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ON ONE ORDERED CONTINUUM
L. MISIK, Bratislava.
(Received November 29th, 1950.)

In the present paper the construction of the ordered continuum P, is

given whose power is 2% and whose separability is ¥,. There are three
kinds of point-characters in 90, viz. ¢y, Co;, C1o. Some interesting pro-
perties of 9, are studied. The article is closely connected with NovAK’s

paper: On some ordered continua of power 2% containing a dense sub-
set of power ¥,.

In this paper a continuum 9, of power 2% is constructed by the me-
thod, of identification of points in certain intervals in certain ordered con-
tinuum @ such that ¥, is the least power of subsets which are dense in P,.
The continuum Y, contains only points with characters cgg, €y, €1o. The
continuum ¥, is a quasi-homogeneous continuum, i. e., in every interval
J C P, there exists a subinterval I similar to ¥,. The continuum %,
possesses the property zz: Any disjoint uncountable system of intervals in
9, contains an uncountable subsystem of intervals whose left end-points
form an increasing or a decreasing sequence of points in ¥,. The con-
struction of the continuum 9, gives the solution of the problem of J. No-
v4k1) introduced in his paper: On some ordered. continua of power 2%
containing a dense subset of power ¥,, i. e. if there exists the ordered
continuum P,.

Let @ be a lexicographically ordered continuum whose elements «
are transfinite sequences of zeros and ones [%3]i<w, = g2y ... 27 .-
(A < w,) (where z; = 0 or z; = 1 and w, is the least uncountable ordmal)
whereby every two neighbouring sequences are identified. According to
Nov4k, we say that the point « € @ has the property (c), (d), (e), (f), or (g)
with the least ordinal x < w, if there exists its development, i. e., the
transfinite sequence [#;];<«, satisfying the corresponding property:

(¢) there exist two ordinary increasing sequences of indices {7,}¢_,

and {1,}¢_, converging to ordinal « and such that z, = 0 and z, =1
for every =,

1) J. Nowvdk, On some ordered continua of power 2% containing a dense subset
of power ¥,, Czechosl. math. Journ. 76 (1951), 63—79.
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(d) there exists the least ordinal § such that ; = Lforf < 2 <<~ =
= f 4 o whereby f is a limit ordinal or 0,
(e) there exists the least ordinal f such that x; = 0 for § < 1 <
<A v=f+w whereby £ is a limit ordinal or 0,
(f) there exists the least ordinal f such that a; = 1 for << A <<
<~ = f + o whereby f is an isolated positive ordinal,
(g) there exists the least ordinal # such that 23 = 0 for # < 1 <<
<~ = f# + w whereby f8 is an isolated positive ordinal,
whereby « is, in all these cases, the least ordinal with the mentioned
property.
- Let 0 <o << o, and let 4g7; ... 4z ... (A < &) be a sequence whereby
1y = 0 or 7; = 1. All points x € @ with developments [2;];<», such that
x; = 1y for 4 < o, form a closed interval I = Lig,..i;.. (A<<ax)CQ of
order «. We say that I = Ligi...i,... (A < x) has the property (c), (d), (e),

(f), or (g) if all points of I have this property with respect to the ordinal x.

Lemma I. Let &, be a system of all intervals Ly, i, (2 <) C Qwith
the property (c) or (f) but such that no interval Iy, ;.. (A <<«&') where
' <<« has either property (c) or property (f). Then the system S, is a dis-
joint system of intervals in Q.

Proof. Let Iiy, .i,.. (A <x)e&; and I, ;.. (A << f)eZ; be two
different intervals in (). Then there exists an ordinal ¢ << min(w, ) such
that i3 =, for A< 0 and i5+js=1. Let welyy 4, (A<<a) N
N L.y, A< p). The point « is the point with two developments
[2]sc0, and [yzlscw, Whereby @y — iy for A <o, yz—j; for A< f.
From the last assertion it follows that x; = y; for A & 0, @5 + ys = 1
and x; == x5, Yz = ys for 2 > 4. Consequently ¢; == 45 for 6 < 4 <<« and
jr =+ js for 6 < A< f. Further I i, (A< 0) and I, 4. (A <<9)
have neither property (c) nor (f) and it is for 6 < 4 <wa:d; = 0if 75 = 1
ori; = lifig = 0,and for d << A << f:js = lifis =1 orj; = 0if ¢5 = 0.
From that it follows that the interval Z;, ,... (A << «) fails to have pro-
perty (c) or, in the case is = 1, property (f) and I;,;, ;. .. (A < p) fails to
have property (c) or, in the case ¢5 = 0, property (f). In any case one of
these two intervals does not belong to the system &,; that is a contradic-
tion. Therefore the system &, is a disjoint system of intervals in Q.

