals and to mean by
them minimal but + {z}. CLixrord found here, under some conditions.
the structure of simple semigroups and simple two-sided ideals of & semi-
group having a zero element. (Simple — in the sense of the above defi-
nition.)

In this paper we shall study semigroups having a kernel (which can
reduce of course in special cases to {z} alone). We give an other definition
of the simplicity of a semigroup. We shall mean by it a semigroup having
a kernel but no other two-sided ideal £ S. If S has a zero element z, our
definition coincides with the original definition of REES and CLirrorbp.
Butif S has no zero element the definitionsdiffer even in the simplest case
of finite semigroups. We introduce new concepts of simple left (right.
two-sided) ideals by meaning by them left (right, two — sided) ideals of S
containing 1 but no other proper subideals of S containing n. One of the
purposes of this paper is to study the structure of simple (left, right. two-
sided) ideals defined in such a way.

A few of the results of our paper can be obtained from CLIFFORD'S
results [4] using the notion of the ,difference-semigroup® originally
introduced by REEs [1] and recently used by CLIFFORD [5] in another
problem. We prefer to give direct proofs, for — as it seems to us — they
enable a clearcr insight in the state of things. Mereover, the methods of
our proofs are different from those of CLIFFORD and have some contact
with my paper |2], though this last deals only with seinigroups without
a zero element. I introduced the notion of simple semigroups and simple |
ideals in the meaning used in this paper yet more years ago when stu-
dying the structure of commutative semigroups ([1], pages 51—61).
Hence the results of the present paper generalise also these older results
of mine. For the special case of commutative semigroups the results found
in this paper have also some loose counection with the recent papers of
Jlanmn 1], [2], [3] (Lrarix [1], [2], [3]).

At the beginning of every section a short characterization of its
content is given, so that we can omit here to give a brief account of all
the paper.

Remark. In what follows we use the following notations. The
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symbol 4 c B (in contrary to 4 C B) means always that 4 is a proper
subset of B. The sum of two sets A, B is offen denoted by (4, B). The
symbol A @ B is used only for a special type of sums. The symbol
A — B means the set-theoretical difference of sets. Other notations have
the usual meaning.

1. Simple ideals.

In this section we give some preliminary definitions and results con-
cerning semigroups having a kernel.

Let S be a semigroup having the kernel n. The product nS is a two-
sided ideal of S contained in n, hence (with respect to the minimality of n)
nS = n. Analogously Sn = n.

If S’ is any subset of S, 8’ ¢ S, then for every n e n there holds
nS" CcnS CnS = n, i. e. 8" C n. Analogously S'n C n.

Especially for every element x € S there holds xn C n, nz C n.

The set 1 and every element n e n have analogous properties as the
zero element: any subset of S multiplied by any element of n belongsto n.

There exist semigroups for which § = n. Such a semigroup has none
two-sided ideal & S. A simple example of such a semigroup is the semi-
group S = {e,, €y, €5, ...} with the multiplication defined by e, = e;,
for every i, k=1, 2,3, ... In this paper we shall not be interested in
such semigroups. We shall study only semigroups with n c S. To be
clear enough we shall often use (if it will be necessary) the words: S has
a proper kernel.

In the introduction we defined the notion of minimal (left, right,
two-sided) ideals. In this section we introduce a new concept of simple
(left, right, two-sided) ideals and prove some of their rather elementary
properties.

Definition 1,1. Let S be a semigroup having a kernel n. A left ideal L
of 8 is called a stmple left ideal of S if n C L C S but there does not exist
a left ideal L' of S with nc L' c L C 8.

Theorem l,1. Let S be a semigroup having a proper kernel n. The
intersection of two different stmple left ideals of S equals n.

Proof. Let L; & L, be two simple left ideals of S. It is n C L; n
N Ly, C Ly, nC Ly 0L, C L, The intersection L; N L, is a left ideal of
S. If it would contain any element non e n we would have (with respect
to the simplicity of L,, Ly) Ly 0 Ly = L, = L,, which contradicts the
supposition.

Remark. According to the definition every simple left ideal of §
contains n and hence — if S has minimal left ideals — every minimal left
ideal of S. (See the introduction.) The definition of simplicity of left
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ideals seems therefore at this stage to be somewhat artificial. But in
studying two-sided ideals we shall see that this definition is quite na-
tural.

Theorem 1,2. For every simple left ideal L of a semigroup S with
kernel n the following relations hold:

Ln=nL=n.

Proof. a) Ln is a two sided ideal of S contained in n, hence equal
to n.

b) Since n is a two-sided ideal of S, there holds nL C nS C n. On the
other side nL D> nn = n%?= n. Hence nL = n. N

Theorem 1,3. Let S be a semigroup having a proper kernel n. Let
Ly, Ly be two (non necessarily different) simple left ideals of S. Then it ts
either LyLy = n or LyL, = L,.

Proof. L, L, is a left ideal of S contained in L,. Since n C Ly, n C L,
we have n®? = n C L, L,. Hence n C L, L, C L,. With respect to the sim-
plicity of L, it is either L,L, = L, or L;L, = n.

Putting L, = L, = L we get:

Corollary 1,3. For every simple left ideal L there holds: either L* = L
or L2 = n.

Theorem 1,4. Let L be a stmple left ideal of a semigroup S having
@ kernel n. Let ¢ be any element of S. Then the set n + Lc is either a simple
left ideal of S or equals n.

Proof. It is either Lc Cn or there exists at least one element
a € Lc with a non € n.

In the first case the theorem is trivially true.

In the second case we prove that n + Lc is a simple left ideal. The
proof follows indirectly. Suppose that L* is a proper left subideal of S:
n C L* c n -+ Lc. Let L, be the set of all element a € L such that ac e L*
holds. If s € 8, it is sac € sL* C L*, so that sa € L;. Hence L, is a left ideal
of § contained in L. Since L is simple it is either L, = L or L; C n. The
second alternative implies L* = n + Ljc C n + nc C n, which
contradicts n ¢ L*. The first alternative gives L, = L, L* = n - Lc.
This proves Theorem 1,3.

Remark. If we would write only Lc (in place of n + Lc) we would
obtain again a left ideal but we cannot say that it contains all elements of
n. (Remember that nec C n but not necessarily nc = n.)

Theorem 1,5. If the sum of all simple left ideals of a semigroup S
having a kernel n is non-vacuous, it is a two-sided ideal of S.

Proof. Let M = XL, be the class sum of all simple left ideals of S.
M is clearly a left ideal. We prove that it is also a right ideal. Let s be any
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element of S. Itis Ms = X(L,s). Every summand L,s is contained in the

set n 4 L,s, which itself-being n or a simple left ideal — is already con-
tained in M. Hence Ms C M for any s e S. This proves our theorem.

Needless to say that analogously as in Definition 1,1 we introduce
the notion of simple right ideals and that theorems analogous to Theorems
1,1—1,5 hold.

In a semigroup having a kernel n every two-sided ideal contains n.
Hence it is natural to give the following definition:

Definition 1,2. Let S be a semigroup with a kernel n. A two-sided
tdeal M of S is called simple if n ¢ M C S holds but there does not exist a two-
sided ideal M’ of S withnc M’ c M C S’

Remark. If S has a zero element z then n = {z} and our definition
coincides with that of CLirrorD [4], who calls of course such an ideal a
..minimal two-sided ideal®.

Theorem 1,6. Let S have a kernel n. For any two different simple

two-sided ideals My, M, it is always
MMy,= M, M,=n.

Proof. It is evidently nc M, M, C M,, nc M,M,C M, Hence
wC MM, C M, n M, Butanalogously as in Theorem 1,1 M; n M,=
= n. Hence n= M M,= M, n M,.

If M, = M, we have only the relation n ¢ M>C M. This gives —
with respect to the simplicity of M — the result:

Corollary 1,6. For every simple two-sided ideal M it is either M* = M
or M? = n.

2. The class sum of all simple left (right, two-sided)
ideals.

In this section we find conditions under which a semigroup having
a proper kernel can be written as the class sum of its simple (left, right,
two-sided) ideals.

Theorem 2,1. Let S be a semigroup with a proper kernel n. If S is
the class sum of its simple left (right, two-sided) ideals this decomposition is
untquely determined.

Proof. We prove it (for instance) for two-sided ideals. Let be
§— S, (1)
2

8= XM, (2)
where M,, M, are simple two-sided ideals of S. It is sufficient to show
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that every M, is contained among the summands of (2) and every M
among the summands of (1). Let M, be any summand from the right hand
side of (2). Let us form the intersection

S N M; = (ZM;) N ZLI;.
M, = (M, n M. 3)
2

The intersection M, n M., is either n or M; n M, = M, = M. Since
on the left hand side of (3) the ideal M/, is D n the second alternative
must occur for at least one A. Hence for at least one 2 M7, = M, holds.
We prove similarly that on the other side every M belonging to the sum
(1) equals some of the ideals M;,. This proves our theorem.

The proof clearly holds if we mean by M simple left (or right)
ideals.

Theorem 2,2. Let S be a semigroup with a proper kernel n. Then S
is the class sum of its stmple left ideals if and only if the following condition
holds: every relation

a = xb, a,bnonen
implies a relation
xa=b
with some
Z non e n.

Proof. 1. The condition is necessary. According to the supposition
every element @ e § — n is contained in some simple left ideal. This ideal
is necessarily L, = (n, a, Sa). Let be b + a, be S — n. The set L, =
= (m, b, Sb) is again a simple left ideal of S. According to Theorem 1,1 it
is either (n,a, Sa)n (n,b,8b)=n or (n,a,Sa)= (n, b, Sb). Since
a* b,aeS— n,beS — ntherelationsa e b, b € Sa are simultaneously
satisfied. I. e. if there exists an x e S with @ = xb there exists also an
x e S with b = za. Further, it is e § — n since z € n would imply b =
= @a € na C n, contrary to the hypothesis.