Lemma 2. Every interval Li,..q,.. (A <) e &, has the character ¢y,

in @, if it has property (c), or the character ¢y in Q, if it has property (f). Let
UG, be the set of all points of Q belonging to some intervals of &,. Suppose
that x € Q@ — US, and that x is no end-point in Q. Then the character of the
point x 18 Cyy OF 1IN Q.
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Proof. Let I = I;;, ;.. (A <«)e &, Letx e I be the left end-point
with the development 4y7; ... 4; ... 000 ... = [a;],,, and let y e I be the
right end-point with the development ¢gi; ... 4; ... 111 ... = [y;]30,. Let
I have property (c); then there exists a sequence {*x}¢_, of points in @,
the development of the point £z being [¢z;];.,, where fx; = a; for 1 < o,
and A==, and, fag = 0. Since — according to the property (c¢) — there exists
an infinite number of different indices such that 7, -« and i, =1, it
follows therefore that there exists an ordinary increasing sequence

{E"x};;;o left converging to the point x in . The character of the point x
is ¢4 in Q. Likewise, it can be proved that the character of the point ¥ is
oo in. Q. The character of I is therefore ¢,y in . Let I have the property
(f), i. e., there exists an isolated ordinal § such that 75y = 0 and 7; = 1
for f < A < & = f§ + w; then there exists an ordinary increasing sequen-
ce {mx}@_, left converging to the point x in @, the development of the point
7y being [*2;])<w, Where "x; = x;for A < w;and A == f + n, and "2, =
= 0. In this case, the point = has the character ¢y, in . The point y has
two developments in @ viz. ¢, ... 7; ... 111 and [j;];<w, Where j; =1,
for A<< f — 1,451 = 1 and j;, = 0 for 1 > B. Therefore there exists in @
a decreasing sequence of points {y¥}? right converging to y whereby the
development of y¢ is [y£];<., Where y§ = j; for A < w, and 1 & f§ -+ &,
and y5 . = 1. Consequently the point y has the character ¢, in @ and so
the interval I bas the character ¢, in Q.

If e @ — UG, with the development [x;];-,, is not an end-point
in ), it has not property (c) and its development cannot contain uncoun-
tably many 0’s and uncountably many 1’s simultaneously. There must
exist the least ordinal B such that z; = 0 for § < A < w, or x; = 1 for
B < A < w;. The ordinal # cannot be an isolated ordinal since (the first
case) the point # would have two developments and x would be the right
end-point of the interval I;;, ,.. (A < + o) € &; whereby i, = ; for
A<B—1,i5_3=0and i, = 1for f < A< f -+ w; or (the second case)
the point « would belong to the interval L ... A<pf+ w)eS, as
the right end-point whereby i; = 23 for A < f 4 w. Let us consider the
first case. The development [2;];<., must contain at least one 1 because
is not the left end-point in @. There must be an infinite number of indices
A < B such that x; = 1; otherwise the ordinal 8 could not be the least
ordinal with the prescribed property and the limit ordinal at the same
time. Therefore, we can choose from the sequence {5x}g=0, whereby ¢z has
the development [$Z1]i<e,, %, = 23 for A < w; and 4 == &, and fx; = 0,
an ordinary increasing sequence {Eﬂx}g=0 left converging to the point a
in . The sequence {y°}¢1, of points of @, whereby y* has the development
[¥8)i<w, Y§ = @1 for A< ow; and 4 = + o, and y§,, =1, is an un-
countable decreasing sequence right converging to the point x in ¢. There-
fore, the character of the point x is ¢, in @. In the second case, because
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the point z is not the right end-point in @ and the ordinal f is the least
ordinal with the above mentioned property, the development of the point
xmust contain an infinite number of x; = 0, 2 < f. The sequence {*x}g! ; of
points of @, whereby ¢z has the development [¢2;];-,, and fz; = x; for
A<w;and 4 4B + & and ‘vz, ¢ = 0, is an uncountable sequence left
converging to the point x in . Further we can choose from the sequence
{y¥}£_¢ of points of @ whereby y* has the development [¥§]1<w, ¥§ = 22
for <o, and 1 % &, and y§ = 1, an ordinary decreasing sequence of
points right converging to the point « in . Therefore, in this case, the
character of the point z is ¢;y in @ and the proof of Lemma is completed.

Let 9, be a system containing all intervals X € &, and all one-point
sets (z) such that z e @ — US,. We are going to arrange the points of P,
as follows: X, ¥ e P, and X < Y if and only if there is # << y for all points
2 € X and for all points y € ¥ in Q.

Theorem |. Theset Y, is a quasi-homogeneous ordered continuum of

the pover 2% containing no countable dense subset. P, = AQ U AR U
U AQ U E® where A? are disjoint subsets dense in P, for g,0 =0, 1
and the set A? is the set of all points with the character ¢, in Py. The sets
A® and 4‘173 hawe the power ¥, and E® = {(a), (b)} whereby a and b are
the endpoints in Q.

Proof. The sets A%, A7) and Af) are not empty. Asa matter of fact

the points iy, i, . (n < ), Ij,j,..,.. (n <) and x with the develop-
ment [%3]1<o, Whereby 4y, = 0 and 93,y = 1fork =0,1, 2,...,J, =0,
m=1forn=1,2,3,..,and 2; =0 for A< and 23 =1 for 0 <
< A < oy, belong to P,. From this fact, according to Theorem 1 and
Lemma 1 of the above cited paper of J. NovAk?) and according to our
Lemma 2, it follows that ¥, is an ordered continuum with points of
character g, Cop» C1o- In P, there cannot exist a countable dense subset,
9P, containing points with character cy; and ¢y.

LetJ C 9, be any interval with the end-points p < ¢, pe P, and g € P,.
If p and g are common points in P,, then let [palicw, and [g1licw, be
their developments; if one of them or both are the interval-points in P,
then let [pilice, be the development of the right end-point of the
interval p in @ and [¢1]i<w, the development of the left end-point of the
interval ¢in @. As p < ¢ there must exist an index 0 such that p; = g3 for
2 <8, ps=0< gs=1 and the least index y > J such that there is
p, = 0org, =1.If y = 0 + o, the point p has the property (f). In this
case [pilica, is the development of the right end-point of the interval p
in Q and consequently p; =1 for A > 6 and p, = 1. If p, =0, then
evidentlyy < 6 + w.If p, =0 wepute, = pyfor A <y,e, =e,.0=1
ande,,; = Oandifg, =1, wepute, = g, for A <ypand e, =e,.; =0,

?) Lc.s.
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eppz= 1.1 Loy . (A< 0) would have the property (¢) or (f) it would
be: p, q € lop,. q,.. (A< 0)e &, and consequently p = ¢. Therefore with
respect to the fact that e; = 0 or ¢y — 1 for § << A <y whereby in the
last casey << 8 + w we can assert that the interval Log..c,.. A<y +3)
has neither the property (c) nor (f); consequently [Zi]i<o, and [Y2]1<o,
where Z; =3 = e; for A<y +3 and 73 =7, =0 for y + 3 A<
<y4ozm=y=lioy+oli<y+tow.2andz;=0,17=1
fory 4+ w . 2 < 2 are developments of the common points  and y and it
isp <<z <y << qin P,.Let I be the interval in P, with the end-points
and g in §,. Then I C J.

Let ze Py, 2 = Ii,,i,.,_il_., (A < x) be an interval-point. We put 2z’ =
= f(2) = Lj,..j;.. A<y + .2+ «) whereby j; =z for 1<y +
+ w.2and Jy1ee+a = i3 for A << «. If z has the property (c) or (f) then
2" has the same property. Evidently 2 € I C J. Now, let z be a common
point of P, with the development [2;],<.,. Then 2" = f(z) with the de-
velopment [2}],<w, Whereby 23 =23 for A <y + 0.2 and 2},1062.; =
= z; for 2 < wy, is a common point as well and 2" € I. It is easy to verify
that the correspondence 2z’ = f(2) is a similarity. Therefore ¥, is a quasi-
homogeneous continuum.