2. The condition is sufficient. We show: if S satisfies the condition
given in our theorem, then every element @ € § — n is contained in, some
simple left ideal of S. This will prove our theorem.

Consider the element @ € S — n and the ideal L, = (n, a, Sa). We
shall show: there does not exist a left ideal L with n C L C L,, i. e. L, is
a simple left ideal of S. We prove it indirectly. Let L be such an ideal
and b any element of L, be L — n, b %+ a. Then L, = (n, b, Sb) clearly
satisfies

ncl,cLclL, (4)

Since it is b e Ly, bnonen, b + a we have b = xa with some z e S — 1.
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According to the supposition this relation implies a relation o= zb
with 7 non e n. Hence it is @ € Sb and successively

ae(n,b, Sb),
Sa C (n, Sb, §2b) = (n, Sb).
(n, @, Sa) c (n, b, Sb),
L, C L.

The last relation — together with (4) — gives L = L, = L, contrary to
L c L,. This proves our theorem.

The right dual theorem, which can be proved by an analogous argu-
ment, is the following:

Theorem 2,3. Let S be a semigroup with a proper kernel n. Then S is
the class sum of its simple right ideals if and only if the following condition
holds: every relation

a="0by, a,beS—n
implies a relation
b= ay
with some
yelS — .

Definition 2,1. Weshall say that S is the direct sum of two-sided ideals
if S can be written as the class sum of its simple two-sided ideals.

Remark. The notion ,,direct sum‘ is justified by the following fact:
If 8§ = XM, (M, simple two-sided) then for every couple of summands

M., My, £+ A, M, M, = nholds. In this case we shall use the notation
S=X®M,.

Theorem 2,4. Let S be a semigroup with a kernel w. Then S is a direct
sum of two-sided ideals if and only if the following condition holds. Let a,b
be two elements € S — n. If a can be written in at least one of the forms

a = bx, or a = x,b or a = x3bx,, (5)
then b can be written in at least one of the forms
b= ax, or b= x,a or b= X0, (6)

Proof. 1. The condition, is necessary. Let S be the class sum of its
simple two-sided ideals. Then every element a € § — n is contained in
& simple two-sided ideal M,. If a belongs to M, so does aS, Sa, SasS.
Hence M, = (n, a, Sa, a8, SaS) = (a, Sa, a8, SalS).1)

Let b + a be another element € S — n. The simple ideal to which b

1) It is not necessary to write n, sincen C S a S.



belongs is necessarily M, = (b, Sb, bS, SbS). It is either M, M, = n
or M, = M,. The second alternative

(a, Sa, a8, SaS) = (b, Sb, bS, SbS)
implies at least one of the relations a € Sb, a € bS, a € SbS, i. e. the existen-
ce of at least one of the relations @ = bz, @ = x,b, @ = x3bx,. But then b
is contained in at least one of the sets Sa, aS, SasS, i. e. at least one of the
relations b = ax,, b = %,a, b = x;ax, holds.

2. The condition is sufficient. It is again sufficient to prove that
under the conditions of our theorem every element a € S is contained in
some simple two-sided ideal of S.

Let be @ € 8 — n. The ,,least’ possible two-sided ideal of S, to which
a belongs, is M, = (a, Sa, aS, SaS). We show that M, is simple. This
follows again indirectly. Suppose there exists a two-sided ideal M of S
withnc M c M,. Let bebe M — n,b &+ a. Then M, = (b, Sb, bS, SbS)
is clearly a two-sided ideal of S contained in M. Hence

ncM,cMcM, (7)
Now it is b € M,. Hence there holds at least one of the relations
beSa, bealS, beSal.

According to the supposition there holds therefore at least one of the
relations a € Sb, a € bS, a € SbS.

a) Let be a € 8b. Then aS C S8, Sa C 8% c Sb, SaS c SbS. Hence

M, = (a, Sa, aS, SaS) c (Sb, SbS) c (b, bS, Sb, SbS) = M,

With respect to (7) we get a contradiction to the supposition.

b) Let be a e bS. We prove similarly M, c M,, which gives again
a contradiction.

c) Let be at last « e SbS. Then aS c SbS, Sa c SbS, SaS ¢ SbS.
Hence M, C (b, SbS) C M, which is again a contradiction.

Any ideal M, is a simple two-sided ideal of S, which proves our
theorem.

To give important corollaries of Theorems 2,2— 2,4 we introduce the
following definitions.

Definition 2,2. Let S be a semigroup with a kernel n. The totality n,
of all elements a e S with Sa C nis called the right annihilator of S. The tota-
lity n, of all elements a € S with aS C n is called the left annihilator of S.

We prove some properties of the sets n, and n,.

Theorem 2,5. The annihilators defined in Definition 2,2 have the
following properties:

a) ncn, ngn,

b) ny, n, are two-sided ideals of S,
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c) Sn,=n, n,S=n,

d) ni=un, n2=n,

e) myn, = n.

Proof. a) Since Sn = nS = n, it is clearly n C n,, n C n;.

b) We show that n; is a two-sided ideal of S. Let be a e n;, se S,
s arbitrary. Then (sa)S = s(aS) € s . n C n. Therefore sa € n;, sn; C 1, for
every seS. The set n; is a left ideal of S. On the other side (as)S =
= a(sS) caS C n. Hence as C n;, ;s C ny for every seS. The set n,
is a right ideal. B

Analogously it follows that n, is a two-sided ideal.

c¢) According to the definition n,;§ C n. But with respect to b) n,8 is
a two-sided ideal of S. Hence (with respect to the minimality of n)
n,S = n. Similarly Sn, = n.

d) Itis n? c n,8 = n. Since n?is a two-sided ideal of S, we get again
n2 = n. Analogously n2= n.

e) nn, is clearly a two-sided ideal of S. It is contained in nS = n,
hence equal to n.

Corollary 2,2. Let S be a semigroup with a kernel n. Let S be the class
sum of its simple left ideals. Then to every a e S — n, there exists an e e
€S — n, such that a = ea.

Proof. According to Theorem 2,2 the left ideal L, = (n, a, Sa) is
simple. The set (1, Sa) is clearly again a left ideal of S. Since a does not
belong to the right annihilator n, of §, the set Sa is not entirely contained
in n, hence (n, Sa) D n. But then — with respect to the simplicity of L, —
there must hold (n, @, Sa) = (n, Sa). Since @ non € n, it is @ € Sa, hence
there exists an e with @ = ea. The element e does not belong to n;, since
otherwise there would be @ = ea € 1,8 = n, contrary to the supposition.

Analogously:

Corollary 2,3. If the semigroup S having a kernel n is the class sum of
its simple right ideals, then to every ae S — n, there exists an element
fe S — n, satisfying the relation a = af.

We introduce a further annihilator (containing n, and n, as sub-
sets):

Definition 2,3. The set of all elements a e S satisfying the relation
SaS = n will be denoted by n,.

Theorem 2,6. The set n, introduced in the Definition 2,3 has the
Jollowing properties:

a) n, 18 a two-sided ideal of S,

b) ndcn, ncny,

c) n§=n.
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Proof. a) Follows as in, Theorem 2,5.

b) It is n == 8n,8 D n2S. Since n3S is a two-sided ideal of S, itis
n = n2S. Hence n? C n,. An.alogouslx nZcun,.

c) Itisn= Suo S 2 npnn, = nd. Since again nd is a two-sided ideal
of S, we have (with respect to the minimality of n) n3 = n.

Remark. It is easy to derive further relation between the anni-
hilators ny, n,, 11, and to prove the following table:

1, |
n2
Cu,n Cn
n=1" ey =" cnzcnnn, = e+ o0, e,

olly cn,n, cm

nd = =

3
g ]

We leave out a detailed justification of these relations since they are
mostly irrelevant for our purposes.

Corollary 2,4. Let the semigroup S with the kernel n be the direct sum
of two-sided ideals. Then to every ae S — n, there exist two elements
e, f,ee S — ny feS — n, such that a = eaf.

Proof. According to Theorem 2,4 the two-sided ideal M, = (a, Sa,
a8, Saf) is simple. Since a does not belong to n, the ideal SaS is a proper
overset of n. Hence — with respect to the simplicity of M, —

(a, Sa, aS, SaS) = SaS.

The relation, a € SaS implies the exitence of e, f with @ = eaf. The ele-
ment e does not belong to 1, since otherwise there would hold @ = eaf ¢
€ maf € 1,8 = n, contrary to the supposition. Analogously fe S — u,.
This proves Corollary 2,4.

Examples. In theorems of sections 1 and 2 we spoke about simple
left (right, two-sided) ideals assuming tacitly that such ideals really
exist. We show on simple examples that this assumption needs not
always be satisfied.

1. The simplest commutative example is the semigroup of non —
negative integers S = {0, 1,2, 3, ...} the multiplication being defined
as the ordinary multiplication of numbers. Every ideal contains the
kernel n = {0}, but there are no simple (two-sided) ideals.

2. An example of a non-commutative semigroup with a kernel
different from a zero element, without simple left and without simple
right ideals, is the following.

Let a, b, ¢, d be non-negative integers. Consider the set of all linear
polynomials and constants axz 4 b with the following definition of multi-
plication?) ©

2) We admit a, ¢ to be zero.
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(ax + b) @ (cx + d) = a(cx + d) + b = aca + ad + .

Minimal right ideals of S are the sets {0}, {1}, {2}, ... There exists
only one minimal left ideal: {0, 1, 2, ...}. This is at the same time the
kernel n of S. ‘

Every left ideal containing n and different from 1 must have at
least one element rx 4 s with » &= 0. Any left ideal containing the ele-
ment rx + s (r, s fixed) contains also all elements S © (rx 4 s), i. e. the
totality of all polynomials of the form araz -+ (as 4 b) with ¢ = 0,1,
2,..., b=0,1,2,... variable. Since we can put especially a =0,
b=0,1,2, ..., it is clear that n is contained in every such left ideal. But
it is casily seen that every such left ideal contains an infinity of proper
subideals all containing n. It is for instance

SO @rx+s8)d28S O 2re+ 528 © dre+s)Dd...0n.

Therefore there are no simple left ideals in S.

A right ideal R containing n and different from n must have again
at least one element 7z 4 s with £ 0. If it contains rx | s, it contains
also the sum of two sets (rx + s) © S and n. The first set is the set of all
elements of the form arx 4 (br + s) (a, b variable). But R contains
clearly again an infinite number of proper subideals containing n. It is
e.g.

RD{(rx4s) © 8, n}d{(2rx+s) © 8, n}d{(drx+s5) @S, u}>...
Hence there are no simple right ideals.

To assure in the sequel the existence of simple ideals we shall
impose to our semigroups occasionally one of the following two condi-
tions:

Condition A. S is a semigroup having a kernel and at least one simple
left ideal.

Condition B. § is a semigroup having a kernel, at least one simple
left ideal and at least one simple right ideal.

This notation will be kept throughout the paper. Our main goal is to
answer the question: what can be said about various types of semigroups
satisfying one of these conditions.

3. The notion of n-potency.

Let S be a semigroup with the kernel n. Consider the sequence
82822833 ... (8)
Each member of this sequence is a two-sided ideal of §. Since n is

a subset of every member in (8), there are two possibilities:
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a) either Sp > n for every o = 1,
b) or there exists a least p > 1 with S¢ = n.

In this second case it is also n = Sr+1 = Sp+2 — |

Definition 3,1. Let S be a semigrouwp with the kernel n. Let S’ be any
subset of 8, 8" C S. We shall say that 8’ is n-potent if for some integer
o=187cn holds. The least such o is called the index of n-potency.

Fspecmlly. An element x € § is called n-potent if 27 € n; a left ideal L
is n-potent if Lr C n. A two-sided ideal M is n-potent if M» = n holds.
(In the last case the sign of equality holds since it is n C M» for every p.)
The semigroup S is itself n-potent if S = n for some o > 1. (For a semi-
group having a proper kernel it is o > 2 if such an index p really exists.)

We prove first two simple theorems:

Theorem 3,1. The sum of a finite number of n-potent left (right)
ideals is a n-potent left (right) ideal.

Proof. It is sufficient to prove it for two ideals. Let L;, L, be two
n-potent left ideals, L* € n, L{* C n. We show that (L, Ly)»+r: C n. In
fact, every summand of the product at the left hand side of this relation
contains at least g, factors of L, or g, factors of L,. In the first case the
summand belongs to L, in the second to L hence always to n.

Theorem 3,2. Every n-potent left (right) ideal is contained in some
two-sided n-potent ideal.

Proof. Let L be a left n-potent ideal of S, Lr C n. The ideal (L, LS)
is a two-sided ideal of S. With respect to Theorem 3,1 our theorem will
be proved if we show that LS is n-potent. This is true, since

(LS)p = LS . LS ... LS ¢ L#S c nS = n.

We introduce a further definition which we shall use later:

Definition 3,2. The sum of all two-sided n-potent ideals of S is
called the radical of S.

The radical ¢ is always a two-sided ideal satisfying n C ¢ C S. Mo-
reover, since the annihilators n,, nz, n, satisfy n2 = n2 = n, n} = n, it is
also n C n; C r C S, where ¢ denotes o or [ or 7.

We shall study in the following mainly semigroups with ¢ C S (i. e.
non-n-potent semigroups), especially the case r = n (semigroups without
a proper radical). We shall need often the existence of simple left (or
right) ideals. Therefore we shall often replace Conditions A and B by the
following conditions:

Condition 4,. S is a semigroup with the kernel n having at least one
non-n-potent simple left ideal.

Condition B,. S ts a semigroup with the kernel n having at least one
non-n-potent simple left and at least one non-n-potent simple right ideal.
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4. Simple semigroups satisfying Condition A;.

In this and the following section we shall study simple semi-groups.
We define again simplicity otherwise as it is done in CrriFrorD [3] and
REEs [1], [2] but analogously as in CrirroRrD [4].

Definition 4,1. Let S be a semigroup with the kernel n. The semi-
group is called simple if it contains no two-sided ideal different from n and
S atself.

Remark. If S has a zero element our definition coincides again with
that of CLirrORD and REEs.

The relation between simple semigroups and simple two-sided ideals
of a general semigroup will be given in Theorem 8,2.

With respect to the relation n C 82 C S there exist for a simple semi-
group only two possibilities: a) either S2 = S, b) or S% = n. We shall
study only the case S2 = S. The case 8% = n is not interesting. For, in
a general semigroup satisfying S% = n every subset containing n is clearly
a two-sided ideal of S. Hence an n-potent simple semigroup is the sum of
the kernel and of a single (n-potent) element.

Theorem 4,1. Let S be a simple semigroup having at least one non-
n-potent left ideal of S which itself contains n. Then

a) S2= 8,

b) every left ideal L D n is non-n-potent.

Proof. a) Let L* > n be the non-n-potent left ideal of S. The rela-
tion 8% = n would imply L*2 ¢ 8§ = n, i. e. L*? C n, which contradicts
the supposition.

b) The proof of the second statement follows indirectly. Suppose
that some left ideal L D n of S is n-potent, i. e. L, C n for some g >0.
The set (L, LS) is a two-sided ideal of S and D n, hence equal to S. Both
ideals L and LS are n-potent. (See Theorem 3,2.) S being sum of two
n-potent ideals would be n-potent, i. e. there would hold 82 = n. This
contradicts a).

The converse of Theorem 4,1 is

Theorem 4,2. Let S be a simple semigroup. If S has at least one
n-potent left ideal L D n, then S is n-potent and hence all left ideals of S are
n-potent.

Proof. It follows, as in Theorem 3,2, that (under our conditions)
L and LS are n-potent ideals. Further (L, LS) D n is a two-sided ideal.
Hence S = (L, LS). But S, as a sum of two n-potent ideals, is n-potent.

Remark. Observe that in Theorems 4,1 and 4,2 there was no men-
tion about simple left ideals.

Corollary 4,2a. Let S be a simple semigroup satisfying Condition A.
Then



a) either all simple left ideals of S are n-potent and S itself is n-potent
(both with the index of n-potency p = 2),

b) or none of the simple left ideals L is n-potent (satisfying L2 — L) and
S itself s non-n-potent (satisfying S? = S).

Corallary 4,2b. In a simple semigroup the Condition A is equivalent
to the Condition A with the additional requirement S = n (or 82 = 8).

Corollary 4,2¢. In a simple semigroup satisfying Condition A, the
radical v and the annihilators n, n,, n, are all equal to n.

Proof. Follows from n,C¢ (i = o,1,7) and the fact that r = S
contradicts S% £ n.

Theorem 4,3. Let S be a simple semigroup satisfying Condition A,.
Then

a) 8 is the class sum of its simple left ideals.

b) If L* is one fized stmple left ideal of S, then every simple left ideal
of S is of the form L = n + L*c with ¢ € L.

Proof. The set L*S is a two-sided ideal of S. There cannot hold
L*S = n since we would have L*? C L*S = n, which contradicts Theo-
rem 4,1. Hence L*S = 8. Let us write S = X c,.

. ¢, €8

S = L*8 — L* Se, = S(L*c,) = n + S(L*c,) = X(n + L¥c,). (9)

Every summand on the right hand side of (9) is either n (and can be
then released) or is a simple left ideal of S. Hence S is the class sum of its
simple left ideals.

Since this decomposition is uniquely determined (see Theorem 2,1)
we have: every simple left ideal of S is of the form L = n -+ L*c,, c, e S.
The fact that c, belongs to L can be shown as follows Let be ¢, € L,, (L,
simple left ideal). Then it is

L=u+ L*,cn+ L¥L,cn+ L,= L.,
hence L, = L, q. e. d.

Theorem 4,4. Let S be a stmple semigroup satisfying Condition A,.
Then for every two simple left ideals L,, Lg of S there holds always: LaLz—

= L,
Proof. According to the proof of Theorem 4,3 S can be written as the
class sum of its simple left ideals S = X L,. We can assume thereby that

for every couple L,,, L,, (%, % %,) L, 0 L,, = n holds. According to the
proof of Theorem 4,3 we have for every L LS=28, i e L, ZL =
= ELm

XL,L,= XL, (10)
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Now, according to Theorem 1,3, the product L,L, is either L, or n. If for
some % = f3 there would be L,Lg = n, the elements of L; — n would not
be contained in, the set on the left hand side of (10) and there would hold
YL,L, c X,. This contradicts (10). Hence for every x L L, = L,.
x

Theorem 4,5. Let S be a simple semigroup satisfying Condition A,.
Then to every a e S — n there exists an element ee S — n with a = ea.
Moreover the following implication holds:

a=2xb=>xa="> (a,b,ze S —n and xeS — n).

Proof. Follows immediately from Theorem 4,3 by means of Theo-
rem 2,2 and Corollary 2,2 using the fact that we have for the annihilators
m=1n,=n

Remark. Theorems 4,3—4,5 give in some sense the maximum what
can be said about simple semigroups satisfying only Condition A,. To
obtain more precise results we must introduce supplementary conditions.
This will be done in section 5 by introducing Condition. B, and in section 7
by introducing the requirement of the existence of at least one idempo-
tent € S — n.