All sets A, Agl’, A are dense in P, because they are not empty
and 9, is a quasi- homogeneous continuum. Now, let us notice that the
power of the system &, does not exceed the power of the set of all inter-
vals in @, viz. 2%. From the property (c) it follows that any interval

Ligi,..i;... (A < o) whereby ¢, = 0 for an infinite number of 1 <<w and iy =
= 1 for an infinite number of 2’ << w belongs to &,. Thus the power of AJ)
must be 2%. If x € P, — A, then the development [2;);<., of # fails to
have the property (c¢) and consequently there is a finite increasing se-
quence of indices xy << fo<<o; < fy<...<ax,<<p,<<..., whereby
0< o, < B, <w,or0< o, < B, <« such that z; = 0 for and only for
«, < A< B, for every ». Because we can attach one and at most one
point x € P, — AJ to every sequence like this the power of the set P, —

— A cannot exceed the cardinal number &, of all finite increasing se-
quences of ordinals << w;. The power of AD and A is ¥&;, A7) and A
being dense in ), and because there cannot exist a counta,ble set Wthh
would be dense in ¥,. It remains to verify that the one-point-sets (a) and
(b) are the common points in Y, where @ and b are the end-points in Q.
This follows from the fact, that neither the point @ nor the point b has
property (c) or (f).

According to J. NovAk we denote by P; the ordered continuum
which contains all intervals Li,. 4,.. (A <<«) C @ with the property (c)
and all one-point-sets (x) whereby « € @ fails to have property (c). He
has proved that P, has the property 7.
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Theorem 2. There exists a subset P of Wy whichissimilar to V,. P, has
the property .

Proof. Let z = I, i, .. (A <«)e Py be an interval-point with the
property (c); then 2z’ = f(z) = z is an interval-point in ;. If z € P, is an
interval-point with property (f), then [z} ]i<s, Whereby z; = 1, for 1 <<«
and zy = 0 for 4 >« is a development of the point 2" = f(z) € P,. Let
z be a common point in P,. Then the point 2" = f(z) = z is a common
point in P, too. It is easy to verify that f is a similarity of ¥, on the
set P C Py of all points f(z). Now P, has the property 7 because P, and
consequently P, has it as well.

J.Novix has constructed the continua P, ..., Vg using the following
properties: Py : (c); Py : (¢) and (d); Vs : (c) and (e); Vg : (¢), (d) and (e);
P11 (e), (d) and (f); P, : (c), (e) and (g).

In this paper, I have constructed the continuum %, by using pro-
perties (¢) and (f). All remaining combinations of the properties (d), (e), (f)
and (g) with the property (c) are as follows:

(¢) and, (g); (¢), (d) and (g); (¢), (e) and (f); (¢), (f) and (g); (c), (d), (e)
and, (£); (c), (d), (e) and (g); (c), (e), (£) and (g); (¢), (d), (¢) and (2); (¢), (d),
(), (f) and (g).

It is easy to see that we get a continuum which is similar to P,
reversed using the properties (c) and (g). Remaining combinations don’t
lead to any ordered continuum because the corresponding systems of
intervals & are not disjoint. For instance the intervals I, i, (A < w . 2)
and L ;.. (A<w), ig=0, i3 =1 for 1< A<w.2 and j,=1,
j2 = 0for 1 < A < w defined by means of the combination (c), (d) and (g)
have a common point. The intervals Ii;, .i,.. (A<w) and Ij; ;. .
A<w.2),4=0i3=1for 1 <A1<w and j,=1 and j; =0 for
1 < A< w.2, defined by (c), (e) and (f), have also a common point and
Ii,,i,...i‘... (A < w) and Iini...-i;,u- A <w),iyg=1, jo=0,1 = 0and j; = 1
for 1 < A< w, defined by (c), (f) and (g), have a common point as well.
1t is easily seen, that further combinations define systems, which are not
disjoint.
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