5. Simple semigroups satisfying Condition B;.

In this section we shall show that assuming Condition B, it is easy
to prove the existence of idempotents in § — n and to prove the so called
.,complete simplicity” of S.

Theorem 5,1. Let S be a simple semigroup satisfying Condition B,.
Then to every a e S — n there exist two elements e, f e S — n with
a = ea, a = af. (11)
Moreover: for every a, b, x, y e 8 — n the following implications hold:
a = xb =b = Za, (12)
a=by=b=ay, (13)
with , ye S — n.
Proof. Follows from Theorem 4,5 and its right dual Theorem.
Now we prove the most important assertion:
Theorem 5,2. The elements e and f of Theorem 5,1 are idempotents.

Proof. a) We show first that e is an idempotent. The relation a = ea
implies according to (13) the existence of an element @ with ag == e. Now
it is successively

e = aag = (ea)a = e(aa) = e .e = €.

Hence e is an idempotent. If e would belong to n there would be a =
= ea € na C n, contrary to the hypothesis. Hence e e S — n.
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b) Analogously the relation @ = af implies according to (12) the
existence of an @ with ga = f. It is again f= aa = a(af) = (aa)f =
= [ . f= f% There follows analogously that fe S — n, which completes
our proof.

Observe carefully: the relation (13) is a consequence of the decom-
position of § into a sum of simple right ideals. This relation alone implies
that every element e which reproduces on, the left any element a ¢ S —n
is an idempotent.

Theorem 5,3. Let S be a simple semigroup satisfying Condition B,.
Then every simple left ideal L of S is of the form L = n + Se, where e is an
idempotent € L — n. Analogously, every right simple ideal R of S has the
form R = n + {8, where f is an idempotent ¢ R — n.

Proof. Let be ce L. According to Theorem 1,4, it is either n +
+ Le = L or n 4+ Lc = n. It follows immediately that there must be at
least one element ce L — n with n 4 Lc= L. If namely for every
¢ e L there would be Lc ¢ n we would have L* = L Xc C n, contrary
to Theorem 4,1. celL

The equation n 4 L¢ = L implies: there exists an element ee L
with ec = ¢. According to Theorem 5,2 e is an idempotent. It does not
belong to n since otherwise ¢ would be in, n, contrary to the choice of c.

Consider now the left ideal n 4 Se C n 4 SL c L. Se is a left ideal
of S. It contains the element e . ¢ = ¢, hence n+ SeDd> n,i.e. n + Se=
= L.

The proof for the simple right ideal is similar.

Remark. We can also write L = n -} Le, ee L. For n+ Le is
a simple left ideal containing the element e, hence D n. The intersection
of the two simple left ideals L and n 4 Leis L n (n + Le) > n. Hence,
according to Theorem 1,1, L = n 4 Le.

Theorem 5,4. Let S be a simple semigroup satisfying Condition B,.
Let L be a simple left ideal of S. Then L is a semigroup having the following
properties:

a) It has atleast one right identity e € L — n for every element e L — n.

b) Every idempotent e* e L — n is a right identity for every element
eL —n.

¢) In L it is possible to cancel on the right with every element ¢ for
which e . c non e n holds.

Proof. a) Since L = n 4 Se (where ¢ e L — n is an idempotent),
every ae Ll — n is of the form a= w.e (ueS). Therefore a.e=
= (ue) . e = ue? = ue = q.

b) Follows from the fact that for every idempotent e* e L — n the
relation L = n -4 Se* holds.
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¢) Let ¢ be any element of L for which ec non e n holds.3) Since
ee L —n, ce L — n, the set n + Lc contains at least one element (na-
mely ec) not belonging to n. Hence n + Lc D n and L = n + Lc. This
implies: to every d e L — n there exists an xe L — n with x¢c = d. In
other words: the equation ¢ = d has always a solution for such elements
¢ e L — n for which ec non e n holds.

Let now be
ac = be, ec non e 1. (14)

Find first an ce L — n with cc = e. Then (cc)? = ¢(ec)e = (ce)c = cc.
Hence cc = e* is an idempotent belonging to L — n. It does not belong
to n, for cc e n would imply ccc € n. i. e. ce € n, ¢ € n, contrary to the sup-
position.

Multiply now (14) by ¢ on the right. We have acc = bcc, ae* = be*,
a = b. This completes the proof of Theorem 5,4.

As generalization of two notions, first given by REEs [1], we intro-
duce the following two definitions:

Definition 5,1. An idempotent e € S — n is called primitive if the
only idempotent x e S — n satisfying the relation

ex = xe =2
s x = e.

Definition 5,2. 4 simple semigroup having a kernel n is called com-
pletely stmple if

a) to every aeS — n there exist idempotents e, fe S — n such that
en = af = a,

b) every idempotent € S — n is primitive.

The structure of completely simple semigroups having a zero ele-
ment (i. e. the case n = {z}) was studied in, detail by Regs [1], who pro-
ved that it can be realised as a type of matrix semigroups. (See a further
development in CLIFFORD [6].)

We show easily:

Theorem 5,5. 4 simple semigroup satisfying Condition B, is comple-
tely simple.

Proof. a) Condition a) of the Definition 5,2 is simply the statement
of Theorems 5,1 and 5,2.

b) Let now be e and x any idempotents € S — n. We show that the
relation ex = xe = x implies = e.

Since S is the sum of simple left ideals, we can find a simple left
ideal L such that xe L. Further there holds n+ Sxcn+ SLCL.

3) If ec non e 1t holds for one idempotent e e L — 1, it is for every idempotent
e* e L —n, e¥cnon € n. For, according to b), it is e = ee* and therefore ec = ee*c.
The relation e*c € n would imply ec € en C n, contrary to the supposition.
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Hence either n 4+ Lx = L or n -+ Lax = n. The second alternative is
impossible, since there would hold x = x%*e Lx ¢ n, which contradicts
the hypothesis. Hence it is n 4 Sz = L.

The relation xe = x implies, according to Theorem 5,1, the existence
of an & with e == xx.%) Therefore it is e e Sz, e € L.

The elements e, x (and therefore xe, ex) belong to L. It holds & —
= x? = ex. Further the element x S‘lt}lbf](‘% ex non, € 1 since otherwise »
would be contained in n, contrary to the hypothesis. According to
Theorem 5,4 we can cancel on the right with  and we get x = e. This
completes the proof of Theorem 5.5.

6. The structure of simple left ideals.

In this section we shall study the detailed structure of simple left

ideals of a general semigroup having a kernel.

Theorem 6,1. Let S be a semigroup satisfying Condition A 5) Let L be
a simple left ideal of S having at least one idempotent ¢ € L — n. Then

a) e and every idempotent € L — n is a right identity for every element
el — .

b) In L it is possible to cancel on the right with every element ¢ for which
ecnon e n holds.

Proof. It is the same as in Theorem 5,4, since we did not use there
explicitely the existence of simple right ideals. (We used it naturally
implicitely to prove the existence of at least one idempotent.)

Remark. There are examples showing the existence of simple lett
non-n-potent ideals without an 1(1empotent For such simple left ideals
Theorem 6,1 does not hold.

Theorem 6,2. Let S be a semigroup satisfying Condition A. Let L be
a stmple left ideal of S. Let e, be any idempotent e L — n and g, the set of
all elements of e, L which do not belong to n. Then g, is a group.

Proof. 1. We prove first that g, is a semigroup. Since
eqls . e, L= e,(Le,L) Ce,SL Ce,L

holds, it is only necessary to show: for any two z, y € ¢, L the relation
2y € n is satisfied if and only if at least one of the elements x, y belongs
to n.

Remember: the elements of g, are exactly those elements e ¢, ce L
for which e,c non e n holds. In Theorem 5,4 (resp. Theorem 6,1) we pro-
ved: for every such ce L and every d e . — n the equation xc = d has
a solution with xe L — n.

4) We note that this is a consequence of Condition 4, only. (We shall use this
remark in section 7.)

5) L having the idempotent e e L — 11 is certainly non - n - potent, so that
it is sufficient to suppose Condition 4.
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Let now be (in the way to get a contradiction) @ = ¢,¢q, ¥ = €,C,,
T € Qg YEG,, Dubt e, . e,0==e,c¢en. Find an element & such that
Z(e4q) = e,. As we have just remarked this is always possible. The rela-
tion e,c,cy € 1 implies xe, ¢, € 1 and therefore e,c, € n. This is a contra-
diction. The set g, is a semigroup.

2. We prove that g, contains the only idempotent e,. Suppose that
there exist two different idempotents ¢, epe g,. It is e3 = ¢p and e,ep ==
== ep. (This last relation holds, since e, is clearly a two-sided unity ele-
ment for every element e g,.) Hence e,cp = 3. Since e,e5 = ¢gnonen,
it is possible to cancel with e, We get e, = eg, which is a contradiction.

3. We next prove that for every @ e g, the equations

XA = €,, (15)

ay = e,, (16)
have solutions with «, y € g, and that these solutions are uniquely deter-
mined. It is well-known from the elementary theory of group-axioms
that these properties are sufficient to prove that g, is a group.

a) Let be aeg, (i. e. a=eanonen). Then n+4 La= L, e;n +
+- eqlia = e L. The element e, is contained in e, s and not in n. Hence it is
contained also in e, La. Therefore there exists always an ve e, L — n=
= g, such that wa = e, holds.

b) Now we prove the existence of the solution of (16). Find first an
@ € g, with aa = e,. (This is possible with respect to (15).) We show that a
satisfies also the relation aa = e,. The element aa belongs to g,. It is
an idempotent, since (aa)? = a(ea)a = ac,a = aa. With respect to the
fact proved in, 2 above, it is aa = e,. This proves the solvability of (16).

¢) We prove at last the uniqueness of the solutions of (15) and (16).
For the equation (15), this is a consequence of Theorem 6,1b, since
2,0 = 0 and e,a = anon e n imply x, = x,. For the equation (16) it
follows in the following manner. Let be ay, = ay, = ¢, (@, ¥;, Y5 € g,)-
Find an element Z with za = e,.%) Multiplying on the left we get zay, =
= Tay,, e,Y; = ,Ys, hence y; = y,. This completes the proof of Theo-
rem 6,2.

Theorem 6,3. Let the suppositions of Theorem 6,2 be satisfied. Let
ey g be two different idempotents ¢ L — n. Then the groups g,, gg are
disjoint.

Proof. Suppose that g,, g5 have at least one element @ e L — n in
common. This element can be written in both forms a = e, a = eza.
Since e,@ = anon e n holds, it is possible to cancel with a. We get
e, = ep, contrary to the supposition.

Theorem 6,4. Let S be a semigroup satisfying Condition A. Let L be
a stmple left ideal of S having at least one idempotent non e n. Then I is

%) This is possible with respect to (15).



a sum of disjoint groups Xg, and of one n-potent semigroup P with the

o

index of n-potency p = 2. In formulae
ga + P, P?=nq.

Proof. The set &£ of all idempot»cnts e L — n is non-vacuous. Con-
struct to every e, the group g,. Put P = L — Zga.

a) We show first: for every ¢ e P there hol(ls Le ¢ n. This follows indi-
rectly. Let be c e P, but n + Le D n, hence 1 4~ Le = L. Since n 4 Lc =
= n 4 (n 4+ Le,) ¢ = n + Le,c our assumption?) clearly implies e ¢ none
e n. The relation n 4 Le = L implies further the existence of an e* with
e*c = c¢. The element e* is an idempotent. For it is ¢ = e*c = e*%¢ and
since it holds e c non e n, it is possible to cancel with ¢ what gives e* =
= e*2. Now the group constituted by all elements of e*L — n contains
e*c = c. But this is a contradiction to the assumption ¢ € P.

The proof just given shows that P is exactly the set of all c e L with
Le g n.

b) P is a semigroup. For, let be ¢; e P, ¢, e P, i. e. Le; Cn, Ley C .
Then, it is also Le,c, C ne, C 1, 1. €. ¢,¢y € P. o

¢) P is n-potent, more precisely P2 = n. This follows immediately.
Since for every ce P the relation Lc C n holds, it is also LXcCu,

ceP
LP c n. But P2 ¢ LP C n and since n? = n C P2, we get P?= n, which
completes the proof. -

Notation. In what follows we shall call the groups g, simply

,group-components of L<.

Corollary 6,4. Let L be a simple left ideal of a semigroup S having
a kernel n. Let L have at least one idempotent € L — n. Then the necessary
and sufficient condition that L — n can be written as a sum of disjoint
groups is: L — n contains no n-potent element.

Proof. a) The condition is necessary. For if § = n- Zg, (4.

groups), then every potency of an element ¢ € g, belongs to g, and cannot
belong to n.

b) The condition is sufficient. If namely for every ce L — n the
relation ¢non e n holds, we have for every ce L — n n+ Lc = L.8)
Hence — as in the proof of Theorem 6,3 — every ¢ e L — n belongs to some
group. This proves our Corollary.

Theorem 6,5. The group — components of L in Theorem 6,4 are all
isomorphic together.

7) The existence of at least one idempotent e, is essentially.
8) For n + Lc = n would imply ¢2 € n, contrary to the supposition.

248



Proof. Let e,, eg be two idempotents e L — P. Let X be the totality
of all elements € L — P such that e, X equals a fixed element x € g,.°)
(The set is non-vacuous, since ¢,& = x has a solution in g, C L.) Then
egX = (eg2,) X = ege, X) = egr is again a single element ezv.19) This
element belongs clearly to ezL. More precisely, it belongs to gz For
egt e n would imply e ezx € 1, 1. e. e, € 1 and since it is € g, e, = @ we
would have x € n, contrary to the supposition z € g,. Conversely, let X’ be
the totality of all elements € L — P for which ¢y X’ = egx holds. Clearly
X' 2 X. But e, X" = (e,ep) X' = e (esX") == e,epx = e,o = x, therefore
X’ c X, whence X’ = X.

As a consequence of the state just proved we can decompose L — P
in a sum of disjoint sets X, ¥, Z, ..., wh’'ch, multiplied on the left by any
idempotent e L — P, give always a single element e L — P (to different
idempotents correspond naturally different elements e L — P).

Choose from cach of the sets X, Y, Z, ... a single element &, 7, , ...
(representants of the sets X, Y, Z, ...). Then clearly

80 = {€f, eans ¢l -},

a5 = {ep&, eam, €5l ...},

8y = {e, & em, 00 .0},
We now prove that e,& — ¢,& is an isomorphic mapping of the group g, to
the group gg.

a) To the product e,&.e,n = e, én correspond in this mapping
the element egén. But this element is just the proluct egé . egn. (For —
with respect to Theorem 6,1a — there holds eg(&eg)n = epén.)

b) To two different elements ¢, & #+ e,n correspond two different
elements epf + egn. For egl = egn would imply e,epl = eepm, i e.
e,& = e,m, contrary to the supposition. (We use again Theorem 6,1a.)
This proves our Theorem.

Theorem 6,6. Let S be a semigroup having a kernel n. Let L; and L;
be any two simple left ideals of S, each having at least one idempotent
non € n and satisfying the relation L;L; + n. Then the group-components
of L; and L; are isomorphic to one another.

Proof. Let e; be an idempotent € L; and g; = e,L; — n the group-
component of L, corresponding to this idempotent. With respect to
Theorem 6,5 it is clearly sufficient to show that we can find in L; a group-
component g; (with identity element ¢;) such that g; is isomorphic with
8;. Since L;L; = L;, there exist two elements @ € L; — n, b e L; — n such
that ab = e¢,. Consider the element ba € bL; C L;. Since (ba)? = b(ab)a —

®) For every c e P it is e, ¢ € e,P C LP S 1, hence eyc cannot belong to the
groups Eﬁa-
o

1) 'We use here (and in the following) several times Theorem 6,1a.
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== (be;)a = ba, the element ba is an idempotent e £;. 1t is not contained
in n, since ba € n implies bab == be; == b € n, contrary to the assumption.
Denote ba = e;, g; == e;L; — n. We prove that the correspondence

x; —> ba;a *

is an isomorphic mapping of the group g, to the group g;. The element
x; == br;a is an element of g;. For it is ;b = bab = be; == b, hence x; =-
= bx,a Ceba;L; Ce;l; and brvaen would imply abxab = ease; =
= x; € 0, contrary to the hypothesis. The correspondence (*) is a homo-
morphism since if ; — ba,a, &) — baja, we have za) — b(xa))a = (bxa)
(bxia). This homomorphism is even an isomorphism, for x; = bx
implies ax;0 = abx,ab = x;, i. ¢. x; — az;b is the inverse mapping to (¥).
so that the mapping (*) is a one-to-one correspondence. This completes
the proof of Theorem 6,6.

7. Simple semigroups satisfying Condition A and having an
idempotent.

This section is — roughly to say — devoted to the proof that the
existence of a simple right ideal in. Theorem 5,5 was needed only to insure
the existence of idempotent elements and only this really enables us to
prove Theorem 35,5.

Theorem 7,1. Let S be « semigroupt?) with kernel, which is a class
sum of its simple left ideals. If S — n has idempotents, then every idempo-
tent € S — n is primitive.

Proof. The proof is similar to that of Theorem 5,5. Let e € S — n be
an idempotent. We have to show that the only idempotent x € S — n
satisfying ex = we = xvis x = e.

Since S is a sum of simple left ideals we can find a simple left ideal 7,
such that x € L holds. Then — as in Theorem 5,5 — L == n -+ Sa.

a) We use first the relation xe = x. With respect to Theorem 2,3 it
implies the existence of an « with e = xx. Hence e € Sz, ¢ € L.

b) We use the relation ex = wx. The elements « and e belong to L
and satisfy ex = a?. According to Theorem 6,1b it is possible to cancel
with x and we get e = . This proves our theorem.

Theorem 7,2. Let S be a simple semigroup satisfying Condition A.
Let S have an idempotent e € S — n. Then S is completely simple.

First proof of Theorem 7,2. The theorem will be proved if we
show that S has at least one non-n-potent simple right ideal. For the
suppositions of Theorem 5,5 are then satisfied.

We show that n 4 eS8 is a simple right ideal of S. Suppose that there

11) Not necessarily simple.
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exists a right ideal B of S with n ¢ R C n -+ ¢S. Let a be any element of
R — n. Then
nCu+ (a,aS)CRCn-es. 17)

We prove that this is impossible.

Since S is simple and « does not belong to the annihilator ny = n, it is
SaS = S. Hence there exist elements x, y € S — n with xay = e. Put
x* = exe, y* = ye, [ = ay*z*.

Since x*ay* — exeaye = e(xay)e = €3 = e the elements a*, * do not
belong to n. It is

ef = f (since ea == a holds for every a € eS).
fe = ay*x*e = ay*x* = [ (since x¥e = x¥),

f* = ay*(@*ay*)e* = ay*ex* = f (since as we just proved a¥ay* =
=e).

The idempotent f satisfying ef == fe = f does not belong to n. For
¥ = ex* = x¥*(ay*x*) = x*f and f e n would imply x* e n, which is not
true.

According to Theorem 7,1 ¢ is primitive, hence it is f = e. Therefore
e = ay*xz*, ceal, eS Cal.

n-+eScn (a ad). (18)

The relations (17) and (18) give together n - (a, aS) = R = n 4 e,
contrary to the supposition. This proves our theorem.

Second proof of Theorem 7,2. We give another proof of our
theorem by means of Theorem 6,4, without using Theorem 7,1. As above,
it is sufficient to prove that n -+ eS is a simple right ideal of S. Suppose
again, contrary to this statement, that there exists an right ideal R of S
with nc Rcn+ eS. Let be ae R—n. Then ncn-+ (¢,aS) C R c
c n 4 eS. It is again SaS = S. Hence there exist two elements x, ¥ non €
e n such that xay = e (¥).

Since S is a sum of simple left ideals, there exist a simple left ideal L
with e e L — n, whence L = n 4 Se. With respect to Theorem 4,5 the
relation (*) implies the existence of an & with ay = @e. Since xe belongs to
L, so does ay. Moreover, the element ay does not belong to n, since this
would be contrary to (*). Since further ay e aS C R, it is clearly ay e
eLnR.

a) The relation ay e eS implies eay = ay.

b) The element ay belongs to some group-component g, of L. If e,
is the unity element of this group there holds e,ay = ay. The elements
¢, €4, ay belong to L. It is eay = e ay. Now it is possible to cancel on the
right with ay, so that we get e = e,. Find now to ay an element a with
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ay . a = e. Then it is eS = ayaS C aS ¢ B. Therefore n + eS C R. This
contradicts our assumption.

Using the proof of Theorem 7,2 and Theorem 5,3 we get the fol-
lowing

Corollary 7,2. Let S be a simple semigroup satisfying Condition A.
If one of the simple left ideals of S has at least one idempotent € S — n, then
all simple left ideals of S have idempotents e S — n. Moreover, there exist in
S simple right ideals each of which has idempotent clements. Further, every
simple left and simple right ideal of S is generated by idempotents (t. e. is of
the form mentioned tn Theorem 5,3).

Now we use our results of section 6 and 7 to get a clear insight in the
structure of simple semigroups having a kernel.

Theorem 7,3. Let S be a simple semigroup satisfying Condition A.
Let S have at least one idempotent € S — n. Then S can be written as a sum
of two disjoint sets S = & + P. The set & is a sum of disjoint tsomorphic
groups. The set P is a sum of n-potent semigroups with the index of n-po-
tency equal to 2. The tntersection of any two of these semigroups is n.

Proof. It follows from our previous results (see Theorem 4,3) that
under our assumptions S is a sum of simple left ideals. Decompose every
simple left ideal in accordanze with Theorem 6,4. Theorem 7,3 follows
then with the aid of Theorems 6,5 and 6,6.

Remark. It is easily seen that & enl 9 are uniquely determined.
9P is the totality of all n-potent elements of S, @ the totality of all non-n-
potent elements of S. The sets & anl P are not in gencral semigroups. It
can be shown on simple examples that the decomposition of ¥ into
n-potent semigroups is not uniquely determined. On the other hanl we
prove at once that the decomposition of @ into disjoint groups is unique.
Let us suppose (in the way of an, inlirect proof) that there exist an ele-
ment a belonging (in two different decompositions of &) to two different
groups g, g (with unity elements e,, eg). Then it is

a = e, = 6’30/. (19)

The element « belongs to some simple left ideal L of . With a all elements
Sa belong to L, especially also all elements of the group g, and similarly
all elements of the group gz. Hence «, ¢,, 5 are elements of L. Since it is
et non € 1, it is possible in (19) to cancel with @ on the right. We get
50 e, = eg, contrary to the supposition.

Theorem 7,3 and Corollary 6,4 give:

Corollary 7,3. Let S be a simple semigroup satisfying Condition A.
The necessary and sufficient condition that S — n should be a sum of dis-
joint isomorphic groups is: S — n contains at least one idempotent and does
not contain any n-potent element.
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8. Simple two-sided ideals of a semigroup having a kernel.

Theorem 8,1. Let S be a semigroup®) with kernel n. Let M be any
two-sided ideal'?) of S. Then M has a kernel and this equals exactly n.

Proof. Since Mn = n and nM = n, the set n is clearly a two-sided
ideal of M. We show that n is even the minimal two-sided ideal of M.
This follows indirectly. Let n’ C n be a two-sided ideal of M. Then there
must hold Mn" c v/, W' M C n',i.e. Mn'M C n'. But Mn'M is a two-sided
ideal of S. Hence it is certainly Mn’M D n. The relationsn C Mn'M C v’
and n’ € nimply n” = n. This proves our theorem.

Remark 1. If S has a kernel, a subsemigroup S’ ¢ S (which is not
a two-sided ideal of S) needs not have a kernel. The simplest example:
S=1{0,1,2,...} with the usual multiplication of numbers has the
kernel n = {0}. But the subsemigroup S’ = {1, 2, 3, ...} has no kernel.

Remark 2. Theorem 8,1 is of greatest importance for our investi-
gations. For, according to our definition, a simple (left, right, two-sided)
ideal of S contains the whole set n. Let M be a twosided ideal of S. Then
— as we just proved — M contains n as its kernel. Hence every simple
(left, right, two-sided) ideal of M contains again all elements of n.

Theorem 8,2. Let S have the kernel n. Let M be a simple two-sided
tdeal of S satisfying M? £ n. Then M is a simple semigroup (with kernel n).

Before proving this theorem we make some remarks.

Remark 1. In the case M? = n the theorem needs not be valid. For
every subset of such an M containing n is clearly a two-sided ideal of M.
But a simple n-potent semigroup is the sum of n and a single (n-potent)
element. (See the remark made before Theorem 4,1.) Therefore Theorem
8,2 cannot hold, if M2 = n and M? — n contains more than one ele-
ment.

Remark 2. Let us show on an example that a semigroup can con-
tain at the same time n-potent and non-n-potent simple two-sided
ideals. The commutative semigroup S = {0, a,, a,, az} with the kernel
n == {0} and the Cayley-table

|0 a, a, a,
010000
a, |00 0 0

ay, | 00 ay a,
az | 00 a,a,
has two simple ideals M, = {0, a,}, M; = {0, a;}. It is M3= M,, but
M2 =n.
Remark 3. Note that under the assumptions of our Theorem 8,2 M
cannot contain a left ideal L of S not entirely in n with L? C n. For the

12) Not necessarily simple.
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existence of such a left ideal would imply (analogously as in Theorem 4,1
and 4,2) the existence of a two-sided ideal M = (L, LS) o> n of S, for
which M2 = n. But it holds n c M = (L, LS) c (L, MS) c M. Hence
M = M, M2 — n, contrary to the assumptions. We shall use this argu-
ment in the following several times.

Proof of Theorem 8,2. We prove it indirectly. Suppose that M
contains a two-sided ideal B of M with n ¢ B ¢ M. The set MBM satis-
fies MBM Cc Bc M. But MBM is also a two-sided ideal of S, hence
MBM = n.

We show first that it holds: M B C n, BM c n. The set M B is a left
ideal of S contained in M. Itis (MB)> = MBMB — (MBM)B = nB cn;
hence — with respect to the Remark 3 above — M B C n. Analogously
BM cn. -

We show sccondly that it is even SB ¢ n € B, BS ¢ n € B. This will
prove our theorem, for these relations are contrary to the assumption
that M is a simple ideal of 8. Since SBS Cc SMS c M is a two-sided
ideal of §, it is a) either SBS == n, b) or SBS = M. a) SBS = n implies
(SB)? = SBSB =nBCn, (BS)2= BSBS = BncCn. With respect to
the Remark 3 above we get SBCn, BSCu. b) The second alternative
SBS = M implies (SB)? = SBSB — MB cn, (BS)2= BSBS= BM C
C n and hence (again with respect to the Remark 3) SBcn, BSC .
This proves our theorem.

Theorem 8,3. Let S be a semigroup with the kernel w. Let M be
a two-sided ideal®) of S satisfying M2 + n. Then

a) Every simple left ideal LD of M is a (simple) left ideal of S.
b) Conversely: Every simple left ideal L(5) of S satisfying L¢S 0 M > n
is a simple left ideal of M. (Hence LtS) C M.)

Proof. a) It is sufficient to show that L(3) is a left ideal of S. For
LA — being a simple left ideal of M — is the more simple in S.

The set ML is a left ideal of M contained in L(3). Hence either
ML) =y or ML) = L), The first alternative would imply L(M)2 —
= LAh LA ¢ MLAD ¢ n, which is not possible according to the R(,-
mark 3 above. Hence MLUD — LAD. But then SLOD — SM LA ¢
S ML = LG, § e. SLAD ¢ LAD. This says: LD is a left ideal of S.

b) Let L(S) be a left simple ideal of S. The set L) n M is a left
ideal of S and D n. It is contained in L), hence L) n M = L. The
set L(S), being a left ideal of S, is clearly the more a left ideal of M. It is
therefore sufficient to show that L(9) is a simple left ideal of M. We prove
it indirectly (by an analogous argument as in Theorem 8.2).

13) Not necessarily simple.
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Suppose there exists a left ideal BGD of M with n ¢ BAD) ¢ LY. The
set. MBYD is a left ideal of S satisfying MBOD ¢ BGD c LS. Hence
MBOD — . The set SBOD is a left ideal of S satisfying SBOD CSLMC
c LS. With respect to the simplicity of L& it is either SBAD = n or
SBOD — (%), «) if SBOD = n, we have n == SBAD c BOD i, ¢. B iy
a left ideal of S, which contradicts the assumption of the simplicity of
L), B) If SBOD = L5, it is LEH2 = SBAN  SBGAH ¢ SMSBGH ¢ M B =
= n. Hence L(%)2C n. But this is again 1mposs1b1( according to the
Remark 3 above. This completes the proof of Theorem 8,3.

Corollary 8,3. Let S be a semigroup with the kernel n. Let M be
a simple two-sided ideal of S containing at least one non-n-potent stmple
left ideal of M (or — what is the same — of S). Then M is the class sum
all simple left ideals of M (or — what s the same — of all simple left ideals of
N contained in M).

The proof is an immediate consequence of Theorems 8,2, 8,3 and
4.3.

9. Semigroups without a proper radical.

In this section we shall study the properties of semigroups without
a proper radical (sce Definition 3,2). Under this condition every left
ideal L o n of §is non-n-potent. (See Theorem 3,2.)

Theorem 9,!. Let S be a semigroup with kernel n and without a pro-
per radical. Then every simple left ideal is contained in some simple two-
sided ideal.

Proof. Let L, be a simple left ideal of §. Then M = (L,, L,S) is
a two-sided-ideal of S. We prove that M is simple. Suppose — in the way
of contradiction — that there exist a two-sided ideal M’ of S with n ¢
cM' c M. The set M'L, is a left ideal of S contained in Z,, hence
either M'L, = L, or M'L, Cn.

The second alternative would imply
M2 C MM = M'(L,, LyS) = (M'L,, M'L,S) C n.

contrary to the hypothesis. Therefore M'L, = L,. But then it is M =
= (Lg, LisS) = (M'Ly, M'L,S) and (since M’ is a two-sided ideal of
Sy M c(M',M')= M’'. The relation M C M’ is a contradiction with
M’ c M. This proves our theorem.

Remark 1. Let us remark that a simple left ideal needs not belong
necessarily to a two-sided simple ideal (if the conditions of Theorem 9,1
are not satisfied). The semigroup S = {0, a,, a,, a;} with the kernel
n == {0} and the table

o
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| 0 a, ay ag
0[0000
4,100 a;0
4y |00 0 0
a |00 0 0

has a simple left ideal L = {0, a,}. This semigroup has only one simple
two-sided ideal M = {0, a,}. The left ideal {0, a,} is contained in the two-
sided ideal (L, LS) = {0, a,, as}. But this ideal is not simple. Of course
here the conditions of Theorem 9,1 are not satisfied. The radical of our
semigroup S equals directly S, since it is evidently S = {0}.

Remark 2. Note that we did not succeed to prove that the existence
of a non-n-potent simple left ideal implies the existence of at least one
simple non-n-potent two-sided ideal of S. To get a result, we had to sup-
pose that none of the two-sided ideals of S is n-potent.

Corollary 9,1. Let S be a semigroup without a proper radical satis-
fying Condition A. Then the class sum £ of all simple left ideals of S is
a semigroup, which is a direct sum of two-sided ideals.

Proof. Let be £ = 2L,, L, running through all simple left ideals

of 8. We know that £is a two-sided ideal of S (see Theorem 1,5). Every L,
is contained in some simple two-sided ideal M ,. Hence £ is overlaped by
a sum XM, of two-sided ideals of S. The intersection £ n M, is a two-

sided ideal of S contained in M, and D n (containing itself L,). Hence
£nM,= M, Therefore every M, belongs to £ and £is a sum of simple
two-sided ideals of § : £ = XM ,. Every M, is the more a two-sided ideal
of £ and, being (according to Theorem 8,2) a simple semigroup, it is also
a simple two-sided ideal of £. This proves our corollary.

Remark. The example of Remark 1 above shows that the condition
that S has no proper radical is not necessary for the validity of Corollary
9,1. For in this example the only left ideals are {0, a;} and {0, ag}. It is
¢ = {0, a,, a3} and this is a direct sum of simple two-sided ideals of &,
namely {0, a,}, {0, ag} (which are of course not two-sided in S).

Let now § be a semigroup satisfying Condition B. We can construct
analogously the sum of all simple right ideals R = XR,. Again R is
a two-sided ideal of S. If S has no proper radical, R is a direct sum of
two-sided ideals.

The question arises whether and when the sets R and ¢ are identical.

The answer is given by

Theorem 9,2. Let S be a semigroup with a kernel and without a proper
radical. Let & and R be the class sum of all simple left and simple right
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ideals respectively. The necessary and sufficient condition that R = £ is:
every simple two-sided ideal of S containing a simple left ideal contains also
a stmple right ideal and conversely.

Proof. According to Corollary 9,1 €=X@ M., R=2D M,

where M/, M are two-sided ideals of S. a) The condition is necessary. For
if one M, does not contain a simple right ideal, the set M/, cannot be
a sum of simple right ideals and hence M|, cannot be contained in the
set R. b) The condition is sufficient. For if M/, (which is a sum of simple
left ideals) contains a simple right ideal, then M, is a sum of simple right
ideals (Theorem 4,3). Hence M, is contained in .

Remark. A semigroup S with kernel n can contain also simple
two-sided ideals without simple left and simple right ideals, so that the
sum M = M, of all simple two-sided ideals of S needs not be equal to £

or R even in the case when these two sets are equal. Clearly it is always:
L
ng_ﬁnéﬁgm CEHRCMCS.

When do the relations €=M, R = M, L= R = M hold?

Theorem 9,3. Let S be a semigroup having a kernel and without a pro-
per radical. Let the sets &, R, M have the meaning introduced above. Then

a) €= M holds if and only if every simple two-sided ideal of S con-
tains at least one simple left ideal.

b) R = M holds if and only if every simple two-sided ideal of S con-
tains at least one simple right ideal.

¢) L= R = M holds if and only if every simple two-sided ideal of S
contains at least one simple left and one simple right ideal.

The proof is analogous to that of Theorem 9,2 and its explicit formu-
lation can be clearly omitted.

Remark. Theorems 9,2 and 9,3 show that especially in every finite
semigroup without radical the relations £ = R = I hold.

Now let us study briefly the question under what conditions a semi-
group without a proper radical is a direct sum of two-sided ideals. With
respect to the sharper suppositions about S we shall obtain naturally less
general conditions as those given in Theorem 2.4.

The first theorem of this kind follows immediately from Corollary
9,1. There holds:

Theorem 9,4. Let S be a semigroup with kernel and without a proper
radical. Let S be the class sum of its simple left ideals. Then S is a direct sum
of two-sided ideals.

By means of Theorem 9,3 this result can be formulated also in the
following manner.

o
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Theorem 9,5. Let S be a semigroup with kernel and without a proper
radical. Let every simple two-sided ideal of S contain at least one simple
left ideal. Then S is a direct sum of two-sided ideals if and only if it is the
class sum of its simple left ideals.

Remark. Especially: A finite semigroup S without a radical is
a direct sum of two-sided ideals if and only if it is the sum of all simple
left ideals of S.

The right dual theorems to Theorems 9,4 and 9,5 are obvious.

Theorem 9,5 and Theorem 2,2 together give the the following inte-
resting

Coracllary 9,5. Let S be a semigroup without a proper radical. Let
every stmple two-sided ideal of S contain at least one simple left ideal. Then S
is a direct sum of two-sided ideals if and only if every relation a — zb,
a, bnon e n implies « relation xa = b with x non € n.

Theorem 9,4 combined with our previous results gives the further

Theorem 9,6. Let S be a semigroup without a proper radical. Let S
be the class sum of its stmple left ideals. Let, moreover, every simple two-
sided tdeal of S contain at least one simple right ideal of S. Then

a) S is also the class sum of all simple right ideals of S,

b) S is a direct sum of two-sided ideals each of which is a completely
simple semigroup.

Theorem 9,6 with the right dual of Corollary 9,5 has again the fol-
lowing very interesting corollary:

Corollary 9,6. Let S be a semigroup without a proper radical. Let
every simple two-sided ideal of S contain at least one simple left and at
least one simple right ideal of S. Then, if for every relation of the form a —
= b (a, b, v € S — n) the implication

a = xb =>2Za = b with some T non e n (19)
holds, so holds also, for every relation of the form a = by (a, b, y € S — n).
the implication
a = by =ay = b with some ynon e n. (20)
Conversely: If (20) holds, so holds also (19).

Proof. It (19) holds, then (with respect to Theorem 2,2) S is the
sum of its simple left ideals. Further — according to Theorem 9,4 — S is
a direct sum of two-sided ideals. Since now every simple two-sided ideal
contains at least one simple right ideal, S is also the sum of its simple

right ideals. Hence (with respect to Theorem 2,3) the implication (20)
holds.

The converse part follows analogously.



10. Semigroups with a proper radical.

Let S have a kernel and a proper radical ¢. Let us put the question:
what can be said about the totality of all simple n-potent and non-n-
potent left or right ideals?

In this section we introduce the following notations:

£ (R, M) will denote the class sum of all simple left (right, two-sided)
ideals of S,

£0) (RO, M®) the class sum of all n-potent simple left (right, two-
sided) ideals of S,

£ (RO, MDY the class sum of all non-n-potent simple left (right,
two-sided) ideals of S.

Tt is .

O cy, ROy, MO C .

Further:

L2 2O L g, R == RO £ RO, M — MO | MO
We cannot say that

(1)
C MO
ngc g S m

holds, since in general we did not prove that every simple left (right)
non-n-potent ideal is contained in a simple two-sided (non-n-potent)
ideal.

According to Theorem 1,5 the sets £ and R are two-sided ideals
of 8. We show further:

Theorem 10,1. The sets £ and RO are two-sided ideals of S.

Proof. Let L(® be any simple left ideal belonging to ®. We know
(see Theorem 1,4) that for every c e S the set n 4 L(%c¢ is either n or
a simple left ideal of S. Since L(% is n-potent, there exists a p 2> 1 with
(L®)e c 1. Hence

(LOc)e = LO . (cLO)e=1 ¢ C IO . LOe=1 ¢ —= [ ¢ C n.

Therefore the ideal n 4 L(®c¢ belongs to £©. Now let be &0 =—
= ZL©®. This is evidently a left ideal of S. To prove our theorem it is

sufficient to prove that £ is also a right ideal of S. Let ¢ be any element,
¢eS. Then £0¢ = XL®c C 2(n + LPc). But, since for every x n -

* o
+ L®c is yet contained in X%, we get ¢ C ¥9. This proves our
theorem.

The radical ¢ of our semigroup was defined as the sum of all n-potent
two-sided ideals of S. It need not be itself n-potent. In this section we
shall, however, impose the condition that ¢ is n-potent. This is equivalent
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to requiring that S contains a maximal n-potent two-sided ideal which is
then of course r. To avoid repetitions I introduce the following

Condition C. S is a semigroup having a kernel n and a maximal
n-potent ideal ¢.

Theorem 10,2. Let S satisfy Condition C. Then £ is a semigroup
having a kernel and the radical £(°).

Proof. a) That (the two-sided ideal) £ has the kernel n follows
immediately from Theorem 8,1.

b) Note first that every simple left ideal LD of § belonging to 1)
(which is naturally supposed to be non-vacuous) is also a simple left
ideal of £. This follows from the second part of Theorem 8,3. The suppo-
sitions of Theorem 8,3 are satisfied since £ is a two-sided ideal and
22 % n. (The relation £2 = n would imply [LP]2 C n, contrary to the
fact that LY is non-n-potent.)

Now let t* denote the radical of £. Clearly £ C ¢* C r. To show
O = r* it is sufficient to prove that none of the simple ideals contained
in €O belongs to r*. This follows indirectly. If such a simple ideal LY
would satisfy L{ C t* Cr, there would be for every p > 1 [L‘l’]ﬂ C
C r*p C vl But (w1th I’Obp(JCt to the Condition C) r» = n for some g > > 1.
Hence [L‘l’]ﬂ C n. This is contrary to the assumption that L is non-n-
potent. Therefore t* is just the class sum of all n-potent slmple left
ideals of S (namely £9), which proves Theorem 10,2.

Analogous results hold for R and M.

Theorem 10,3. Let S aatme Condition C. Let the set £ be a two-
sided ideal of S. Then the semigroup £ can be wrzttm as the sum of two
summands: the radical £ and the semigroup £V, which is itself a direct
sum of simple two-sided ideals of S.14) In formulae:

g —= 2O L eI, O A YD = n,
where

L = T @ MO,

Proof. 80, being a two-sided ideal of §, is itself a semigroup.
According to Theorem 8,1 it has the kernel n. In Theorem 10,2 we proved
that every simple left ideal of S belonging to €1 is also a simple left ideal
of €. It follows by the same argument that such an ideal is, moreover,
a simple left ideal of ¥1). Hence £V is the sum of simple left ideals of £

from which none is n-potent. Therefore £ is a semigroup with kernel and
without a proper radical. Hence we can apply Corollary 9,1 according to
which £ is a direct sum of two-sided ideals of £M: ¥ =X @ MD.

1) Or (what will be shown to be the same) of £ or £(),
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To complete the proof we must show that every MY is even a
(simple) two-sided ideal of S. First, since M® is a non-n- potent simple
two-sided ideal of £, it is THY® — M, MO = MY, Further it
is (according to the supposition) Sﬁ(l) c 2(1) '(1)S c ¢, Thcrefore we
have -

SM“}’ = Sg(l)Mg’ c ) | Mg) = fol).

MPS = MPLDOS c MPYDH = MY,
which completes the proof.

Theorem 10,4. Let S be a semigroup satisfying Condition C. Then
every non-n-potent simple left ideal of S is contained in a simple two-sided
ideal of S if and only if the sum of all simple non-n-potent left ideals of S is
a two-sided ideal of S.

Proof. a) According to Theorem 10,3 the condition, is sufficient.

b) It is also necessary. For let every LY e £ be contained in some
simple two-sided ideal M of S. The set MY overlaps D, i. e.

& c LM D, Every summand in ZM‘D is clearly a simple (non-n-potent)

5em1group having at least one blmple left ideal. According to Theorem 4,3
every MQ is a sum of simple left non-n-potent ideals of M M which are
also simple left in S (see Theorem 8,3). Therefore TMP c LV, So we

have at last XMQP = 2. Now &1, being a sum of tv;fo-sided ideals of S,
is itself a two-sided ideal of S. This proves our theorem.
An analogous theorem holds for simple right non-n-potent ideals.

Remark. The condition of Theorem 10,4 is especially satisfied if S
has no proper radical. For then the set £ of all simple left ideals concides
with the set £1) of all non-n-potent simple left ideals. But, according to
Theorem 1,5, £ is a two-sided ideal of S. We get so again Theorem 9,1.

A special case in, which Theorem 10,3 holds is the case = €. Then
there holds also R(® = £©). For (according to Theorem 10,2) the radical
of £is 2O, the radical of R is R(®. But since R = &, it is RO = LO),
Since £ 0 & = n, RO 0 RO = n, the last equalities imply RO =
= £, which says that both R and £ are two-sided ideals of S.

If moreover & = ¥ = S holds, we get the following

Corollary 10,3. Let S satisfy Condition C. Let S be the sum of its
simple left ideals and at the same tvme of its simple right ideals. Then S can
be written as the sum of the radical and of a direct sum of two-sided ideals.

Remark. The weaker assumption that S can be written as the sum
of its simple left ideals, i. e. S = &, is not sufficient for the validitity of
this corollary. For the semigroup 23 will be a two-sided ideal of S if and
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()11]} if (LS == 2(1)(2(0) - i(l)) C ¥ holds. Since 1(1)2(0) LM C
C OO - 2<1) and 2(1)2(0) c 53(0) this is clearly equivalent to the re-
qlureln(nt DO — n. Thus the validity of the relation MLO® = g is
the necessary and sufficient condition that under the assumption
£ = S the semigroup should be the sum of the radical and of a direct sum
of two-sided ideals.

This relation does not hold in general if only ¢== S is satisfied.
But if, however, & = £ = 8 (i. e. O = RO, LB = RD) holds, we get:
LAOLO) = ROLN ¢ RO 0 XD = LD n YO —= 5, which gives another
proof of Corollary 10,3.

The question arises: when does the relation £ = R hold? The
answer is given by

Theorem 10,5. Let S be o semigroup satisfying Condition C'. Then
RO = LD holds if and only if:

a) RD and O are two-sided ideals,

b) every simple non-n-potent two-sided ideal containing a simple left
ideal contains also a simple right ideal and conversely.

Proof. It is analogous to that of Theorem 9,2.

a) The condition is necessary. For if R = £A), then RO and ¢
are two-sided ideals of S. Hence, according to Theorem 10,4, every non-
n-potent simple left (right) ideal is contained in a simple two-sided ideal
of S. Moreover, every simple two-sided Ideal containing a simple non-
n-potent left ideal is a sum of simple left ideals and belongs therefore to
L. But since £ = R, it belongs also to RD), hence it contains at
least one simple non-n-potent right ideal. The converse part follows
analogously.

b) The condition is sufficient. We have to show that if the condi-
tions a) and b) are satisfied, every non-n-potent left ideal is contained in
RD and every non-n-potent right ideal of S in €M, Let LY be a simple
non-n-potent left ideal of 8. Since, according to a), £ is a two-sided
ideal of 8, LY is contained in some simple non-n-potent two-sided ideal
MO of S. Accordlng to b) this ideal contains at least one simple non-
n- potent right ideal. Hence M® is also a sum of simple right non-
n-potent ideals of S. Therefore L(D belongs to RD. The dual part that
every simple non-n-potent right ideal of S belongs to £ follows analo-
gously.

Now we introduce the sets 9, MO, M®. In general nonc of the
relations

)
(0) *
n g m(o) ggﬁ ’ ( )
1
nc D c M (*¥*)
= m(l) =

is true.
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According to Theorem 10,4, (**) holds if and only if £® and RM®
are two-sided ideals of S. It is casy to find necessary and sufficient
conditions for the equalities 21 = MD. RO = MDD, gD == RAD) =
— M),

There holds:

Theorem 10,6. Let S be a semigroup satisfying Condition C. Let
LD, RO, MD have the meaning introduced above.

1. £ = MO Rolds if and only if

a) M is q two-sided ideal of S,

b) every simple non-n-polent two-sided ideal of S contains at least one
simple left ideal.

2. RO = MD holds if and only if

a) R is @ two-sided ideal of S,

b) every simple non-n-potent two-sided ideal of S contains at least
one simple right ideal.

3. 2D = RA) = MO holds if and only if

a) &M and RO are two-sided ideals of S,

b) every simple non-n-polent two-sided ideal of S contains at least one
simple left and ai least one simple right ideal of S.

We omit the explicit proof of this theorem, sinee it is analogous to
that of Theorem 10,5.

From these theorems we can obtain again a number of others. We

note the following one, the proof of which follows from Theorem 10,6 and
Corollary 10,3.

Corollary 10,6. Let S satisfy Condition C. Let every simple non-
n-potent two-sided ideal of S contain at least one simple left and at least one
simple right ideal of S. Then S is the sum of its radical and of a direct sum of
two-sided simple ideals if and only if it can be written in both forms: a) as
the sum of the radical and of all simple non-n-potent left ideals, ) as the sum
of the radical and of all simple non-n-potent right ideals.
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